-
Notifications
You must be signed in to change notification settings - Fork 26
/
Dockerfile
160 lines (141 loc) · 5.28 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
ARG CUDA_VERSION=11.8.0
ARG OS_VERSION=22.04
# Define base image.
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${OS_VERSION}
ARG CUDA_VERSION
ARG OS_VERSION
ARG USER_ID
# metainformation
LABEL org.opencontainers.image.version = "0.1.18"
LABEL org.opencontainers.image.source = "https://github.com/nerfstudio-project/nerfstudio"
LABEL org.opencontainers.image.licenses = "Apache License 2.0"
LABEL org.opencontainers.image.base.name="docker.io/library/nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${OS_VERSION}"
# Variables used at build time.
## CUDA architectures, required by Colmap and tiny-cuda-nn.
## NOTE: Most commonly used GPU architectures are included and supported here. To speedup the image build process remove all architectures but the one of your explicit GPU. Find details here: https://developer.nvidia.com/cuda-gpus (8.6 translates to 86 in the line below) or in the docs.
ARG CUDA_ARCHITECTURES=90;89;86;80;75
# Set environment variables.
## Set non-interactive to prevent asking for user inputs blocking image creation.
ENV DEBIAN_FRONTEND=noninteractive
## Set timezone as it is required by some packages.
ENV TZ=Europe/Berlin
## CUDA Home, required to find CUDA in some packages.
ENV CUDA_HOME="/usr/local/cuda"
# Install required apt packages and clear cache afterwards.
RUN apt-get update && \
apt-get install -y --no-install-recommends \
build-essential \
cmake \
curl \
ffmpeg \
git \
libatlas-base-dev \
libboost-filesystem-dev \
libboost-graph-dev \
libboost-program-options-dev \
libboost-system-dev \
libboost-test-dev \
libhdf5-dev \
libcgal-dev \
libeigen3-dev \
libflann-dev \
libfreeimage-dev \
libgflags-dev \
libglew-dev \
libgoogle-glog-dev \
libmetis-dev \
libprotobuf-dev \
libqt5opengl5-dev \
libsqlite3-dev \
libsuitesparse-dev \
protobuf-compiler \
python-is-python3 \
python3.10-dev \
python3-pip \
qtbase5-dev \
vim-tiny \
wget \
&& \
rm -rf /var/lib/apt/lists/*
# Install GLOG (required by ceres).
RUN git clone --branch v0.6.0 https://github.com/google/glog.git --single-branch && \
cd glog && \
mkdir build && \
cd build && \
cmake .. && \
make -j `nproc` && \
make install && \
cd ../.. && \
rm -rf glog
# Add glog path to LD_LIBRARY_PATH.
ENV LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:/usr/local/lib"
# Install Ceres-solver (required by colmap).
RUN git clone --branch 2.1.0 https://ceres-solver.googlesource.com/ceres-solver.git --single-branch && \
cd ceres-solver && \
git checkout $(git describe --tags) && \
mkdir build && \
cd build && \
cmake .. -DBUILD_TESTING=OFF -DBUILD_EXAMPLES=OFF && \
make -j `nproc` && \
make install && \
cd ../.. && \
rm -rf ceres-solver
# Install colmap.
RUN git clone --branch 3.8 https://github.com/colmap/colmap.git --single-branch && \
cd colmap && \
mkdir build && \
cd build && \
cmake .. -DCUDA_ENABLED=ON \
-DCMAKE_CUDA_ARCHITECTURES=${CUDA_ARCHITECTURES} && \
make -j `nproc` && \
make install && \
cd ../.. && \
rm -rf colmap
# Upgrade pip and install packages.
RUN python3.10 -m pip install --no-cache-dir --upgrade pip "setuptools<70.0" pathtools promise pybind11
SHELL ["/bin/bash", "-c"]
# Install pytorch and submodules
RUN CUDA_VER=${CUDA_VERSION%.*} && CUDA_VER=${CUDA_VER//./} && python3.10 -m pip install --no-cache-dir \
torch==2.0.1+cu${CUDA_VER} \
torchvision==0.15.2+cu${CUDA_VER} \
--extra-index-url https://download.pytorch.org/whl/cu${CUDA_VER}
# Install tynyCUDNN (we need to set the target architectures as environment variable first).
ENV TCNN_CUDA_ARCHITECTURES=${CUDA_ARCHITECTURES}
RUN python3.10 -m pip install --no-cache-dir git+https://github.com/NVlabs/tiny-cuda-nn.git#subdirectory=bindings/torch
# Install pycolmap, required by hloc.
RUN git clone --branch v0.4.0 --recursive https://github.com/colmap/pycolmap.git && \
cd pycolmap && \
python3.10 -m pip install --no-cache-dir . && \
cd ..
# Install hloc 1.4 as alternative feature detector and matcher option for nerfstudio.
RUN git clone --branch master --recursive https://github.com/cvg/Hierarchical-Localization.git && \
cd Hierarchical-Localization && \
git checkout v1.4 && \
python3.10 -m pip install --no-cache-dir -e . && \
cd ..
# Install pyceres from source
RUN git clone --branch v1.0 --recursive https://github.com/cvg/pyceres.git && \
cd pyceres && \
python3.10 -m pip install --no-cache-dir -e . && \
cd ..
# Install pixel perfect sfm.
RUN git clone --recursive https://github.com/cvg/pixel-perfect-sfm.git && \
cd pixel-perfect-sfm && \
git reset --hard 40f7c1339328b2a0c7cf71f76623fb848e0c0357 && \
git clean -df && \
python3.10 -m pip install --no-cache-dir -e . && \
cd ..
# Install waymo-open-dataset
RUN python3.10 -m pip install --no-cache-dir waymo-open-dataset-tf-2-11-0==1.6.1
# Copy nerfstudio folder.
ADD . /nerfstudio
# Install nerfstudio dependencies.
RUN cd /nerfstudio && python3.10 -m pip install --no-cache-dir -e .
# Make sure viser client is built
RUN python -c "import viser; viser.ViserServer()"
# Change working directory
WORKDIR /workspace
# Install nerfstudio cli auto completion
RUN ns-install-cli --mode install
# Bash as default entrypoint.
CMD /bin/bash -l