From 90ac532f699c59f3952037f6244e216aaa5b3447 Mon Sep 17 00:00:00 2001 From: Andy Xu Date: Fri, 29 Sep 2023 15:47:59 -0400 Subject: [PATCH] Revert "add stable diffusion integration" (#1238) Reverts georgia-tech-db/evadb#1111 This PR breaks the staging. I will work with @sudoboi to fix and improve the issues we found. Co-authored-by: Abhijith S Raj <63101280+sudoboi@users.noreply.github.com> --- evadb/functions/dalle.py | 79 ----- evadb/functions/function_bootstrap_queries.py | 12 - evadb/functions/stable_diffusion.py | 88 ----- evadb/utils/generic_utils.py | 18 - .../long/functions/test_dalle.py | 60 ---- .../long/functions/test_selfdiffusion.py | 61 ---- test/markers.py | 5 - tutorials/16-stable-diffusion.ipynb | 319 ------------------ 8 files changed, 642 deletions(-) delete mode 100644 evadb/functions/dalle.py delete mode 100644 evadb/functions/stable_diffusion.py delete mode 100644 test/integration_tests/long/functions/test_dalle.py delete mode 100644 test/integration_tests/long/functions/test_selfdiffusion.py delete mode 100644 tutorials/16-stable-diffusion.ipynb diff --git a/evadb/functions/dalle.py b/evadb/functions/dalle.py deleted file mode 100644 index 37c75b77e..000000000 --- a/evadb/functions/dalle.py +++ /dev/null @@ -1,79 +0,0 @@ -# coding=utf-8 -# Copyright 2018-2023 EvaDB -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os - -import pandas as pd - -from evadb.catalog.catalog_type import NdArrayType -from evadb.configuration.configuration_manager import ConfigurationManager -from evadb.functions.abstract.abstract_function import AbstractFunction -from evadb.functions.decorators.decorators import forward -from evadb.functions.decorators.io_descriptors.data_types import PandasDataframe -from evadb.utils.generic_utils import try_to_import_openai - - -class DallEFunction(AbstractFunction): - @property - def name(self) -> str: - return "DallE" - - def setup(self) -> None: - pass - - @forward( - input_signatures=[ - PandasDataframe( - columns=["prompt"], - column_types=[ - NdArrayType.STR, - ], - column_shapes=[(None,)], - ) - ], - output_signatures=[ - PandasDataframe( - columns=["response"], - column_types=[ - NdArrayType.STR, - ], - column_shapes=[(1,)], - ) - ], - ) - def forward(self, text_df): - try_to_import_openai() - import openai - - # Register API key, try configuration manager first - openai.api_key = ConfigurationManager().get_value("third_party", "OPENAI_KEY") - # If not found, try OS Environment Variable - if len(openai.api_key) == 0: - openai.api_key = os.environ.get("OPENAI_KEY", "") - assert ( - len(openai.api_key) != 0 - ), "Please set your OpenAI API key in evadb.yml file (third_party, open_api_key) or environment variable (OPENAI_KEY)" - - def generate_image(text_df: PandasDataframe): - results = [] - queries = text_df[text_df.columns[0]] - for query in queries: - response = openai.Image.create(prompt=query, n=1, size="1024x1024") - results.append(response["data"][0]["url"]) - return results - - df = pd.DataFrame({"response": generate_image(text_df=text_df)}) - - return df diff --git a/evadb/functions/function_bootstrap_queries.py b/evadb/functions/function_bootstrap_queries.py index e22c941a1..99b2aeed4 100644 --- a/evadb/functions/function_bootstrap_queries.py +++ b/evadb/functions/function_bootstrap_queries.py @@ -202,18 +202,6 @@ MODEL 'yolov8n.pt'; """ -stablediffusion_function_query = """CREATE FUNCTION IF NOT EXISTS StableDiffusion - IMPL '{}/functions/stable_diffusion.py'; - """.format( - EvaDB_INSTALLATION_DIR -) - -dalle_function_query = """CREATE FUNCTION IF NOT EXISTS StableDiffusion - IMPL '{}/functions/dalle.py'; - """.format( - EvaDB_INSTALLATION_DIR -) - def init_builtin_functions(db: EvaDBDatabase, mode: str = "debug") -> None: """Load the built-in functions into the system during system bootstrapping. diff --git a/evadb/functions/stable_diffusion.py b/evadb/functions/stable_diffusion.py deleted file mode 100644 index 85262d81d..000000000 --- a/evadb/functions/stable_diffusion.py +++ /dev/null @@ -1,88 +0,0 @@ -# coding=utf-8 -# Copyright 2018-2023 EvaDB -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os - -import pandas as pd - -from evadb.catalog.catalog_type import NdArrayType -from evadb.functions.abstract.abstract_function import AbstractFunction -from evadb.functions.decorators.decorators import forward -from evadb.functions.decorators.io_descriptors.data_types import PandasDataframe -from evadb.utils.generic_utils import try_to_import_replicate - -_VALID_STABLE_DIFFUSION_MODEL = [ - "sdxl:af1a68a271597604546c09c64aabcd7782c114a63539a4a8d14d1eeda5630c33", -] - - -class StableDiffusion(AbstractFunction): - @property - def name(self) -> str: - return "StableDiffusion" - - def setup( - self, - model="sdxl:af1a68a271597604546c09c64aabcd7782c114a63539a4a8d14d1eeda5630c33", - ) -> None: - assert ( - model in _VALID_STABLE_DIFFUSION_MODEL - ), f"Unsupported Stable Diffusion {model}" - self.model = model - - @forward( - input_signatures=[ - PandasDataframe( - columns=["prompt"], - column_types=[ - NdArrayType.STR, - ], - column_shapes=[(None,)], - ) - ], - output_signatures=[ - PandasDataframe( - columns=["response"], - column_types=[ - NdArrayType.STR, - ], - column_shapes=[(1,)], - ) - ], - ) - def forward(self, text_df): - try_to_import_replicate() - import replicate - - if os.environ.get("REPLICATE_API_TOKEN") is None: - replicate_api_key = ( - "r8_Q75IAgbaHFvYVfLSMGmjQPcW5uZZoXz0jGalu" # token for testing - ) - os.environ["REPLICATE_API_TOKEN"] = replicate_api_key - - # @retry(tries=5, delay=20) - def generate_image(text_df: PandasDataframe): - results = [] - queries = text_df[text_df.columns[0]] - for query in queries: - output = replicate.run( - "stability-ai/" + self.model, input={"prompt": query} - ) - results.append(output[0]) - return results - - df = pd.DataFrame({"response": generate_image(text_df=text_df)}) - - return df diff --git a/evadb/utils/generic_utils.py b/evadb/utils/generic_utils.py index be18ceafd..3abc78b28 100644 --- a/evadb/utils/generic_utils.py +++ b/evadb/utils/generic_utils.py @@ -596,21 +596,3 @@ def string_comparison_case_insensitive(string_1, string_2) -> bool: return False return string_1.lower() == string_2.lower() - - -def try_to_import_replicate(): - try: - import replicate # noqa: F401 - except ImportError: - raise ValueError( - """Could not import replicate python package. - Please install it with `pip install replicate`.""" - ) - - -def is_replicate_available(): - try: - try_to_import_replicate() - return True - except ValueError: - return False diff --git a/test/integration_tests/long/functions/test_dalle.py b/test/integration_tests/long/functions/test_dalle.py deleted file mode 100644 index 270e3cac1..000000000 --- a/test/integration_tests/long/functions/test_dalle.py +++ /dev/null @@ -1,60 +0,0 @@ -# coding=utf-8 -# Copyright 2018-2023 EvaDB -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -import unittest -from test.util import get_evadb_for_testing -from unittest.mock import patch - -from evadb.server.command_handler import execute_query_fetch_all - - -class DallEFunctionTest(unittest.TestCase): - def setUp(self) -> None: - self.evadb = get_evadb_for_testing() - self.evadb.catalog().reset() - create_table_query = """CREATE TABLE IF NOT EXISTS ImageGen ( - prompt TEXT(100)); - """ - execute_query_fetch_all(self.evadb, create_table_query) - - test_prompts = ["a surreal painting of a cat"] - - for prompt in test_prompts: - insert_query = f"""INSERT INTO ImageGen (prompt) VALUES ('{prompt}')""" - execute_query_fetch_all(self.evadb, insert_query) - - def tearDown(self) -> None: - execute_query_fetch_all(self.evadb, "DROP TABLE IF EXISTS ImageGen;") - - @patch.dict("os.environ", {"OPENAI_KEY": "mocked_openai_key"}) - @patch("openai.Image.create", return_value={"data": [{"url": "mocked_url"}]}) - def test_dalle_image_generation(self, mock_openai_create): - function_name = "DallE" - - execute_query_fetch_all(self.evadb, f"DROP FUNCTION IF EXISTS {function_name};") - - create_function_query = f"""CREATE FUNCTION IF NOT EXISTS{function_name} - IMPL 'evadb/functions/dalle.py'; - """ - execute_query_fetch_all(self.evadb, create_function_query) - - gpt_query = f"SELECT {function_name}(prompt) FROM ImageGen;" - output_batch = execute_query_fetch_all(self.evadb, gpt_query) - - self.assertEqual(output_batch.columns, ["dalle.response"]) - mock_openai_create.assert_called_once_with( - prompt="a surreal painting of a cat", n=1, size="1024x1024" - ) diff --git a/test/integration_tests/long/functions/test_selfdiffusion.py b/test/integration_tests/long/functions/test_selfdiffusion.py deleted file mode 100644 index cb0df2d78..000000000 --- a/test/integration_tests/long/functions/test_selfdiffusion.py +++ /dev/null @@ -1,61 +0,0 @@ -# coding=utf-8 -# Copyright 2018-2023 EvaDB -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import unittest -from test.markers import stable_diffusion_skip_marker -from test.util import get_evadb_for_testing -from unittest.mock import patch - -from evadb.server.command_handler import execute_query_fetch_all - - -class StableDiffusionTest(unittest.TestCase): - def setUp(self) -> None: - self.evadb = get_evadb_for_testing() - self.evadb.catalog().reset() - create_table_query = """CREATE TABLE IF NOT EXISTS ImageGen ( - prompt TEXT(100)); - """ - execute_query_fetch_all(self.evadb, create_table_query) - - test_prompts = ["pink cat riding a rocket to the moon"] - - for prompt in test_prompts: - insert_query = f"""INSERT INTO ImageGen (prompt) VALUES ('{prompt}')""" - execute_query_fetch_all(self.evadb, insert_query) - - def tearDown(self) -> None: - execute_query_fetch_all(self.evadb, "DROP TABLE IF EXISTS ImageGen;") - - @stable_diffusion_skip_marker - @patch("replicate.run", return_value=[{"response": "mocked response"}]) - def test_stable_diffusion_image_generation(self, mock_replicate_run): - function_name = "StableDiffusion" - - execute_query_fetch_all(self.evadb, f"DROP FUNCTION IF EXISTS {function_name};") - - create_function_query = f"""CREATE FUNCTION IF NOT EXISTS{function_name} - IMPL 'evadb/functions/stable_diffusion.py'; - """ - execute_query_fetch_all(self.evadb, create_function_query) - - gpt_query = f"SELECT {function_name}(prompt) FROM ImageGen;" - output_batch = execute_query_fetch_all(self.evadb, gpt_query) - - self.assertEqual(output_batch.columns, ["stablediffusion.response"]) - mock_replicate_run.assert_called_once_with( - "stability-ai/sdxl:af1a68a271597604546c09c64aabcd7782c114a63539a4a8d14d1eeda5630c33", - input={"prompt": "pink cat riding a rocket to the moon"}, - ) diff --git a/test/markers.py b/test/markers.py index 7d98e5534..8a310e9ef 100644 --- a/test/markers.py +++ b/test/markers.py @@ -25,7 +25,6 @@ is_ludwig_available, is_pinecone_available, is_qdrant_available, - is_replicate_available, is_sklearn_available, ) @@ -97,7 +96,3 @@ is_forecast_available() is False, reason="Run only if forecasting packages available", ) - -stable_diffusion_skip_marker = pytest.mark.skipif( - is_replicate_available() is False, reason="requires replicate" -) diff --git a/tutorials/16-stable-diffusion.ipynb b/tutorials/16-stable-diffusion.ipynb deleted file mode 100644 index 91e0fea92..000000000 --- a/tutorials/16-stable-diffusion.ipynb +++ /dev/null @@ -1,319 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - " \n", - " \n", - " \n", - "
\n", - " Run on Google Colab\n", - " \n", - " View source on GitHub\n", - " \n", - " Download notebook\n", - "


" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Import dependencies\n", - "import os\n", - "from IPython.display import Image" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Connect to EvaDB" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], - "source": [ - "%pip install --quiet \"evadb[document,notebook]\"\n", - "import evadb\n", - "cursor = evadb.connect().cursor()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Get Input Prompt from User" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# to collect all user prompts\n", - "def get_user_input():\n", - " print('Welcome to EvaDB!')\n", - " print('Enter your image prompts one by one; type \\'exit\\' to stop entering prompts.')\n", - " print('========================================')\n", - " prompts = []\n", - " prompt=None\n", - "\n", - " # receive all prompts from user\n", - " while True:\n", - " prompt = input(\n", - " 'Enter prompt: '\n", - " ).strip()\n", - " if prompt in ['Exit', 'exit', 'EXIT']:\n", - " break\n", - " prompts.append(prompt)\n", - " print(prompt)\n", - "\n", - " return prompts" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Welcome to EvaDB!\n", - "Enter your image prompts one by one; type 'exit' to stop entering prompts.\n", - "========================================\n", - "Brown elephant riding a rocket to the moon\n" - ] - } - ], - "source": [ - "# getting user input\n", - "prompts = get_user_input()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Set API Token Environment Variable" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# to set the replicate API token environment variable\n", - "def set_replicate_token() -> None:\n", - " key = input('Enter your Replicate API Token: ').strip()\n", - "\n", - " try:\n", - " os.environ['REPLICATE_API_TOKEN'] = key\n", - " print('Environment variable set successfully.')\n", - " except Exception as e:\n", - " print(\"❗️ Session ended with an error.\")\n", - " print(e)\n", - " print(\"===========================================\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Environment variable set successfully.\n" - ] - } - ], - "source": [ - "# setting api token as env variable\n", - "set_replicate_token()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load the Stable Diffusion UDF" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# set up the stable diffusion UDF available at functions/stable_diffusion.py\n", - "cursor.query(\"\"\"CREATE FUNCTION IF NOT EXISTS StableDiffusion\n", - " IMPL '../evadb/functions/stable_diffusion.py';\n", - " \"\"\").execute()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Create Table" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# delete the table if it already exists\n", - "cursor.query(\"\"\"DROP TABLE IF EXISTS ImageGen\n", - " \"\"\").execute()\n", - "\n", - "# create the table specifying the type of the prompt column\n", - "cursor.query(\"\"\"CREATE TABLE IF NOT EXISTS ImageGen (\n", - " prompt TEXT(100))\n", - " \"\"\").execute()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load Prompts into Table" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# insert the prompts into the table\n", - "for prompt in prompts:\n", - " cursor.query(f\"\"\"INSERT INTO ImageGen (prompt) VALUES ('{prompt}')\"\"\").execute()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Run Stable Diffusion on the Prompts" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# run stable diffusion on the prompts\n", - "table = cursor.table(\"ImageGen\").select(\"StableDiffusion(prompt)\").df()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# list of generated images\n", - "generated_images = list(table[table.columns[0]])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Visualize the Generated Image(s)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# visualize the generated image\n", - "Image(url=generated_images[0])" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "eva", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -}