diff --git a/docs/source/overview/getting-started/installation-options.rst b/docs/source/overview/getting-started/installation-options.rst index 7ab700be3..95053ebcf 100644 --- a/docs/source/overview/getting-started/installation-options.rst +++ b/docs/source/overview/getting-started/installation-options.rst @@ -13,5 +13,7 @@ EvaDB provides the following additional installation options for extending its f * ``pip install evadb[ludwig]`` for installing the Ludwig model training framework. It enables use-cases related to training and fine-tuning AI models. +* ``pip install evadb[forecasting]`` for installing the statsforecast forecasting framework. It enables use-cases related to time series forecasting. + * ``pip install evadb[ray]`` for installing the Ray compute engine. It enables EvaDB to do more efficient query execution on CPUs and GPUs. diff --git a/docs/source/reference/ai/model-forecasting.rst b/docs/source/reference/ai/model-forecasting.rst index 75602a035..115c268d4 100644 --- a/docs/source/reference/ai/model-forecasting.rst +++ b/docs/source/reference/ai/model-forecasting.rst @@ -19,11 +19,11 @@ First, we create a table to insert required data. LOAD CSV 'data/forecasting/air-passengers.csv' INTO AirData; -Next, we create a UDF of `TYPE Forecasting`. We must enter the column name on which we wish to forecast using `predict`. Other options include `id` and `time` (they represent the unique id of the items and the time data if available). +Next, we create a function of `TYPE Forecasting`. We must enter the column name on which we wish to forecast using `predict`. Other options include `id` and `time` (they represent the unique id of the items and the time data if available). .. code-block:: sql - CREATE UDF IF NOT EXISTS Forecast FROM + CREATE FUNCTION IF NOT EXISTS Forecast FROM (SELECT y FROM AirData) TYPE Forecasting PREDICT 'y';