diff --git a/evadb/binder/statement_binder.py b/evadb/binder/statement_binder.py index 4df16bc72f..fb9dfc40c4 100644 --- a/evadb/binder/statement_binder.py +++ b/evadb/binder/statement_binder.py @@ -106,6 +106,17 @@ def _bind_create_function_statement(self, node: CreateFunctionStatement): outputs.append(column) else: inputs.append(column) + elif string_comparison_case_insensitive(node.function_type, "sklearn"): + assert ( + "predict" in arg_map + ), f"Creating {node.function_type} functions expects 'predict' metadata." + # We only support a single predict column for now + predict_columns = set([arg_map["predict"]]) + for column in all_column_list: + if column.name in predict_columns: + outputs.append(column) + else: + inputs.append(column) elif string_comparison_case_insensitive(node.function_type, "forecasting"): # Forecasting models have only one input column which is horizon inputs = [ColumnDefinition("horizon", ColumnType.INTEGER, None, None)] diff --git a/evadb/executor/create_function_executor.py b/evadb/executor/create_function_executor.py index 004f784a3b..682ba2f23b 100644 --- a/evadb/executor/create_function_executor.py +++ b/evadb/executor/create_function_executor.py @@ -40,6 +40,7 @@ string_comparison_case_insensitive, try_to_import_forecast, try_to_import_ludwig, + try_to_import_sklearn, try_to_import_torch, try_to_import_ultralytics, ) @@ -117,6 +118,50 @@ def handle_ludwig_function(self): self.node.metadata, ) + def handle_sklearn_function(self): + """Handle sklearn functions + + Use Sklearn's regression to train models. + """ + try_to_import_sklearn() + from sklearn.linear_model import LinearRegression + + assert ( + len(self.children) == 1 + ), "Create sklearn function expects 1 child, finds {}.".format( + len(self.children) + ) + + aggregated_batch_list = [] + child = self.children[0] + for batch in child.exec(): + aggregated_batch_list.append(batch) + aggregated_batch = Batch.concat(aggregated_batch_list, copy=False) + aggregated_batch.drop_column_alias() + + arg_map = {arg.key: arg.value for arg in self.node.metadata} + model = LinearRegression() + Y = aggregated_batch.frames[arg_map["predict"]] + aggregated_batch.frames.drop([arg_map["predict"]], axis=1, inplace=True) + model.fit(X=aggregated_batch.frames, y=Y) + model_path = os.path.join( + self.db.config.get_value("storage", "model_dir"), self.node.name + ) + pickle.dump(model, open(model_path, "wb")) + self.node.metadata.append( + FunctionMetadataCatalogEntry("model_path", model_path) + ) + + impl_path = Path(f"{self.function_dir}/sklearn.py").absolute().as_posix() + io_list = self._resolve_function_io(None) + return ( + self.node.name, + impl_path, + self.node.function_type, + io_list, + self.node.metadata, + ) + def handle_ultralytics_function(self): """Handle Ultralytics functions""" try_to_import_ultralytics() @@ -332,6 +377,14 @@ def exec(self, *args, **kwargs): io_list, metadata, ) = self.handle_ludwig_function() + elif string_comparison_case_insensitive(self.node.function_type, "Sklearn"): + ( + name, + impl_path, + function_type, + io_list, + metadata, + ) = self.handle_sklearn_function() elif string_comparison_case_insensitive(self.node.function_type, "Forecasting"): ( name, diff --git a/evadb/functions/sklearn.py b/evadb/functions/sklearn.py new file mode 100644 index 0000000000..ca3676f140 --- /dev/null +++ b/evadb/functions/sklearn.py @@ -0,0 +1,47 @@ +# coding=utf-8 +# Copyright 2018-2023 EvaDB +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import pickle + +import pandas as pd + +from evadb.functions.abstract.abstract_function import AbstractFunction +from evadb.utils.generic_utils import try_to_import_sklearn + + +class GenericSklearnModel(AbstractFunction): + @property + def name(self) -> str: + return "GenericSklearnModel" + + def setup(self, model_path: str, **kwargs): + try_to_import_sklearn() + + self.model = pickle.load(open(model_path, "rb")) + + def forward(self, frames: pd.DataFrame) -> pd.DataFrame: + # The last column is the predictor variable column. Hence we do not + # pass that column in the predict method for sklearn. + predictions = self.model.predict(frames.iloc[:, :-1]) + predict_df = pd.DataFrame(predictions) + # We need to rename the column of the output dataframe. For this we + # shall rename it to the column name same as that of the last column of + # frames. This is because the last column of frames corresponds to the + # variable we want to predict. + predict_df.rename(columns={0: frames.columns[-1]}, inplace=True) + return predict_df + + def to_device(self, device: str): + # TODO figure out how to control the GPU for ludwig models + return self diff --git a/evadb/utils/generic_utils.py b/evadb/utils/generic_utils.py index e7836f1319..ff6a99f0f2 100644 --- a/evadb/utils/generic_utils.py +++ b/evadb/utils/generic_utils.py @@ -324,6 +324,17 @@ def is_forecast_available() -> bool: return False +def try_to_import_sklearn(): + try: + import sklearn # noqa: F401 + from sklearn.linear_model import LinearRegression # noqa: F401 + except ImportError: + raise ValueError( + """Could not import sklearn. + Please install it with `pip install scikit-learn`.""" + ) + + ############################## ## VISION ############################## diff --git a/test/integration_tests/long/test_model_train.py b/test/integration_tests/long/test_model_train.py index 55ae6da9c1..8b0843c82a 100644 --- a/test/integration_tests/long/test_model_train.py +++ b/test/integration_tests/long/test_model_train.py @@ -72,6 +72,22 @@ def test_ludwig_automl(self): self.assertEqual(len(result.columns), 1) self.assertEqual(len(result), 10) + def test_sklearn_regression(self): + create_predict_function = """ + CREATE FUNCTION IF NOT EXISTS PredictHouseRent FROM + ( SELECT number_of_rooms, number_of_bathrooms, days_on_market, rental_price FROM HomeRentals ) + TYPE Sklearn + PREDICT 'rental_price'; + """ + execute_query_fetch_all(self.evadb, create_predict_function) + + predict_query = """ + SELECT PredictHouseRent(number_of_rooms, number_of_bathrooms, days_on_market, rental_price) FROM HomeRentals LIMIT 10; + """ + result = execute_query_fetch_all(self.evadb, predict_query) + self.assertEqual(len(result.columns), 1) + self.assertEqual(len(result), 10) + if __name__ == "__main__": unittest.main()