forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DilatedMaxPool2d.cu
564 lines (489 loc) · 24.5 KB
/
DilatedMaxPool2d.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/ceil_div.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/NumericUtils.h>
#include <ATen/native/Pool.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/NumericLimits.cuh>
#include <ATen/cuda/detail/TensorInfo.cuh>
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/detail/KernelUtils.h>
#include <c10/macros/Macros.h>
#include <ATen/native/cuda/LaunchUtils.h>
namespace at {
namespace native {
namespace {
__device__ inline int min(int a, int b) {
return a <= b ? a : b;
}
#define CUDA_MAX_THREADS 1024 // this is safe, in reality 256 is our limit
#define BLOCK_STRIDE 2 // increasing block_stride to lower # of blocks launched
static __device__ inline int p_start(int size, int pad, int kernel, int dilation, int stride) {
return (size + pad < ((kernel - 1) * dilation + 1)) ? 0 : (size + pad - ((kernel - 1) * dilation + 1)) / stride + 1;
}
static __device__ inline int p_end(int size, int pad, int pooled_size, int stride) {
return min((size + pad) / stride + 1, pooled_size);
}
// kernels borrowed from Caffe
template <typename scalar_t, typename accscalar_t>
__global__ void max_pool_forward_nchw(const int nthreads, const scalar_t* bottom_data,
const int num, const int channels, const int height,
const int width, const int pooled_height, const int pooled_width,
const int kernel_h, const int kernel_w, const int stride_h,
const int stride_w, const int pad_h, const int pad_w,
const int dilation_h, const int dilation_w, scalar_t* top_data,
int64_t* top_mask) {
CUDA_KERNEL_LOOP(index, nthreads) {
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
int hstart = ph * stride_h - pad_h;
int wstart = pw * stride_w - pad_w;
int hend = min(hstart + (kernel_h - 1) * dilation_h + 1, height);
int wend = min(wstart + (kernel_w - 1) * dilation_w + 1, width);
while(hstart < 0)
hstart += dilation_h;
while(wstart < 0)
wstart += dilation_w;
accscalar_t maxval = at::numeric_limits<accscalar_t>::lower_bound(); // -Infinity
int maxidx = hstart * width + wstart;
const scalar_t* btm_data = bottom_data + (n * channels + c) * height * width;
for (int h = hstart; h < hend; h += dilation_h) {
for (int w = wstart; w < wend; w += dilation_w) {
scalar_t val = btm_data[h * width + w];
if ((static_cast<accscalar_t>(val) > maxval) || at::_isnan(val)) {
maxidx = h * width + w;
maxval = static_cast<accscalar_t>(val);
}
}
}
top_data[index] = static_cast<accscalar_t>(maxval);
top_mask[index] = maxidx;
}
}
template <typename scalar_t, typename accscalar_t>
C10_LAUNCH_BOUNDS_1(CUDA_MAX_THREADS)
__global__ void max_pool_forward_nhwc(const scalar_t* bottom_data, const int nbatch,
const int channels, const int height,
const int width, const int pooled_height, const int pooled_width,
const int kernel_h, const int kernel_w, const int stride_h,
const int stride_w, const int pad_h, const int pad_w,
const int dilation_h, const int dilation_w,
const int in_stride_n, const int in_stride_c,
const int in_stride_h, const int in_stride_w,
const int kernel_stride_C, const int kernel_size_C,
scalar_t* top_data, int64_t* top_mask) {
extern __shared__ int smem[];
int *out_mask_cached = smem;
scalar_t *out_cached = reinterpret_cast<scalar_t*>(&out_mask_cached[kernel_size_C*blockDim.x*blockDim.y*blockDim.z]);
// flattening cta for pre-computation & smem initialization;
int thread_id = threadIdx.x + blockDim.x * (threadIdx.y + blockDim.y * threadIdx.z);
int block_size = blockDim.x * blockDim.y * blockDim.z;
// use shared memory to store temporary output value. This is simply to
// reduce register usage.
for (int i = thread_id; i < kernel_size_C*blockDim.x*blockDim.y*blockDim.z; i+= block_size) {
out_cached[i] = at::numeric_limits<scalar_t>::lower_bound();
out_mask_cached[i] = 0;
}
__syncthreads();
int batch_id = blockIdx.x % nbatch;
int channel_id = blockIdx.x / nbatch;
int channel_offset = threadIdx.x + channel_id * blockDim.x;
top_data = top_data + batch_id * pooled_height * pooled_width * channels;
top_mask = top_mask + batch_id * pooled_height * pooled_width * channels;
bottom_data = bottom_data + batch_id * in_stride_n;
out_cached = &out_cached[(threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x];
out_mask_cached = &out_mask_cached[(threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x];
int oH = (pooled_height + gridDim.z-1) / gridDim.z;
int oW = (pooled_width + gridDim.y-1) / gridDim.y;
int ostartH = threadIdx.z + blockIdx.z*oH;
int oendH = ::min(ostartH+oH, pooled_height);
int ostartW = threadIdx.y + blockIdx.y*oW;
int oendW = ::min(ostartW+oW, pooled_width);
for (int oh = ostartH; oh < oendH; oh+=blockDim.z) {
int hstart = oh * stride_h - pad_h;
int hend = min(hstart + (kernel_h - 1) * dilation_h + 1, height);
for (int ow = ostartW; ow < oendW; ow+=blockDim.y) {
int wstart = ow * stride_w - pad_w;
int wend = min(wstart + (kernel_w - 1) * dilation_w + 1, width);
while(hstart < 0)
hstart += dilation_h;
while(wstart < 0)
wstart += dilation_w;
for (int ih = hstart; ih < hend; ih++) {
for (int iw = wstart; iw < wend; iw++) {
int cached_index = threadIdx.x;
const scalar_t *ptr_input = bottom_data + ih * in_stride_h + iw * in_stride_w;
for(int c = channel_offset; c < channels; c+= blockDim.x*kernel_stride_C) {
scalar_t val = ptr_input[c*in_stride_c];
if ((static_cast<accscalar_t>(val) > out_cached[cached_index]) || at::_isnan(val)) {
out_cached[cached_index] = static_cast<accscalar_t>(val);
out_mask_cached[cached_index] = ih * width + iw;
}
cached_index += blockDim.x;
}
}
}
scalar_t *ptr_output_data = top_data + (oh * pooled_width + ow) * channels;
int64_t *ptr_output_mask = top_mask + (oh * pooled_width + ow) * channels;
int cached_index = threadIdx.x;
for(int c = channel_offset; c < channels; c+= blockDim.x*kernel_stride_C) {
ptr_output_data[c] = out_cached[cached_index];
ptr_output_mask[c] = out_mask_cached[cached_index];
out_cached[cached_index] = at::numeric_limits<scalar_t>::lower_bound();
out_mask_cached[cached_index] = 0;
cached_index += blockDim.x;
}
}
}
}
static const int BLOCK_THREADS = 256;
template <typename scalar_t, typename accscalar_t>
#if defined (USE_ROCM)
C10_LAUNCH_BOUNDS_2(BLOCK_THREADS, 4)
#else
C10_LAUNCH_BOUNDS_2(BLOCK_THREADS, 8)
#endif
__global__ void max_pool_backward_nchw(const int nthreads, const scalar_t* top_diff,
const int64_t* top_mask, const int num, const int channels,
const int height, const int width, const int pooled_height,
const int pooled_width, const int kernel_h, const int kernel_w,
const int stride_h, const int stride_w, const int pad_h, const int pad_w,
const int dilation_h, const int dilation_w,
scalar_t* bottom_diff) {
CUDA_KERNEL_LOOP(index, height*width) {
int h = index / width;
int w = index - h * width;
int phstart = p_start(h, pad_h, kernel_h, dilation_h, stride_h);
int phend = p_end(h, pad_h, pooled_height, stride_h);
int pwstart = p_start(w, pad_w, kernel_w, dilation_w, stride_w);
int pwend = p_end(w, pad_w, pooled_width, stride_w);
for (int n = blockIdx.y; n < num; n += gridDim.y) {
for (int c = blockIdx.z; c < channels; c+= gridDim.z) {
accscalar_t gradient = accscalar_t(0);
int offset = (n * channels + c) * pooled_height * pooled_width;
for (int ph = phstart; ph < phend; ++ph) {
for (int pw = pwstart; pw < pwend; ++pw) {
if (top_mask[ph * pooled_width + pw + offset] == h * width + w) {
gradient += static_cast<accscalar_t>(top_diff[ph * pooled_width + pw + offset]);
}
}
}
bottom_diff[(n*channels+c)*height*width+index] = static_cast<scalar_t>(gradient);
}
}
}
}
template <typename scalar_t, typename accscalar_t>
C10_LAUNCH_BOUNDS_1(CUDA_MAX_THREADS)
__global__ void max_pool_backward_nhwc(const int nthreads, const scalar_t* top_diff,
const int64_t* top_mask, const int nbatch, const int channels,
const int height, const int width, const int pooled_height,
const int pooled_width, const int kernel_h, const int kernel_w,
const int stride_h, const int stride_w, const int pad_h, const int pad_w,
const int dilation_h, const int dilation_w,
const int out_stride_c, const int out_stride_h, const int out_stride_w,
const int in_stride_n, const int in_stride_c,
const int in_stride_h, const int in_stride_w,
const int kernel_stride_C, const int kernel_size_C,
scalar_t* bottom_diff) {
extern __shared__ int smem[];
accscalar_t *out_cached = reinterpret_cast<accscalar_t*>(smem);
int thread_id = threadIdx.x + blockDim.x * (threadIdx.y + blockDim.y * threadIdx.z);
int block_size = blockDim.x * blockDim.y * blockDim.z;
int batch_id = blockIdx.x % nbatch;
int channel_id = blockIdx.x / nbatch;
int channel_offset = threadIdx.x + channel_id * blockDim.x;
for (int i = thread_id; i < kernel_size_C*blockDim.x*blockDim.y*blockDim.z; i+= block_size) {
out_cached[i] = accscalar_t(0.0);
}
__syncthreads();
out_cached = &out_cached[(threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x];
bottom_diff = bottom_diff + batch_id * height * width * channels;
top_mask = top_mask + batch_id * pooled_height * pooled_width * channels;
top_diff = top_diff + batch_id * pooled_height * pooled_width * channels;
int iH = (height + gridDim.z-1) / gridDim.z;
int iW = (width + gridDim.y-1) / gridDim.y;
int istartH = threadIdx.z + blockIdx.z*iH;
int iendH = ::min(istartH+iH, height);
int istartW = threadIdx.y + blockIdx.y*iW;
int iendW = ::min(istartW+iW, width);
for (int ih = istartH; ih < iendH; ih+=blockDim.z) {
int phstart = p_start(ih, pad_h, kernel_h, dilation_h, stride_h);
int phend = p_end(ih, pad_h, pooled_height, stride_h);
for (int iw = istartW; iw < iendW; iw+=blockDim.y) {
int pwstart = p_start(iw, pad_w, kernel_w, dilation_w, stride_w);
int pwend = p_end(iw, pad_w, pooled_width, stride_w);
int index_shift = ih * width + iw;
if ((phstart + 1 != phend) || (pwstart + 1 != pwend)) {
for(int oh = phstart; oh < phend; ++oh) {
for(int ow = pwstart; ow < pwend; ++ow) {
int cached_index = threadIdx.x;
const int64_t* ptr_top_mask = top_mask + oh * out_stride_h + ow * out_stride_w;
for (int c = channel_offset; c < channels; c += blockDim.x*kernel_stride_C) {
if (ptr_top_mask[c*out_stride_c] == index_shift) {
out_cached[cached_index] +=
static_cast<accscalar_t>(top_diff[oh * out_stride_h + ow * out_stride_w + c*out_stride_c]);
}
cached_index += blockDim.x;
}
}
}
scalar_t *ptr_bottom_diff = bottom_diff + index_shift * channels;
int cached_index = threadIdx.x;
for (int c = channel_offset; c < channels; c += blockDim.x*kernel_stride_C) {
ptr_bottom_diff[c] = static_cast<scalar_t>(out_cached[cached_index]);
out_cached[cached_index] = accscalar_t(0.0);
cached_index += blockDim.x;
}
} else {
const int64_t* ptr_top_mask = top_mask + phstart * out_stride_h + pwstart * out_stride_w;
scalar_t *ptr_bottom_diff = bottom_diff + index_shift * channels;
int cached_index = threadIdx.x;
for (int c = channel_offset; c < channels; c += blockDim.x*kernel_stride_C) {
if (ptr_top_mask[c*out_stride_c] == index_shift) {
ptr_bottom_diff[c] =
static_cast<scalar_t>(top_diff[phstart * out_stride_h + pwstart * out_stride_w + c*out_stride_c]);
}
cached_index += blockDim.x;
}
}
}
}
}
} // namespace
TORCH_IMPL_FUNC(max_pool2d_with_indices_out_cuda)
(const Tensor& input_,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode,
const Tensor& output,
const Tensor& indices) {
NoNamesGuard guard;
TensorArg output_arg{ output, "output", 1 };
TensorArg indices_arg{ indices, "indices", 2 };
TensorArg input_arg{ input_, "input_", 3 };
checkAllSameGPU(__func__, {output_arg, indices_arg, input_arg});
if (output.numel() == 0) {
return;
}
const int kH = safe_downcast<int, int64_t>(kernel_size[0]);
const int kW = kernel_size.size() == 1 ? kH : safe_downcast<int, int64_t>(kernel_size[1]);
const int dH = stride.empty() ? kH : safe_downcast<int, int64_t>(stride[0]);
const int dW = stride.empty() ? kW :
stride.size() == 1 ? dH : safe_downcast<int, int64_t>(stride[1]);
const int padH = safe_downcast<int, int64_t>(padding[0]);
const int padW = padding.size() == 1 ? padH : safe_downcast<int, int64_t>(padding[1]);
const int dilationH = safe_downcast<int, int64_t>(dilation[0]);
const int dilationW = dilation.size() == 1 ? dilationH : safe_downcast<int, int64_t>(dilation[1]);
const auto memory_format = input_.suggest_memory_format();
const int64_t nbatch = input_.ndimension() == 4 ? input_.size(-4) : 1;
const int64_t nInputPlane = input_.size(-3);
const int64_t inputHeight = input_.size(-2);
const int64_t inputWidth = input_.size(-1);
const int64_t outputHeight = output.size(-2);
const int64_t outputWidth = output.size(-1);
Tensor input = input_.contiguous(memory_format);
const int64_t in_stride_n = input_.ndimension() == 4 ? input.stride(-4) : 0;
const int64_t in_stride_c = input.stride(-3);
const int64_t in_stride_h = input.stride(-2);
const int64_t in_stride_w = input.stride(-1);
const int count = safe_downcast<int, int64_t>(output.numel());
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(),
"max_pool2d_with_indices_out_cuda_frame",
[&] {
using accscalar_t = acc_type<scalar_t, true>;
scalar_t *output_data = output.data_ptr<scalar_t>();
scalar_t *input_data = input.data_ptr<scalar_t>();
int64_t *indices_data = indices.data_ptr<int64_t>();
switch (memory_format) {
case MemoryFormat::ChannelsLast: {
const int max_threads = std::min<int>(
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock, CUDA_MAX_THREADS);
int* maxThreadsDim = at::cuda::getCurrentDeviceProperties()->maxThreadsDim;
int block_x = std::min<int>(
maxThreadsDim[0], std::min<int>(lastPow2(nInputPlane), at::cuda::warp_size()));
int block_y = std::min<int>(
maxThreadsDim[1], std::min<int>(lastPow2(outputWidth), max_threads / block_x));
int block_z = std::min<int>(
maxThreadsDim[2], std::min<int>(lastPow2(outputHeight), max_threads / block_x / block_y));
block_x = std::min<int>(
maxThreadsDim[0], std::min<int>(lastPow2(nInputPlane), max_threads / block_y / block_z));
const dim3 block(block_x, block_y, block_z);
int kernel_stride_C = ceil_div(
safe_downcast<int, int64_t>(nInputPlane), block_x * 4);
int kernel_size_C = ceil_div(
safe_downcast<int, int64_t>(nInputPlane), block_x * kernel_stride_C);
int grid_x = nbatch*kernel_stride_C;
int grid_y = std::min<int>(
at::cuda::getCurrentDeviceProperties()->maxGridSize[1],
ceil_div(safe_downcast<int, int64_t>(outputWidth), block_y*BLOCK_STRIDE));
int grid_z = std::min<int>(
at::cuda::getCurrentDeviceProperties()->maxGridSize[2],
ceil_div(safe_downcast<int, int64_t>(outputHeight), block_z*BLOCK_STRIDE));
const dim3 grid(grid_x, grid_y, grid_z);
size_t shmem_size = (kernel_size_C * block_x*block_y*block_z) * (sizeof(int) + sizeof(scalar_t));
AT_ASSERT(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock);
max_pool_forward_nhwc<scalar_t, scalar_t>
<<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>(
input_data, nbatch,
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
in_stride_n, in_stride_c,
in_stride_h, in_stride_w,
kernel_stride_C, kernel_size_C,
output_data, indices_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
}
case MemoryFormat::Contiguous: {
const int num_threads = std::min(at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock,
BLOCK_THREADS);
max_pool_forward_nchw<scalar_t, scalar_t>
<<<ceil_div(count, num_threads), num_threads, 0, at::cuda::getCurrentCUDAStream()>>>(
count, input_data,
nbatch, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
output_data, indices_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
}
default: TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
);
}
TORCH_IMPL_FUNC(max_pool2d_with_indices_backward_out_cuda)
(const Tensor& gradOutput_,
const Tensor& input_,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode,
const Tensor& indices,
const Tensor& gradInput) {
NoNamesGuard guard;
TensorArg gradInput_arg{ gradInput, "gradInput", 1 };
TensorArg gradOutput_arg{ gradOutput_, "gradOutput_", 2 };
TensorArg input_arg{ input_, "input_", 3 };
TensorArg indices_arg{ indices, "indices", 4 };
checkAllSameGPU(__func__,
{gradInput_arg, gradOutput_arg, input_arg, indices_arg});
if (gradOutput_.numel() == 0) {
return;
}
const int kH = safe_downcast<int, int64_t>(kernel_size[0]);
const int kW = kernel_size.size() == 1 ? kH : safe_downcast<int, int64_t>(kernel_size[1]);
const int dH = stride.empty() ? kH : safe_downcast<int, int64_t>(stride[0]);
const int dW = stride.empty() ? kW :
stride.size() == 1 ? dH : safe_downcast<int, int64_t>(stride[1]);
const int padH = safe_downcast<int, int64_t>(padding[0]);
const int padW = padding.size() == 1 ? padH : safe_downcast<int, int64_t>(padding[1]);
const int dilationH = safe_downcast<int, int64_t>(dilation[0]);
const int dilationW = dilation.size() == 1 ? dilationH : safe_downcast<int, int64_t>(dilation[1]);
const auto memory_format = input_.suggest_memory_format();
const Tensor input = input_.contiguous(memory_format);
const int64_t nbatch = input.ndimension() == 4 ? input.size(-4) : 1;
const int64_t nInputPlane = input.size(-3);
const int64_t inputHeight = input.size(-2);
const int64_t inputWidth = input.size(-1);
const int64_t in_stride_n = input.ndimension() == 4 ? input.stride(-4) : 0;
const int64_t in_stride_c = input.stride(-3);
const int64_t in_stride_h = input.stride(-2);
const int64_t in_stride_w = input.stride(-1);
const Tensor gradOutput = gradOutput_.contiguous(memory_format);
const int64_t outputHeight = gradOutput.size(-2);
const int64_t outputWidth = gradOutput.size(-1);
const int64_t out_stride_c = gradOutput.stride(-3);
const int64_t out_stride_h = gradOutput.stride(-2);
const int64_t out_stride_w = gradOutput.stride(-1);
gradInput.zero_();
int64_t count = input.numel();
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(),
"max_pool2d_with_indices_out_cuda_frame",
[&] {
using accscalar_t = acc_type<scalar_t, true>;
scalar_t *gradOutput_data = gradOutput.data_ptr<scalar_t>();
scalar_t *gradInput_data = gradInput.data_ptr<scalar_t>();
int64_t *indices_data = indices.data_ptr<int64_t>();
switch (memory_format) {
case MemoryFormat::ChannelsLast: {
const int max_threads = std::min<int>(at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock, CUDA_MAX_THREADS);
int* maxThreadsDim = at::cuda::getCurrentDeviceProperties()->maxThreadsDim;
int block_x = std::min<int>(
maxThreadsDim[0], std::min<int>(lastPow2(nInputPlane), at::cuda::warp_size()));
int block_y = std::min<int>(
maxThreadsDim[1], std::min<int>(lastPow2(inputWidth), max_threads / block_x));
int block_z = std::min<int>(
maxThreadsDim[2], std::min<int>(lastPow2(inputHeight), max_threads / block_x / block_y));
block_x = std::min<int>(
maxThreadsDim[0], std::min<int>(lastPow2(nInputPlane), max_threads / block_y / block_z));
const dim3 block(block_x, block_y, block_z);
int kernel_stride_C = ceil_div(
safe_downcast<int, int64_t>(nInputPlane), block_x * 4);
int kernel_size_C = ceil_div(
safe_downcast<int, int64_t>(nInputPlane), block_x * kernel_stride_C);
int grid_x = nbatch*kernel_stride_C;
int grid_y = std::min<int>(
at::cuda::getCurrentDeviceProperties()->maxGridSize[1],
ceil_div(safe_downcast<int, int64_t>(inputWidth), block_y*BLOCK_STRIDE));
int grid_z = std::min<int>(
at::cuda::getCurrentDeviceProperties()->maxGridSize[2],
ceil_div(safe_downcast<int, int64_t>(inputHeight), block_z*BLOCK_STRIDE));
const dim3 grid(grid_x, grid_y, grid_z);
size_t shmem_size = (kernel_size_C * block_x*block_y*block_z) * sizeof(accscalar_t);
AT_ASSERT(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock);
// The backward kernel is launched on input instead output.
// If it is launched on output layer, atomic_add would not provide much benefit on FP16.
// Please check comments at https://github.com/pytorch/pytorch/pull/34519.
max_pool_backward_nhwc<scalar_t, accscalar_t>
<<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>(
count,
gradOutput_data,
indices_data,
nbatch,
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
out_stride_c, out_stride_h, out_stride_w,
in_stride_n, in_stride_c,
in_stride_h, in_stride_w,
kernel_stride_C, kernel_size_C,
gradInput_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
}
case MemoryFormat::Contiguous: {
int imgcount = inputWidth * inputHeight;
dim3 grid;
const int blocks = (imgcount + BLOCK_THREADS - 1) / BLOCK_THREADS;
grid.x = blocks;
grid.y = nbatch;
uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
if (maxGridY < grid.y) grid.y = maxGridY;
grid.z = nInputPlane;
uint64_t maxGridZ = at::cuda::getCurrentDeviceProperties()->maxGridSize[2];
if (maxGridZ < grid.z) grid.z = maxGridZ;
max_pool_backward_nchw<scalar_t, accscalar_t>
<<<grid, BLOCK_THREADS, 0, at::cuda::getCurrentCUDAStream()>>>(
count,
gradOutput_data,
indices_data,
nbatch,
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
gradInput_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
}
default: TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
);
}
} // at::native
} // at