forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_multiprocessing.py
891 lines (745 loc) · 31.4 KB
/
test_multiprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
# Owner(s): ["module: multiprocessing"]
import contextlib
import gc
import os
import sys
import time
import unittest
import copy
from sys import platform
import torch
import torch.cuda
import torch.multiprocessing as mp
import torch.utils.hooks
from torch.nn import Parameter
from torch.testing._internal.common_utils import (TestCase, run_tests, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN,
load_tests, slowTest, TEST_WITH_TSAN)
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
TEST_REPEATS = 30
HAS_SHM_FILES = os.path.isdir('/dev/shm')
TEST_CUDA_IPC = torch.cuda.is_available() and \
sys.platform != 'darwin' and \
sys.platform != 'win32'
TEST_MULTIGPU = TEST_CUDA_IPC and torch.cuda.device_count() > 1
class SubProcess(mp.Process):
def __init__(self, tensor):
super(SubProcess, self).__init__()
self.tensor = tensor
self.daemon = True
def run(self):
self.tensor.add_(3)
def _test_cuda_ipc_deadlock_actor(queue, iterations):
for i in range(iterations):
if not queue.empty():
queue.get()
time.sleep(.01)
def _test_cuda_ipc_deadlock_learner(queue, iterations):
net = torch.nn.LSTM(1, 1).cuda()
for i in range(iterations):
if not queue.full():
queue.put(copy.deepcopy(net.state_dict()))
time.sleep(.01)
def simple_fill(queue, event):
data = queue.get()
data[0][:] = 4
event.set()
def simple_pool_fill(tensor):
tensor.fill_(4)
return tensor.add(1)
def send_tensor(queue, event, device, dtype):
t = torch.ones(5, 5, device=device, dtype=dtype)
queue.put(t)
queue.put(t)
event.wait()
def send_and_delete_tensors(queue, event, device, dtype, count, size=5):
for i in range(count):
t = torch.full([size], i, device=device, dtype=dtype)
queue.put(t)
del t
event.wait()
def receive_and_send_sum(queue, out_queue, event, device, dtype, count, size=5):
s = torch.full([size], 0, device=device, dtype=dtype)
for i in range(count):
t = queue.get()
s += t
out_queue.put(s)
event.wait()
def receive_and_send(queue, out_queue, event, count):
for i in range(count):
t = queue.get()
out_queue.put(t.clone())
event.wait()
def sum_tensors(inq, outq):
with torch.cuda.device(1):
tensors = inq.get()
for tensor in tensors:
outq.put((tensor.sum().item(), tensor.get_device(),
tensor.numel(), tensor.storage().size()))
def queue_get_exception(inqueue, outqueue):
os.close(2) # hide expected error message
try:
torch.zeros(5, 5).cuda()
except Exception as e:
outqueue.put(e)
else:
outqueue.put('no exception')
# Multiply by two in a separate stream
def cuda_multiply_two(queue, ready, done):
ready.set()
with torch.cuda.stream(torch.cuda.Stream()):
cuda_event, tensor = queue.get()
cuda_event.wait()
tensor.mul_(2)
cuda_event.record()
done.set()
del cuda_event
def requires_grad_variable_sharing(queue, ready):
var = queue.get()
ready.set()
queue.put(var.requires_grad)
def integer_parameter_serialization(iparam):
iparam + 1
def autograd_sharing(queue, ready, master_modified, device, is_parameter):
var = queue.get()
ready.set()
master_modified.wait()
expected_var = torch.arange(1., 26, device=device).view(5, 5)
expected_var[0, 0] = 1000
is_ok = var.data.equal(expected_var)
var.data[:] = torch.ones(5, 5, device=device)
is_ok &= var.grad is None
is_ok &= not var._backward_hooks
if is_parameter:
is_ok &= type(var) == Parameter
else:
is_ok &= type(var) == torch.Tensor
var._grad = torch.ones(5, 5, device=device)
queue.put(is_ok)
def mixed_type_producer(queue, event):
for _ in range(10):
float_tensor = torch.ones(2, 2).float().cuda()
byte_tensor = torch.zeros(2, 2).byte().cuda()
queue.put(float_tensor)
queue.put(byte_tensor)
event.wait()
event.clear()
def simple_autograd_function(a=1):
torch.rand(3).requires_grad_(True).mean().backward()
return a ** 2
@contextlib.contextmanager
def fs_sharing():
prev_strategy = mp.get_sharing_strategy()
mp.set_sharing_strategy('file_system')
try:
yield
finally:
mp.set_sharing_strategy(prev_strategy)
class leak_checker(object):
def __init__(self, test_case):
self.checked_pids = [os.getpid()]
self.test_case = test_case
def __enter__(self):
self.next_fds = self._get_next_fds(10)
return self
def __exit__(self, *args):
if torch.cuda.is_available():
torch.cuda.ipc_collect()
if args[0] is None:
# Check that the 10th available file-descriptor at the end of the
# test is no more than 4 higher than the 10th available at the
# start. This attempts to catch file descriptor leaks, but allows
# one-off initialization that may use up a file descriptor
# TODO: Disabled because this check is too flaky
# available_fds = self._get_next_fds(10)
# self.test_case.assertLessEqual(
# available_fds[-1] - self.next_fds[-1], 5)
self.test_case.assertFalse(self.has_shm_files())
return False
def check_pid(self, pid):
self.checked_pids.append(pid)
def _get_next_fds(self, n=1):
# dup uses the lowest-numbered unused descriptor for the new descriptor
fds = [os.dup(0) for i in range(n)]
for fd in fds:
os.close(fd)
return fds
def has_shm_files(self, wait=True):
if not HAS_SHM_FILES:
return False
result = self._has_shm_files()
if result and mp.get_sharing_strategy() == 'file_system' and wait:
time.sleep(0.5)
return self._has_shm_files()
return result
def _has_shm_files(self):
gc.collect()
names = ['torch_' + str(pid) for pid in self.checked_pids]
for filename in os.listdir('/dev/shm'):
for name in names:
if filename.startswith(name):
return True
return False
@unittest.skipIf(TEST_WITH_TSAN, "TSAN is not fork-safe since we're forking in a multi-threaded environment")
class TestMultiprocessing(TestCase):
def tearDown(self):
# This will keep tests isolated from each-other
if torch.cuda.is_available():
torch.cuda.ipc_collect()
def _test_sharing(self, ctx=mp, device='cpu', dtype=torch.float, repeat=1):
def test_fill():
x = torch.zeros(5, 5).to(device, dtype)
q = ctx.Queue()
e = ctx.Event()
data = [x, x[:, 1]]
q.put(data)
p = ctx.Process(target=simple_fill, args=(q, e))
p.daemon = True
lc.check_pid(p.pid)
p.start()
e.wait(10)
self.assertTrue(e.is_set())
self.assertTrue(data[0].eq(4).all())
self.assertTrue(data[1].eq(4).all())
p.join(1)
self.assertFalse(p.is_alive())
def test_receive():
q = ctx.Queue()
e = ctx.Event()
p = ctx.Process(target=send_tensor, args=(q, e, device, dtype))
p.daemon = True
lc.check_pid(p.pid)
p.start()
t1 = q.get()
t2 = q.get()
self.assertTrue(t1.eq(1).all())
s1 = t1.storage()
s2 = t2.storage()
self.assertEqual(type(s1), type(s2))
self.assertEqual(s1.data_ptr(), s1.data_ptr())
self.assertEqual(s1, s2)
# We need to delete this tensors to allow producer (child process)
# collect them properly
del t1, t2
e.set()
p.join(1)
self.assertFalse(p.is_alive())
with leak_checker(self) as lc:
for _ in range(repeat):
test_fill()
test_receive()
def _test_preserve_sharing(self, ctx=mp, repeat=1):
def do_test():
x = torch.randn(5, 5)
data = [x.storage(), x, x[2], x[:, 1]]
q = ctx.Queue()
q.put(data)
new_data = q.get(timeout=1)
self.assertEqual(new_data, data, atol=0, rtol=0)
storage_cdata = data[0]._cdata
self.assertEqual(new_data[0]._cdata, storage_cdata)
for t in new_data[1:]:
self.assertEqual(t.storage()._cdata, storage_cdata)
with leak_checker(self):
for _ in range(repeat):
do_test()
def _test_pool(self, ctx=mp, repeat=1):
def do_test():
p = ctx.Pool(2)
for proc in p._pool:
lc.check_pid(proc.pid)
buffers = [torch.zeros(2, 2) for i in range(4)]
results = p.map(simple_pool_fill, buffers, 1)
self.assertEqual(len(results), len(buffers))
for r in results:
self.assertEqual(r, torch.ones(2, 2) * 5, atol=0, rtol=0)
for b in buffers:
self.assertEqual(b, torch.ones(2, 2) * 4, atol=0, rtol=0)
p.close()
p.join()
with leak_checker(self) as lc:
for _ in range(repeat):
do_test()
@unittest.skipIf(platform == 'darwin', "file descriptor strategy is not supported on macOS")
@unittest.skipIf(TEST_WITH_ASAN,
"seems to hang with ASAN, see https://github.com/pytorch/pytorch/issues/5326")
def test_fd_sharing(self):
self._test_sharing(repeat=TEST_REPEATS)
@unittest.skipIf(platform == 'darwin', "file descriptor strategy is not supported on macOS")
def test_fd_preserve_sharing(self):
self._test_preserve_sharing(repeat=TEST_REPEATS)
@unittest.skipIf(platform == 'darwin', "file descriptor strategy is not supported on macOS")
def test_fd_pool(self):
self._test_pool(repeat=TEST_REPEATS)
@unittest.skipIf(TEST_WITH_ASAN,
"seems to hang with ASAN, see https://github.com/pytorch/pytorch/issues/5326")
def test_fs_sharing(self):
with fs_sharing():
self._test_sharing(repeat=TEST_REPEATS)
def test_fs_preserve_sharing(self):
with fs_sharing():
self._test_preserve_sharing(repeat=TEST_REPEATS)
def test_fs_pool(self):
with fs_sharing():
self._test_pool(repeat=TEST_REPEATS)
@unittest.skipIf(not HAS_SHM_FILES, "don't not how to check if shm files exist")
def test_fs(self):
def queue_put():
x = torch.DoubleStorage(4)
q = mp.Queue()
self.assertFalse(lc.has_shm_files())
q.put(x)
time.sleep(0.05) # queue serializes asynchronously
self.assertTrue(lc.has_shm_files(wait=False))
q.get()
with fs_sharing(), leak_checker(self) as lc:
for _ in range(TEST_REPEATS):
queue_put()
def test_inherit_tensor(self):
t = torch.zeros(5, 5)
p = SubProcess(t.share_memory_())
p.start()
p.join(2)
if p.exitcode is None:
print("test_inherit_tensor: SubProcess too slow")
else:
self.assertEqual(t, torch.ones(5, 5) * 3, atol=0, rtol=0)
@unittest.skipIf(IS_WINDOWS, "Test needs to use fork multiprocessing")
def test_autograd_errors(self):
ctx = mp.get_context('fork')
simple_autograd_function()
with self.assertRaisesRegex(RuntimeError, r'Unable to handle autograd'):
with ctx.Pool(3) as pool:
pool.map(simple_autograd_function, [1, 2, 3])
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Test needs to use spawn multiprocessing")
def test_autograd_fine_with_spawn(self):
ctx = mp.get_context('spawn')
simple_autograd_function()
with ctx.Pool(3) as pool:
pool.map(simple_autograd_function, [1, 2, 3])
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
def test_cuda_simple(self):
torch.cuda.FloatTensor([1]) # initialize CUDA outside of leak checker
self._test_sharing(mp.get_context('spawn'), 'cuda', torch.float)
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
def test_cuda_memory_allocation(self):
ctx = mp.get_context('spawn')
q = ctx.Queue()
e = ctx.Event()
p = ctx.Process(target=send_and_delete_tensors, args=(q, e, 'cuda', torch.int, 5))
p.start()
t = []
for _ in range(5):
t.append(q.get())
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(t[0], torch.full([5], 0.))
del t
e.set()
p.join(1)
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
def test_cuda_ipc_deadlock(self):
ctx = mp.get_context('spawn')
queue = ctx.Queue(1)
processes = dict(
a=ctx.Process(target=_test_cuda_ipc_deadlock_actor, args=(queue, 100)),
l=ctx.Process(target=_test_cuda_ipc_deadlock_learner, args=(queue, 100)))
for p in processes.values():
p.start()
for p in processes.values():
p.join(10)
for p in processes.values():
self.assertFalse(p.is_alive())
@slowTest
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
def test_cuda_send_many(self, name=None, size=5, count=100000):
ctx = mp.get_context('spawn')
q1 = ctx.Queue()
q2 = ctx.Queue()
q3 = ctx.Queue()
e1 = ctx.Event()
e2 = ctx.Event()
e3 = ctx.Event()
p1 = ctx.Process(target=send_and_delete_tensors, args=(q1, e1, 'cuda', torch.long, count, size))
p2 = ctx.Process(target=receive_and_send, args=(q1, q2, e2, count))
p3 = ctx.Process(target=receive_and_send_sum, args=(q2, q3, e3, 'cuda', torch.long, count, size))
p1.start()
p2.start()
p3.start()
result = q3.get()
self.assertEqual(result[0], int(count * (count - 1) / 2))
del result
e1.set()
e2.set()
e3.set()
p1.join(1)
p2.join(1)
p3.join(1)
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
@unittest.skipIf(not TEST_MULTIGPU, 'found only 1 GPU')
def test_cuda_small_tensors(self):
# Check multiple small tensors which will likely use the same
# underlying cached allocation
ctx = mp.get_context('spawn')
tensors = []
for i in range(5):
device = i % 2
tensors += [torch.arange(i * 5., (i + 1) * 5).cuda(device)]
inq = ctx.Queue()
outq = ctx.Queue()
inq.put(tensors)
p = ctx.Process(target=sum_tensors, args=(inq, outq))
p.start()
results = []
for _ in range(5):
results.append(outq.get())
p.join()
for i, _tensor in enumerate(tensors):
v, device, tensor_size, storage_size = results[i]
self.assertEqual(v, torch.arange(i * 5., (i + 1) * 5).sum())
self.assertEqual(device, i % 2)
self.assertEqual(tensor_size, 5)
# You might think this should be the case, but it's not! After
# data from the CUDA caching allocator goes through IPC, the
# size of the storage is the size of the *cached cudaMalloc for
# the entire memory block* of the storage, not just the storage.
# See Note [CUDA IPC and the caching allocator] for more info
#
# self.assertEqual(storage_size, 5)
# Collect current process (producer) files, make sure nothing holds
# ref to the sent tensors
del _tensor
del tensors
# We need to collect, as CUDA MP implementation holds one shared
# memory 'file' for performance reason
torch.cuda.ipc_collect()
@unittest.skipIf(IS_WINDOWS, 'not applicable to Windows (only fails with fork)')
@unittest.skipIf(not torch.cuda.is_available(), 'CUDA not available')
def test_cuda_bad_call(self):
# Initialize CUDA
t = torch.zeros(5, 5).cuda().cpu()
inq = mp.Queue()
outq = mp.Queue()
p = mp.Process(target=queue_get_exception, args=(inq, outq))
p.start()
inq.put(t)
p.join()
self.assertIsInstance(outq.get(), RuntimeError)
@unittest.skipIf(IS_WINDOWS, 'not applicable to Windows (only fails with fork)')
@unittest.skipIf(not torch.cuda.is_available(), 'CUDA not available')
def test_wrong_cuda_fork(self):
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
import torch
from torch.multiprocessing import Process
def run(rank):
torch.cuda.set_device(rank)
if __name__ == "__main__":
size = 2
processes = []
for rank in range(size):
# it would work fine without the line below
x = torch.rand(20, 2).cuda()
p = Process(target=run, args=(rank,))
p.start()
processes.append(p)
for p in processes:
p.join()
""")
self.assertRegex(stderr, "Cannot re-initialize CUDA in forked subprocess.")
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
def test_event(self):
ctx = mp.get_context('spawn')
queue = ctx.Queue()
ready = ctx.Event()
done = ctx.Event()
p = ctx.Process(target=cuda_multiply_two, args=(queue, ready, done))
p.start()
ready.wait()
with torch.cuda.stream(torch.cuda.Stream()):
tensor = torch.cuda.FloatTensor([1, 1, 1, 1])
# Use a sleep kernel to test events. Without the event, the
# multiply happens before the add.
event = torch.cuda.Event(interprocess=True)
torch.cuda._sleep(20000000) # about 30 ms
tensor.add_(1)
event.record()
queue.put((event, tensor))
done.wait() # must wait until subprocess records event
event.synchronize()
self.assertEqual(list(tensor), [4, 4, 4, 4])
p.join()
@staticmethod
def _test_event_multiprocess_child(event, p2c, c2p):
c2p.put(0) # notify parent child is ready
p2c.get() # wait for record in parent
event.synchronize()
c2p.put(1) # notify parent synchronization is done
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
def test_event_multiprocess(self):
event = torch.cuda.Event(enable_timing=False, interprocess=True)
self.assertTrue(event.query())
ctx = mp.get_context('spawn')
p2c = ctx.SimpleQueue()
c2p = ctx.SimpleQueue()
p = ctx.Process(
target=TestMultiprocessing._test_event_multiprocess_child,
args=(event, p2c, c2p))
p.start()
c2p.get() # wait for until child process is ready
torch.cuda._sleep(50000000) # spin for about 50 ms
event.record()
p2c.put(0) # notify child event is recorded
self.assertFalse(event.query())
c2p.get() # wait for synchronization in child
self.assertTrue(event.query())
p.join()
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
@unittest.skipIf(not TEST_MULTIGPU, 'found only 1 GPU')
def test_event_handle_multi_gpu(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
with torch.cuda.device(d0):
e0 = torch.cuda.Event(enable_timing=False, interprocess=True)
with torch.cuda.device(d1):
# create handle on different device from un-recorded event
e0.ipc_handle()
with torch.cuda.device(d0):
e1 = torch.cuda.Event(enable_timing=False, interprocess=True)
stream = torch.cuda.Stream()
torch.cuda._sleep(50000000) # spin for about 50 ms
e1.record(stream)
with torch.cuda.device(d1):
# create handle on different device from recorded event
e1.ipc_handle()
@staticmethod
def _test_event_handle_importer_consumer(handle, p2c, c2p):
e1 = torch.cuda.Event.from_ipc_handle(0, handle)
c2p.put(0) # notify parent child is ready
p2c.get() # wait for record in parent
e1.synchronize()
c2p.put(1) # nofity synchronization is done in child
p2c.get() # wait for parent to finish before destructing child event
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
def test_event_handle_importer(self):
e0 = torch.cuda.Event(enable_timing=False, interprocess=True)
self.assertTrue(e0.query())
ctx = mp.get_context('spawn')
p2c = ctx.SimpleQueue()
c2p = ctx.SimpleQueue()
p = ctx.Process(
target=TestMultiprocessing._test_event_handle_importer_consumer,
args=(e0.ipc_handle(), p2c, c2p))
p.start()
c2p.get() # wait for child to become ready
torch.cuda._sleep(50000000) # spin for about 50 ms
e0.record()
p2c.put(0) # notify child event is recorded
self.assertFalse(e0.query())
c2p.get() # wait for synchronization in child
self.assertTrue(e0.query())
p2c.put(1) # notify child that parent is done
p.join()
@staticmethod
def _test_event_handle_exporter_consumer(handle, p2c, c2p):
stream = torch.cuda.Stream()
with torch.cuda.stream(stream):
e1 = torch.cuda.Event.from_ipc_handle(
torch.cuda.current_device(), handle)
torch.cuda._sleep(50000000) # spin for about 50 ms
e1.record()
c2p.put(0)
# wait for parent process finished synchronization before
# destructing e1
p2c.get()
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
def test_event_handle_exporter(self):
e0 = torch.cuda.Event(enable_timing=False, interprocess=True)
ctx = mp.get_context('spawn')
p2c = ctx.SimpleQueue()
c2p = ctx.SimpleQueue()
p = ctx.Process(
target=TestMultiprocessing._test_event_handle_exporter_consumer,
args=(e0.ipc_handle(), p2c, c2p))
p.start()
# wait for event in child process is recorded
c2p.get()
self.assertFalse(e0.query())
e0.synchronize()
self.assertTrue(e0.query())
p2c.put(0)
p.join()
def _test_empty_tensor_sharing(self, dtype, device):
q = mp.Queue()
empty = torch.tensor([], dtype=dtype, device=device)
q.put(empty)
out = q.get(timeout=1)
self.assertEqual(out, empty)
def test_empty_tensor_sharing(self):
self._test_empty_tensor_sharing(torch.float32, torch.device('cpu'))
self._test_empty_tensor_sharing(torch.int64, torch.device('cpu'))
@unittest.skipIf(not torch.cuda.is_available(), 'CUDA not available')
def test_empty_tensor_sharing_cuda(self):
self._test_empty_tensor_sharing(torch.float32, torch.device('cuda'))
self._test_empty_tensor_sharing(torch.int64, torch.device('cuda'))
def _test_autograd_sharing(self, var, ctx=mp, is_parameter=False):
device = 'cuda' if var.is_cuda else 'cpu'
ready = ctx.Event()
master_modified = ctx.Event()
queue = ctx.Queue()
p = ctx.Process(target=autograd_sharing, args=(queue, ready, master_modified, device, is_parameter))
p.daemon = True
p.start()
# This would cause an error if we tried to serialize the hooks,
# because it's a closure and pickle doesn't support closures.
@torch.utils.hooks.unserializable_hook
def hook(*unused):
pass
if var.requires_grad:
var.register_hook(hook)
var._grad = torch.zeros(5, 5, device=device)
queue.put(var)
ready.wait()
var.data[0, 0] = 1000
var.grad.data[:] = torch.ones(5, 5, device=device) * 4
master_modified.set()
worker_ok = queue.get()
self.assertTrue(worker_ok)
self.assertEqual(var.data, torch.ones(5, 5, device=device))
self.assertEqual(var.grad.data, torch.ones(5, 5, device=device) * 4)
p.join(1)
self.assertFalse(p.is_alive())
# Check sharing a cudaMalloc allocation with different types of storage.
# (Issue #11422)
def _test_mixed_types_cuda_sharing(self, ctx=mp):
all_ones = torch.ones(2, 2).float()
all_zeros = torch.zeros(2, 2).byte()
queue = ctx.Queue()
event = ctx.Event()
p = ctx.Process(target=mixed_type_producer, args=(queue, event))
p.start()
for _ in range(10):
float_tensor = queue.get()
byte_tensor = queue.get()
self.assertEqual(float_tensor, all_ones)
self.assertEqual(byte_tensor, all_zeros)
del float_tensor, byte_tensor
event.set()
time.sleep(5)
p.join()
def test_variable_sharing(self):
for requires_grad in [True, False]:
var = torch.arange(1., 26).view(5, 5).requires_grad_(requires_grad)
self._test_autograd_sharing(var)
# See https://github.com/pytorch/pytorch/issues/14997
@unittest.skipIf(TEST_WITH_ASAN,
"non-deterministically hangs with ASAN")
def test_leaf_variable_sharing(self):
devices = ['cpu']
if torch.cuda.is_available() and not NO_MULTIPROCESSING_SPAWN and TEST_CUDA_IPC:
devices.append('cuda')
for device in devices:
for requires_grad in [True, False]:
var = torch.arange(1., 26, device=device).view(5, 5).requires_grad_(requires_grad)
self.assertTrue(var.is_leaf)
ctx = mp.get_context('spawn') if device == 'cuda' else mp
ready = ctx.Event()
queue = ctx.Queue()
p = ctx.Process(target=requires_grad_variable_sharing, args=(queue, ready))
p.daemon = True
p.start()
queue.put(var)
ready.wait()
worker_requires_grad = queue.get()
self.assertTrue(worker_requires_grad == requires_grad)
def test_non_leaf_variable_sharing(self):
devices = ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda']
for device in devices:
var0 = torch.arange(1., 26, device=device).view(5, 5).requires_grad_(True)
var = var0 * 2
# Don't use a regular Queue; it uses a background thread (which
# means we can't catch the exceptions)
queue = mp.SimpleQueue()
self.assertRaisesRegex(RuntimeError, r'requires_grad', lambda: queue.put(var))
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
def test_cuda_variable_sharing(self):
for requires_grad in [True, False]:
var = torch.arange(1., 26, device='cuda').view(5, 5).requires_grad_(requires_grad)
self._test_autograd_sharing(var, mp.get_context('spawn'))
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
def test_mixed_types_cuda_sharing(self):
self._test_mixed_types_cuda_sharing(mp.get_context('spawn'))
def test_parameter_sharing(self):
param = Parameter(torch.arange(1., 26).view(5, 5))
self._test_autograd_sharing(param, is_parameter=True)
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
def test_cuda_parameter_sharing(self):
param = Parameter(torch.arange(1., 26, device='cuda').view(5, 5))
self._test_autograd_sharing(param, mp.get_context('spawn'), is_parameter=True)
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
def test_integer_parameter_serialization_cpu(self):
self._test_integer_parameter_serialization(device='cpu')
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
def test_integer_parameter_serialization_cuda(self):
self._test_integer_parameter_serialization(device='cuda')
def _test_integer_parameter_serialization(self, device):
param = torch.nn.Parameter(
torch.tensor(0, dtype=torch.int64, device=device),
requires_grad=False
)
ctx = mp.get_context('spawn')
p = ctx.Process(target=integer_parameter_serialization, args=(param,))
p.start()
p.join()
self.assertEqual(
0, p.exitcode,
msg=f'Failed to serialize successfully for "{device}" device!'
)
def test_empty_shared(self):
t = torch.tensor([])
t.share_memory_()
def _test_is_shared(self):
t = torch.randn(5, 5)
self.assertFalse(t.is_shared())
t.share_memory_()
self.assertTrue(t.is_shared())
@unittest.skipIf(platform == 'darwin', "file descriptor strategy is not supported on macOS")
def test_is_shared(self):
self._test_is_shared()
def test_fs_is_shared(self):
with fs_sharing():
self._test_is_shared()
@unittest.skipIf(not torch.cuda.is_available(), 'CUDA not available')
def test_is_shared_cuda(self):
t = torch.randn(5, 5).cuda()
self.assertTrue(t.is_shared())
if __name__ == '__main__':
run_tests()