forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
import_data.cpp
191 lines (170 loc) · 6.4 KB
/
import_data.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#include <torch/csrc/jit/mobile/import_data.h>
#include <ATen/core/ivalue.h>
#include <c10/util/irange.h>
#include <caffe2/serialize/inline_container.h>
#include <torch/csrc/jit/api/compilation_unit.h>
#include <torch/csrc/jit/mobile/observer.h>
#include <torch/csrc/jit/mobile/type_parser.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/serialization/unpickler.h>
#include <torch/custom_class.h>
#include <exception>
#include <fstream>
#include <string>
#include <vector>
namespace torch {
namespace jit {
using caffe2::serialize::IStreamAdapter;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::ReadAdapterInterface;
namespace {
// The deserializer class which loads the bytecode package from bc files.
class BytecodeDeserializer final {
public:
explicit BytecodeDeserializer(std::unique_ptr<PyTorchStreamReader> reader);
c10::IValue deserialize(c10::optional<at::Device> device);
private:
c10::IValue readArchive(
const std::string& archive_name,
std::shared_ptr<mobile::CompilationUnit> mcu,
c10::optional<at::Device> device);
std::shared_ptr<CompilationUnit> compilation_unit_;
std::unique_ptr<PyTorchStreamReader> reader_;
};
BytecodeDeserializer::BytecodeDeserializer(
std::unique_ptr<PyTorchStreamReader> reader)
: compilation_unit_(std::make_shared<CompilationUnit>()),
reader_(std::move(reader)) {}
c10::IValue BytecodeDeserializer::deserialize(
c10::optional<at::Device> device) {
auto mcu = std::make_shared<mobile::CompilationUnit>();
// NOLINTNEXTLINE(performance-move-const-arg)
return readArchive("data", mcu, std::move(device));
}
c10::IValue BytecodeDeserializer::readArchive(
const std::string& archive_name,
std::shared_ptr<mobile::CompilationUnit> mcu,
c10::optional<at::Device> device) {
std::stringstream picklename;
picklename << archive_name << ".pkl";
at::DataPtr pickle_ptr;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t pickle_size;
std::tie(pickle_ptr, pickle_size) = reader_->getRecord(picklename.str());
size_t bytes_read = 0;
auto data = reinterpret_cast<const char*>(pickle_ptr.get());
auto reader = [&](char* buffer, size_t len) -> size_t {
if (bytes_read >= pickle_size) {
return 0;
}
len = std::min(pickle_size - bytes_read, len);
// Copy len bytes into buffer
const char* start = data + bytes_read;
std::memcpy(buffer, start, len);
bytes_read += len;
return len;
};
static const c10::QualifiedName torchPrefix = "__torch__";
auto type_resolver = [&](const c10::QualifiedName& qn) {
TypePtr type;
// HACK: first we check whether the name starts with `__torch__` to tell if
// it's "supposed" to be a class type. This is a reliable check today, but
// there is no guarantee that this is the case. The real solution is to
// merge type parsers so we can share class resolution logic.
if (torchPrefix.isPrefixOf(qn)) {
if (compilation_unit_->get_class(qn) == nullptr) {
auto typeptr = ClassType::create(qn, compilation_unit_, true);
compilation_unit_->register_type(typeptr);
}
type = compilation_unit_->get_class(qn);
} else {
type = c10::parseType(qn.qualifiedName());
}
return c10::StrongTypePtr(compilation_unit_, type);
};
auto obj_loader = [&](const at::StrongTypePtr& type, IValue input) {
auto cls = type.type_->expect<at::ClassType>();
auto qn = cls->name();
c10::QualifiedName method_name(qn.value(), "__setstate__");
auto setstate = mcu->find_function(method_name);
auto find_custom_class_with_setstate = [&qn]() -> c10::ClassTypePtr {
auto custom_class_type = torch::jit::getCustomClass(qn->qualifiedName());
if (custom_class_type && custom_class_type->findMethod("__setstate__")) {
return custom_class_type;
}
return nullptr;
};
if (setstate) {
auto obj = c10::ivalue::Object::create(type, 0);
Stack stack({obj, input});
setstate->run(stack);
return obj;
} else if (auto custom_class_type = find_custom_class_with_setstate()) {
auto obj = c10::ivalue::Object::create(
c10::StrongTypePtr(nullptr, custom_class_type), 1);
Stack stack({obj, input});
custom_class_type->getMethod("__setstate__").run(stack);
return obj;
} else {
auto dict = std::move(input).toGenericDict();
size_t ndict = dict.size();
auto obj = c10::ivalue::Object::create(type, ndict);
auto it = dict.begin();
for (const auto i : c10::irange(ndict)) {
std::stringstream name;
name << it->key();
cls->addOrCheckAttribute(name.str(), it->key().type());
obj->setSlot(i, it->value());
++it;
}
return obj;
}
};
auto read_record = [&](const std::string& name) {
std::stringstream ss;
ss << archive_name << "/" << name;
return std::get<0>(reader_->getRecord(ss.str()));
};
Unpickler unpickler(
reader,
std::move(type_resolver),
std::move(obj_loader),
std::move(read_record),
// NOLINTNEXTLINE(performance-move-const-arg)
std::move(device),
false,
nullptr);
return unpickler.parse_ivalue();
}
} // namespace
std::map<std::string, at::Tensor> _load_parameters(
std::istream& in,
c10::optional<at::Device> device) {
std::unique_ptr<IStreamAdapter> rai = std::make_unique<IStreamAdapter>(&in);
// NOLINTNEXTLINE(performance-move-const-arg)
return _load_parameters(std::move(rai), std::move(device));
}
std::map<std::string, at::Tensor> _load_parameters(
const std::string& filename,
c10::optional<at::Device> device) {
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
// NOLINTNEXTLINE(performance-move-const-arg)
return _load_parameters(std::move(rai), std::move(device));
}
std::map<std::string, at::Tensor> _load_parameters(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device) {
auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
BytecodeDeserializer deserializer(std::move(reader));
// NOLINTNEXTLINE(performance-move-const-arg)
auto result = deserializer.deserialize(std::move(device)).toGenericDict();
std::map<std::string, at::Tensor> map;
for (const auto& e : result) {
auto key = e.key().toString()->string();
auto value = e.value().toTensor().tensor_data();
map[key] = value;
}
return map;
}
} // namespace jit
} // namespace torch