forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.cpp
268 lines (238 loc) · 8.07 KB
/
module.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/backends/backend_exception.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/mobile/observer.h>
#include <torch/csrc/jit/runtime/jit_exception.h>
#include <exception>
#include <ATen/record_function.h>
#include <c10/util/ScopeExit.h>
#include <c10/util/irange.h>
namespace torch {
namespace jit {
std::ostream& operator<<(std::ostream& out, Instruction inst);
namespace mobile {
void CompilationUnit::register_function(std::unique_ptr<Function> fn) {
methods_.emplace_back(std::move(fn));
}
const Function* CompilationUnit::find_function(
const c10::QualifiedName& qn) const {
for (auto& fn : methods_) {
if (fn->qualname() == qn) {
return fn.get();
}
}
return nullptr;
}
Function* CompilationUnit::find_function(const c10::QualifiedName& qn) {
// NOLINTNEXTLINE
return const_cast<Function*>(
static_cast<const CompilationUnit*>(this)->find_function(qn));
}
Method Module::get_method(const std::string& name) const {
if (auto method = find_method(name)) {
return *method;
}
AT_ERROR("Method '", name, "' is not defined.");
}
c10::optional<Method> Module::find_method(const std::string& basename) const {
for (const auto& fn : cu_->methods()) {
if (fn->name() == basename) {
return c10::make_optional<Method>(Method(this, fn.get()));
}
}
return c10::nullopt;
}
namespace {
void set_train_recurse(
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
bool on) {
if (auto slot = obj->type()->findAttributeSlot("training")) {
obj->setSlot(*slot, on);
} else {
TORCH_INTERNAL_ASSERT(
false,
"'training' attribute not found. Did you accidentally "
"call .eval() before saving your model?");
}
for (const auto& slot : obj->slots()) {
if (slot.isObject()) {
set_train_recurse(slot.toObject(), on);
}
}
}
void slot_params_recurse(
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
std::vector<at::Tensor>* params) {
for (const auto& slot : obj->slots()) {
if (slot.isTensor()) {
params->emplace_back(slot.toTensor());
} else if (slot.isObject()) {
slot_params_recurse(slot.toObject(), params);
}
}
}
void slot_named_params_recurse(
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
std::map<std::string, at::Tensor>* params,
const std::string& parent_name) {
auto slots = obj->slots();
size_t nslots = slots.size();
for (const auto i : c10::irange(nslots)) {
auto slot = slots[i];
std::string name =
parent_name.size() == 0 ? parent_name : parent_name + ".";
name += obj->type()->getAttributeName(i);
// TODO: Fix this filter. Requires_grad is not the appropriate
// filter of a parameter, but is a temporary hack to help probable
// users of this api. The correct behavior is to filter by the
// obj->type->is_parameter() but this currently always returns
// false on mobile.
if (slot.isTensor() && slot.toTensor().requires_grad()) {
(*params)[name] = slot.toTensor();
} else if (slot.isObject()) {
slot_named_params_recurse(slot.toObject(), params, name);
}
}
}
std::string getTopModuleTypeName(const Module& m) {
std::string name;
if (m._ivalue()->type() && m._ivalue()->type()->name()) {
name = m._ivalue()->type()->name().value().name();
}
return name;
}
} // namespace
const std::vector<at::Tensor> Module::parameters() const {
std::vector<at::Tensor> params;
slot_params_recurse(object_, ¶ms);
return params;
}
// Returns a mapping for all attributes that requires_grad=True in a module.
// This behavior differs from full torch script modules. This is a bug,
// but currently there is no way to correctly label parameters in the
// loading of a mobile module. TODO
const std::map<std::string, at::Tensor> Module::named_parameters() const {
std::map<std::string, at::Tensor> params;
const std::string name = "";
slot_named_params_recurse(object_, ¶ms, name);
return params;
}
std::string Module::getModuleHierarchy(const int64_t debug_handle) const {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
return getDebugTable().getModuleHierarchyInfo(
debug_handle, getTopModuleTypeName(*this));
#else
return "";
#endif
}
std::string Module::getCallStack(const int64_t debug_handle) const {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
return getDebugTable().getSourceDebugString(
debug_handle, getTopModuleTypeName(*this));
#else
return "";
#endif
}
// We will continue to support this API for now as this is being relied upon
// for profiling.
// We really need to change this part, so in the next step for profiling support
// for delegates, the first thing will be to rewrite how profiling is done
// for lite interpreter.
std::string Module::get_forward_method_debug_info(int64_t debug_handle) const {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
return getDebugTable().getModuleHierarchyInfo(
debug_handle, getTopModuleTypeName(*this));
#else
return "";
#endif
}
void Module::train(bool on) {
set_train_recurse(object_, on);
}
bool Module::is_training() const {
if (auto slot = object_->type()->findAttributeSlot("training")) {
return object_->getSlot(*slot).toBool();
}
return true;
}
const std::vector<Method> Module::get_methods() const {
std::vector<Method> methods;
for (std::unique_ptr<Function>& fn : cu_->methods()) {
methods.emplace_back(this, fn.get());
}
return methods;
}
Method::Method(const Module* owner, Function* function)
: owner_(owner), function_(function) {}
void Method::run(Stack& stack) const {
auto observer = torch::observerConfig().getModuleObserver();
// NOLINTNEXTLINE(clang-analyzer-security.insecureAPI.rand)
auto instance_key = std::rand();
/* if the metadata dict doesn't contain "model_name", copy the metadata and
set the value of "model_name" as name() */
std::unordered_map<std::string, std::string> copied_metadata =
owner_->getMetadata();
if (observer) {
observer->onEnterRunMethod(instance_key);
}
auto debug_info = std::make_shared<MobileDebugInfo>();
std::string name = copied_metadata["model_name"];
debug_info->setModelName(name);
debug_info->setMethodName(function_->name());
at::DebugInfoGuard guard(at::DebugInfoKind::MOBILE_RUNTIME_INFO, debug_info);
std::string error_message;
auto failure_guard = c10::make_scope_exit([&]() {
if (!observer) {
return;
}
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
if (error_message.empty()) {
error_message = owner_->getDebugTable().getSourceDebugString(
function_->getExceptionDebugHandles(), getTopModuleTypeName(*owner_));
}
#endif
observer->onFailRunMethod(
copied_metadata,
function_->name(),
instance_key,
error_message.empty() ? "Unknown exception" : error_message.c_str());
});
try {
stack.insert(stack.begin(), owner_->_ivalue()); // self
function_->run(stack);
if (observer) {
observer->onExitRunMethod(
copied_metadata, function_->name(), instance_key);
}
failure_guard.release();
// This exception must be caught first as it derived from c10::Error
} catch (c10::BackendRuntimeException& e) {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
for (auto handle : function_->getExceptionDebugHandles()) {
e.pushDebugHandle(handle);
}
// symbolicate all handles
auto debug_string = owner_->getDebugTable().getSourceDebugString(
e.getDebugHandles(), getTopModuleTypeName(*owner_));
e.add_context(debug_string);
#endif
error_message = e.what();
TORCH_RETHROW(e);
} catch (c10::Error& error) {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
auto debug_string = owner_->getDebugTable().getSourceDebugString(
function_->getExceptionDebugHandles(), getTopModuleTypeName(*owner_));
error.add_context(debug_string);
#endif
error_message = error.what();
TORCH_RETHROW(error);
}
}
c10::IValue Method::operator()(std::vector<c10::IValue> stack) const {
run(stack);
TORCH_INTERNAL_ASSERT(!stack.empty());
return stack.front();
}
} // namespace mobile
} // namespace jit
} // namespace torch