forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.h
150 lines (138 loc) · 4.69 KB
/
module.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#pragma once
#include <ATen/core/jit_type.h>
#include <torch/csrc/jit/mobile/debug_info.h>
#include <torch/csrc/jit/mobile/function.h>
#include <torch/csrc/jit/mobile/method.h>
namespace torch {
namespace jit {
namespace mobile {
using Stack = std::vector<c10::IValue>;
// A CompilationUnit object is the one that gets executed by the lite
// interpreter.
//
// A CompilationUnit object contains a list of Method Objects. These are methods
// that appear in the original PyTorch Model. These method correspond to Python
// member functions of the Model class.
//
// Methods in turn contain a Function, and a back-pointer to the Module that
// owns this Method instance.
//
// A Function contains a Code Object (code_) which is defined in interpreter.h
//
// A Code object contains the following:
//
// std::vector<Instruction> instructions_;
// std::vector<c10::OperatorName> op_names_;
// std::vector<std::function<void(Stack&)>> operators_;
// std::vector<c10::IValue> constants_;
// std::vector<c10::TypePtr> types_;
// size_t register_size_; // Aggregated output size.
//
class CompilationUnit {
public:
void register_function(std::unique_ptr<Function> fn);
std::vector<std::unique_ptr<Function>>& methods() {
return methods_;
}
const std::vector<std::unique_ptr<Function>>& methods() const {
return methods_;
}
Function* find_function(const c10::QualifiedName& qn);
const Function* find_function(const c10::QualifiedName& qn) const;
private:
std::vector<std::unique_ptr<Function>> methods_;
};
// A Torch Mobile Module is a representation of the model (trained in case
// of inference). A Mobile Module contains
//
// 1. data (object_)
// 2. metadata (optional) about the model (metadata_ from the metadata.pkl
// file added after training)
// 3. Compilation Unit (cu_)
//
class TORCH_API Module {
public:
Module(
// NOLINTNEXTLINE(modernize-pass-by-value)
c10::intrusive_ptr<c10::ivalue::Object> object,
std::shared_ptr<CompilationUnit> cu)
: object_(object), cu_(std::move(cu)) {}
Module() = default;
Method get_method(const std::string& method_name) const;
template <typename... Types>
c10::IValue run_method(const std::string& method_name, Types&&... args) {
return get_method(method_name)({IValue(std::forward<Types>(args))...});
}
c10::IValue forward(std::vector<c10::IValue> inputs) {
return get_method("forward")(std::move(inputs));
}
c10::optional<Method> find_method(const std::string& basename) const;
const std::string name() const {
return object_->name();
}
const std::vector<at::IValue>& slots() const {
return object_->slots();
}
const c10::intrusive_ptr<c10::ivalue::Object> _ivalue() const {
return object_;
}
const std::vector<at::Tensor> parameters() const;
const std::map<std::string, at::Tensor> named_parameters() const;
std::string get_forward_method_debug_info(int64_t debug_handle) const;
std::string getModuleHierarchy(const int64_t debug_handle) const;
std::string getCallStack(const int64_t debug_handle) const;
/// Enables "training" mode.
void train(bool on = true);
/// Calls train(false) to enable "eval" mode.
void eval() {
train(/*on=*/false);
}
/// True if the module is in training mode.
bool is_training() const;
const std::unordered_map<std::string, std::string> getMetadata() const {
return metadata_;
}
void setMetadata(
const std::unordered_map<std::string, std::string>& metadata) {
metadata_ = metadata;
}
const std::vector<Method> get_methods() const;
c10::IValue attr(const std::string& name, c10::IValue or_else) const {
if (auto r = object_->type()->findAttributeSlot(name)) {
return object_->getSlot(*r);
}
if (auto r = object_->type()->findConstantSlot(name)) {
return object_->type()->getConstant(*r);
}
return or_else;
}
void setDebugTable(MobileDebugTable&& debug_table) {
debug_table_ = std::move(debug_table);
}
const MobileDebugTable& getDebugTable() const {
return debug_table_;
}
void setHasDebugHandles(bool has_debug_handles) {
has_debug_handles_ = has_debug_handles;
}
bool hasDebugHandles() const {
return has_debug_handles_;
}
const CompilationUnit& compilation_unit() const {
return *cu_.get();
}
void set_delete_memory(std::shared_ptr<char> delete_mem) {
mem_to_delete_ = delete_mem;
}
private:
c10::intrusive_ptr<c10::ivalue::Object> object_;
std::unordered_map<std::string, std::string> metadata_;
std::shared_ptr<CompilationUnit> cu_;
MobileDebugTable debug_table_;
bool has_debug_handles_ = false;
// Extra handle for the module to delete when itself is deleted
std::shared_ptr<char> mem_to_delete_;
};
} // namespace mobile
} // namespace jit
} // namespace torch