-
Notifications
You must be signed in to change notification settings - Fork 1
/
04a_run_validation.R
360 lines (303 loc) · 12.8 KB
/
04a_run_validation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Notes -------------------------------------------------------------------
# Run validation for multivariate models
# NB: use t_horizon=4 for model comparison but t_horizon=1 for recommendations
# Initialisation ----------------------------------------------------------
rm(list = ls()) # Clear Workspace (better to restart the session)
set.seed(2021) # Reproducibility (Stan use a different seed)
source(here::here("analysis", "00_init.R")) # Load libraries, variables and functions
library(foreach)
library(doParallel)
score <- "SCORAD"
dataset <- "PFDC"
#### OPTIONS
model <- ScoradPred(a0 = 0.04, # 0.04
independent_items = FALSE,
include_calibration = TRUE,
include_treatment = TRUE,
treatment_names = c("localTreatment", "emollientCream"),
include_trend = FALSE,
include_recommendations = TRUE)
# set include_recommendations the same as include_treatment
run <- FALSE
t_horizon <- 4
n_chains <- 4
n_it <- 2000
n_cluster <- 4
####
stopifnot(
is_scalar_logical(run),
is_scalar_wholenumber(n_chains),
n_chains > 0,
is_scalar_wholenumber(n_it),
n_it > 0,
is_scalar_wholenumber(t_horizon),
t_horizon > 0,
is_scalar_wholenumber(n_cluster),
between(n_cluster, 1, floor((parallel::detectCores() - 2) / n_chains))
)
## Parameters
param <- c("lpd", "agg_rep", "y_pred")
if (model$include_recommendations) {
param <- c(param, "y_rec", "agg_rec", "p_treat")
}
## Files
outcomes <- detail_POSCORAD()$Name
# Validation files
file_dict <- lapply(outcomes,
function(x) {
get_results_files(outcome = x,
model = model$name,
dataset = dataset,
val_horizon = t_horizon,
root_dir = here())
})
names(file_dict) <- outcomes
# Recommendation files
rec_files <- get_recommendation_files(outcome = score,
model = model$name,
dataset = dataset,
val_horizon = t_horizon,
root_dir = here())
if (run) {
compiled_model <- rstan::stan_model(model$stanmodel)
}
# Prepare Stan input ------------------------------------------------------
l <- load_PFDC()
POSCORAD <- l$POSCORAD %>%
rename(Time = Day)
# Prefill Stan input
data_stan0 <- prefill_standata_FullModel(model)
# Prepare dataset (model$item_spec controls the indexing of items)
df <- POSCORAD %>%
select(one_of("Patient", "Time", model$item_spec$Label)) %>%
pivot_longer(cols = all_of(model$item_spec$Label), names_to = "Label", values_to = "Score") %>%
drop_na() %>%
left_join(model$item_spec[, c("Label", "ItemID")], by = c("Label")) %>%
select(-Label)
if (model$include_calibration) {
# Format SCORAD
scorad <- l$SCORAD %>%
rename(Time = Day) %>%
select(one_of("Patient", "Time", model$item_spec$Label)) %>%
pivot_longer(cols = all_of(model$item_spec$Label), names_to = "Label", values_to = "Score") %>%
drop_na() %>%
left_join(model$item_spec[, c("Label", "ItemID")], by = c("Label"))
scorad <- scorad %>% mutate(Iteration = get_fc_iteration(Time, horizon = t_horizon))
}
df <- df %>% mutate(Iteration = get_fc_iteration(Time, horizon = t_horizon))
if (model$include_treatment) {
treatment_lbl <- paste0(model$treatment_names, "WithinThePast2Days")
treat <- POSCORAD %>%
select(all_of(c("Patient", "Time", treatment_lbl))) %>%
pivot_longer(cols = all_of(treatment_lbl), names_to = "Treatment", values_to = "UsageWithinThePast2Days") %>%
mutate(Treatment = vapply(Treatment, function(x) {which(x == treatment_lbl)}, numeric(1)) %>% as.numeric()) %>%
drop_na()
treat <- treat %>% mutate(Iteration = get_fc_iteration(Time, horizon = t_horizon))
}
# Nothing to prepare for recommendation (or trend)
pt <- unique(df[["Patient"]])
t_max <- df %>%
group_by(Patient) %>%
summarise(LastTime = max(Time)) %>%
ungroup()
# Forward chaining --------------------------------------------------------
train_it <- get_fc_training_iteration(df[["Iteration"]])
fc_it <- detail_fc_training(df, horizon = t_horizon)
if (run) {
cl <- makeCluster(n_cluster, outfile = "")
registerDoParallel(cl)
for (j in 1:length(file_dict)) {
dir.create(file_dict[[j]]$ValDir)
}
if (model$include_recommendations) {
dir.create(rec_files$RecDir)
}
out <- foreach(i = rev(seq_along(train_it))) %dopar% {
it <- train_it[i]
# Need to reload functions and libraries
source(here::here("analysis", "00_init.R"))
duration <- Sys.time()
cat(glue::glue("Starting iteration {it}"), sep = "\n")
####
# Split dataset
split <- lapply(1:model$D,
function(d) {
df %>%
filter(ItemID == d) %>%
select(-ItemID) %>%
split_fc_dataset(df = ., it) %>%
lapply(function(x) {
x %>% mutate(ItemID = d)
})
})
train <- lapply(split, function(x) {x$Training}) %>% bind_rows()
test <- lapply(split, function(x) {x$Testing}) %>% bind_rows()
# Deal with reso=0.1
d_subj <- model$item_spec %>% filter(Resolution == 0.1) %>% pull(ItemID)
l <- lapply(list(train, test),
function(x) {
x %>%
mutate(Resolution = case_when(ItemID %in% d_subj ~ 0.1,
TRUE ~ 1),
Score = round(Score / Resolution)) %>%
select(-Resolution)
})
# Calibration data
if (model$include_calibration) {
train_cal <- scorad %>% filter(Iteration <= it) %>%
mutate(Resolution = case_when(Label %in% detail_POSCORAD("Subjective symptoms")$Label ~ 0.1,
TRUE ~ 1),
Score = round(Score / Resolution)) %>%
select(-Resolution)
} else {
train_cal <- NULL
}
# Treatment data
if (model$include_treatment) {
train_treat <- treat %>% filter(Iteration <= it)
} else {
train_treat <- NULL
}
# Add recommendations input
if (model$include_recommendations) {
# Make recommendation at the last time of the training iteration (whether there is a training observation, or observed outcome)
df_rec <- data.frame(Patient = pt,
Time = fc_it %>% filter(Iteration == it) %>% pull(LastTime)) %>%
full_join(t_max, by = "Patient") %>%
filter(Time <= LastTime) %>%
select(-LastTime)
} else {
df_rec <- NULL
}
data_stan <- c(data_stan0,
prepare_standata(model,
train = l[[1]],
test = l[[2]],
cal = train_cal,
treat = train_treat,
rec = df_rec))
id <- bind_rows(l[[1]], l[[2]], train_cal, train_treat, df_rec) %>%
get_index()
fit <- sampling(compiled_model,
data = data_stan,
pars = param,
control = list(adapt_delta = 0.9),
init = 0,
iter = n_it,
chains = n_chains,
refresh = 0)
## Performance of individual signs
pred <- rstan::extract(fit, pars = "y_pred")[[1]]
smp <- lapply(1:ncol(pred), function(i) {pred[, i]})
perf <- test %>%
mutate(lpd0 = extract_lpd(fit),
Samples = smp)
for (d in 1:model$D) {
perf %>%
filter(ItemID == d) %>%
select(-ItemID) %>%
mutate(Samples = map(Samples, ~(.x * model$item_spec$Resolution[d]))) %>%
add_metrics2_d(support = seq(0, model$item_spec$Maximum[d], model$item_spec$Resolution[d])) %>%
select(-lpd) %>%
rename(lpd = lpd0) %>%
saveRDS(file = here(file_dict[[model$item_spec$Name[d]]]$ValDir,
paste0("val_", it, ".rds")))
}
## Performance of aggregates
pred_agg <- rstan::extract(fit, pars = "agg_rep")[[1]]
agg_names <- gsub("weight_", "", colnames(data_stan$agg_weights))
for (d in 1:length(agg_names)) {
# Obtain test set for aggregate
agg_dict <- detail_POSCORAD() %>%
filter(Name == agg_names[d])
test_agg <- POSCORAD %>%
rename(Score = all_of(agg_dict$Label)) %>%
select(Patient, Time, Score) %>%
mutate(Iteration = get_fc_iteration(Time, t_horizon)) %>%
split_fc_dataset(df = ., it)
test_agg <- test_agg$Testing
# Extract predictive samples
id_test <- left_join(test_agg, id, by = c("Patient", "Time")) %>% pull(Index)
smp_agg_d <- lapply(seq_along(id_test), function(i) {pred_agg[, id_test[i], d]})
perf_agg <- test_agg %>%
mutate(Samples = smp_agg_d) # replace by EczemaPred::samples_to_list(pred_agg[, id_test, d])
if (agg_names[d] %in% c("SCORAD", "oSCORAD")) {
perf_agg <- perf_agg %>%
add_metrics2_c(., add_samples = 0:agg_dict$Maximum, bw = 0.5)
} else {
perf_agg <- perf_agg %>%
add_metrics2_d(., support = seq(0, agg_dict$Maximum, agg_dict$Resolution))
}
# Save validation results (better to save in the loop in case something breaks)
saveRDS(perf_agg, file = here(file_dict[[agg_names[d]]]$ValDir,
paste0("val_", it, ".rds")))
}
## Recommendations
if (model$include_recommendations) {
aggrec <- rstan::extract(fit, pars = "agg_rec")[[1]]
yrec <- rstan::extract(fit, pars = "y_rec")[[1]]
# Add severity item samples to pred_rec
pred_rec <- df_rec
for (d in 1:nrow(model$item_spec)) {
tmp <- model$item_spec[d, ]
pred_rec[[tmp$Label]] <- lapply(1:nrow(pred_rec),
function(j) {
yrec[, , j, tmp$ItemID]
})
}
# Add aggregates samples to pred_rec
for (d in seq_along(agg_names)) {
pred_rec[[detail_POSCORAD(agg_names[d])$Label]] <- lapply(1:nrow(pred_rec),
function(j) {
aggrec[, , j, d]
})
}
# Add p_treat to pred_rec
df_rec <- left_join(df_rec, id, by = c("Patient", "Time"))
ptreat <- rstan::extract(fit, pars = "p_treat")[[1]]
ptreat <- ptreat[, df_rec[["Index"]], ]
for (i in seq_along(model$treatment_names)) {
pred_rec[[paste0(model$treatment_names[i], "_post")]] <- lapply(1:nrow(pred_rec),
function(j) {
ptreat[, j, i]
})
}
# Save recommendation results
saveRDS(list(Predictions = pred_rec, Actions = model$actions),
file = here(rec_files$RecDir, paste0("rec_", it, ".rds")))
}
####
duration <- Sys.time() - duration
cat(glue::glue("Ending iteration {it} after {round(duration, 1)} {units(duration)}"), sep = "\n")
# Return
NULL
}
stopCluster(cl)
# Recombine validation results
for (j in 1:length(file_dict)) {
recombine_results(dir_name = file_dict[[j]]$ValDir,
output_file = file_dict[[j]]$Val,
expected_number_of_files = length(train_it))
}
# Recombine recommendation results
if (model$include_recommendations) {
# Check actions dataframes
files <- list.files(rec_files$RecDir, full.names = TRUE)
list_actions <- lapply(files,
function(x) {
tmp <- readRDS(x)
return(tmp[["Actions"]])
})
all_same_actions <- all(vapply(list_actions, function(x) {all.equal(x, list_actions[[1]])}, logical(1)))
if (!all_same_actions) {
warning("The actions dataframes are not the same across iterations.")
}
recombine_results(dir_name = rec_files$RecDir,
output_file = rec_files$RecFile,
reading_function = function(x) {readRDS(x)[["Predictions"]]},
expected_number_of_files = length(train_it))
res_rec <- readRDS(rec_files$RecFile)
saveRDS(list(Predictions = res_rec, Actions = list_actions[[1]]),
file = rec_files$RecFile)
}
}