-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval_split_grud.py
260 lines (211 loc) · 15.1 KB
/
eval_split_grud.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import numpy as np
import pandas as pd
from GRUD import GRUD
import sklearn.metrics as skm
import re
from prospective_set_up import get_retro, get_prosp
from run_model import *
import pickle as pkl
def main(args):
arg_suf = args.out_suf
device='cuda' if torch.cuda.is_available() else 'cpu'
# Store the set of suffixes attached to the model output folder in home_dir
home_suffix = 'out_grud' + arg_suf
assert os.path.exists(os.path.join(args.home_dir, home_suffix, 'train_means.pickle')), 'No train_means file to load in ' + str(args.home_dir) + '/' + home_suffix
with open(os.path.join(args.home_dir, home_suffix, 'train_means.pickle'), 'rb') as f:
train_means = pd.read_pickle(f)
#train_means = pickle.load(f)
input_size = args.num_feature + args.weekofyear
cell_size = args.grud_hidden
hidden_size = args.grud_hidden
model=GRUD( input_size, cell_size, hidden_size, train_means, device, fp16=not(args.opt_level=='O0'))
if os.path.exists(os.path.join(args.model_dir, 'checkpoint_best.pth'))&(args.model_dir!=''):
checkpoint = torch.load(os.path.join(args.model_dir, 'checkpoint_best.pth'))
# Assumed fit model in sub dir out_grud with suffix if no model_dir is provided.
else:
assert os.path.exists(os.path.join(args.home_dir, home_suffix, 'checkpoint_best.pth')), "Missing trained model, expect file: " + str(os.path.join(args.home_dir, home_suffix, 'checkpoint_best.pth'))
checkpoint = torch.load(os.path.join( args.home_dir, home_suffix, 'checkpoint_best.pth'), map_location=device)
checkpoint['state_dict']= {k.replace('model.', ''): v for k, v in checkpoint['state_dict'].items()}
print(checkpoint['state_dict'].keys())
try:
model.load_state_dict(checkpoint['state_dict'])
except:
print(checkpoint['state_dict'].keys())
model['model'].load_state_dict(checkpoint['state_dict'])
model.to(device)
if (not args.eval_train)|(args.data_dir is None):
try:
d_name = 'split_dict_' + args.regularly_sampled*'regular' + (not args.regularly_sampled)*'irregular' + '.pkl'
with open(os.path.join(args.home_dir, 'test', d_name), 'rb') as f:
prosp_specs = pickle.load(f)
f_name = 'split_daily_data_' + args.regularly_sampled*'regular' + (not args.regularly_sampled)*'irregular' + '.hdf'
assert not os.path.exists(os.path.join(args.home_dir, 'test', f_name)), 'Found a prospective dictionary file and full dataframe file in {}, uncertain which should be used.'.format(args.data_dir)
with open(DATA_PATH_DICTIONARY_FILE, 'rb') as f:
tmp = pickle.load(f)
path = tmp[GET_PATH_DICT_KEY(args)]
d = os.path.dirname(path)
f = os.path.basename(path)
dfs=load_data(d, regular=args.regularly_sampled, only_healthy=args.only_healthy, fname=f)
dfs = get_prosp(dfs, prosp_specs)
# Clean up temporary objects
del path, d, f, tmp
# Get the number of test_days, update the passed in argument.
if prosp_specs['test_days'] < 1:
max_date = dfs['activity'].index.get_level_values('date').max()
args.test_size = (max_date - prosp_specs['border_day']).days
else:
args.test_size = prosp_specs['test_days']
last_day_str = prosp_specs['border_day']
except OSError:
dfs=load_data(os.path.join(args.home_dir, 'test'), regular=args.regularly_sampled, only_healthy=args.only_healthy)
last_day_str = X_test_flat.index.get_level_values('date').max()
else:
dfs=load_data(args.home_dir, regular=args.regularly_sampled, only_healthy=args.only_healthy)
if args.weekofyear:
idx=pd.IndexSlice
dfs['activity']['weekday']=(dfs['activity'].index.get_level_values('date').weekday<5).astype(np.int32) # add week of year
dfs['activity'].index
dfs['activity'].index.get_level_values('date')
dfs['activity'].index.get_level_values('date' ).isocalendar().week.astype(np.int32)
# dfs['activity'].loc[:, idx['measurement', 'weekofyear']]=dfs['activity'].index.get_level_values('date').weekofyear
# dfs['activity'].loc[:, idx['measurement_z', 'weekofyear']]=dfs['activity'].index.get_level_values('date').weekofyear
dfs['activity'].loc[:, idx['measurement', 'weekofyear']]=dfs['activity'].index.get_level_values('date').isocalendar().week.astype(np.int32).values
dfs['activity'].loc[:, idx['measurement_z', 'weekofyear']]=dfs['activity'].index.get_level_values('date').isocalendar().week.astype(np.int32).values
dfs['activity'].loc[:, idx['mask', 'weekofyear']]=np.ones(len(dfs['activity']))
dfs['activity'].loc[:, idx['time', 'weekofyear']]=np.ones(len(dfs['activity']))
if not(args.eval_train):
# remove participants who are not in the prospective set
first_test_day = dfs['survey'].index.get_level_values('date').max() - pd.to_timedelta(args.test_size, 'd')
# prospective participants were only necessarily removed from the last seven days of the dataframe.
tmp = dfs['activity'][dfs['activity'].index.get_level_values('date') >= first_test_day]
test_participants = np.unique(tmp.index.get_level_values('participant_id'))
test_dfs = {k:v.loc[v.index.get_level_values('participant_id').isin(test_participants), : ] for k, v in dfs.items()}
else:
# reload the training data (but we will save it as test_dfs)
test_participants = pd.read_csv(os.path.join(args.home_dir, home_suffix, 'train_participants.csv')).values.ravel().tolist()
test_dfs = {k:v.loc[v.index.get_level_values('participant_id').isin(test_participants), : ] for k, v in dfs.items()}
# Assumed data scaler in sub dir out.
with open(os.path.join(args.home_dir, home_suffix, 'scaler.pkl'), 'rb') as f:
scaler = pkl.load(f)
test_dfs, _ = apply_standard_scaler(test_dfs, args, scaler=scaler)
test_dataset=ILIDataset(test_dfs, args, full_sequence=True, feat_subset=args.feat_subset)
test_dataloader=DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=args.num_dataloader_workers, collate_fn=id_collate)
# Need this last_test_day for participants whose data ends before the final date to calculate how many days to keep.
last_prosp_day = test_dfs['survey'].index.get_level_values('date').max()
proba_projection=torch.nn.Softmax(dim=1)
labels=[]
scores = []
participants = []
model.eval()
batches=tqdm(test_dataloader, total=len(test_dataloader))
for batch in batches:
assert test_dataloader.batch_size == 1, "batch size for test_dataloader must be one."
participant = batch[-1][0]
batch = batch[0][0]
batch={k:v.to(device) for k, v in batch.items()}
#Some participants don't have data all the way till the last day of the prospective test set, so here calculate how many of those days there are take that many days out of the returned scores and labels.
participant_last_day = test_dfs['survey'].loc[participant]['ili'].index.get_level_values('date').max()
num_days = ( last_prosp_day - participant_last_day).days
keep_days = args.test_size - num_days
#if keep_days != 7:
# print('p: {0}; pld: {1}; k: {2}'.format(participant, participant_last_day, keep_days))
with torch.no_grad():
prediction, hidden_states = model(batch['measurement_z'].float() if args.zscore else batch['measurement'].float(), batch['measurement'].float(), batch['mask'].float(), batch['time'].float(), pad_mask= batch['obs_mask'], return_hidden=True)
scores.append(proba_projection(prediction.view(-1, 2))[:, -1].detach().cpu().numpy()[-keep_days:])
# print((batch[args.target[0]].detach().cpu().numpy()[:, -args.test_size:]).shape)
# print(batch[args.target[0]].shape)
# print(args.test_size)
# raise
assert len(batch[args.target[0]].detach().cpu().numpy()[:, -keep_days:].ravel())>0
assert len(batch[args.target[0]].detach().cpu().numpy()[:, -keep_days:].shape)==2
labels.append(batch[args.target[0]].detach().cpu().numpy()[:, -keep_days:].ravel())
participants.append([participant]*scores[-1].shape[-1])
# if len(labels)>10:
# break
# print(labels[0])
# print(len(labels))
# labels = np.concatenate(tuple(labels), axis=1).squeeze()
try:
labels = np.concatenate(tuple(labels), axis=0).squeeze()
except:
print(labels)
print(tuple(labels))
raise
scores = np.concatenate(tuple(scores))
last_day = dfs['activity'].index.get_level_values('date').max()
prospective_days = [last_day - pd.to_timedelta(args.test_size-1,unit='d') + pd.to_timedelta(n, unit='d') for n in range(args.test_size)]
dates = np.concatenate(tuple([prospective_days[:len(p)] for p in participants]))
participants = np.concatenate(tuple(participants))
auc = skm.roc_auc_score(labels, scores)
aps = skm.average_precision_score(labels, scores)
args.output_dir = args.home_dir
out_df = pd.DataFrame({args.target[0] + '_score': scores, args.target[0]: labels, 'participant_id': participants, 'date': dates})
assert os.path.exists( os.path.join( args.home_dir,'out_grud' + arg_suf, 'thresholds_activity.json')), print(os.path.join( args.home_dir,'out_grud' + arg_suf, 'thresholds_activity.json'))
if os.path.exists( os.path.join( args.home_dir,'out_grud' + arg_suf, 'thresholds_activity.json')):
with open(os.path.join( args.home_dir,'out_grud' + arg_suf, 'thresholds_activity.json'), 'r') as f:
thresholds = json.load(f)
# apply this to the data and get the scores.
for k, v in thresholds.items():
print(args.target[0])
out_df[args.target[0]+'_pred_'+k] = np.asarray(scores >= float(v) ).astype(np.int32)
# Check if an explicit path was passed for the model, if so get the date it was trained till.
if args.model_dir!='':
model_date = os.path.split(os.path.split(args.model_dir)[0])[1].replace('_', '-')
fn = args.target[0] + '_grud_prosp_testset_results_' + arg_suf + model_date +'.csv'
write_path = os.path.join(args.home_dir, 'test', fn)
# Since model_dir wasn't passed the model must match the date of the home_dir.
else:
fn = args.target[0] + 'grud_prosp_testset_results' + arg_suf +'.csv'
if args.eval_train:
fn = args.target[0] + 'grud_prosp_trainset_results'+arg_suf+'.csv'
write_path = os.path.join(args.home_dir, 'test', fn)
if args.output_file is not None:
write_path = args.output_file
out_df.to_csv(os.path.join(args.home_dir, 'test', fn))
if args.output_file is not None:
# we don't need extra aggregation for models that aren't evaluated in a prospective manner so we can quit.
return
if args.model_dir!='':
# last day is the last
# model dir date
model_date = os.path.split(args.model_dir)[1].replace('_', '-')
test_date = os.path.split(os.path.split(args.home_dir)[0])[1].replace('_', '-')
with open(os.path.join(args.home_dir, '..', 'all_grud_auc'+arg_suf+'.csv'), 'a+') as f:
f.write(args.model_dir + ', ' + args.home_dir +', '+ str(last_day) + ', ' + str(auc) + ', ' + str(aps) + '\n')
else:
if not(args.eval_train):
with open(os.path.join(args.home_dir, '..', 'all_grud_auc'+arg_suf+'.csv'), 'a+') as f:
f.write(str(last_day) + ', ' + str(auc) + ', ' + str(aps) + '\n')
else:
with open(os.path.join(args.home_dir, '..', 'all_grud_train_auc'+arg_suf+'.csv'), 'a+') as f:
f.write(str(last_day) + ', ' + str(auc) + ', ' + str(aps) + '\n')
print('Successfully evaluated')
return None
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--target', type=str, default=('ili',), nargs='+', choices=['ili', 'ili_24', 'ili_48', 'covid', 'covid_24', 'covid_48', 'symptoms__fever__fever'], help='The target')
parser.add_argument("--home_dir", type=str, required=True, help='Base directory for reading data and fit model. Assumed home_dir will contain an out folder, which contains the fit model on the training part of the split and the scaler used, and the test folder, which contains the test part of the split.')
parser.add_argument("--model_dir", type=str, default='', help='Add this if the model is in a different folder.')
parser.add_argument("--data_dir", type=str, default=None, help='If evaluating on the dataset in home_dir/test is not wanted then an alternative directory can be supplied here to override that default behaviour.')
parser.add_argument("--output_file", type=str, default=None, help='If writing the results to the file home_dir/test/args.target[0]grud_prosp_testset_results.csv is not wanted then an alternative directory can be supplied to override the output location.')
parser.add_argument("--regularly_sampled", action='store_true', help="Set this flag to have regularly sampled data rather than irregularly sampled data.")
parser.add_argument('--num_dataloader_workers', type=int, default=4, help='# dataloader workers.')
parser.add_argument('--test_size', type=int, default=7, help='# of days in test set which were not in the training data')
parser.add_argument('--max_seq_len', type=int, default=48, help='maximum number of timepoints to feed into the model, required for load_data.')
parser.add_argument('--zscore', action='store_true', help='Set this flag to train a model using the z score (assume forward fill imputation for missing data)')
parser.add_argument('--weekofyear', action='store_true', help='Use the week_of_year feature when fitting testing the xgb model.')
parser.add_argument("--num_feature", type=int, default=48, help="number of features passed to the model.")
parser.add_argument("--grud_hidden", type=int, default=67, help="learning rate for the model")
parser.add_argument('--opt_level', type=str, default='O1', choices=['O0', 'O1'], help='The model to train.')
parser.add_argument("--only_healthy", action='store_true', help='Set this flag to train the model on only healthy measurements before the first onset of the target illness')
parser.add_argument("--feat_subset", action='store_true', help='in the measurement and measurement_z dataframes only use the subset of features found to work better for xgboost and ridge regression')
parser.add_argument("--eval_train", action='store_true', help='Set this flag to get the performance on the training set.')
parser.add_argument("--no_imputation", action='store_true', help='If set use the data prior to imputation preserving missing values as NA.')
parser.add_argument("--out_suf", default='', type=str, help='Suffix to append (before the extension) to each output file name.')
args = parser.parse_args()
print(vars(args))
with open(os.path.join(args.home_dir, 'test', 'args.json'), 'w') as f:
f.write(json.dumps(vars(args)))
main(args)