-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.py
522 lines (426 loc) · 21.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
# import dependecies
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
try:
from glmnet_python import glmnet
except:
glmnet=None
import torch.utils.data as utils
from torch.autograd import Variable
from torch.nn.parameter import Parameter
import torch.nn.functional as F
import torch.distributions as distributions
import math
import pickle
import os
from sklearn.preprocessing import KBinsDiscretizer
from sklearn.linear_model import Ridge
import sklearn.metrics as skm
import pandas as pd
import time
def fast_lags(df, num_days, diff=False, ldiff=False):
holder = []
cidx = df[('idx','cidx')]
df = df.drop(columns=[('idx','cidx')])
for ll in np.arange(num_days)+1:
tmp_ll = df.shift(ll)
tmp_ll.columns = pd.MultiIndex.from_frame(tmp_ll.columns.to_frame().assign(df_type=str(ll)+'days_ago'))
tmp_ll.insert(0,('idx','cidx'),cidx)
tmp_ll.loc[tmp_ll[('idx','cidx')] <= ll] = np.NaN
tmp_ll.drop(columns=[('idx','cidx')],inplace=True)
if diff:
tmp_ll = df.values - tmp_ll
if ldiff:
tmp_ll = np.log((df.values+1) / (tmp_ll+1))
holder.append(tmp_ll)
tmp_ll = pd.concat(holder,1)
tmp_ll = pd.concat([df, tmp_ll],1)
return tmp_ll
import pdb
from sklearn.preprocessing import StandardScaler
class processor():
def __init__(self):
self.scaler = StandardScaler()
def transform(self,X):
self.p = X.shape[1]
# Add square and log to data
print('Adding non-linear transforms')
xx = np.hstack([X, X**2])
print('Transforming data')
if hasattr(self.scaler, 'mean_'):
return self.scaler.transform(xx)
else:
return self.scaler.fit_transform(xx)
class LogisticRegression(nn.Module):
"""
Prediction head for ICD10
"""
def __init__(self, input_dim, dropout_prob=0.1):
super(LogisticRegression, self).__init__()
#predict next outputs
self.fc1=nn.Linear(input_dim, 2)
self.drop=nn.Dropout(p=dropout_prob)
def forward(self, X, X_last_obsv, Mask, Delta, pad_mask=None, return_hidden=False):
if len(X_last_obsv.shape)==3:
batch_size, seq_size, inp_dim= X_last_obsv.shape
if return_hidden:
return self.drop(self.fc1(X_last_obsv.view(-1, inp_dim))).view(batch_size, seq_size, -1), None
return self.drop(self.fc1(X_last_obsv.view(-1, inp_dim))).view(batch_size, seq_size, -1)
else:
# batch_size, inp_dim= X_last_obsv.shape
if return_hidden:
return self.drop(self.fc1(X_last_obsv)), None
else:
return self.drop(self.fc1(X_last_obsv))
class prob_NN(nn.Module):
"""
Convolve along time.
"""
def __init__(self, input_dim, seq_len, num_feature=48, dropout_prob=0.1):
super(prob_NN, self).__init__()
#predict latest output, input_dim is all the data in the batch, so consider the final
# set of observations as the labels so drop it right away.
self.num_feature = num_feature
self.sigma_size = (num_feature*(num_feature+1))//2
self.fc1 = nn.Linear(num_feature*seq_len, self.sigma_size * 8)
self.fc2 = nn.Linear(self.sigma_size * 8, self.sigma_size * 4)
self.fc3 = nn.Linear(self.sigma_size * 4, self.sigma_size * 2)
self.fc4 = nn.Linear(self.sigma_size *2, num_feature + self.sigma_size)
self.drop= nn.Dropout(p=dropout_prob)
def forward(self, X, X_last_obsv, Mask, Delta, pad_mask=None, return_hidden=False):
batch_size, seq_size, inp_dim= X.shape
# Assumes data input is of the form [patient, time, feature]
# swap the time and feature dimension to convolve over time for each feature
# Also drop the latest features since they will be predicted.
X_in = X.permute([0,2,1])[:,:,:-1]
H_fc1 = F.relu(self.fc1(X_in.reshape(-1, self.num_feature*(seq_size-1))))
H_fc2 = self.drop(F.relu(self.fc2(H_fc1)))
H_fc3 = self.drop(F.relu(self.fc3(H_fc2)))
H_fc4 = self.fc4(H_fc3)
#dist = distributions.multivariate_normal.MultivariateNormal(H_fc3[:, :48], H_fc3[:, 48:])
mus = H_fc4[:, :self.num_feature]
tril_indices = torch.tril_indices(row=self.num_feature, col=self.num_feature, offset=0)
sigma = torch.zeros(batch_size, self.num_feature, self.num_feature)
Var = torch.exp(H_fc4[:, self.num_feature:])**2
sigma[:, tril_indices[0], tril_indices[1]] = Var
if return_hidden:
return [mus, sigma], H_fc4 #Is there a way I can use the returned hidden layer to check they are updating?
return [mus, sigma]
class CNN1D(nn.Module):
"""
Convolve along time.
"""
def __init__(self, input_dim, seq_len, num_feature=48, dropout_prob=0.1):
super(CNN1D, self).__init__()
#predict latest output, input_dim is all the data in the batch, so consider the final
# set of observations as the labels so drop it right away.
self.ks_conv = 5
self.ks_pool = 3
self.stride_pool = 1
self.num_feature = num_feature
self.sigma_size = (num_feature*(num_feature + 1))//2
self.conv_1 = nn.Conv1d(input_dim, input_dim, kernel_size = self.ks_conv, groups=num_feature)
self.l_out_conv1 = math.floor(seq_len - self.ks_conv + 1)
self.pool = nn.AvgPool1d(kernel_size=self.ks_pool, stride = self.stride_pool)
self.l_out_pool = math.floor((self.l_out_conv1 - self.ks_pool)/self.stride_pool + 1)
self.conv_2 = nn.Conv1d(input_dim, input_dim, kernel_size = self.ks_conv, groups=input_dim)
self.l_out_conv2 = math.floor(self.l_out_pool - self.ks_conv + 1)
self.fc1=nn.Linear(num_feature*self.l_out_conv2, self.sigma_size * 4)
self.fc2 = nn.Linear(self.sigma_size * 4, self.sigma_size * 2)
self.fc3 = nn.Linear(self.sigma_size * 2, num_feature + self.sigma_size)
self.drop=nn.Dropout(p=dropout_prob)
def forward(self, X, X_last_obsv, Mask, Delta, pad_mask=None, return_hidden=False):
batch_size, seq_size, inp_dim= X.shape
# Assumes data input is of the form [patient, time, feature]
# swap the time and feature dimension to convolve over time for each feature
# Also drop the latest features since they will be predicted.
X_in = X.permute([0,2,1])[:,:,:-1]
H_conv_1 = self.pool(self.conv_1(X_in))
H_conv_2 = self.conv_2(H_conv_1)
H_fc1 = F.relu(self.fc1(H_conv_2.view(-1,self.num_feature*self.l_out_conv2)))
H_fc2 = F.relu(self.fc2(H_fc1))
H_fc3 = self.fc3(H_fc2)
#dist = distributions.multivariate_normal.MultivariateNormal(H_fc3[:, :48], H_fc3[:, 48:])
mus = H_fc3[:, :self.num_feature]
tril_indices = torch.tril_indices(row=self.num_feature, col=self.num_feature, offset=0)
sigma = torch.zeros(batch_size, self.num_feature, self.num_feature)
Var = torch.exp(H_fc3[:, self.num_feature:])**2
sigma[:, tril_indices[0], tril_indices[1]] = Var
#H_drop = self.drop(sample)
if return_hidden:
return [mus, sigma], H_fc3 #Is there a way I can use the returned hidden layer to check they are updating?
return [mus, sigma]
class LSTMmodel(nn.Module):
"""
Prediction head for ICD10
"""
def __init__(self, input_dim, hidden_dim, dropout_prob=0.1, bidirectional=False, num_layers=2):
super(LSTMmodel, self).__init__()
#predict next outputs
self.lstm=nn.LSTM(input_size=input_dim, hidden_size=hidden_dim, bidirectional=False, num_layers=num_layers, batch_first=True, dropout=dropout_prob)
# modules = [nn.LSTMCell(input_size=input_dim, hidden_size=hidden_dim),
# nn.ReLU(),
# nn.Dropout(p=dropout_prob)] +
# [nn.LSTMCell(input_size=hidden_dim, hidden_size=hidden_dim),
# nn.ReLU(),
# nn.Dropout(p=dropout_prob)]*(num_layers-1)
# self.lstm = nn.ModuleList(*models)
self.fc1=nn.Linear(hidden_dim, 2)
self.num_layers=num_layers
self.bidirectional = bidirectional
self.hidden_dim=hidden_dim
def forward(self, X, X_last_obsv, Mask, Delta, pad_mask=None, return_hidden=False):
# batch_size, seq_size, inp_dim= X_last_obsv.data.shape
# if pad_mask is not None:
# X_lengths= pad_mask.sum(dim=-1)
# print(X_lengths)
# pack_padded_sequence so that padded items in the sequence won't be shown to the LSTM
# X_last_obsv = torch.nn.utils.rnn.pack_padded_sequence(X_last_obsv, X_lengths, batch_first=True, enforce_sorted=False)
# now run through LSTM
outputs, h_c = self.lstm(X_last_obsv)
# if pad_mask is not None:
# # undo the packing operation
# outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True)
if return_hidden:
return self.fc1(outputs.data), outputs
else:
return self.fc1(outputs.data)
# if return_hidden:
# return self.fc1(outputs.view(-1, self.hidden_dim).contiguous()).view(batch_size, seq_size, -1), outputs
# return self.fc1(outputs.view(-1, self.hidden_dim).contiguous()).view(batch_size, seq_size, -1)
class GRUSIMPLEmodel(nn.Module):
"""
Prediction head for ICD10
"""
def __init__(self, input_dim, hidden_dim, dropout_prob=0.1, bidirectional=False, num_layers=2):
super(GRUSIMPLEmodel, self).__init__()
#predict next outputs
self.gru=nn.GRU(input_size=input_dim*3, hidden_size=hidden_dim, bidirectional=False, num_layers=num_layers, batch_first=True, dropout=dropout_prob)
self.fc1=nn.Linear(hidden_dim, 2)
self.num_layers=num_layers
self.bidirectional = bidirectional
self.hidden_dim=hidden_dim
def forward(self, X, X_last_obsv, Mask, Delta, pad_mask=None, return_hidden=False):
print(X_last_obsv.data.shape)
# input_to_model = X_last_obsv.clone()
X_last_obsv.data = torch.cat((X_last_obsv.data, Mask.data, Delta.data), dim=-1)
print('input_shape: ', X_last_obsv.data.shape)
print()
outputs, h_c = self.gru(X_last_obsv)
if return_hidden:
return self.fc1(outputs.data), outputs
else:
return self.fc1(outputs.data)
class GRUmodel(nn.Module):
"""
Prediction head for ICD10
"""
def __init__(self, input_dim, hidden_dim, dropout_prob=0.1, bidirectional=False, num_layers=2):
super(GRUmodel, self).__init__()
#predict next outputs
self.gru=nn.GRU(input_size=input_dim, hidden_size=hidden_dim, bidirectional=False, num_layers=num_layers, batch_first=True, dropout=dropout_prob)
self.fc1=nn.Linear(hidden_dim, 2)
self.num_layers=num_layers
self.bidirectional = bidirectional
self.hidden_dim=hidden_dim
def forward(self, X, X_last_obsv, Mask, Delta, pad_mask=None, return_hidden=False):
# self.gru.flatten_parameters()
outputs, h_c = self.gru(X_last_obsv)
if return_hidden:
return self.fc1(outputs.data), outputs
else:
return self.fc1(outputs.data)
# class GRU(nn.Module):
# """
# """
# def __init__(self, input_dim, hidden_dim, dropout_prob=0.1, bidirectional=False, num_layers=2):
# super(GRU, self).__init__()
# #predict next outputs
# self.gru=nn.GRU(input_size=input_dim, hidden_size=hidden_dim, bidirectional=False, num_layers=num_layers, batch_first=True, dropout=dropout_prob)
# self.fc1=nn.Linear(hidden_dim, 2)
# self.num_layers=num_layers
# self.bidirectional = bidirectional
# self.hidden_dim=hidden_dim
# def forward(self, X, X_last_obsv, Mask, Delta, pad_mask=None, return_hidden=False):
# batch_size, seq_size, inp_dim= X_last_obsv.shape
# if pad_mask is not None:
# X_lengths= pad_mask.sum(dim=-1)
# # pack_padded_sequence so that padded items in the sequence won't be shown to the LSTM
# X_last_obsv = torch.nn.utils.rnn.pack_padded_sequence(X_last_obsv, X_lengths, batch_first=True, enforce_sorted=False)
# # now run through LSTM
# outputs, h_c = self.gru(X_last_obsv)
# if pad_mask is not None:
# # undo the packing operation
# outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True)
# if return_hidden:
# return self.fc1(outputs.view(-1, self.hidden_dim).contiguous()).view(batch_size, seq_size, -1), outputs
# return self.fc1(outputs.view(-1, self.hidden_dim).contiguous()).view(batch_size, seq_size, -1)
class fastgam_mdl():
def __init__(self, args):
self.args = args
self.isfit = False
self.istuned = False
self.enc = False
# features Raghu chose as a subset of all features.
self.use_features = ['heart_rate_bpm', 'walk_steps', 'sleep_seconds',
'steps__rolling_6_sum__max', 'steps__count',
'steps__sum', 'steps__mvpa__sum',
'steps__dec_time__max', 'heart_rate__perc_5th',
'heart_rate__perc_50th', 'heart_rate__perc_95th',
'heart_rate__mean', 'heart_rate__stddev',
'active_fitbit__sum', 'active_fitbit__awake__sum',
'sleep__asleep__sum', 'sleep__main_efficiency',
'sleep__nap_count', 'sleep__really_awake__mean',
'sleep__really_awake_regions__countDistinct',
'weekday']
def predict(self, data):
assert self.isfit
print('Getting X/y')
X, y, cn, xidx = self.transform(data)
eta = self.mdl.predict(X)
return y, eta, xidx
def save(self, folder=None):
"""
pickle's object for later
"""
if folder is None:
folder = self.args.output_dir
file_pckl = os.path.join(folder, 'GAM_mdl.pickle')
with open(file_pckl, 'wb') as pickle_file:
pickle.dump(self, pickle_file)
pickle_file.close()
def load(self, folder=None):
"""
path should point to pickle object
"""
if folder is None:
folder = self.args.output_dir
file_pckl = os.path.join(folder, 'GAM_mdl.pickle')
pickle_in = open(file_pckl,"rb")
tmp = pickle.load(pickle_in)
self.mdl = tmp.mdl
self.normalizer = tmp.normalizer
self.enc = tmp.enc
self.discretizer = tmp.discretizer
self.isfit = tmp.isfit
def fit(self, data):
print('---- FITTING MODEL ----')
print('Getting X/y')
X, y, cn, xidx = self.transform(data)
print('# Fit the Ridge model')
stime = time.time()
self.mdl = Ridge(alpha=0.1).fit(X=X,y=y)
etime = time.time()
print('Took %i seconds to train Ridge model' % (etime - stime))
self.isfit = True
def transform(self, data):
"""
Process_data for the ar_mdl, should store the dataframes in the
dictionary attributes separated as activity and survey
Method will be called in fit, tune, and predict to process dataframes
returns: X, y in a dataframe format
"""
import warnings
warnings.filterwarnings('ignore')
# NUMBER OF BINS AND ORDER, RESPECTIVELY
nb, nk = 10, 2
idx = pd.IndexSlice
survey, activity = data['survey'], data['activity']
activity = activity.loc[:,idx['measurement',self.use_features]]
activity.insert(0, ('idx','cidx'), activity.groupby('participant_id').cumcount().values+1)
# Get the lags by ID...
stime = time.time()
print('Creating fast lags')
out = fast_lags(activity, self.args.days_ago, diff=False)
assert out.groupby('participant_id').tail(1).notnull().all().all()
print('Create target dataframes')
target = pd.DataFrame(survey.loc[:,self.args.target[0]].astype(int))
target.columns = pd.MultiIndex.from_tuples([['label',self.args.target[0]]],names=['df_type', 'value'])
print('Merging')
out = out.join(target)
if self.args.forecast_type == 'timetoevent':
print('Subetting for time2event')
out = out.join(out.assign(cidx=out.groupby('participant_id').cumcount()).loc[out[('label',self.args.target[0])]==1].groupby('participant_id').head(1)[['cidx']].droplevel(1))
out = out[out.groupby('participant_id').cumcount() <= out.cidx].drop(columns=['cidx'])
check = np.all( out[('label',self.args.target[0])].groupby('participant_id').sum() == 1 )
print('t2e subset worked: %s' % check)
assert check
# Remove any person that does have at least lags+1
nids = out.index.get_level_values(0).value_counts()
out = out[out.index.get_level_values(0).isin(idx[nids[nids >= self.args.days_ago + 1].index])]
# Fill missing (because last row has no missing values, groupby is not necessay)
out = out.fillna(0)
assert out.groupby('participant_id').tail(1).notnull().all().all()
# Extract the label
y = out[('label',self.args.target[0])].values
X = out.drop(columns=[('label',self.args.target[0])])
cn = X.columns
xidx = X.index
X = X.values
n, p = X.shape
if not self.enc:
print('Training discretizer for the first time')
# Fit encoder for every column of X
self.discretizer = [KBinsDiscretizer(n_bins=nb).fit(X[:,[j]]) for j in range(p)]
Xgam = [self.discretizer[j].transform(X[:,[j]]) for j in range(p)] # encode knots
Xgam = [np.tile(X[:,[j]],[1,Xgam[j].shape[1]]) * Xgam[j].toarray() for j in range(p)] # zero if outside of knots
# Add intercept
Xgam = [np.c_[np.ones(n),Xgam[j]] for j in range(p)]
# Combine order 1 and order 2
Xgam = np.c_[np.hstack(Xgam), np.hstack([Xgam[j][:,1:]**2 for j in range(p)])]
print('There are %i features after %i-order expansion' % (Xgam.shape[1], nk))
print('Training standard scaler for the first time')
self.normalizer = StandardScaler().fit(Xgam)
self.enc = True
else:
print('discretizer and scaler already trained')
Xgam = [self.discretizer[j].transform(X[:,[j]]) for j in range(p)] # encode knots
Xgam = [np.tile(X[:,[j]],[1,Xgam[j].shape[1]]) * Xgam[j].toarray() for j in range(p)] # zero if outside of knots
Xgam = [np.c_[np.ones(n),Xgam[j]] for j in range(p)]
Xgam = np.c_[np.hstack(Xgam), np.hstack([Xgam[j][:,1:]**2 for j in range(p)])]
print('Normalize features')
Xgam = self.normalizer.transform(Xgam)
return Xgam, y, cn, xidx
class ar_mdl():
def __init__(self, args, nlambda):
self.args = args
self.isfit = False
self.glmnet_obj = None
self.nlambda = nlambda
self.bhat_star = None
self.ahat_star = None
# features Raghu chose as a subset of all features.
self.use_features = ['heart_rate_bpm', 'walk_steps', 'sleep_seconds',
'steps__rolling_6_sum__max', 'steps__count',
'steps__sum', 'steps__mvpa__sum',
'steps__dec_time__max', 'heart_rate__perc_5th',
'heart_rate__perc_50th', 'heart_rate__perc_95th',
'heart_rate__mean', 'heart_rate__stddev',
'active_fitbit__sum', 'active_fitbit__awake__sum',
'sleep__asleep__sum', 'sleep__main_efficiency',
'sleep__nap_count', 'sleep__really_awake__mean',
'sleep__really_awake_regions__countDistinct',
'weekday']
def train(self, X_train, y_train, X_valid, y_valid):
self.glmnet_obj = glmnet(x=X_train, y=np.atleast_2d(y_train.astype(float)).T, family='gaussian', standardize=False, nlambda=self.nlambda)
all_val_auc = []
for jj in range(self.nlambda):
eta_jj = X_valid.dot(self.glmnet_obj['beta'][:, jj]) + self.glmnet_obj['a0'][jj]
auc_jj = skm.roc_auc_score(y_valid, eta_jj)
all_val_auc.append(auc_jj)
lam_results = pd.DataFrame({'jj':range(self.nlambda),'lam':self.glmnet_obj['lambdau'], 'auc':all_val_auc, 'dof':self.glmnet_obj['df']})
lam_results = lam_results[lam_results['auc'] > 0.5].sort_values('lam').reset_index(None, True)
lam_results = lam_results.assign(dauc=lambda x: x['auc'] - x['auc'].max(), ddof=lambda x: x['dof'] - x['dof'].max())
lam_results.to_csv(os.path.join(self.args.output_dir, 'df_lam.csv'), index=False)
self.lam_results = lam_results
# Pick the lambda within 0.5% of the max AUC
jj_star = lam_results.loc[(lam_results['dauc'] > -0.005)].sort_values('ddof')['jj'].values[0]
self.bhat_star = self.glmnet_obj['beta'][:, jj_star]
self.ahat_star = self.glmnet_obj['a0'][jj_star]
self.isfit = True
def predict(self, X):
assert self.isfit, 'The ar_mdl has not been fit yet. Train the model before predicting on new data.'
return X.dot(self.bhat_star) + self.ahat_star