-
Notifications
You must be signed in to change notification settings - Fork 235
/
movi_a.py
626 lines (529 loc) · 24 KB
/
movi_a.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
# Copyright 2024 The Kubric Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long, unexpected-keyword-arg
import dataclasses
import json
import logging
from typing import Dict, List, Union
from etils import epath
import imageio
import numpy as np
import png
import tensorflow as tf
import tensorflow_datasets.public_api as tfds
_DESCRIPTION = """
A simple rigid-body simulation based on the CLEVR dataset.
The scene consists of a gray floor, four light sources, a camera, and between
3 and 10 random objects.
The camera position is randomly jittered in a small area around a fixed position
and always points at the origin.
The objects are randomly chosen from:
- one three shapes [cube, sphere, cylinder],
- scaled to one of two sizes [small, large],
- have one of two materials [rubber, metal],
- and one of eight colors [blue, brown, cyan, gray, green, purple, red, yellow]
They are spawned without overlap in the region [(-5, -5, 1), (5, 5, 5)], and
initialized with a random velocity from the range [(-4, -4, 0), (4, 4, 0)]
minus the position of the object to bias their trajectory towards the center of
the scene.
The scene is simulated for 2 seconds, with the physical properties of the
objects depending on the material:
- metal: friction=0.4, restitution=0.3, density=2.7
- rubber: friction=0.8, restitution=0.7, density=1.1
The dataset contains approx 10k videos rendered at 256x256 pixels and 12fps.
Each sample contains the following video-format data:
(s: sequence length, h: height, w: width)
- "video": (s, h, w, 3) [uint8]
The RGB frames.
- "segmentations": (s, h, w, 1) [uint8]
Instance segmentation as per-pixel object-id with background=0.
Note: because of this the instance IDs used here are one higher than their
corresponding index in sample["instances"].
- "depth": (s, h, w, 1) [uint16]
Distance of each pixel from the center of the camera.
(Note this is different from the z-value sometimes used, which measures the
distance to the camera *plane*.)
The values are stored as uint16 and span the range specified in
sample["metadata"]["depth_range"]. To convert them back to world-units
use:
minv, maxv = sample["metadata"]["depth_range"]
depth = sample["depth"] / 65535 * (maxv - minv) + minv
- "forward_flow": (s, h, w, 2) [uint16]
Forward optical flow in the form (delta_row, delta_column).
The values are stored as uint16 and span the range specified in
sample["metadata"]["forward_flow_range"]. To convert them back to pixels use:
minv, maxv = sample["metadata"]["forward_flow_range"]
depth = sample["forward_flow"] / 65535 * (maxv - minv) + minv
- "backward_flow": (s, h, w, 2) [uint16]
Backward optical flow in the form (delta_row, delta_column).
The values are stored as uint16 and span the range specified in
sample["metadata"]["backward_flow_range"]. To convert them back to pixels use:
minv, maxv = sample["metadata"]["backward_flow_range"]
depth = sample["backward_flow"] / 65535 * (maxv - minv) + minv
- "normal": (s, h, w, 3) [uint16]
Surface normals for each pixel in world coordinates.
- "object_coordinates": (s, h, w, 3) [uint16]
Object coordinates encode the position of each point relative to the objects
bounding box (i.e. back-left-top (X=Y=Z=1) corner is white,
while front-right-bottom (X=Y=Z=0) corner is black.)
Additionally there is rich instance-level information in sample["instances"]:
- "mass": [float32]
Mass of the object used for simulation.
- "friction": [float32]
Friction coefficient used for simulation.
- "restitution": [float32]
Restitution coefficient (bounciness) used for simulation.
- "positions": (s, 3) [float32]
Position of the object for each frame in world-coordinates.
- "quaternions": (s, 4) [float32]
Rotation of the object for each frame as quaternions.
- "velocities": (s, 3) [float32]
Velocity of the object for each frame.
- "angular_velocities": (s, 3) [float32]
Angular velocity of the object for each frame.
- "bboxes_3d": (s, 8, 3) [float32]
World-space corners of the 3D bounding box around the object.
- "image_positions": (s, 2) [float32]
Normalized (0, 1) image-space (2D) coordinates of the center of mass of the
object for each frame.
- "bboxes": (None, 4) [float32]
The normalized image-space (2D) coordinates of the bounding box
[ymin, xmin, ymax, xmax] for all the frames in which the object is visible
(as specified in bbox_frames).
- "bbox_frames": (None,) [int]
A list of all the frames the object is visible.
- "visibility": (s,) [uint16]
Visibility of the object in number of pixels for each frame (can be 0).
- "shape_label": ["cube", "cylinder", "sphere"]
- "size_label": ["small", "large"]
- "color": (3,) [float32]
Color of the object in RGB.
- "color_label": ["blue", "brown", "cyan", "gray", "green", "purple", "red", "yellow"]
- "material_label": ["metal", "rubber"]
Information about the camera in sample["camera"]
(given for each frame eventhough the camera is static, so as to stay
consistent with other variants of the dataset):
- "focal_length": [float32]
- "sensor_width": [float32]
- "field_of_view": [float32]
- "positions": (s, 3) [float32]
- "quaternions": (s, 4) [float32]
And finally information about collision events in sample["events"]["collisions"]:
- "instances": (2,)[uint16]
Indices of the two instance between which the collision happened.
Note that collisions with the floor/background objects are marked with 65535
- "frame": tf.int32,
Frame in which the collision happenend.
- "force": tf.float32,
The force (strength) of the collision.
- "position": tfds.features.Tensor(shape=(3,), dtype=tf.float32),
Position of the collision event in 3D world coordinates.
- "image_position": tfds.features.Tensor(shape=(2,), dtype=tf.float32),
Position of the collision event projected onto normalized 2D image coordinates.
- "contact_normal": tfds.features.Tensor(shape=(3,), dtype=tf.float32),
The normal-vector of the contact (direction of the force).
"""
_CITATION = """\
@inproceedings{greff2022kubric,
title = {Kubric: a scalable dataset generator},
author = {Klaus Greff and Francois Belletti and Lucas Beyer and Carl Doersch and
Yilun Du and Daniel Duckworth and David J Fleet and Dan Gnanapragasam and
Florian Golemo and Charles Herrmann and Thomas Kipf and Abhijit Kundu and
Dmitry Lagun and Issam Laradji and Hsueh-Ti (Derek) Liu and Henning Meyer and
Yishu Miao and Derek Nowrouzezahrai and Cengiz Oztireli and Etienne Pot and
Noha Radwan and Daniel Rebain and Sara Sabour and Mehdi S. M. Sajjadi and Matan Sela and
Vincent Sitzmann and Austin Stone and Deqing Sun and Suhani Vora and Ziyu Wang and
Tianhao Wu and Kwang Moo Yi and Fangcheng Zhong and Andrea Tagliasacchi},
booktitle = {{IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR}},
year = {2022},
publisher = {Computer Vision Foundation / {IEEE}},
}"""
@dataclasses.dataclass
class MoviAConfig(tfds.core.BuilderConfig):
""""Configuration for Multi-Object Video (MOVi) dataset."""
height: int = 256
width: int = 256
num_frames: int = 24
validation_ratio: float = 0.1
train_val_path: str = None
test_split_paths: Dict[str, str] = dataclasses.field(default_factory=dict)
class MoviA(tfds.core.BeamBasedBuilder):
"""DatasetBuilder for MOVi-A dataset."""
VERSION = tfds.core.Version("1.0.0")
RELEASE_NOTES = {
"1.0.0": "initial release",
}
BUILDER_CONFIGS = [
MoviAConfig(
name="256x256",
description="Full resolution of 256x256",
height=256,
width=256,
validation_ratio=0.025,
# train_val_path="/usr/local/google/home/klausg/movi_tmp",
train_val_path="gs://research-brain-kubric-xgcp/jobs/movi_a_regen_10k/",
test_split_paths={
}
),
MoviAConfig(
name="128x128",
description="Downscaled to 128x128",
height=128,
width=128,
validation_ratio=0.025,
# train_val_path="/usr/local/google/home/klausg/movi_tmp",
train_val_path="gs://research-brain-kubric-xgcp/jobs/movi_a_regen_10k/",
test_split_paths={
}
),
]
def _info(self) -> tfds.core.DatasetInfo:
"""Returns the dataset metadata."""
h = self.builder_config.height
w = self.builder_config.width
s = self.builder_config.num_frames
def get_movi_a_instance_features(seq_length: int):
features = get_instance_features(seq_length)
features.update({
"shape_label": tfds.features.ClassLabel(
names=["cube", "cylinder", "sphere"]),
"size_label": tfds.features.ClassLabel(
names=["small", "large"]),
"color": tfds.features.Tensor(shape=(3,), dtype=tf.float32),
"color_label": tfds.features.ClassLabel(
names=["blue", "brown", "cyan", "gray",
"green", "purple", "red", "yellow"]),
"material_label": tfds.features.ClassLabel(
names=["metal", "rubber"]),
})
return features
return tfds.core.DatasetInfo(
builder=self,
description=_DESCRIPTION,
features=tfds.features.FeaturesDict({
"metadata": {
"video_name": tfds.features.Text(),
"width": tf.int32,
"height": tf.int32,
"num_frames": tf.int32,
"num_instances": tf.uint16,
"depth_range": tfds.features.Tensor(shape=(2,),
dtype=tf.float32),
"forward_flow_range": tfds.features.Tensor(shape=(2,),
dtype=tf.float32),
"backward_flow_range": tfds.features.Tensor(shape=(2,),
dtype=tf.float32),
},
"instances": tfds.features.Sequence(
feature=get_movi_a_instance_features(seq_length=s)),
"camera": get_camera_features(s),
"events": get_events_features(),
# -----
"video": tfds.features.Video(shape=(s, h, w, 3)),
"segmentations": tfds.features.Sequence(
tfds.features.Image(shape=(h, w, 1), dtype=tf.uint8),
length=s),
"forward_flow": tfds.features.Sequence(
tfds.features.Tensor(shape=(h, w, 2), dtype=tf.uint16),
length=s),
"backward_flow": tfds.features.Sequence(
tfds.features.Tensor(shape=(h, w, 2), dtype=tf.uint16),
length=s),
"depth": tfds.features.Sequence(
tfds.features.Image(shape=(h, w, 1), dtype=tf.uint16),
length=s),
"normal": tfds.features.Video(shape=(s, h, w, 3), dtype=tf.uint16),
"object_coordinates": tfds.features.Video(shape=(s, h, w, 3),
dtype=tf.uint16),
}),
supervised_keys=None,
homepage="https://github.com/google-research/kubric",
citation=_CITATION)
def _split_generators(self, unused_dl_manager: tfds.download.DownloadManager):
"""Returns SplitGenerators."""
del unused_dl_manager
path = as_path(self.builder_config.train_val_path)
all_subdirs = [str(d) for d in path.iterdir()]
logging.info("Found %d sub-folders in master path: %s",
len(all_subdirs), path)
# shuffle
rng = np.random.RandomState(seed=42)
rng.shuffle(all_subdirs)
validation_ratio = self.builder_config.validation_ratio
validation_examples = max(1, round(len(all_subdirs) * validation_ratio))
training_examples = len(all_subdirs) - validation_examples
logging.info("Using %f of examples for validation for a total of %d",
validation_ratio, validation_examples)
logging.info("Using the other %d examples for training", training_examples)
splits = {
tfds.Split.TRAIN: self._generate_examples(all_subdirs[:training_examples]),
tfds.Split.VALIDATION: self._generate_examples(all_subdirs[training_examples:]),
}
for key, path in self.builder_config.test_split_paths.items():
path = as_path(path)
split_dirs = [d for d in path.iterdir()]
# sort the directories by their integer number
split_dirs = sorted(split_dirs, key=lambda x: int(x.name))
logging.info("Found %d sub-folders in '%s' path: %s",
len(split_dirs), key, path)
splits[key] = self._generate_examples([str(d) for d in split_dirs])
return splits
def _generate_examples(self, directories: List[str]):
"""Yields examples."""
target_size = (self.builder_config.height, self.builder_config.width)
def _process_example(video_dir):
key, result, metadata = load_scene_directory(video_dir, target_size)
# add MOVi-A specific instance information:
for i, obj in enumerate(result["instances"]):
obj["shape_label"] = metadata["instances"][i]["shape"]
obj["size_label"] = metadata["instances"][i]["size_label"]
obj["material_label"] = metadata["instances"][i]["material"]
obj["color"] = np.array(metadata["instances"][i]["color"],
dtype=np.float32)
obj["color_label"] = metadata["instances"][i]["color_label"]
return key, result
beam = tfds.core.lazy_imports.apache_beam
return (beam.Create(directories) |
beam.Filter(is_complete_dir) |
beam.Map(_process_example))
DEFAULT_LAYERS = ("rgba", "segmentation", "forward_flow", "backward_flow",
"depth", "normal", "object_coordinates")
def load_scene_directory(scene_dir, target_size, layers=DEFAULT_LAYERS):
scene_dir = as_path(scene_dir)
example_key = f"{scene_dir.name}"
with tf.io.gfile.GFile(str(scene_dir / "data_ranges.json"), "r") as fp:
data_ranges = json.load(fp)
with tf.io.gfile.GFile(str(scene_dir / "metadata.json"), "r") as fp:
metadata = json.load(fp)
with tf.io.gfile.GFile(str(scene_dir / "events.json"), "r") as fp:
events = json.load(fp)
num_frames = metadata["metadata"]["num_frames"]
result = {
"metadata": {
"video_name": example_key,
"width": target_size[1],
"height": target_size[0],
"num_frames": num_frames,
"num_instances": metadata["metadata"]["num_instances"],
},
"instances": [format_instance_information(obj)
for obj in metadata["instances"]],
"camera": format_camera_information(metadata),
"events": format_events_information(events),
}
resolution = metadata["metadata"]["resolution"]
assert resolution[1] / target_size[0] == resolution[0] / target_size[1]
scale = resolution[1] / target_size[0]
assert scale == resolution[1] // target_size[0]
paths = {
key: [scene_dir / f"{key}_{f:05d}.png" for f in range(num_frames)]
for key in layers if key != "depth"
}
if "depth" in layers:
depth_paths = [scene_dir / f"depth_{f:05d}.tiff" for f in range(num_frames)]
depth_frames = np.array([
subsample_nearest_neighbor(read_tiff(frame_path), target_size)
for frame_path in depth_paths])
depth_min, depth_max = np.min(depth_frames), np.max(depth_frames)
result["depth"] = convert_float_to_uint16(depth_frames, depth_min, depth_max)
result["metadata"]["depth_range"] = [depth_min, depth_max]
if "forward_flow" in layers:
result["metadata"]["forward_flow_range"] = [
data_ranges["forward_flow"]["min"] / scale,
data_ranges["forward_flow"]["max"] / scale]
result["forward_flow"] = [
subsample_nearest_neighbor(read_png(frame_path)[..., :2],
target_size)
for frame_path in paths["forward_flow"]]
if "backward_flow" in layers:
result["metadata"]["backward_flow_range"] = [
data_ranges["backward_flow"]["min"] / scale,
data_ranges["backward_flow"]["max"] / scale]
result["backward_flow"] = [
subsample_nearest_neighbor(read_png(frame_path)[..., :2],
target_size)
for frame_path in paths["backward_flow"]]
for key in ["normal", "object_coordinates", "uv"]:
if key in layers:
result[key] = [
subsample_nearest_neighbor(read_png(frame_path),
target_size)
for frame_path in paths[key]]
if "segmentation" in layers:
# somehow we ended up calling this "segmentations" in TFDS and
# "segmentation" in kubric. So we have to treat it separately.
result["segmentations"] = [
subsample_nearest_neighbor(read_png(frame_path),
target_size)
for frame_path in paths["segmentation"]]
if "rgba" in layers:
result["video"] = [
subsample_avg(read_png(frame_path), target_size)[..., :3]
for frame_path in paths["rgba"]]
return example_key, result, metadata
def get_camera_features(seq_length):
return {
"focal_length": tf.float32,
"sensor_width": tf.float32,
"field_of_view": tf.float32,
"positions": tfds.features.Tensor(shape=(seq_length, 3),
dtype=tf.float32),
"quaternions": tfds.features.Tensor(shape=(seq_length, 4),
dtype=tf.float32),
}
def format_camera_information(metadata):
return {
"focal_length": metadata["camera"]["focal_length"],
"sensor_width": metadata["camera"]["sensor_width"],
"field_of_view": metadata["camera"]["field_of_view"],
"positions": np.array(metadata["camera"]["positions"], np.float32),
"quaternions": np.array(metadata["camera"]["quaternions"], np.float32),
}
def get_events_features():
return {
"collisions": tfds.features.Sequence({
"instances": tfds.features.Tensor(shape=(2,), dtype=tf.uint16),
"frame": tf.int32,
"force": tf.float32,
"position": tfds.features.Tensor(shape=(3,), dtype=tf.float32),
"image_position": tfds.features.Tensor(shape=(2,), dtype=tf.float32),
"contact_normal": tfds.features.Tensor(shape=(3,), dtype=tf.float32),
})
}
def format_events_information(events):
return {
"collisions": [{
"instances": np.array(c["instances"], dtype=np.uint16),
"frame": c["frame"],
"force": c["force"],
"position": np.array(c["position"], dtype=np.float32),
"image_position": np.array(c["image_position"], dtype=np.float32),
"contact_normal": np.array(c["contact_normal"], dtype=np.float32),
} for c in events["collisions"]],
}
def get_instance_features(seq_length: int):
return {
"mass": tf.float32,
"friction": tf.float32,
"restitution": tf.float32,
"positions": tfds.features.Tensor(shape=(seq_length, 3),
dtype=tf.float32),
"quaternions": tfds.features.Tensor(shape=(seq_length, 4),
dtype=tf.float32),
"velocities": tfds.features.Tensor(shape=(seq_length, 3),
dtype=tf.float32),
"angular_velocities": tfds.features.Tensor(shape=(seq_length, 3),
dtype=tf.float32),
"bboxes_3d": tfds.features.Tensor(shape=(seq_length, 8, 3),
dtype=tf.float32),
"image_positions": tfds.features.Tensor(shape=(seq_length, 2),
dtype=tf.float32),
"bboxes": tfds.features.Sequence(
tfds.features.BBoxFeature()),
"bbox_frames": tfds.features.Sequence(
tfds.features.Tensor(shape=(), dtype=tf.int32)),
"visibility": tfds.features.Tensor(shape=(seq_length,), dtype=tf.uint16),
}
def format_instance_information(obj):
return {
"mass": obj["mass"],
"friction": obj["friction"],
"restitution": obj["restitution"],
"positions": np.array(obj["positions"], np.float32),
"quaternions": np.array(obj["quaternions"], np.float32),
"velocities": np.array(obj["velocities"], np.float32),
"angular_velocities": np.array(obj["angular_velocities"], np.float32),
"bboxes_3d": np.array(obj["bboxes_3d"], np.float32),
"image_positions": np.array(obj["image_positions"], np.float32),
"bboxes": [tfds.features.BBox(*bbox) for bbox in obj["bboxes"]],
"bbox_frames": np.array(obj["bbox_frames"], dtype=np.uint16),
"visibility": np.array(obj["visibility"], dtype=np.uint16),
}
def subsample_nearest_neighbor(arr, size):
src_height, src_width, _ = arr.shape
dst_height, dst_width = size
height_step = src_height // dst_height
width_step = src_width // dst_width
assert height_step * dst_height == src_height
assert width_step * dst_width == src_width
height_offset = int(np.floor((height_step-1)/2))
width_offset = int(np.floor((width_step-1)/2))
subsampled = arr[height_offset::height_step, width_offset::width_step, :]
return subsampled
def convert_float_to_uint16(array, min_val, max_val):
return np.round((array - min_val) / (max_val - min_val) * 65535
).astype(np.uint16)
def subsample_avg(arr, size):
src_height, src_width, channels = arr.shape
dst_height, dst_width = size
height_bin = src_height // dst_height
width_bin = src_width // dst_width
return np.round(arr.reshape((dst_height, height_bin,
dst_width, width_bin,
channels)).mean(axis=(1, 3))).astype(np.uint8)
def is_complete_dir(video_dir, layers=DEFAULT_LAYERS):
video_dir = as_path(video_dir)
filenames = [d.name for d in video_dir.iterdir()]
if not ("data_ranges.json" in filenames and
"metadata.json" in filenames and
"events.json" in filenames):
return False
nr_frames_per_category = {
key: len([fn for fn in filenames if fn.startswith(key)])
for key in layers}
nr_expected_frames = nr_frames_per_category["rgba"]
if nr_expected_frames == 0:
return False
if not all(nr_frames == nr_expected_frames
for nr_frames in nr_frames_per_category.values()):
return False
return True
PathLike = Union[str, epath.Path]
def as_path(path: PathLike) -> epath.Path:
"""Convert str or pathlike object to epath.Path.
Instead of pathlib.Paths, we use the TFDS path because they transparently
support paths to GCS buckets such as "gs://kubric-public/GSO".
"""
return tfds.core.as_path(path)
def read_png(filename, rescale_range=None) -> np.ndarray:
filename = as_path(filename)
png_reader = png.Reader(bytes=filename.read_bytes())
width, height, pngdata, info = png_reader.read()
del png_reader
bitdepth = info["bitdepth"]
if bitdepth == 8:
dtype = np.uint8
elif bitdepth == 16:
dtype = np.uint16
else:
raise NotImplementedError(f"Unsupported bitdepth: {bitdepth}")
plane_count = info["planes"]
pngdata = np.vstack(list(map(dtype, pngdata)))
if rescale_range is not None:
minv, maxv = rescale_range
pngdata = pngdata / 2**bitdepth * (maxv - minv) + minv
return pngdata.reshape((height, width, plane_count))
def write_tiff(data: np.ndarray, filename: PathLike):
"""Save data as as tif image (which natively supports float values)."""
assert data.ndim == 3, data.shape
assert data.shape[2] in [1, 3, 4], "Must be grayscale, RGB, or RGBA"
img_as_bytes = imageio.imwrite("<bytes>", data, format="tiff")
filename = as_path(filename)
filename.write_bytes(img_as_bytes)
def read_tiff(filename: PathLike) -> np.ndarray:
filename = as_path(filename)
img = imageio.imread(filename.read_bytes(), format="tiff")
if img.ndim == 2:
img = img[:, :, None]
return img