Using the prometheus
backend class, you can query any metrics available in Prometheus to create an SLO.
backends:
prometheus:
url: http://localhost:9090
# headers:
# Content-Type: application/json
# Authorization: Basic b2s6cGFzcW==
Optional fields:
headers
allows to specify Basic Authentication credentials if needed.
The following methods are available to compute SLOs with the prometheus
backend:
good_bad_ratio
for computing good / bad metrics ratios.query_sli
for computing SLIs directly with Prometheus.
The good_bad_ratio
method is used to compute the ratio between two metrics:
- Good events, i.e events we consider as 'good' from the user perspective.
- Bad or valid events, i.e events we consider either as 'bad' from the user perspective, or all events we consider as 'valid' for the computation of the SLO.
This method is often used for availability SLOs, but can be used for other purposes as well (see examples).
Config example:
backend: prometheus
method: good_bad_ratio
service_level_indicator:
filter_good: http_requests_total{handler="/metrics", code=~"2.."}[window]
filter_valid: http_requests_total{handler="/metrics"}[window]
# operators: ['sum', 'rate']
-
The
window
placeholder is needed in the query and will be replaced by the correspondingwindow
field set in each step of the Error Budget Policy. -
The
operators
section defines which PromQL functions to apply on the timeseries. The default is to computesum(increase([METRIC_NAME][window]))
to get an accurate count of good and bad events. Be aware that changing will likely result in good / bad counts that do not accurately reflect actual load.
The query_sli
method is used to directly query the needed SLI with Prometheus: indeed, Prometheus' PromQL
language is powerful enough that it can do ratios natively.
This method makes it more flexible to input any PromQL
SLI computation and eventually reduces the number of queries made to Prometheus.
See Bitnami's article on engineering SLOs with Prometheus.
Config example:
backend: prometheus
method: query_sli
service_level_indicator:
expression: >
sum(rate(http_requests_total{handler="/metrics", code=~"2.."}[window]))
/
sum(rate(http_requests_total{handler="/metrics"}[window]))
- The
window
placeholder is needed in the query and will be replaced by the correspondingwindow
field set in each step of the Error Budget Policy.
→ Full SLO config (availability)
The distribution_cut
method is used for Prometheus distribution-type metrics (histograms), which are usually used for latency metrics.
A distribution metric records the statistical distribution of the extracted values in histogram buckets. The extracted values are not recorded individually, but their distribution across the configured buckets are recorded. Prometheus creates 3 separate metrics <metric>_count
, <metric>_bucket
, and <metric>_sum
metrics.
When computing SLOs on histograms, we're usually interested in taking the ratio of the number of events that are located in particular buckets (considered 'good', e.g: all requests in the le=0.25
bucket) over the total count of valid events.
The resulting PromQL expression would be similar to:
increase(
<metric>_bucket{le="0.25"}[window]
)
/ ignoring (le)
increase(
<metric>_count[window]
)
which you can very well use directly with the method query_sli
.
The distribution_cut
method does this calculus under the hood - while
additionally gathering exact good / bad counts - and proposes a simpler way of expressing it, as shown in the config example below.
Config example:
backend: prometheus
method: distribution_cut
service_level_indicator:
expression: http_requests_duration_bucket{path='/', code=~"2.."}
threshold_bucket: 0.25 # corresponds to 'le' attribute in Prometheus histograms
The threshold_bucket
allowed will depend on how the buckets boundaries are set for your metric. Learn more in the Prometheus docs.
The prometheus
exporter allows to export SLO metrics to the Prometheus Pushgateway which needs to be running.
exporters:
prometheus:
url: ${PUSHGATEWAY_URL}
Optional fields:
metrics
: List of metrics to export (see docs). Defaults to [error_budget_burn_rate
,sli_service_level_indicator
].username
: Username for Basic Auth.password
: Password for Basic Auth.job
: Name ofPushgateway
job. Defaults toslo-generator
.
Note: prometheus
needs to be setup to scrape metrics from Pushgateway
(see documentation for more details).
When running slo-generator as an API, you can enable prometheus_self
exporter, which will expose all metrics on a standard /metrics
endpoint, instead of pushing them to a gateway.
exporters:
prometheus_self: { }
Note: The metrics endpoint will be available after a first successful SLO request. Before that, it's going to act as if it was endpoint of the generator API.
Complete SLO samples using prometheus
are available in
samples/prometheus. Check them out!