-
Notifications
You must be signed in to change notification settings - Fork 23
/
train_wss.py
1096 lines (925 loc) · 44.3 KB
/
train_wss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Lint as: python2, python3
# Copyright 2020 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Training script for consistency-constrained training."""
from absl import flags
import six
#import tensorflow.compat.v1 as tf
import tensorflow as tf
from tensorflow.contrib import slim as contrib_slim
from tensorflow.contrib import tfprof as contrib_tfprof
from third_party.deeplab import common
from third_party.deeplab.core import feature_extractor
from third_party.deeplab.utils import train_utils
from third_party.slim.deployment import model_deploy
# Custom import
from core import data_generator
from core import model
from core import preprocess_utils
from core import train_utils_core
slim = contrib_slim
FLAGS = flags.FLAGS
## DeepLab options
# Settings for multi-GPUs/multi-replicas training.
flags.DEFINE_integer('num_clones', 16, 'Number of clones to deploy.')
flags.DEFINE_boolean('clone_on_cpu', False, 'Use CPUs to deploy clones.')
flags.DEFINE_integer('num_replicas', 1, 'Number of worker replicas.')
flags.DEFINE_integer('startup_delay_steps', 15,
'Number of training steps between replicas startup.')
flags.DEFINE_integer(
'num_ps_tasks', 0,
'The number of parameter servers. If the value is 0, then '
'the parameters are handled locally by the worker.')
flags.DEFINE_string('master', '', 'BNS name of the tensorflow server')
flags.DEFINE_integer('task', 0, 'The task ID.')
# Settings for logging.
flags.DEFINE_string('train_logdir', None,
'Where the checkpoint and logs are stored.')
flags.DEFINE_integer('log_steps', 10,
'Display logging information at every log_steps.')
flags.DEFINE_integer('save_interval_secs', 1200,
'How often, in seconds, we save the model to disk.')
flags.DEFINE_integer('save_summaries_secs', 180,
'How often, in seconds, we compute the summaries.')
flags.DEFINE_boolean(
'save_summaries_images', True,
'Save sample inputs, labels, and semantic predictions as '
'images to summary.')
# Settings for profiling.
flags.DEFINE_string('profile_logdir', None,
'Where the profile files are stored.')
# Settings for training strategy.
flags.DEFINE_enum('optimizer', 'momentum', ['momentum', 'adam'],
'Which optimizer to use.')
# Momentum optimizer flags
flags.DEFINE_enum('learning_policy', 'poly', ['poly', 'step'],
'Learning rate policy for training.')
# Use 0.007 when training on PASCAL augmented training set, train_aug. When
# fine-tuning on PASCAL trainval set, use learning rate=0.0001.
flags.DEFINE_float('base_learning_rate', 0.007,
'The base learning rate for model training.')
flags.DEFINE_float('decay_steps', 0.0,
'Decay steps for polynomial learning rate schedule.')
flags.DEFINE_float('end_learning_rate', 0.0,
'End learning rate for polynomial learning rate schedule.')
flags.DEFINE_float('learning_rate_decay_factor', 0.1,
'The rate to decay the base learning rate.')
flags.DEFINE_integer('learning_rate_decay_step', 2000,
'Decay the base learning rate at a fixed step.')
flags.DEFINE_float('learning_power', 0.9,
'The power value used in the poly learning policy.')
flags.DEFINE_integer('training_number_of_steps', 30000,
'The number of steps used for training')
flags.DEFINE_float('momentum', 0.9, 'The momentum value to use')
# Adam optimizer flags
flags.DEFINE_float('adam_learning_rate', 0.001,
'Learning rate for the adam optimizer.')
flags.DEFINE_float('adam_epsilon', 1e-08, 'Adam optimizer epsilon.')
# When fine_tune_batch_norm=True, use at least batch size larger than 12
# (batch size more than 16 is better). Otherwise, one could use smaller batch
# size and set fine_tune_batch_norm=False.
flags.DEFINE_integer('train_batch_size', 64,
'The number of images in each batch during training.')
# For weight_decay, use 0.00004 for MobileNet-V2 or Xcpetion model variants.
# Use 0.0001 for ResNet model variants.
flags.DEFINE_float('weight_decay', 0.00004,
'The value of the weight decay for training.')
flags.DEFINE_list('train_crop_size', '513,513',
'Image crop size [height, width] during training.')
flags.DEFINE_float(
'last_layer_gradient_multiplier', 1.0,
'The gradient multiplier for last layers, which is used to '
'boost the gradient of last layers if the value > 1.')
flags.DEFINE_boolean('upsample_logits', True,
'Upsample logits during training.')
# Hyper-parameters for NAS training strategy.
flags.DEFINE_float(
'drop_path_keep_prob', 1.0,
'Probability to keep each path in the NAS cell when training.')
# Settings for fine-tuning the network.
flags.DEFINE_string('tf_initial_checkpoint', None,
'The initial checkpoint in tensorflow format.')
# Set to False if one does not want to re-use the trained classifier weights.
flags.DEFINE_boolean('initialize_last_layer', False,
'Initialize the last layer.')
flags.DEFINE_boolean('last_layers_contain_logits_only', True,
'Only consider logits as last layers or not.')
flags.DEFINE_integer('slow_start_step', 0,
'Training model with small learning rate for few steps.')
flags.DEFINE_float('slow_start_learning_rate', 1e-4,
'Learning rate employed during slow start.')
# Set to True if one wants to fine-tune the batch norm parameters in DeepLabv3.
# Set to False and use small batch size to save GPU memory.
flags.DEFINE_boolean('fine_tune_batch_norm', True,
'Fine tune the batch norm parameters or not.')
flags.DEFINE_float('min_scale_factor', 0.5,
'Mininum scale factor for data augmentation.')
flags.DEFINE_float('max_scale_factor', 2.,
'Maximum scale factor for data augmentation.')
flags.DEFINE_float('scale_factor_step_size', 0.25,
'Scale factor step size for data augmentation.')
# For `xception_65`, use atrous_rates = [12, 24, 36] if output_stride = 8, or
# rates = [6, 12, 18] if output_stride = 16. For `mobilenet_v2`, use None. Note
# one could use different atrous_rates/output_stride during training/evaluation.
flags.DEFINE_multi_integer('atrous_rates', None,
'Atrous rates for atrous spatial pyramid pooling.')
flags.DEFINE_integer('output_stride', 16,
'The ratio of input to output spatial resolution.')
# Hard example mining related flags.
flags.DEFINE_integer(
'hard_example_mining_step', 0,
'The training step in which exact hard example mining kicks off. Note we '
'gradually reduce the mining percent to the specified '
'top_k_percent_pixels. For example, if hard_example_mining_step=100K and '
'top_k_percent_pixels=0.25, then mining percent will gradually reduce from '
'100% to 25% until 100K steps after which we only mine top 25% pixels.')
flags.DEFINE_float(
'top_k_percent_pixels', 1.0,
'The top k percent pixels (in terms of the loss values) used to compute '
'loss during training. This is useful for hard pixel mining.')
# Quantization setting.
flags.DEFINE_integer(
'quantize_delay_step', -1,
'Steps to start quantized training. If < 0, will not quantize model.')
# Dataset settings.
flags.DEFINE_string('dataset', 'pascal_voc_seg',
'Name of the segmentation dataset.')
flags.DEFINE_string('train_split', 'train',
'Which split of the dataset to be used for training (seg)')
flags.DEFINE_string('dataset_dir', None, 'Where the dataset reside.')
## Pseudo_seg options.
flags.DEFINE_boolean('weakly', False, 'Using image-level labeled data or not')
flags.DEFINE_string('train_split_cls', 'train_aug',
'Which split of the dataset to be used for training (cls)')
# Pseudo label settings.
flags.DEFINE_boolean('soft_pseudo_label', True, 'Use soft pseudo label or not')
flags.DEFINE_float('pseudo_label_threshold', 0.0,
'Confidence threshold to filter pseudo labels')
flags.DEFINE_float('unlabeled_weight', 1.0,
'Weight of the unlabeled consistency loss')
# Attention settings.
flags.DEFINE_list('att_strides', '15,16', 'Hypercolumn layer strides.')
flags.DEFINE_integer('attention_dim', 128,
'Key and query dimension of self-attention module')
flags.DEFINE_boolean('use_attention', True,
'Use self-attention for weak augmented branch or not')
flags.DEFINE_boolean('att_v2', True,
'Use self-attention v2 or not.')
# Ensemble settings.
flags.DEFINE_enum('pseudo_src', 'avg', ['att', 'avg'],
'Pseudo label source, self-attention or average.')
flags.DEFINE_float(
'temperature', 0.5,
'Temperature for pseudo label sharpen, only valid when using soft label')
flags.DEFINE_boolean(
'logit_norm', True,
'Use logit norm to change the flatness or not')
flags.DEFINE_boolean(
'cls_with_cls', True,
'Using samples_cls or samples_seg to train the classifier. Only valid in wss mode.')
# Others
flags.DEFINE_integer('seed', 0, 'Random seed')
def _build_pseudo_seg(iterator_seg, iterator, outputs_to_num_classes,
ignore_label, batch_size=8):
"""Builds a clone of PseudoSeg.
Args:
iterator_seg: An iterator of type tf.data.Iterator for images and labels.
(seg)
iterator: An iterator of type tf.data. Iterator for images and labels.
outputs_to_num_classes: A map from output type to the number of classes. For
example, for the task of semantic segmentation with 21 semantic classes,
we would have outputs_to_num_classes['semantic'] = 21.
ignore_label: Ignore label.
batch_size: Training batch size for each clone.
"""
samples_cls = iterator.get_next()
samples_cls[common.IMAGE] = tf.identity(
samples_cls[common.IMAGE], name='weak')
samples_cls['strong'] = tf.identity(
samples_cls['strong'], name='strong')
samples_cls[common.LABEL] = tf.identity(
samples_cls[common.LABEL], name='unlabeled')
samples_seg = iterator_seg.get_next()
samples_seg[common.IMAGE] = tf.identity(
samples_seg[common.IMAGE], name=common.IMAGE + '_seg')
samples_seg[common.LABEL] = tf.identity(
samples_seg[common.LABEL], name=common.LABEL + '_seg')
model_options = common.ModelOptions(
outputs_to_num_classes=outputs_to_num_classes,
crop_size=[int(sz) for sz in FLAGS.train_crop_size],
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
if FLAGS.att_v2:
cam_func = train_utils_core.compute_cam_v2
else:
cam_func = train_utils_core.compute_cam
### Cls/unlabeled data
## 1) If we have image-level label, we train the classifier here
if FLAGS.weakly:
if FLAGS.cls_with_cls:
curr_samples = samples_cls
else:
curr_samples = samples_seg
_, end_points_cls = feature_extractor.extract_features(
curr_samples[common.IMAGE],
output_stride=model_options.output_stride,
multi_grid=model_options.multi_grid,
model_variant=model_options.model_variant,
depth_multiplier=model_options.depth_multiplier,
divisible_by=model_options.divisible_by,
weight_decay=FLAGS.weight_decay,
reuse=tf.AUTO_REUSE,
is_training=True,
preprocessed_images_dtype=model_options.preprocessed_images_dtype,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm,
global_pool=True,
num_classes=outputs_to_num_classes[common.OUTPUT_TYPE] - 1)
# ResNet beta version has an additional suffix in FLAGS.model_variant, but
# it shares the same variable names with original version. Add a special
# handling here for beta version ResNet.
logits_cls = end_points_cls['{}/logits'.format(FLAGS.model_variant).replace(
'_beta', '')]
logits_cls = tf.reshape(
logits_cls, [-1, outputs_to_num_classes[common.OUTPUT_TYPE] - 1])
# Seems that people usually use multi-label soft margin loss in PyTorch
loss_cls = tf.nn.sigmoid_cross_entropy_with_logits(
labels=curr_samples['cls_label'],
logits=logits_cls)
loss_cls = tf.reduce_mean(loss_cls)
loss_cls = tf.identity(loss_cls, name='loss_cls')
tf.compat.v1.losses.add_loss(loss_cls)
## 2) Consistency
with tf.name_scope('cls_weak'):
outputs_to_scales_to_logits, _ = model.multi_scale_logits(
samples_cls[common.IMAGE],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
weight_decay=FLAGS.weight_decay,
is_training=True,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm,
nas_training_hyper_parameters={
'drop_path_keep_prob': FLAGS.drop_path_keep_prob,
'total_training_steps': FLAGS.training_number_of_steps,
},
output_end_points=True)
logits_weak = outputs_to_scales_to_logits[common.OUTPUT_TYPE][
model.MERGED_LOGITS_SCOPE]
prob_weak = tf.nn.softmax(logits_weak, axis=-1)
logits_weak = tf.identity(logits_weak, name='logits_weak')
# Monitor max score
max_prob_weak = tf.reduce_max(prob_weak, axis=-1)
max_prob_weak = tf.identity(max_prob_weak, name='max_prob_weak')
valid_mask_pad = samples_cls['valid']
valid_mask_pad = tf.compat.v1.image.resize_nearest_neighbor(
valid_mask_pad,
preprocess_utils.resolve_shape(logits_weak, 4)[1:3])
valid_mask_pad = tf.cast(valid_mask_pad, tf.float32)
if FLAGS.use_attention:
# Using inference mode to generate Grad-CAM
with tf.name_scope('cls_data_cls_inference'):
_, end_points_cls = feature_extractor.extract_features(
samples_cls[common.IMAGE],
output_stride=model_options.output_stride,
multi_grid=model_options.multi_grid,
model_variant=model_options.model_variant,
depth_multiplier=model_options.depth_multiplier,
divisible_by=model_options.divisible_by,
weight_decay=FLAGS.weight_decay,
reuse=tf.AUTO_REUSE,
is_training=False,
preprocessed_images_dtype=model_options.preprocessed_images_dtype,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm,
global_pool=True,
num_classes=outputs_to_num_classes[common.OUTPUT_TYPE] - 1)
logits_cls = end_points_cls['{}/logits'.format(FLAGS.model_variant).replace(
'_beta', '')]
logits_cls = tf.reshape(
logits_cls, [-1, outputs_to_num_classes[common.OUTPUT_TYPE] - 1])
# We can only get ground truth image-level label in weakly+semi setting
if FLAGS.weakly:
image_level_label = samples_cls['cls_label']
else:
prob_cls = tf.sigmoid(logits_cls)
# TODO(ylzou): Might use a variable threshold for different classes
pred_cls = tf.greater_equal(prob_cls, 0.5)
image_level_label = tf.stop_gradient(tf.cast(pred_cls, tf.float32))
cam_weak, att_cam_weak = cam_func(
end_points_cls,
logits_cls,
image_level_label,
num_class=outputs_to_num_classes[common.OUTPUT_TYPE],
use_attention=True,
attention_dim=FLAGS.attention_dim,
strides=[int(st) for st in FLAGS.att_strides],
is_training=True,
valid_mask=valid_mask_pad,
net=FLAGS.model_variant.replace('_beta', ''))
att_logits_weak = att_cam_weak
# Upsample att-cam
att_logits_weak = tf.compat.v1.image.resize_bilinear(
att_logits_weak, preprocess_utils.resolve_shape(logits_weak, 4)[1:3],
align_corners=True)
# Monitor vanilla cam
cam_weak = tf.compat.v1.image.resize_bilinear(
cam_weak, preprocess_utils.resolve_shape(logits_weak, 4)[1:3],
align_corners=True)
cam_weak = tf.identity(cam_weak, name='cam_weak')
att_prob_weak = tf.nn.softmax(att_logits_weak, axis=-1)
att_logits_weak = tf.identity(att_logits_weak, name='att_logits_weak')
# Monitor max score
max_att_prob_weak = tf.reduce_max(att_prob_weak, axis=-1)
max_att_prob_weak = tf.identity(max_att_prob_weak, name='max_att_prob_weak')
# Ensemble
if FLAGS.pseudo_src == 'att':
prob_weak = att_prob_weak
else:
if FLAGS.logit_norm:
v = tf.concat([logits_weak, att_logits_weak], axis=0)
all_logits_weak = v * tf.rsqrt(tf.reduce_mean(tf.square(v)) + 1e-8)
scaled_logits_weak = all_logits_weak[:batch_size]
prob_weak = tf.nn.softmax(scaled_logits_weak, axis=-1)
scaled_att_logits_weak = all_logits_weak[batch_size:]
att_prob_weak = tf.nn.softmax(scaled_att_logits_weak, axis=-1)
prob_weak = (prob_weak + att_prob_weak) / 2.
# Monitor max score
max_prob_avg = tf.reduce_max(prob_weak, axis=-1)
max_prob_avg = tf.identity(max_prob_avg, name='max_prob_avg')
# Temperature
if FLAGS.soft_pseudo_label and FLAGS.temperature != 1.0:
prob_weak = tf.pow(prob_weak, 1. / FLAGS.temperature)
prob_weak /= tf.reduce_sum(prob_weak, axis=-1, keepdims=True)
# Monitor max score
max_prob_avg_t = tf.reduce_max(prob_weak, axis=-1)
max_prob_avg_t = tf.identity(max_prob_avg_t, name='max_prob_avg_t')
# Monitor merged logits
prob_weak = tf.identity(prob_weak, name='merged_logits')
with tf.name_scope('cls_strong'):
outputs_to_scales_to_logits, _ = model.multi_scale_logits(
samples_cls['strong'],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
weight_decay=FLAGS.weight_decay,
is_training=True,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm,
nas_training_hyper_parameters={
'drop_path_keep_prob': FLAGS.drop_path_keep_prob,
'total_training_steps': FLAGS.training_number_of_steps,
},
output_end_points=True)
logits_strong = outputs_to_scales_to_logits[common.OUTPUT_TYPE][
model.MERGED_LOGITS_SCOPE]
logits_strong = tf.identity(logits_strong, name='logits_strong')
if FLAGS.pseudo_label_threshold > 0:
confidence_weak = tf.expand_dims(tf.reduce_max(prob_weak, axis=-1), axis=-1)
valid_mask_score = tf.greater_equal(confidence_weak,
FLAGS.pseudo_label_threshold)
valid_mask_score = tf.cast(valid_mask_score, tf.float32)
valid_mask = valid_mask_score * valid_mask_pad
else:
valid_mask_score = None
valid_mask = valid_mask_pad
# Save for visualization
valid_mask = tf.identity(valid_mask, name='valid_mask')
logits_strong = tf.reshape(logits_strong,
[-1, outputs_to_num_classes[common.OUTPUT_TYPE]])
if not FLAGS.soft_pseudo_label:
pseudo_label = tf.argmax(prob_weak, axis=-1)
pseudo_label = tf.reshape(pseudo_label, [-1])
pseudo_label = tf.stop_gradient(pseudo_label)
loss_consistency = tf.compat.v1.nn.sparse_softmax_cross_entropy_with_logits(
labels=pseudo_label, logits=logits_strong,
name='consistency_losses')
loss_consistency = loss_consistency * tf.reshape(valid_mask, [-1])
pred_pseudo = pseudo_label
else:
pseudo_label = prob_weak
pseudo_label = tf.reshape(
pseudo_label, [-1, outputs_to_num_classes[common.OUTPUT_TYPE]])
pseudo_label = tf.stop_gradient(pseudo_label)
loss_consistency = tf.compat.v1.nn.softmax_cross_entropy_with_logits_v2(
labels=pseudo_label, logits=logits_strong,
name='consistency_losses')
loss_consistency = loss_consistency * tf.reshape(valid_mask, [-1])
pred_pseudo = tf.argmax(pseudo_label, axis=-1)
# NOTE: When average, we divide by the number of pixels excluding padding
loss_consistency = tf.reduce_sum(loss_consistency)
loss_consistency = train_utils._div_maybe_zero(
loss_consistency,
tf.reduce_sum(valid_mask_pad))
loss_consistency *= FLAGS.unlabeled_weight
loss_consistency = tf.identity(loss_consistency, 'loss_consistency')
tf.compat.v1.losses.add_loss(loss_consistency)
## 3) Monitor prediction quality
temp_label = tf.compat.v1.image.resize_nearest_neighbor(
samples_cls[common.LABEL],
preprocess_utils.resolve_shape(logits_weak, 4)[1:3])
temp_label = tf.reshape(temp_label, [-1])
# Get #pixel of each class, so that we can re-weight them for pixel acc.
dump = tf.concat(
[tf.range(outputs_to_num_classes[common.OUTPUT_TYPE]), temp_label],
axis=-1)
_, _, count = tf.unique_with_counts(dump)
num_pixel_list = count - 1
# Exclude the ignore region
num_pixel_list = num_pixel_list[:outputs_to_num_classes[common.OUTPUT_TYPE]]
num_pixel_list = tf.cast(num_pixel_list, tf.float32)
inverse_ratio = train_utils._div_maybe_zero(1, num_pixel_list)
inverse_ratio = inverse_ratio / tf.reduce_sum(inverse_ratio)
# Since tf.metrics.mean_per_class_accuracy does not support weighted average
# for each class directly, we here convert it to pixel-wise weighted mask to
# compute weighted average pixel accuracy.
weight_mask = tf.einsum(
'...y,y->...',
tf.one_hot(
temp_label,
outputs_to_num_classes[common.OUTPUT_TYPE],
dtype=tf.float32), inverse_ratio)
temp_valid = tf.not_equal(temp_label, ignore_label)
if valid_mask_score is not None:
temp_valid_confident = tf.cast(temp_valid, tf.float32) * tf.reshape(
valid_mask_score, [-1])
temp_valid_confident = tf.cast(temp_valid_confident, tf.bool)
else:
temp_valid_confident = temp_valid
temp_label_confident = tf.boolean_mask(temp_label, temp_valid_confident)
temp_label_valid = tf.boolean_mask(temp_label, temp_valid)
weight_mask_confident = tf.boolean_mask(weight_mask, temp_valid_confident)
weight_mask_valid = tf.boolean_mask(weight_mask, temp_valid)
if FLAGS.pseudo_label_threshold > 0:
acc_pseudo, acc_pseudo_op = tf.metrics.mean_per_class_accuracy(
temp_label_confident,
tf.boolean_mask(pred_pseudo, temp_valid_confident),
outputs_to_num_classes[common.OUTPUT_TYPE],
weights=weight_mask_confident)
with tf.control_dependencies([acc_pseudo_op]):
acc_pseudo = tf.identity(acc_pseudo, name='acc_pseudo')
pred_weak = tf.cast(tf.argmax(prob_weak, axis=-1), tf.int32)
pred_weak = tf.reshape(pred_weak, [-1])
acc_weak, acc_weak_op = tf.metrics.mean_per_class_accuracy(
temp_label_valid,
tf.boolean_mask(pred_weak, temp_valid),
outputs_to_num_classes[common.OUTPUT_TYPE],
weights=weight_mask_valid)
with tf.control_dependencies([acc_weak_op]):
acc_weak = tf.identity(acc_weak, name='acc_weak')
pred_strong = tf.cast(tf.argmax(logits_strong, axis=-1), tf.int32)
pred_strong = tf.reshape(pred_strong, [-1])
# For all pixels
acc_strong, acc_strong_op = tf.metrics.mean_per_class_accuracy(
temp_label_valid,
tf.boolean_mask(pred_strong, temp_valid),
outputs_to_num_classes[common.OUTPUT_TYPE],
weights=weight_mask_valid)
with tf.control_dependencies([acc_strong_op]):
acc_strong = tf.identity(acc_strong, name='acc_strong')
# For confident pixels
if FLAGS.pseudo_label_threshold > 0:
acc_strong_confident, acc_strong_confident_op = tf.metrics.mean_per_class_accuracy(
temp_label_confident,
tf.boolean_mask(pred_strong, temp_valid_confident),
outputs_to_num_classes[common.OUTPUT_TYPE],
weights=weight_mask_confident)
with tf.control_dependencies([acc_strong_confident_op]):
acc_strong_confident = tf.identity(
acc_strong_confident, name='acc_strong_confident')
valid_ratio = tf.reduce_sum(valid_mask) / tf.reduce_sum(valid_mask_pad)
valid_ratio = tf.identity(valid_ratio, name='valid_ratio')
### Pixel-level data
## 1) Segmentation
outputs_to_scales_to_logits = model.multi_scale_logits(
samples_seg[common.IMAGE],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
weight_decay=FLAGS.weight_decay,
is_training=True,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm,
nas_training_hyper_parameters={
'drop_path_keep_prob': FLAGS.drop_path_keep_prob,
'total_training_steps': FLAGS.training_number_of_steps,
})
# Add name to graph node so we can add to summary.
output_type_dict = outputs_to_scales_to_logits[common.OUTPUT_TYPE]
output_type_dict[model.MERGED_LOGITS_SCOPE] = tf.identity(
output_type_dict[model.MERGED_LOGITS_SCOPE],
name=common.OUTPUT_TYPE + '_seg')
for output, num_classes in six.iteritems(outputs_to_num_classes):
train_utils.add_softmax_cross_entropy_loss_for_each_scale(
outputs_to_scales_to_logits[output],
samples_seg[common.LABEL],
num_classes,
ignore_label,
loss_weight=model_options.label_weights,
upsample_logits=FLAGS.upsample_logits,
hard_example_mining_step=FLAGS.hard_example_mining_step,
top_k_percent_pixels=FLAGS.top_k_percent_pixels,
scope=output)
## 2) Train self-attention module
if FLAGS.use_attention:
valid_mask_pad = samples_seg['valid']
valid_mask_pad = tf.compat.v1.image.resize_nearest_neighbor(
valid_mask_pad,
preprocess_utils.resolve_shape(logits_weak, 4)[1:3])
valid_mask_pad = tf.cast(valid_mask_pad, tf.float32)
with tf.name_scope('seg_data_cls'):
_, end_points_cls = feature_extractor.extract_features(
samples_seg[common.IMAGE],
output_stride=model_options.output_stride,
multi_grid=model_options.multi_grid,
model_variant=model_options.model_variant,
depth_multiplier=model_options.depth_multiplier,
divisible_by=model_options.divisible_by,
weight_decay=FLAGS.weight_decay,
reuse=tf.AUTO_REUSE,
is_training=True,
preprocessed_images_dtype=model_options.preprocessed_images_dtype,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm,
global_pool=True,
num_classes=outputs_to_num_classes[common.OUTPUT_TYPE] - 1)
logits_cls = end_points_cls['{}/logits'.format(FLAGS.model_variant).replace(
'_beta', '')]
logits_cls = tf.reshape(
logits_cls, [-1, outputs_to_num_classes[common.OUTPUT_TYPE] - 1])
_, att_cam_labeled = cam_func(
end_points_cls,
logits_cls,
samples_seg['cls_label'],
num_class=outputs_to_num_classes[common.OUTPUT_TYPE],
use_attention=True,
attention_dim=FLAGS.attention_dim,
strides=[int(st) for st in FLAGS.att_strides],
is_training=True,
valid_mask=valid_mask_pad,
net=FLAGS.model_variant.replace('_beta', ''))
att_logits_labeled = att_cam_labeled
# Loss
train_utils.add_softmax_cross_entropy_loss_for_each_scale(
{'self-attention_logits': att_logits_labeled},
samples_seg[common.LABEL],
outputs_to_num_classes[common.OUTPUT_TYPE],
ignore_label,
loss_weight=model_options.label_weights,
upsample_logits=FLAGS.upsample_logits,
hard_example_mining_step=FLAGS.hard_example_mining_step,
top_k_percent_pixels=FLAGS.top_k_percent_pixels,
scope='self-attention')
att_logits_labeled = tf.identity(
att_logits_labeled, name='att_logits_labeled')
## 3) If no image-level label, convert pixel-level label to train classifier
if not FLAGS.weakly:
# Seems that people usually use multi-label soft margin loss in PyTorch
loss_cls = tf.nn.sigmoid_cross_entropy_with_logits(
labels=samples_seg['cls_label'],
logits=logits_cls)
loss_cls = tf.reduce_mean(loss_cls)
loss_cls = tf.identity(loss_cls, name='loss_cls')
tf.compat.v1.losses.add_loss(loss_cls)
## 4) Sanity check. Monitor pixel accuracy
logits_seg = outputs_to_scales_to_logits[common.OUTPUT_TYPE][
model.MERGED_LOGITS_SCOPE]
temp_label = tf.compat.v1.image.resize_nearest_neighbor(
samples_seg[common.LABEL],
preprocess_utils.resolve_shape(logits_seg, 4)[1:3])
temp_label = tf.reshape(temp_label, [-1])
dump = tf.concat(
[tf.range(outputs_to_num_classes[common.OUTPUT_TYPE]), temp_label],
axis=-1)
_, _, count = tf.unique_with_counts(dump)
num_pixel_list = count - 1
# Exclude the ignore region
num_pixel_list = num_pixel_list[:outputs_to_num_classes[common.OUTPUT_TYPE]]
num_pixel_list = tf.cast(num_pixel_list, tf.float32)
inverse_ratio = train_utils._div_maybe_zero(1, num_pixel_list)
inverse_ratio = inverse_ratio / tf.reduce_sum(inverse_ratio)
# Create weight mask to balance each class
weight_mask = tf.einsum(
'...y,y->...',
tf.one_hot(
temp_label,
outputs_to_num_classes[common.OUTPUT_TYPE],
dtype=tf.float32), inverse_ratio)
temp_valid = tf.not_equal(temp_label, ignore_label)
temp_label_valid = tf.boolean_mask(temp_label, temp_valid)
weight_mask_valid = tf.boolean_mask(weight_mask, temp_valid)
pred_seg = tf.argmax(logits_seg, axis=-1)
pred_seg = tf.reshape(pred_seg, [-1])
acc_seg, acc_seg_op = tf.metrics.mean_per_class_accuracy(
temp_label_valid,
tf.boolean_mask(pred_seg, temp_valid),
outputs_to_num_classes[common.OUTPUT_TYPE],
weights=weight_mask_valid)
with tf.control_dependencies([acc_seg_op]):
acc_seg = tf.identity(acc_seg, name='acc_seg')
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
tf.set_random_seed(FLAGS.seed)
# Set up deployment (i.e., multi-GPUs and/or multi-replicas).
config = model_deploy.DeploymentConfig(
num_clones=FLAGS.num_clones,
clone_on_cpu=FLAGS.clone_on_cpu,
replica_id=FLAGS.task,
num_replicas=FLAGS.num_replicas,
num_ps_tasks=FLAGS.num_ps_tasks)
# Split the batch across GPUs.
assert FLAGS.train_batch_size % config.num_clones == 0, (
'Training batch size not divisble by number of clones (GPUs).')
clone_batch_size = FLAGS.train_batch_size // config.num_clones
tf.gfile.MakeDirs(FLAGS.train_logdir)
tf.logging.info('Training segmentation and self-attention on %s set',
FLAGS.train_split)
if FLAGS.weakly:
tf.logging.info('Training classification on %s set', FLAGS.train_split_cls)
else:
tf.logging.info('Training classification on %s set', FLAGS.train_split)
tf.logging.info('Enforcing consistency constraint on %s set',
FLAGS.train_split_cls)
with tf.Graph().as_default() as graph:
with tf.device(config.inputs_device()):
dataset = data_generator.Dataset(
dataset_name=FLAGS.dataset,
split_name=FLAGS.train_split,
dataset_dir=FLAGS.dataset_dir,
batch_size=clone_batch_size,
crop_size=[int(sz) for sz in FLAGS.train_crop_size],
min_resize_value=FLAGS.min_resize_value,
max_resize_value=FLAGS.max_resize_value,
resize_factor=FLAGS.resize_factor,
min_scale_factor=FLAGS.min_scale_factor,
max_scale_factor=FLAGS.max_scale_factor,
scale_factor_step_size=FLAGS.scale_factor_step_size,
model_variant=FLAGS.model_variant,
num_readers=4,
is_training=True,
should_shuffle=True,
should_repeat=True,
output_valid=True,
with_cls=True,
cls_only=False)
dataset_cls = data_generator.Dataset(
dataset_name=FLAGS.dataset,
split_name=FLAGS.train_split_cls,
dataset_dir=FLAGS.dataset_dir,
batch_size=clone_batch_size,
crop_size=[int(sz) for sz in FLAGS.train_crop_size],
min_resize_value=FLAGS.min_resize_value,
max_resize_value=FLAGS.max_resize_value,
resize_factor=FLAGS.resize_factor,
min_scale_factor=FLAGS.min_scale_factor,
max_scale_factor=FLAGS.max_scale_factor,
scale_factor_step_size=FLAGS.scale_factor_step_size,
model_variant=FLAGS.model_variant,
num_readers=4,
is_training=True,
should_shuffle=True,
should_repeat=True,
with_cls=FLAGS.weakly,
cls_only=False,
strong_weak=True)
# Create the global step on the device storing the variables.
with tf.device(config.variables_device()):
global_step = tf.train.get_or_create_global_step()
# Define the model and create clones.
model_fn = _build_pseudo_seg
model_args = (dataset.get_one_shot_iterator(),
dataset_cls.get_one_shot_iterator(), {
common.OUTPUT_TYPE: dataset.num_of_classes
}, dataset.ignore_label, clone_batch_size)
clones = model_deploy.create_clones(config, model_fn, args=model_args)
# Gather update_ops from the first clone. These contain, for example,
# the updates for the batch_norm variables created by model_fn.
first_clone_scope = config.clone_scope(0)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)
# Gather initial summaries.
summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
# Add summaries for model variables.
for model_var in tf.model_variables():
summaries.add(tf.summary.histogram(model_var.op.name, model_var))
if FLAGS.use_attention:
summary = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'max_prob_weak')).strip('/'))
summaries.add(tf.summary.histogram('max_prob_weak', summary))
summary = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'max_att_prob_weak')).strip('/'))
summaries.add(tf.summary.histogram('max_att_prob_weak', summary))
summary = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'max_prob_avg')).strip('/'))
summaries.add(tf.summary.histogram('max_prob_avg', summary))
if FLAGS.soft_pseudo_label and FLAGS.temperature != 1.0:
summary = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'max_prob_avg_t')).strip('/'))
summaries.add(tf.summary.histogram('max_prob_avg_t', summary))
# Add summaries for images, labels, semantic predictions
# Visualize seg image and predictions
if FLAGS.save_summaries_images:
summary_image = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, common.IMAGE+'_seg')).strip('/'))
summaries.add(
tf.summary.image('samples/%s' % common.IMAGE+'_seg', summary_image))
first_clone_label = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, common.LABEL+'_seg')).strip('/'))
# Scale up summary image pixel values for better visualization.
pixel_scaling = max(1, 255 // dataset.num_of_classes)
summary_label = tf.cast(first_clone_label * pixel_scaling, tf.uint8)
summaries.add(
tf.summary.image('samples/%s' % common.LABEL+'_seg', summary_label))
first_clone_output = graph.get_tensor_by_name(
('%s/%s:0' %
(first_clone_scope, common.OUTPUT_TYPE + '_seg')).strip('/'))
predictions = tf.expand_dims(tf.argmax(first_clone_output, 3), -1)
summary_predictions = tf.cast(predictions * pixel_scaling, tf.uint8)
summaries.add(
tf.summary.image(
'samples/%s' % common.OUTPUT_TYPE+'_seg', summary_predictions))
# For unlabeled image
summary_image = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'valid_mask')).strip('/'))
summaries.add(
tf.summary.image('sanity_check/valid_mask', summary_image))
summary_image = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'weak')).strip('/'))
summaries.add(
tf.summary.image('unlabeled/weak', summary_image))
summary_image = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'strong')).strip('/'))
summaries.add(
tf.summary.image('unlabeled/strong', summary_image))
first_clone_label = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'unlabeled')).strip('/'))
pixel_scaling = max(1, 255 // dataset.num_of_classes)
summary_label = tf.cast(first_clone_label * pixel_scaling, tf.uint8)
summaries.add(
tf.summary.image('unlabeled/%s' % common.LABEL, summary_label))
first_clone_output = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'logits_weak')).strip('/'))
predictions = tf.expand_dims(tf.argmax(first_clone_output, 3), -1)
summary_predictions = tf.cast(predictions * pixel_scaling, tf.uint8)
summaries.add(
tf.summary.image(
'unlabeled/logits_weak', summary_predictions))
first_clone_output = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'logits_strong')).strip('/'))
predictions = tf.expand_dims(tf.argmax(first_clone_output, 3), -1)
summary_predictions = tf.cast(predictions * pixel_scaling, tf.uint8)
summaries.add(
tf.summary.image(
'unlabeled/logits_strong', summary_predictions))
if FLAGS.use_attention:
first_clone_output = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'att_logits_weak')).strip('/'))
predictions = tf.expand_dims(tf.argmax(first_clone_output, 3), -1)
predictions = tf.compat.v1.image.resize_bilinear(
predictions, [int(sz) for sz in FLAGS.train_crop_size],
align_corners=True)
summary_predictions = tf.cast(predictions * pixel_scaling, tf.uint8)
summaries.add(
tf.summary.image(
'att/att_logits_weak', summary_predictions))
first_clone_output = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'cam_weak')).strip('/'))
predictions = tf.expand_dims(tf.argmax(first_clone_output, 3), -1)
predictions = tf.compat.v1.image.resize_bilinear(
predictions, [int(sz) for sz in FLAGS.train_crop_size],
align_corners=True)
summary_predictions = tf.cast(predictions * pixel_scaling, tf.uint8)
summaries.add(
tf.summary.image(
'att/cam_weak', summary_predictions))
first_clone_output = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'merged_logits')).strip('/'))
predictions = tf.expand_dims(tf.argmax(first_clone_output, 3), -1)
predictions = tf.compat.v1.image.resize_bilinear(
predictions, [int(sz) for sz in FLAGS.train_crop_size],
align_corners=True)
summary_predictions = tf.cast(predictions * pixel_scaling, tf.uint8)
summaries.add(
tf.summary.image(
'att/merged_logits', summary_predictions))
first_clone_output = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'att_logits_labeled')).strip('/'))
predictions = tf.expand_dims(tf.argmax(first_clone_output, 3), -1)
predictions = tf.compat.v1.image.resize_bilinear(
predictions, [int(sz) for sz in FLAGS.train_crop_size],
align_corners=True)
summary_predictions = tf.cast(predictions * pixel_scaling, tf.uint8)
summaries.add(
tf.summary.image(
'att/att_logits_labeled', summary_predictions))
# Add summaries for losses.
for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))
# Monitor pseudo label quality
summary = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'acc_seg')).strip('/'))
summaries.add(tf.summary.scalar('sanity_check/acc_seg', summary))
summary = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'acc_weak')).strip('/'))
summaries.add(tf.summary.scalar('sanity_check/acc_weak', summary))
summary = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'acc_strong')).strip('/'))
summaries.add(tf.summary.scalar('sanity_check/acc_strong', summary))
if FLAGS.pseudo_label_threshold > 0:
summary = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'acc_pseudo')).strip('/'))
summaries.add(tf.summary.scalar('sanity_check/acc_pseudo', summary))
summary = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'acc_strong_confident')).strip('/'))
summaries.add(
tf.summary.scalar('sanity_check/acc_strong_confident', summary))
summary = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, 'valid_ratio')).strip('/'))
summaries.add(tf.summary.scalar('sanity_check/valid_ratio', summary))
# Build the optimizer based on the device specification.
with tf.device(config.optimizer_device()):
learning_rate = train_utils.get_model_learning_rate(
FLAGS.learning_policy,