forked from mdsmarte/ALS-Kinetic-Model
-
Notifications
You must be signed in to change notification settings - Fork 1
/
create_model_code.py
186 lines (149 loc) · 6.9 KB
/
create_model_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# create_model_code.py
# Author: Matthew Smarte
# Original Creation: 8/21/18
# Updated: 9/16/18
'''
Below is an optional utility function that converts models written in an A+B==>C format
to code representing a system of differential rate equations. The code generated by this
function can be used when creating the user model function to reduce typing errors / save time.
Also generates code that can be used in the model parameters set up section of the Jupyter notebook.
See comments in 'ex_model_1.py' to identify which portions of the user model code can be
automatically generated by using this utility. This function does NOT generate all code
necessary for defining the user model function.
See comments in 'ex_notebook_1.ipynb' to identify which portions of the Jupyter notebook code
can be automatically generated by using this utility. If there are model params than just the
rate constants (for example: initial concentrations), then this function does NOT generate
all code necessary for setting up the model params.
See 'ex_create_model_in.csv' for an example of the input file formatting and 'ex_create_model_out.txt'
for an example of the output file. The example corresponds to the running H2O2 photolysis example
described in 'ex_notebook_1.ipynb'.
The input file should be a five column comma-separated values (csv) file. Each row represents
a different reaction.
Column 1: contains a string that represents the rate constant.
Column 2: contains a string that represents the reaction in A+B==>C format.
Column 3: contains the value of the rate constant.
Column 4: contains the uncertainty in the rate constant (1-sigma). (Uncertainty not used if fit = True.)
Column 5: contains True/False where True means to fit this rate constant and False means fix the rate constant.
Leading coefficients in a reaction (ex: '2A==>3B') will be properly interpreted. If no
products are specified for a reaction (ex: 'C==>'), then it assumed that the products are
completely removed from the reaction system (ex: wall loss).
The create_model_code function has three arguments:
file_in : str
The name of the csv file containing the model. (Example: 'ex_create_model_in.csv')
file_out: str
The name the txt file that will contain the generated code. (Example: 'ex_create_model_out.txt')
Any preexisting file with this name is overwritten.
rxn_delim: str, optional
The delimeter used to separate reactants and products. If not specified, then the
default delimiter of '==>' will be assumed.
The function can be used from the python interpreter command line or a Jupyter notebook.
In either case, the below two lines would reproduce the example:
>>> from create_model_code import create_model_code
>>> create_model_code('ex_create_model_in.csv', 'ex_create_model_out.txt')
The code does NOT check for atom balance between the reactants and products.
The code will throw errors and crash if:
---There are more or less than five columns in a row.
---The same rate constant is used for more than one reaction.
---A rate constant is not specified for a reaction.
---The rxn_delim does not appear in a reaction or appears more than once.
---No reactants are specified for a reaction.
---Fitting True/False not specified (or improperly formatted) for a reaction.
'''
import csv
def create_model_code(file_in, file_out, rxn_delim='==>'):
k_list = []
dy_dt = {}
k_val = {}
k_err = {}
k_fit = {}
with open(file_in) as f:
reader = csv.reader(f)
for i, rxn in enumerate(reader):
if len(rxn) != 5:
raise ValueError('Input file line {:d} is not properly comma separated!'.format(i+1))
# Add rate constant to global rate constant list
k = rxn[0]
if k in k_list:
raise ValueError('Rate constant \'{}\' appears in input file more than once!'.format(k))
if k == '':
raise ValueError('Input file line {:d} does not contain a rate constant!'.format(i+1))
k_list.append(k)
# Break apart the reaction line
rxn_split = rxn[1].split(rxn_delim)
if len(rxn_split) != 2:
raise ValueError('Reaction on line {:d} of input file is not properly formatted!'.format(i+1))
left = rxn_split[0].split('+')
right = rxn_split[1].split('+')
if left == ['']:
raise ValueError('No reactants specified for the reaction on line {:d} of input file!'.format(i+1))
if right == ['']:
right = []
# Process stoichiometry to create reactant and product lists
# Example: 2A ==> B + 2C should produce reactants = ['A','A'] and products = ['B','C','C']
def process_coeff(x):
idx = 0
while x[:idx+1].isdigit():
idx += 1
return ([x] if idx == 0 else int(x[:idx])*[x[idx:]])
reactants = []
for term in left:
reactants += process_coeff(term)
products = []
for term in right:
products += process_coeff(term)
# Add a key in dy_dt for any new species
for species in (reactants+products):
if species not in dy_dt.keys():
dy_dt[species] = []
# Add reaction rate terms to diff eq matrix
rxn_txt = (k + '*' + '*'.join(reactants))
for species in reactants:
dy_dt[species].append('-' + rxn_txt)
for species in products:
dy_dt[species].append('+' + rxn_txt)
# Add rate constant value, error, and fit (True/False) to k_val, k_err, and k_fit respectively
k_val[k] = rxn[2]
k_err[k] = rxn[3]
fit = rxn[4].upper()
if fit == 'TRUE':
k_fit[k] = 'True'
elif fit == 'FALSE':
k_fit[k] = 'False'
else:
raise ValueError('Fitting True/False not specified for rate constant on line {:d} of input file!'.format(i+1))
species_names = dy_dt.keys()
with open(file_out, 'w') as f:
# Header for user model function code blocks
print('# Code blocks for user model function:', file=f)
print(file=f)
# Extraction of rate constants from model_params argument
for k in k_list:
print(k + ' = model_params[\'' + k + '\']', file=f)
print(file=f)
# Initial concentrations code (right side of equation still needs to be completed by user)
for species in species_names:
print(species + '_0 = ', file=f)
print('y0 = np.array([' + '_0, '.join(species_names) + '_0])', file=f)
print(file=f)
# Function defining system of differential rate equations
print('def calc_dy_dt(y, t_curr):', file=f)
for i, species in enumerate(species_names):
print('\t' + species + ' = y[' + str(i) + ']', file=f)
print(file=f)
for species in species_names:
print('\td' + species + ' = ' + ' '.join(dy_dt[species]), file=f)
print(file=f)
print('\tdy_dt = np.array([d' + ', d'.join(species_names) +'])', file=f)
print('\treturn dy_dt', file=f)
print(file=f)
# Header for Jupyter notebook code blocks
print('# Code blocks for Jupyter notebook (model parameters setup):', file=f)
print(file=f)
for k in k_list:
print(k + ' = ' + k_val[k], file=f)
print(file=f)
for k in k_list:
print(k + '_err = ' + k_err[k], file=f)
print(file=f)
for k in k_list:
print('df_model_params[\'' + k + '\'] = {\'val\':' + k + ', \'err\':' + k + '_err, \'fit\':' + k_fit[k] + '}', file=f)