diff --git a/bin/all_sky_search/pycbc_fit_sngls_over_multiparam b/bin/all_sky_search/pycbc_fit_sngls_over_multiparam index 45b46fa32e3..5183f8e8334 100755 --- a/bin/all_sky_search/pycbc_fit_sngls_over_multiparam +++ b/bin/all_sky_search/pycbc_fit_sngls_over_multiparam @@ -59,6 +59,7 @@ def smooth_templates(nabove, invalphan, ntotal, template_idx, ------------------- weights: ndarray Weighting factor to apply to the templates specified by template_idx + If None, then numpy.average will revert to numpy.mean Returns ------- @@ -68,7 +69,6 @@ def smooth_templates(nabove, invalphan, ntotal, template_idx, Third float: the smoothed total count in template value """ - if weights is None: weights = numpy.ones_like(template_idx) nabove_t_smoothed = numpy.average(nabove[template_idx], weights=weights) ntotal_t_smoothed = numpy.average(ntotal[template_idx], weights=weights) invalphan_mean = numpy.average(invalphan[template_idx], weights=weights) @@ -119,7 +119,7 @@ def smooth_distance_weighted(nabove, invalphan, ntotal, dists): Smooth templates weighted according to dists in a unit-width normal distribution, truncated at three sigma """ - idx_within_area = numpy.flatnonzero(dists < 3.) + idx_within_area = dists < 3. weights = norm.pdf(dists[idx_within_area]) return smooth_templates(nabove, invalphan, ntotal, idx_within_area, weights=weights) @@ -404,10 +404,12 @@ for param, slog in zip(args.fit_param, args.log_param): else: raise ValueError("invalid log param argument, use 'true', or 'false'") -nabove_smoothed = [] -alpha_smoothed = [] -ntotal_smoothed = [] -rang = numpy.arange(0, len(nabove)) +n_templates = len(nabove) +rang = numpy.arange(0, n_templates) + +nabove_smoothed = numpy.zeros_like(parvals[0]) +alpha_smoothed = numpy.zeros_like(parvals[0]) +ntotal_smoothed = numpy.zeros_like(parvals[0]) # Handle the one-dimensional case of tophat smoothing separately # as it is easier to optimize computational performance. @@ -459,38 +461,49 @@ elif numpy.isfinite(_smooth_cut[args.smoothing_method]): # Sort the values to be smoothed by parameter value logging.info("Smoothing ...") slices = [slice(l,r) for l, r in zip(lefts, rights)] + nabove_sort = nabove[par_sort] + invalphan_sort = invalphan[par_sort] + ntotal_sort = ntotal[par_sort] for i in rang: - report_percentage(i, rang.max()) + report_percentage(i, n_templates) slc = slices[i] d = dist(i, slc, parvals, args.smoothing_width) - smoothed_tuple = smooth(nabove[par_sort][slc], - invalphan[par_sort][slc], - ntotal[par_sort][slc], - d, - args.smoothing_method, - **kwarg_dict) - nabove_smoothed.append(smoothed_tuple[0]) - alpha_smoothed.append(smoothed_tuple[1]) - ntotal_smoothed.append(smoothed_tuple[2]) + smoothed_tuple = smooth( + nabove_sort[slc], + invalphan_sort[slc], + ntotal_sort[slc], + d, + args.smoothing_method, + **kwarg_dict + ) + nabove_smoothed[i] = smoothed_tuple[0] + alpha_smoothed[i] = smoothed_tuple[1] + ntotal_smoothed[i] = smoothed_tuple[2] # Undo the sorts unsort = numpy.argsort(par_sort) parvals = [p[unsort] for p in parvals] - nabove_smoothed = numpy.array(nabove_smoothed)[unsort] - alpha_smoothed = numpy.array(alpha_smoothed)[unsort] - ntotal_smoothed = numpy.array(ntotal_smoothed)[unsort] + nabove_smoothed = nabove_smoothed[unsort] + alpha_smoothed = alpha_smoothed[unsort] + ntotal_smoothed = ntotal_smoothed[unsort] else: logging.info("Smoothing ...") for i in rang: - report_percentage(i, rang.max()) + report_percentage(i, n_templates) d = dist(i, rang, parvals, args.smoothing_width) - smoothed_tuple = smooth(nabove, invalphan, ntotal, d, - args.smoothing_method, **kwarg_dict) - nabove_smoothed.append(smoothed_tuple[0]) - alpha_smoothed.append(smoothed_tuple[1]) - ntotal_smoothed.append(smoothed_tuple[2]) + smoothed_tuple = smooth( + nabove, + invalphan, + ntotal, + d, + args.smoothing_method, + **kwarg_dict + ) + nabove_smoothed[i] = smoothed_tuple[0] + alpha_smoothed[i] = smoothed_tuple[1] + ntotal_smoothed[i] = smoothed_tuple[2] logging.info("Writing output") outfile = HFile(args.output, 'w')