forked from hbzju/PiCO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
400 lines (356 loc) · 18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import argparse
import builtins
import math
import os
import random
import shutil
import time
import warnings
import torch
import torch.nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import tensorboard_logger as tb_logger
import numpy as np
from model import PiCO
from resnet import *
from utils.utils_algo import *
from utils.utils_loss import partial_loss, SupConLoss
from utils.cub200 import load_cub200
from utils.cifar10 import load_cifar10
from utils.cifar100 import load_cifar100
torch.set_printoptions(precision=2, sci_mode=False)
parser = argparse.ArgumentParser(description='PyTorch implementation of ICLR 2022 Oral paper PiCO')
parser.add_argument('--dataset', default='cifar10', type=str,
choices=['cifar10', 'cifar100', 'cub200'],
help='dataset name (cifar10)')
parser.add_argument('--exp-dir', default='experiment/PiCO', type=str,
help='experiment directory for saving checkpoints and logs')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18', choices=['resnet18'],
help='network architecture (only resnet18 used in PiCO)')
parser.add_argument('-j', '--workers', default=32, type=int,
help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=500, type=int,
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.02, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('-lr_decay_epochs', type=str, default='700,800,900',
help='where to decay lr, can be a list')
parser.add_argument('-lr_decay_rate', type=float, default=0.1,
help='decay rate for learning rate')
parser.add_argument('--cosine', action='store_true', default=False,
help='use cosine lr schedule')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum of SGD solver')
parser.add_argument('--wd', '--weight-decay', default=1e-5, type=float,
metavar='W', help='weight decay (default: 1e-5)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=100, type=int,
help='print frequency (default: 100)')
parser.add_argument('--resume', default='', type=str,
help='path to latest checkpoint (default: none)')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://localhost:10002', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--num-class', default=10, type=int,
help='number of class')
parser.add_argument('--low-dim', default=128, type=int,
help='embedding dimension')
parser.add_argument('--moco_queue', default=8192, type=int,
help='queue size; number of negative samples')
parser.add_argument('--moco_m', default=0.999, type=float,
help='momentum for updating momentum encoder')
parser.add_argument('--proto_m', default=0.99, type=float,
help='momentum for computing the momving average of prototypes')
parser.add_argument('--loss_weight', default=0.5, type=float,
help='contrastive loss weight')
parser.add_argument('--conf_ema_range', default='0.95,0.8', type=str,
help='pseudo target updating coefficient (phi)')
parser.add_argument('--prot_start', default=80, type=int,
help = 'Start Prototype Updating')
parser.add_argument('--partial_rate', default=0.1, type=float,
help='ambiguity level (q)')
parser.add_argument('--hierarchical', action='store_true',
help='for CIFAR-100 fine-grained training')
def main():
args = parser.parse_args()
args.conf_ema_range = [float(item) for item in args.conf_ema_range.split(',')]
iterations = args.lr_decay_epochs.split(',')
args.lr_decay_epochs = list([])
for it in iterations:
args.lr_decay_epochs.append(int(it))
print(args)
if args.seed is not None:
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
model_path = 'ds_{ds}_pr_{pr}_lr_{lr}_ep_{ep}_ps_{ps}_lw_{lw}_pm_{pm}_arch_{arch}_heir_{heir}_sd_{seed}'.format(
ds=args.dataset,
pr=args.partial_rate,
lr=args.lr,
ep=args.epochs,
ps=args.prot_start,
lw=args.loss_weight,
pm=args.proto_m,
arch=args.arch,
seed=args.seed,
heir=args.hierarchical)
args.exp_dir = os.path.join(args.exp_dir, model_path)
if not os.path.exists(args.exp_dir):
os.makedirs(args.exp_dir)
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
cudnn.benchmark = True
args.gpu = gpu
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
cudnn.deterministic = True
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
# suppress printing if not master
if args.multiprocessing_distributed and args.gpu != 0:
def print_pass(*args):
pass
builtins.print = print_pass
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# create model
print("=> creating model '{}'".format(args.arch))
model = PiCO(args, SupConResNet)
if args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
# comment out the following line for debugging
raise NotImplementedError("Only DistributedDataParallel is supported.")
else:
# AllGather implementation (batch shuffle, queue update, etc.) in
# this code only supports DistributedDataParallel.
raise NotImplementedError("Only DistributedDataParallel is supported.")
# set optimizer
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
if args.dataset == 'cub200':
input_size = 224 # fixed as 224
train_loader, train_givenY, train_sampler, test_loader = load_cub200(input_size=input_size
, partial_rate=args.partial_rate, batch_size=args.batch_size)
elif args.dataset == 'cifar10':
train_loader, train_givenY, train_sampler, test_loader = load_cifar10(partial_rate=args.partial_rate, batch_size=args.batch_size)
elif args.dataset == 'cifar100':
train_loader, train_givenY, train_sampler, test_loader = load_cifar100(partial_rate=args.partial_rate, batch_size=args.batch_size, hierarchical=args.hierarchical)
else:
raise NotImplementedError("You have chosen an unsupported dataset. Please check and try again.")
# this train loader is the partial label training loader
print('Calculating uniform targets...')
tempY = train_givenY.sum(dim=1).unsqueeze(1).repeat(1, train_givenY.shape[1])
confidence = train_givenY.float()/tempY
confidence = confidence.cuda()
# calculate confidence
loss_fn = partial_loss(confidence)
loss_cont_fn = SupConLoss()
# set loss functions (with pseudo-targets maintained)
if args.gpu==0:
logger = tb_logger.Logger(logdir=os.path.join(args.exp_dir,'tensorboard'), flush_secs=2)
else:
logger = None
print('\nStart Training\n')
best_acc = 0
mmc = 0 #mean max confidence
for epoch in range(args.start_epoch, args.epochs):
is_best = False
start_upd_prot = epoch>=args.prot_start
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(args, optimizer, epoch)
train(train_loader, model, loss_fn, loss_cont_fn, optimizer, epoch, args, logger, start_upd_prot)
loss_fn.set_conf_ema_m(epoch, args)
# reset phi
acc_test = test(model, test_loader, args, epoch, logger)
mmc = loss_fn.confidence.max(dim=1)[0].mean()
with open(os.path.join(args.exp_dir, 'result.log'), 'a+') as f:
f.write('Epoch {}: Acc {}, Best Acc {}. (lr {}, MMC {})\n'.format(epoch
, acc_test, best_acc, optimizer.param_groups[0]['lr'], mmc))
if acc_test > best_acc:
best_acc = acc_test
is_best = True
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, is_best=is_best, filename='{}/checkpoint.pth.tar'.format(args.exp_dir),
best_file_name='{}/checkpoint_best.pth.tar'.format(args.exp_dir))
def train(train_loader, model, loss_fn, loss_cont_fn, optimizer, epoch, args, tb_logger, start_upd_prot=False):
batch_time = AverageMeter('Time', ':1.2f')
data_time = AverageMeter('Data', ':1.2f')
acc_cls = AverageMeter('Acc@Cls', ':2.2f')
acc_proto = AverageMeter('Acc@Proto', ':2.2f')
loss_cls_log = AverageMeter('Loss@Cls', ':2.2f')
loss_cont_log = AverageMeter('Loss@Cont', ':2.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, acc_cls, acc_proto, loss_cls_log, loss_cont_log],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, (images_w, images_s, labels, true_labels, index) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
X_w, X_s, Y, index = images_w.cuda(), images_s.cuda(), labels.cuda(), index.cuda()
Y_true = true_labels.long().detach().cuda()
# for showing training accuracy and will not be used when training
cls_out, features_cont, pseudo_target_cont, score_prot = model(X_w, X_s, Y, args)
batch_size = cls_out.shape[0]
pseudo_target_cont = pseudo_target_cont.contiguous().view(-1, 1)
if start_upd_prot:
loss_fn.confidence_update(temp_un_conf=score_prot, batch_index=index, batchY=Y)
# warm up ended
if start_upd_prot:
mask = torch.eq(pseudo_target_cont[:batch_size], pseudo_target_cont.T).float().cuda()
# get positive set by contrasting predicted labels
else:
mask = None
# Warmup using MoCo
# contrastive loss
loss_cont = loss_cont_fn(features=features_cont, mask=mask, batch_size=batch_size)
# classification loss
loss_cls = loss_fn(cls_out, index)
loss = loss_cls + args.loss_weight * loss_cont
loss_cls_log.update(loss_cls.item())
loss_cont_log.update(loss_cont.item())
# log accuracy
acc = accuracy(cls_out, Y_true)[0]
acc_cls.update(acc[0])
acc = accuracy(score_prot, Y_true)[0]
acc_proto.update(acc[0])
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if args.gpu == 0:
tb_logger.log_value('Train Acc', acc_cls.avg, epoch)
tb_logger.log_value('Prototype Acc', acc_proto.avg, epoch)
tb_logger.log_value('Classification Loss', loss_cls_log.avg, epoch)
tb_logger.log_value('Contrastive Loss', loss_cont_log.avg, epoch)
def test(model, test_loader, args, epoch, tb_logger):
with torch.no_grad():
print('==> Evaluation...')
model.eval()
top1_acc = AverageMeter("Top1")
top5_acc = AverageMeter("Top5")
for batch_idx, (images, labels) in enumerate(test_loader):
images, labels = images.cuda(), labels.cuda()
outputs = model(images, args, eval_only=True)
acc1, acc5 = accuracy(outputs, labels, topk=(1, 5))
top1_acc.update(acc1[0])
top5_acc.update(acc5[0])
# average across all processes
acc_tensors = torch.Tensor([top1_acc.avg,top5_acc.avg]).cuda(args.gpu)
dist.all_reduce(acc_tensors)
acc_tensors /= args.world_size
print('Accuracy is %.2f%% (%.2f%%)'%(acc_tensors[0],acc_tensors[1]))
if args.gpu ==0:
tb_logger.log_value('Top1 Acc', acc_tensors[0], epoch)
tb_logger.log_value('Top5 Acc', acc_tensors[1], epoch)
return acc_tensors[0]
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_file_name='model_best.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, best_file_name)
if __name__ == '__main__':
main()