diff --git a/matminer/datasets/dataset_metadata.json b/matminer/datasets/dataset_metadata.json index 0e7a7cba8..92dcbb2a2 100644 --- a/matminer/datasets/dataset_metadata.json +++ b/matminer/datasets/dataset_metadata.json @@ -961,5 +961,21 @@ "reference": "https://citrination.com/datasets/150557/", "url": "https://ndownloader.figshare.com/files/28333845", "hash": "7d0c9c74fd52995b876bd251a7732b5498314702441fa463197fb492be68ecc0" + }, + "zhang_brgoch_load_vickers_hardness": { + "bibtex_refs": [ + "@article{Zhang2020,\n doi = {10.1002/adma.202005112},\n url = {https://doi.org/10.1002/adma.202005112},\n year = {2020},\n month = dec,\n publisher = {Wiley},\n volume = {33},\n number = {5},\n pages = {2005112},\n author = {Ziyan Zhang and Aria Mansouri Tehrani and Anton O. Oliynyk and Blake Day and Jakoah Brgoch},\n title = {Finding the Next Superhard Material through Ensemble Learning},\n journal = {Advanced Materials}\n}", + ], + "columns":{ + "composition": "Chemical formula. One chemical formula may correspond to multiple separate measurements.", + "hardness": "Vicker's load-dependent hardness, in GPa.", + "load": "Applied load, in N." + }, + "description": "Dataset of 1061 experimentally measured load-dependent Vicker's hardness measurements. Multiple measurements may correspond to one composition. Collated by Zhang et al.", + "file_type": "json.gz", + "num_entries": 1061, + "reference": "https://doi.org/10.1002/adma.202005112", + "url": null, + "hash": null } }