-
Notifications
You must be signed in to change notification settings - Fork 54
/
SegTracker.py
244 lines (210 loc) · 8.89 KB
/
SegTracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import sys
sys.path.append("..")
sys.path.append("./sam")
from sam.segment_anything import sam_model_registry, SamAutomaticMaskGenerator
from aot_tracker import get_aot
import numpy as np
from tool.segmentor import Segmentor
from tool.detector import Detector
from tool.transfer_tools import draw_outline, draw_points
import cv2
from seg_track_anything import draw_mask
class SegTracker():
def __init__(self, segtracker_args, sam_args, aot_args) -> None:
"""
Initialize SAM and AOT.
"""
self.sam = Segmentor(sam_args)
self.tracker = get_aot(aot_args)
self.detector = Detector(self.sam.device)
self.sam_gap = segtracker_args['sam_gap']
self.min_area = segtracker_args['min_area']
self.max_obj_num = segtracker_args['max_obj_num']
self.min_new_obj_iou = segtracker_args['min_new_obj_iou']
self.reference_objs_list = []
self.object_idx = 1
self.curr_idx = 1
self.origin_merged_mask = None # init by segment-everything or update
self.first_frame_mask = None
# debug
self.everything_points = []
self.everything_labels = []
print("SegTracker has been initialized")
def seg(self,frame):
'''
Arguments:
frame: numpy array (h,w,3)
Return:
origin_merged_mask: numpy array (h,w)
'''
frame = frame[:, :, ::-1]
anns = self.sam.everything_generator.generate(frame)
# anns is a list recording all predictions in an image
if len(anns) == 0:
return
# merge all predictions into one mask (h,w)
# note that the merged mask may lost some objects due to the overlapping
self.origin_merged_mask = np.zeros(anns[0]['segmentation'].shape,dtype=np.uint8)
idx = 1
for ann in anns:
if ann['area'] > self.min_area:
m = ann['segmentation']
self.origin_merged_mask[m==1] = idx
idx += 1
self.everything_points.append(ann["point_coords"][0])
self.everything_labels.append(1)
obj_ids = np.unique(self.origin_merged_mask)
obj_ids = obj_ids[obj_ids!=0]
self.object_idx = 1
for id in obj_ids:
if np.sum(self.origin_merged_mask==id) < self.min_area or self.object_idx > self.max_obj_num:
self.origin_merged_mask[self.origin_merged_mask==id] = 0
else:
self.origin_merged_mask[self.origin_merged_mask==id] = self.object_idx
self.object_idx += 1
self.first_frame_mask = self.origin_merged_mask
return self.origin_merged_mask
def update_origin_merged_mask(self, updated_merged_mask):
self.origin_merged_mask = updated_merged_mask
# obj_ids = np.unique(updated_merged_mask)
# obj_ids = obj_ids[obj_ids!=0]
# self.object_idx = int(max(obj_ids)) + 1
def reset_origin_merged_mask(self, mask, id):
self.origin_merged_mask = mask
self.curr_idx = id
def add_reference(self,frame,mask,frame_step=0):
'''
Add objects in a mask for tracking.
Arguments:
frame: numpy array (h,w,3)
mask: numpy array (h,w)
'''
self.reference_objs_list.append(np.unique(mask))
self.curr_idx = self.get_obj_num()
self.tracker.add_reference_frame(frame,mask, self.curr_idx, frame_step)
def track(self,frame,update_memory=False):
'''
Track all known objects.
Arguments:
frame: numpy array (h,w,3)
Return:
origin_merged_mask: numpy array (h,w)
'''
pred_mask = self.tracker.track(frame)
if update_memory:
self.tracker.update_memory(pred_mask)
return pred_mask.squeeze(0).squeeze(0).detach().cpu().numpy().astype(np.uint8)
def get_tracking_objs(self):
objs = set()
for ref in self.reference_objs_list:
objs.update(set(ref))
objs = list(sorted(list(objs)))
objs = [i for i in objs if i!=0]
return objs
def get_obj_num(self):
objs = self.get_tracking_objs()
if len(objs) == 0: return 0
return int(max(objs))
def find_new_objs(self, track_mask, seg_mask):
'''
Compare tracked results from AOT with segmented results from SAM. Select objects from background if they are not tracked.
Arguments:
track_mask: numpy array (h,w)
seg_mask: numpy array (h,w)
Return:
new_obj_mask: numpy array (h,w)
'''
new_obj_mask = (track_mask==0) * seg_mask
new_obj_ids = np.unique(new_obj_mask)
new_obj_ids = new_obj_ids[new_obj_ids!=0]
# obj_num = self.get_obj_num() + 1
obj_num = self.curr_idx
for idx in new_obj_ids:
new_obj_area = np.sum(new_obj_mask==idx)
obj_area = np.sum(seg_mask==idx)
if new_obj_area/obj_area < self.min_new_obj_iou or new_obj_area < self.min_area\
or obj_num > self.max_obj_num:
new_obj_mask[new_obj_mask==idx] = 0
else:
new_obj_mask[new_obj_mask==idx] = obj_num
obj_num += 1
return new_obj_mask
def restart_tracker(self):
self.tracker.restart()
def seg_acc_bbox(self, origin_frame: np.ndarray, bbox: np.ndarray,):
''''
Use bbox-prompt to get mask
Parameters:
origin_frame: H, W, C
bbox: [[x0, y0], [x1, y1]]
Return:
refined_merged_mask: numpy array (h, w)
masked_frame: numpy array (h, w, c)
'''
# get interactive_mask
interactive_mask = self.sam.segment_with_box(origin_frame, bbox)[0]
refined_merged_mask = self.add_mask(interactive_mask)
# draw mask
masked_frame = draw_mask(origin_frame.copy(), refined_merged_mask)
# draw bbox
masked_frame = cv2.rectangle(masked_frame, bbox[0], bbox[1], (0, 0, 255))
return refined_merged_mask, masked_frame
def seg_acc_click(self, origin_frame: np.ndarray, coords: np.ndarray, modes: np.ndarray, multimask=True):
'''
Use point-prompt to get mask
Parameters:
origin_frame: H, W, C
coords: nd.array [[x, y]]
modes: nd.array [[1]]
Return:
refined_merged_mask: numpy array (h, w)
masked_frame: numpy array (h, w, c)
'''
# get interactive_mask
interactive_mask = self.sam.segment_with_click(origin_frame, coords, modes, multimask)
refined_merged_mask = self.add_mask(interactive_mask)
# draw mask
masked_frame = draw_mask(origin_frame.copy(), refined_merged_mask)
# draw points
# self.everything_labels = np.array(self.everything_labels).astype(np.int64)
# self.everything_points = np.array(self.everything_points).astype(np.int64)
masked_frame = draw_points(coords, modes, masked_frame)
# draw outline
masked_frame = draw_outline(interactive_mask, masked_frame)
return refined_merged_mask, masked_frame
def add_mask(self, interactive_mask: np.ndarray):
'''
Merge interactive mask with self.origin_merged_mask
Parameters:
interactive_mask: numpy array (h, w)
Return:
refined_merged_mask: numpy array (h, w)
'''
if self.origin_merged_mask is None:
self.origin_merged_mask = np.zeros(interactive_mask.shape,dtype=np.uint8)
refined_merged_mask = self.origin_merged_mask.copy()
refined_merged_mask[interactive_mask > 0] = self.curr_idx
return refined_merged_mask
def detect_and_seg(self, origin_frame: np.ndarray, grounding_caption, box_threshold, text_threshold, box_size_threshold=1, reset_image=False):
'''
Using Grounding-DINO to detect object acc Text-prompts
Retrun:
refined_merged_mask: numpy array (h, w)
annotated_frame: numpy array (h, w, 3)
'''
# backup id and origin-merged-mask
bc_id = self.curr_idx
bc_mask = self.origin_merged_mask
# get annotated_frame and boxes
annotated_frame, boxes = self.detector.run_grounding(origin_frame, grounding_caption, box_threshold, text_threshold)
for i in range(len(boxes)):
bbox = boxes[i]
if (bbox[1][0] - bbox[0][0]) * (bbox[1][1] - bbox[0][1]) > annotated_frame.shape[0] * annotated_frame.shape[1] * box_size_threshold:
continue
interactive_mask = self.sam.segment_with_box(origin_frame, bbox, reset_image)[0]
refined_merged_mask = self.add_mask(interactive_mask)
self.update_origin_merged_mask(refined_merged_mask)
self.curr_idx += 1
# reset origin_mask
self.reset_origin_merged_mask(bc_mask, bc_id)
return refined_merged_mask, annotated_frame