-
Notifications
You must be signed in to change notification settings - Fork 24
/
LibULPNode_RF_Protocol.cpp
528 lines (462 loc) · 16.5 KB
/
LibULPNode_RF_Protocol.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
// **********************************************************************************
// ULPNode RF protocol paylaods used for transmission
// **********************************************************************************
// Creative Commons Attrib Share-Alike License
// You are free to use/extend this library but please abide with the CC-BY-SA license:
// http://creativecommons.org/licenses/by-sa/4.0/
//
// For any explanation of ULPNode RF Protocol see
// https://hallard.me/ulpnode-rf-protocol/
//
// For any explanation of ULPNode see
// https://hallard.me/category/ulpnode/
//
// Written by Charles-Henri Hallard (http://hallard.me)
//
// History : V1.00 2014-07-14 - First release
// : V1.10 2015-09-03 - Added Particle Photon/Core targets
//
// All text above must be included in any redistribution.
//
// **********************************************************************************
#include "LibULPNode_RF_Protocol.h"
#ifdef ARDUINO
#include <Arduino.h>
#endif
// Buffer used to decode specific data value
char pbuf[24];
// Buffer containing JSON data string to return
char json_str[128];
/* ======================================================================
Function: ftoa
Purpose : convert float value to string
Input : float
buffer to put result
number of precision digits
Output : string len
Comments: Author : TRAMPAS STERN
this code was found on the web and modified to actually work.
for now needed by cloud compile of photon, does not support
float printf nor dtostrf, amazing !!!
====================================================================== */
int ftoa(float x, char *str, char prec)
{
int k;
int8_t ie, i, ndig;
char *start = str;
// Based on precision, set the number of digits.
ndig = prec + 1;
if(prec > 12)
ndig = 13;
ie = 0;
// If x is negative, write minus sign and reverse.
if(x < 0) {
*str++ = '-';
x = -x;
}
// If (x < 0.0) then increment by 10 until between 1.0 and 10.0.
if(x != 0.0) {
while (x < 1.0) {
x =x* 10.0;
ie--;
}
}
// If x > 10 then let's shift it down.
while(x >= 10.0) {
x = x * (1.0/10.0);
ie++;
}
// In f format, the number of digits is related to size.
ndig = ndig + ie;
if(prec == 0 && (ie > ndig) )
ndig=ie;
// Check and see if the number is less than 1.0
if(ie<0) {
*str++ = '0';
if(prec!=0)
*str++ = '.';
if(ndig < 0)
ie = ie-ndig; // Limit zeros if underflow
for(i = -1; i > ie; i--)
*str++ = '0';
}
// For each digit.
for(i=0; i < ndig; i++) {
float b;
k = x; // k = most significant digit
*str++ = k + '0'; // Output the char representation
if( i==ie && prec!=0)
*str++ = '.'; // Output a decimal point
b = (float)k;
// Multiply by 10 before subtraction to remove
// errors from limited number of bits in float.
b = b*10.0;
x = x*10.0;
x = x - b; // Subtract k from x
}
*str++ = '\0';
return (str - start); // Return string length
}
/* ======================================================================
Function: decode_bat
Purpose : print the battery voltage value
Input : battery (mV)
index of sensor number (0 to 3)
====================================================================== */
char * decode_bat(uint16_t bat, char * index)
{
sprintf_P(pbuf, PSTR("\"bat%s\":"), index);
#ifdef ARDUINO
dtostrf(bat/1000.0f, 5, 3, pbuf+strlen(pbuf));
#else
ftoa(bat/1000.0f, pbuf+strlen(pbuf), 3 );
//sprintf(pbuf, "\"bat%s\":%.3f", index, bat/1000.0f );
#endif
return pbuf;
}
/* ======================================================================
Function: decode_lowbat
Purpose : print low bat state
Input : true if low bat
====================================================================== */
char * decode_lowbat(uint8_t low, char * index)
{
sprintf_P(pbuf, PSTR("\"lowbat%s\":%c"), index, '0'+low);
return pbuf;
}
/* ======================================================================
Function: decode_volt
Purpose : print the voltage value
Input : voltage (mV)
index of sensor number (0 to 3)
====================================================================== */
char * decode_volt(uint16_t volt, char * index)
{
// convert voltage to V format xx.yyy
sprintf_P(pbuf, PSTR("\"volt%s\":%s"), index);
#ifdef ARDUINO
dtostrf(volt/1000.0f, 5, 3, pbuf+strlen(pbuf));
#else
ftoa(volt/1000.0f, pbuf+strlen(pbuf), 3 );
#endif
return pbuf;
}
/* ======================================================================
Function: decode_temp
Purpose : print the temperature value
Input : temp (*100)
index of sensor number (0 to 3)
====================================================================== */
char * decode_temp(int16_t temp, char * index)
{
// convert temperature to format xx.yy
sprintf_P(pbuf, PSTR("\"temp%s\":"), index);
#ifdef ARDUINO
dtostrf(temp/100.0f, 4, 2, pbuf+strlen(pbuf));
#else
ftoa(temp/100.0f, pbuf+strlen(pbuf), 2 );
#endif
return pbuf;
}
/* ======================================================================
Function: decode_hum
Purpose : print the humidity
Input : humidity (*10)
index of sensor number (0 to 3)
====================================================================== */
char * decode_hum(uint16_t hum, char * index)
{
sprintf_P(pbuf, PSTR("\"hum%s\":"), index);
#ifdef ARDUINO
dtostrf(hum/10.0f, 4, 1, pbuf+strlen(pbuf));
#else
ftoa(hum/10.0f, pbuf+strlen(pbuf), 1 );
#endif
return pbuf;
}
/* ======================================================================
Function: decode_lux
Purpose : print the lux value
Input : lux (*10)
index of sensor number (0 to 3)
====================================================================== */
char * decode_lux(uint16_t lux, char * index)
{
sprintf_P(pbuf, PSTR("\"lux%s\":"), index);
#ifdef ARDUINO
dtostrf(lux/10.0f, 3, 1, pbuf+strlen(pbuf));
#else
ftoa(lux/10.0f, pbuf+strlen(pbuf), 1 );
#endif
return pbuf;
}
/* ======================================================================
Function: decode_co2
Purpose : print the co2 value
Input : co2
index of sensor number (0 to 3)
====================================================================== */
char * decode_co2(uint16_t co2, char * index)
{
sprintf_P(pbuf, PSTR("\"co2%s\":%d"), index, co2);
return pbuf;
}
/* ======================================================================
Function: decode_rssi
Purpose : print the rssi value
Input : rssi
index of sensor number (0 to 3)
====================================================================== */
char * decode_rssi(int8_t rssi, char * index)
{
sprintf_P(pbuf, PSTR("\"rssi%s\":%d"), index, rssi);
return pbuf;
}
/* ======================================================================
Function: decode_counter
Purpose : print a counter value
Input : counter
index of sensor number (0 to 3)
====================================================================== */
char * decode_counter(uint32_t counter, char * index)
{
sprintf_P(pbuf, PSTR("\"count%s\":%ld"), index, counter);
return pbuf;
}
/* ======================================================================
Function: decode_digital_io
Purpose : print a digital IO value
Input : Digital IO value
digital pin (0 to 16)
====================================================================== */
char * decode_digital_io(uint8_t value, uint8_t pin)
{
sprintf_P(pbuf, PSTR("\"d%d\":%d"), pin, value);
return pbuf;
}
/* ======================================================================
Function: decode_analog_io
Purpose : print a analog IO value
Input : analog value
analog pin (0 to 7)
====================================================================== */
char * decode_analog_io(uint16_t value, uint8_t pin)
{
sprintf_P(pbuf, PSTR("\"a%d\":%ld"), pin, value);
return pbuf;
}
/* ======================================================================
Function: add_json_data
Purpose : Add json data to json string
Input : json global buffer
json data to add
Comments: -
====================================================================== */
char * add_json_data(char * str, char * json)
{
uint8_t l = strlen(str);
// Some checking on size, just in case
if ( l + strlen(json) < sizeof(json_str))
sprintf_P(&str[l], PSTR(",%s"), json);
return str;
}
/* ======================================================================
Function: decode_frame_type
Purpose : print the frame type
Input : type
Output : string to decoded packet type name
Comments: -
====================================================================== */
char * decode_frame_type(uint8_t type)
{
// check command type is known
if (!isPayloadValid(type))
type =0;
if (type == RF_PL_ALIVE ) strcpy_P(pbuf, PSTR("ALIVE"));
else if (type == RF_PL_PING ) strcpy_P(pbuf, PSTR("PING"));
else if (type == RF_PL_PINGBACK ) strcpy_P(pbuf, PSTR("PINGBACK"));
else if (type == RF_PL_OTA_CONFIG ) strcpy_P(pbuf, PSTR("OTA_CONFIG"));
else if (type == RF_PL_OTA_UPDATE ) strcpy_P(pbuf, PSTR("OTA_UPDATE"));
else if (type == RF_PL_DHCP_REQUEST ) strcpy_P(pbuf, PSTR("DHCP_REQUEST"));
else if (type == RF_PL_DHCP_OFFER ) strcpy_P(pbuf, PSTR("DHCP_OFFER"));
else if (type == RF_PL_ACK ) strcpy_P(pbuf, PSTR("ACK"));
else if (type == RF_PL_SENSOR_DATA ) strcpy_P(pbuf, PSTR("DATA"));
else
strcpy_P(pbuf, PSTR("UNKNOWN"));
// I did not succeded to do better with array of flash string in Arduino
//#if defined(ARDUINO) && !defined(ESP8266)
// strcpy_P(pbuf, (char*)pgm_read_word(&(rf_frame[type])));
//#else
// strcpy_P(pbuf, PSTR(rf_frame[type]));
//#endif
return pbuf;
}
/* ======================================================================
Function: decode_received_data
Purpose : send to serial received data in human format
Input : node id (0 if you don't want to have it into json string)
rssi of data received
size of data
command of frame received
pointer to the data
Output : command code validated by payload size type reveived
Comments: if we had a command and payload does not match
code as been set to 0 to avoid check in next
====================================================================== */
uint8_t decode_received_data(uint8_t nodeid, int8_t rssi, uint8_t len, uint8_t c, uint8_t * ppayload)
{
char * pjson = json_str;
uint8_t * pdat = ppayload;
// Start our buffer string
if (nodeid)
sprintf_P(json_str, PSTR("{\"id\":%d,\"rssi\":%d"), nodeid, rssi);
else
sprintf_P(json_str, PSTR("{\"rssi\":%d"), rssi);
// this is for known packet command
// Alive packet ?
if ( c==RF_PL_ALIVE && len==sizeof(RFAlivePayload)) {
sprintf_P(pbuf, PSTR("\"state\":%d"), ((RFAlivePayload*)pdat)->status);
add_json_data(json_str, pbuf);
add_json_data(json_str, decode_bat(((RFAlivePayload*)pdat)->vbat, (char*)""));
// ping/ping back packet ?
} else if ( (c==RF_PL_PING || c==RF_PL_PINGBACK) && len==sizeof(RFPingPayload)) {
sprintf_P(pbuf, PSTR("\"state\":%d"), ((RFAlivePayload*)pdat)->status);
add_json_data(json_str, pbuf);
// Vbat is sent only on emiting ping packet, not ping back
if (c==RF_PL_PING )
add_json_data(json_str, decode_bat(((RFPingPayload*)pdat)->vbat, (char*)""));
// RSSI from other side is sent only in pingback response
// this is the 2nd rssi value, we call it myrssi
if (c==RF_PL_PINGBACK){
sprintf_P(pbuf, PSTR("\"myrssi\":%d"), rssi);
add_json_data(json_str, pbuf);
}
// payload Packet with datas
// we need at least size of payload > 2
// 1 payload command + 1 sensor type + 1 sensor data)
// and is one of our known data code. This is for received data
} else if ( isPayloadData(c) && len>2) {
uint8_t data_size ;
uint8_t data_type ;
uint8_t l ;
char * pval;
boolean error ;
// Ok we set up on 1st data field
data_type = *(++pdat);
l = len -1;
// Loop through all data contained into the payload
// discard 1st byte on each, which is header data code
do {
// each sensor type can have 4 values sent,
char str_idx[] = " ";
data_size = 0;
pval= NULL;
error = false;
// If index of sensor value is > 0 change string
// label adding the index if at least 2 values
// i.e if 2 sensor temp are sent/received the
// result will look in JSON like
// ie : {temp:20.1, temp1:22.11, ...}
*str_idx = '0' + (data_type & ~RF_DAT_SENSOR_MASK);
// the first we don't add index number this save 1 char
if (*str_idx=='0')
*str_idx='\0';
if (isDataTemp(data_type) && l>=sizeof(s_temp)) {
// Temperature, and have enought data ?
pval = decode_temp(((s_temp*)pdat)->temp, str_idx);
data_size = sizeof(s_temp);
} else if (isDataHum(data_type) && l>=sizeof(s_hum)) {
// Humidity, and have enought data ?
pval = decode_hum(((s_hum*)pdat)->hum, str_idx);
data_size = sizeof(s_hum);
} else if (isDataLux(data_type) && l>=sizeof(s_lux)) {
// Luminosity and have enought data ?
pval = decode_lux(((s_lux*)pdat)->lux, str_idx);
data_size = sizeof(s_lux);
} else if (isDataCO2(data_type) && l>=sizeof(s_co2)) {
// CO2 and have enought data ?
pval = decode_co2(((s_co2*)pdat)->co2, str_idx);
data_size = sizeof(s_co2);
} else if (isDataVolt(data_type) && l>=sizeof(s_volt)) {
// voltage and have enought data ?
pval = decode_volt(((s_volt*)pdat)->volt, str_idx);
data_size = sizeof(s_volt);
} else if (isDataBat(data_type) && l>=sizeof(s_volt)) {
// battery (same payload as volt) and have enought data ?
pval = decode_bat(((s_volt*)pdat)->volt, str_idx);
data_size = sizeof(s_volt);
} else if (isDataRSSI(data_type) && l>=sizeof(s_rssi)) {
// RSSI and have enought data ?
pval = decode_rssi(((s_rssi*)pdat)->rssi, str_idx);
data_size = sizeof(s_rssi);
} else if (isDataCounter(data_type) && l>=sizeof(s_counter)) {
// counter and have enought data ?
pval = decode_counter(((s_counter*)pdat)->counter, str_idx);
data_size = sizeof(s_counter);
} else if (isDataLowBat(data_type) && l>=sizeof(s_lowbat)) {
// lowbat and have enought data ?
pval = decode_lowbat(((s_lowbat*)pdat)->lowbat, str_idx);
data_size = sizeof(s_lowbat);
} else if (isDataDigitalIO(data_type) && l>=sizeof(s_io_digital)) {
// digital I/0
pval = decode_digital_io(((s_io_digital*)pdat)->digital,
((s_io_digital*)pdat)->code - RF_DAT_IO_DIGITAL);
data_size = sizeof(s_io_digital);
} else if (isDataAnalogIO(data_type) && l>=sizeof(s_io_analog)) {
// analog I/O
pval = decode_analog_io(((s_io_analog*)pdat)->analog,
((s_io_analog*)pdat)->code - RF_DAT_IO_ANALOG);
data_size = sizeof(s_io_analog);
} else {
// Unknown data code, so we can't check data value
// nor size, so we decide to discard the
// end of this frame
ULPNP_DebugF("Parsing error");
error = true;
}
/*
ULPNP_DebugF("[0x");
ULPNP_Debug(data_type,HEX);
ULPNP_DebugF("] -> l=");
ULPNP_Debug(l);
ULPNP_DebugF(" added=");
ULPNP_Debug(data_size);
ULPNP_DebugF(" pval='");
ULPNP_Debug(pval);
ULPNP_DebugF("' next=");
*/
// Something to add ?
if (!error && data_size && pval) {
// Add to JSon string
add_json_data(json_str, pval);
// remove data size we just worked on
l-= data_size;
// Rest some data after the code
if (l>=2) {
pdat+=data_size; // Pointer to next data on buffer
data_type=*pdat; // get next data field
//ULPNP_Debug(data_type,HEX);
} else {
//ULPNP_DebugF("none");
}
}
//ULPNP_Debugln();
} // while data
while(l>1 && !error);
// not known data code, raw display packet
} else {
uint8_t * p = (uint8_t *) ppayload;
// send raw values
strcat(json_str, ",\"raw\":\"");
// Add each received value
while (len--)
sprintf_P(&json_str[strlen(json_str)], PSTR("%02X "), *p++);
strcat(json_str, "\"");
// here we did not validated known packet, so clear command
// code for the rest of the operation
c=0;
}
// End our buffer string
strcat(json_str, "}");
return (c);
}