Skip to content

Latest commit

 

History

History
91 lines (68 loc) · 2.32 KB

README.md

File metadata and controls

91 lines (68 loc) · 2.32 KB

Dynamic-RNN-LSTM-GRU

基于tensorflow的动态双向rnn, lstm及gru的实现

Implementation of dynamic bi_directional rnn, lstm and gru based on tensorflow

当前功能

  • 支持特征序列长度不一致
  • 支持rnn, lstm, gru三种模型配置
  • 根据训练数据动态适配模型参数
  • 支持双向rnn等
  • 支持dropout层

运行

python dynamic_sequence_model.py

运行结果

Step 1, Minibatch Loss= 0.738726, Training Accuracy= 0.44531
Step 200, Minibatch Loss= 0.696200, Training Accuracy= 0.53846
... ... ...
Step 3600, Minibatch Loss= 0.326143, Training Accuracy= 0.88462
Step 3800, Minibatch Loss= 0.271917, Training Accuracy= 0.91346
Step 4000, Minibatch Loss= 0.230929, Training Accuracy= 0.93269
Optimization Finished!
Testing Accuracy: 0.926
Predict Result: [[0, 1], [0, 1], [0, 1], [1, 0], [0, 1], [0, 1], [0, 1], [0, 1], [1, 0], [0, 1]]

参数设置

  1. 模型参数文件:model_config.py
  2. 一些参数如: seq_max_len, input_size, num_class 需要根据数据动态算出;

Demo数据介绍

判断序列是随机的还是有顺序的,序列的长度是不定的。

For example:

Class 0: linear sequences (i.e. [0.1, 0.2, 0.3, 0.4,...])

Class 1: random sequences (i.e. [0.23, 0.3, 0.1, 0.87,...])

数据输入格式

  1. training data and test data
训练数据及测试数据的输入格式由两部分组成: Features_line + '&' + Labels_line

1. Features_line:
   feature_num (feature_num可以不一样)个feature,用 '\t' 隔开.
   其中feature可以有input_size(input_size需一致)个维度,每个维度用 '#' 隔开.
2. Labels_line:
   label_num(label_num需一致)个label(one-hot形式),用 '\t' 隔开.

例如:

当input_size=1,有:
1   2   3&1 0
2   7   4   8&0 1

当input_size=2,有:
1#3   2#5   3#7&1 0
2#1   7#45   4#89   8#92&0 1
  1. predict data
预测数据输入格式只由一部分组成,Features_line

1. Features_line:
   feature_num (feature_num可以不一样)个feature,用 '\t' 隔开.
   其中feature可以有input_size(input_size需一致)个维度,每个维度用 '#' 隔开.


例如:

当input_size=1,有:
1   2   3
2   7   4   8

当input_size=2,有:
1#3   2#5   3#7
2#1   7#45   4#89   8#92

参考

  1. https://github.com/aymericdamien/TensorFlow-Examples/