From 5867557ec651bc0a53588af7c75c0b6858cdf36c Mon Sep 17 00:00:00 2001 From: "roger@hammerdirt.ch" Date: Thu, 21 Mar 2024 12:47:13 +0100 Subject: [PATCH] new build --- _build/.doctrees/environment.pickle | Bin 62007 -> 61892 bytes _build/.doctrees/grids_2023.doctree | Bin 182532 -> 153003 bytes .../.doctrees/plastic_shotgun_wadding.doctree | Bin 52539 -> 53968 bytes ...6e5accfa2c51ba007dd2cfe381a0658d975cc4.png | Bin 0 -> 20187 bytes ...d41307ef7514e245c37c044cb00987aa2adae3.png | Bin 0 -> 23142 bytes _build/jupyter_execute/grids_2023.glue.json | 2 +- _build/jupyter_execute/grids_2023.ipynb | 1200 +++++++------ .../plastic_shotgun_wadding.glue.json | 2 +- .../plastic_shotgun_wadding.ipynb | 173 +- ...6e5accfa2c51ba007dd2cfe381a0658d975cc4.png | Bin 0 -> 20187 bytes ...d41307ef7514e245c37c044cb00987aa2adae3.png | Bin 0 -> 23142 bytes ...f3c7abb0bd6ee7496fb1c9f71718a65c2dfa91.png | Bin 19985 -> 0 bytes ...065aff20d9460441e62fe8c1e0623ccdeb4808.png | Bin 23131 -> 0 bytes docs/_sources/grids_2023.ipynb | 1212 +++++++------ docs/_sources/plastic_shotgun_wadding.ipynb | 189 +- docs/grids_2023.html | 1549 +++++++---------- docs/plastic_shotgun_wadding.html | 422 ++--- docs/searchindex.js | 2 +- grids_2023.ipynb | 1212 +++++++------ plastic_shotgun_wadding.ipynb | 189 +- 20 files changed, 3098 insertions(+), 3054 deletions(-) create mode 100644 _build/jupyter_execute/3b10867ba4b3bf65b1dee903696e5accfa2c51ba007dd2cfe381a0658d975cc4.png create mode 100644 _build/jupyter_execute/44661da8d7b6632d7323190eded41307ef7514e245c37c044cb00987aa2adae3.png create mode 100644 docs/_images/3b10867ba4b3bf65b1dee903696e5accfa2c51ba007dd2cfe381a0658d975cc4.png create mode 100644 docs/_images/44661da8d7b6632d7323190eded41307ef7514e245c37c044cb00987aa2adae3.png delete mode 100644 docs/_images/5f56302bedbd28c12ef38d5cf2f3c7abb0bd6ee7496fb1c9f71718a65c2dfa91.png delete mode 100644 docs/_images/a17b221991c8fe26eb7f6c3320065aff20d9460441e62fe8c1e0623ccdeb4808.png diff --git a/_build/.doctrees/environment.pickle b/_build/.doctrees/environment.pickle index d0d06697594c73abf465812e8a9e52197e63307c..1b4b120eb1b4c3cf9bfb02478ac4eac4b93c4ebd 100644 GIT binary patch literal 61892 zcmdVD3zQt^bsk7O2bjU&{o+e%5+pGo(KGezswPF55J8dDkRU`*4@;z4_4sS58~tKe zH-Hg@MB2m>a8f5?HmwtHoMRt3Qer!?*N(k$e2yJIwRY@X=Qyz)Tf0#ld2MUgIX=ny z#2c@Doc-?qsH&ds0j7Hac^5qFsrn!HzyH1WzxV$4f7EAoeeoy$(|!D3dN}FE_4c)8 z*1l5jb=ob~?hn(0?;F&c;R}VNzdbzj+2M`hQo6(Ic83?z`LGl8dyIwk-Z0fy;!caL z^g3&-w-T}|D@mtW56f4*q|eHI=CxL8J^@@=mbH>$x;yCwymIMIl~Fe6w4?gkFkO_$ zs`uT`i;N7ry`3wp*Qr&F^$B ztF*&;fm)~AuXox4zVbgSR*w1>CS{XN$0B=vr$w_Y3cn!~gb_xs)C z>6MkWdOsfc%R#5L5__!{>!H{Eve)*S>q&o%Qb2|ps3*yQB?|n_^cW=;nvm_@O!u*C z{hn8gI-NcPCmwoF_r3F_QYmk#WN3yt|DF}34+rUS-m9cD=mo4aVx zHtj)+sC*Oj7<9WmmL#>SUawtmuO-8`hUvZ*5C#WZULCaX6bb8nBJ9CS#PSknd5KsK zc;28NcYxH6b4?IrZ_w$k_v&jgb`AY`?!*GFg2##@lL zqfb7$T<@;8{aO&S;BvQ92Rl)9`TV8YC6F6!?|ma4wESc_^wFr0v>{6$0%ZWj1D88N zO~Gz~vgi;xxsNvikej5QfbH|(KkIqz z00MUl2F*SMA*g|#KI@6rjuY`}tnK+t24woIop6z&E-nO}W~W_?7{EX>!%nm5 z^;%v(9;S1|qL&v~0o(zJ;xOIQ_ma!adeTQv4|3Q*x|V=OEucbBcY{yOeh0)R zNgSrTxIm)#{h%eg#sUth<~5t0t2GRoPLDctbR@IhuJu`~i}Zs??+p6gK_5dYL~+1P z;?C9Kh8q2Pi=o_b^K(+Y{#@_MU@(X}gK{Q=jG8#sJKDwuv}ZLP`V;LX$y;iS^$I4|3fPlGFjZ|7J26a;i*n0IUB<{^J@KBY(i&7{eGT$|EIlbfj#H4ukH)78 zh>_5GF5Oc&&%w&cgHcpg)A2eI2T0=W-8%n)Eg z{k^}ww#<`u^+|JLxW7SvdD46UwNdt)od9&1e+9Y_Y@?h(VI;#OLnC|8eas5od-VZ*#j0EJ9&D|hb!|xb=b{Ky-JxsDbD#|KrJ|6}u>BJ`T z%=1|~7kJ#6feW`gu7@G?-pzDR%exk`E>!ae{ww~adxYg;A?5WLT&e`muy&jlNvGXh zAKo1JUb>4X3@;4)N%+TqNBE5K-;MuS{9T~Pk5j=(-6@p($-HE-cZCu^lb6`EvxVZn zkQIl5uJzz34dd^`Q;YRIa5&w^hl`TRbgto-$#@Kb>U@hl*d7T3arXe(+lC?pATM;I@otzrCxaJS-aA1>PND_#?Rq!??!u7N>@;dOBxju{Nz z4mkb83!fiywf*n#kRFnS3U(6K8Xg4f8x<1gD3;!^af)CxtqwDRa#k#)n*b{5mo8 z#`1NQcjG$7_l=>bSXyIn&#v{QlM@X-^{Mq5+~sxxGIICpRyrrk@b3N3@fStSJp@+r zou|a>@ePr6K&nf4YaKEa@IMFrsO*+uM@75w**Fqq_k}F-;0{9Upu9xC(~~eTwP?`h z8WtW=4-*vllVH4$yy~Ta~Hr##82O?-@IE}TW>%n!rB^%|Y zK{(%V>3AZy*PL;OW4Pc=a>Fxvg5nZSNw-6JnOwXD@crZuk`N}smm^Q}deKM1#0H}y z^vo3qSF#d#ZA_5hgwy1u*I#MY{S`Q95I=Ldxp=3(e-tXsz%O^Gj0f|@8K9p-Wgr3A6)*Wiw0 z!YE~Ve-|Q44wINS!qe_TC-7mvuZ{2lX69l>e&GVCm4hOUY_yyp-5BzWeJ!s|K4QXW z*K#E7Y1jMRdT@Dtc#9X>FW+nMXlZ8nmZ*DlG#R3}22Ck4$#Lb_9Fg7$JQ6&?Ehclg zx{YVXe=Yv&q7*j)a$-kXMUA;bq}OZgZBS2H5{csi&k?{CQRe&2qy_~_6Fb@b0wrON z#CnivS#=(>$zBbeMo30MOF+#2+XD>$jKqfvX*G{)6{z;N&qEdSo*gab%L$eAZIssJ zYIl3XgUQ&#BQ;R&AP}NGAUhmP?%c6~fVar~OqwSPx997EK|EDig%_XOBjZauDV>yS zI?qe+fi-M=Y}d{!7cu=FHk!rG?cvo2 z^-!b>8j3Cj6s;PbDJHFS`TR`$y%aM z+(aQ_LC$`?4KD|fNhFAtq6CkEk!Bj+%yJHL$e6JPy}IyXM@cR6VSb>GFrh~5X*B;3 zuYa{yrnC8{#`P6%FY!c5}1<9D|Su*hdQ^iSMf=qk#RH}Jk<1Gfu#6Yo(?1aCyJMUh#VZY~}$ zd5Gikpp!Db$9M*XCu)N(oD&AOk-N`as>DP-fx7TLXlwYqJXutt7zTN`aJ;zH%(6u& zOc>)DEPtIMmp4UKkw?yFKKDR;PvE|+?7}i(g>Vz~f`XZF?0U71&!-lAQY?Upky8L9 z8i{{B{tZz;#3l;ETqH}W?>6gw!VlyBRxyJ_Nk)zo+G4uIHHvV}Y0@M!d2EW)MRbmu zgBoim%^%o{t@xGq$==E|iB^*@NR*^+Y%~6tR7zkWDjoKBZGINaKR<>HUR5 zJ=TIfk|ij!*Z`HQ!S(O2*Hqmn3Uw)sX2npf13tAvwBGB%86hiMN*^v1h2frXQ8BsG4WZ}@S~re zzwbUZ-zvd)cwP27TYKSJcM0JuSb{U9>$GN4>LGgDYnMdgGUU1me{5;x+Ew6aoq?1@r~VOCj!7AjqhG1n`>>qERd zl)&b1%+Iep`Q&`*$IVoK~|JtjUI5lpR z-pDZeq-ge&rK?!P5||1p390tVd`4A)4^>YNz@c&JdP{oxh0ySMC+Wk&H5Eq0;Zf@^{BKYsi+zuE&_tUQDG2@uJbxnfWu#Y zd%$|@m!v>pfhq&F4B2@Bixo>mu+p>d<+ULVG&q*doOy=Bxlt4t0kGa~vmR048P4sM z(({-f_?X*5B3K*DCGjkYIDe_001eDsSh!sJNWIxC`K;7M#0U~YGQ^wi$6lWn)KtlN z^bAU6(Bx&>rL~^t^U_>`ymp9wbCE4|>kMk0n9j2}AW^e@x=&3(4Thz9yCecn1vc`~ z?DIfWuoAs_o|I9$f0m;!u)oOl5S2KKj$kOUYhCa(@|p=dTOwUU5Jah0NYN0(!QZoz zF(M~VCBnQws%5k==@e>Rsg&oTQ2^=DN6(f>hn(*O=ShR`Bqab>P=rtKx`I#i&WGYN z^PFQK;rUMKDl75D#1dFtqGr&!ydC68)s>Wps*k?(!s{=Tvyj`P-^L*kWRQ_iCM1Ey zBackNxLEilfi^E&>_UcHfCylp$sW*HrD!c8;ZSg-`Z+p~L@dBksGFMO;Atc%Mkq>< zqzg)*xi-5B#luzJ=}#=3E!pg>Z3;)!Bo8}T6c1ttmTygMH^ z-WmlxCN@-;{*Bci?}E^)qIhY9N|Ls$9VQ=vG2-1PrWCcqnbH%*G0BBk!J-ax?$q0S zmqD^r9D%Z?V!}vGf&hNyvh+y)mKBtprdA%ApaD0M^A4maK--`k!6n`cinuMEDLwn_ zv!&Cgr-d#?ccyh-Cg*^IO{AfR2@;Y6RSE4A@zDpv)Gjp!7_HEICCr+!0Pi(LJq}Tk zI2%^W3AP0-T_GciAE3&ud=Xo+PjYBs^c1Pmz(x--&cuj@2Stp40)L&GVi;6RnCc+L z8mTuT3MowQN(b9e5ESZ^dxJJtlid8mxYDFQ!?VyZwmwOjdi2fqqa(w*PzvZ3-j)+s zZ?>eJEtPd4{UaVhp(LCE1h{gIsCJ@YDRY^SZg&s^SrD6qY9K6}+r#5wx`u|tXi;qdb@D@YKzl=B!d2^FDKY=Kd8r*!*rNmiDVHZeWQVs&!XB_~%Rv#NXDa(5FgCWSKi1QKU+K}${d9^w-;T0Z8h$9zTuK43;mo5UJ_ zgF;+|wxH%>%&RaNrM6@wmQU5J8U>S(C})0%Qu7r;LCy3TMeQJLFE|qB(YZ@GUZmQSq=y{6qa;SYmSAus6cJMYD$LBC|bMy%_Rib-#jx^kp)#I ztix_$F-{cvI2C$J70Lj?=+X8s$ph7}LDRZCJ^t1BUkU^csKqrY0pR`rMd7=HDxFsG zCV#WQ8`v@&-}-s3@>8s8fW= zgApR$y1m^I%OXcaHJ(L5BCK5?hRbX17g?Ac@%?XzL|~s4eA5=~!T9KRVtjB#N(%Y$ z(j_nj9$W;IAxf06nh4FtXBZ-QR4(i(Ds$MS$1@0}H_>Cc2>9_=ATsTfrT)jS^%KzxD$7IF)0GD>@A9mi8XP# z;&xDg5P32#SriT!4bB<}2Twjos+LcyHY~qAm}jWfh-@+?SK-n^8NMMA`Wt(S>OF`$ zg*IioSp&4_qpIGYgYPlS>JcrCnFn2+RXkKI0mliEuhnfFWFbdwTogm9ka4xsyG+1V zcWtbKZJ&tt!|3shlX)vLBd0^U{S%K2JznggyjTx<0JaA)Ff15|ZIdrP*ZUd1aK_8- zg&4~CEi^ZFpzIb)=U9OfTR2Lj2$#IoZP@I=Yb;WYe6Wkr`~W4kyvqn~3e`b7EqEYJ zEu0>qopwzo;+86+-1sM%9XteuRc}WfirbBBJW&Y6U&mV7XSd&XU;6IX;E17*3|b&t zrx5}zx1TJ&T2HY17)BpEMU$aI{jh3dTz4K+Sp|i}yL((^Ow@fD);U4aJ+xDrc25YI zI;H@$(Kl=esyCtV22u;2RGC4qgI#smb_>OEf{*R6f~KUZ;K|KB`E2>GJo?lprF~lD zMWla+Lp~7HXrovk zB97TNq+D6a!{pvUwN1)9NPDAc>ESY4hp2~Q-FFT;V5O@h7ibwM>tpmrk%@J0lfvc z66W;?RTCLpkZ6OS%DbPUuH71Kq4g+GQ=@<%b{8eF>d_-&$dYSc8?@gZfSg!F4r_f_ z4!OHW?%O#A!N(Y6%`W_)b|^Rh4CAk-d$SzAkbWe4RR!TsU1y?|!!|uHwm&b%x1mjJ=dw@B1|hbBW~!;2gE*LjKtbAEKM@Fp zBcKpR^H1b;#Xc3KbZ=!Hxj!$`;v3d`ty&Wn9VQ}gr$Dm=o|KSuYz@LdMkdty%N{4g&(Wd3e5toGPt77p{$O|$ZM7IhA>UY&L_x|6CEtk=cGOeff53m z@BX08V?2?|<{`2nqearaVhF%?&_sKLX^j;%w$~a+#k+JwZh5RW>L3%_MJU&*ihJCqM&dN*kcY)IbBc*92lT;=4SOLD6 zdpCZYthQL!YU+^eP{IB`rzs(=Njz?AR-xZ#Jr||sm@!a?ZCD8P^@q6_8 z`|344R)}(lH9Q$q5V#-ZM;pkw#xXOmcNv&tAF)(^i#&5JYK^3Bc4`J2>$$Q&!fPq9 zP1doCgYRAAnJ0KA%m~fzv5OXFj-LloO^zR%!Crk{Q{>QIF5y>XJF)~wX_ILv)p!6Q zx3r>*ZW>p5CBUsE15qRXGCXS?NU*v}! zZ0*9~IkBNgN|uljv4H|!FptluwgpF2ltj)nhw;A_w4p;v0pgt<+H*^17IM-YKo;?V zZyAN>gl$ZOCyqRbs&tHseB9AOjgRiY(BWt=qJRh~k>dqls$3pmS3CR9=q2gacGKQ^G;tuMQ50LtgMQU{+~UEsXzL83MOCoh30;VED`uRd!p)yTmi^~U{PKQ!D!lC(iR1?F+Wm9_>aEIEObxh6u{GwI~*5X!?X=9r-x%B zQlcqC%1#%00zuxwt~`<(v9JRN845~liBVOLZ^#u9-VE{)Wb;}g`p;*Q!}QoCm@BLp zVmX{-x^$g*Cg^*D58h#R$2VgTK9zb>r^Ie}NZRlz6ecPN&!&56be6G2qh1(ZvK&AA2#-+|#933?o!(a?nZ}7M zC~R6DCJ`;3%nQhK3L8t1ut^YP_sC07n}kywVp8@{Vn%%f64*6~0A*4`B=`nGyYDZA zk{bzaoEXr##~$Mci#;4Mp{@1F3WY#0xkmtb#aK3%tt0ANauKbI)Qi zg3pM>5)g>%!Kqqr(PVy*zFt6dJm&qJR4QfJy%n-(h~Bj+{`j1}tSwhoV9xt13`b|f zveya~(kDsPsyL#mUPfSjm_B^lCWnphhtg~O0DcB?2lL^aAxg#y`i)NFku1>>J}y(3 zz+!Wuih~mc7rf?GZ#}_8(W7%wdvfP+-!ddXw@@ zEymcg7>aNzx!n+NL$Msg4-}HeMaKgLZa8fyh9B`#9_plXZe0ostFd{am?;k6@^BMk zS#oMyETA;(1(Ek~F;BW!6qSo;^pnSv&fz5R)8y65b2>*8Y*56|@vbsj_!Dt%rFrgG z2N(Id`Fd*&!BtE+Y4Jpo`|Y?V`jiz_;aPH}FmH$b70%KCXR{W?vIO5t3Bg<4Mmxo5 zp+csJs0IjIS~{)5j>-U?J_CD=SUQ~_xsc95*@=Tu`{h>0EMe}V%*sytscQ@3y>udo zFP(`aI$wZTOgO`b<+tplDwf|S9OX;*a(9s;@HnK1WtvH+QHSrK%h{PL62XHKSLvZH z2gB9v>Iknoq`!=yR2w_98O~#GQwJdP%sRzs5E?+9x&eccdBuP{Jd%zDN(?$2^-|tEEoXozv>+@r;(osRgy0!QC%+D1J0dFSqEPrGur#XZ zoGlg;aZds1Cb3wEV+0`XElhn->M}M+B7#^$NRKX0z#zdb16>@yq1mdq6#`pB#ri9f zlV#C=T3}j%s-TjE7~_R>UoQ#@b)QgmNfRPshuvenWx6!&$Um! zkQ@I+x*rw9JmnfWw?s6GWYPgvI%rW-sfSd|7%D5`o;`}r#~u!~@#QG!lJq#A#^Y89 zjAsaxyyk#Tj~*$WJyFN{pgQ&m8gc@|@Qag(@s9LPC*0CSwN}ji6a;B-FrJRY)YO@n zLAr;geCQo#ZQ~oz`!AmR?Y}yA`tN<_=Ntb%d;8KKf3@+yWpDrBwXZdPCwu#$ul-!( zceA%2`*mlK;v^rf=wVTZmJi}jr3>=N92WWLT(meh1Bt>6X$K9szl{U8I4jNDC*AOI zvADUSylUY%vK7y*R)fgUY(vBUhHF+#JqW5%z?iP<%yTTg>PLa*g?80vrsMmDV@K7% zWYwx~Ro&$-iRNa|9ZfTJyJ|;PRJB~+4Gmwbm`2qID}KeST9I4v^`L4yj&4Mu=^9$K zT5+S$U=`DJBk%UmbuZK+-*a@waH7!FbgyEYRXgylAgCCY8)z)_JwLQP-}XZmYKE;v zh8sjx(~Ddyx;^xO1(j;Wx2sII8EOD%HFO*&a$VhY9ow>W&9bzJRa_R@wyqnl?ddEG zEZeFE)ynOm+ir!0t{H@u7Mjf03@30sGt?aqbgmi^bD58B8M%Bq77TLSu7=y5(nNmhh!pR8a{ zcp1y$SWydTY9eA8%Z)C(%_y|2N<|MnH*`Qq(+C~YF!d@12MaCT)EpK$wr(-QvI7$o zx2(Vimt4p53`7{1dHb$f1`ZiR)F4nGmsxQ`+pJg+4TwTu=r-isfb$nt3=gB*#E^ta zFs%?|sT#f^yZXdY;1+0hB;hhvI>RRXoEAF`ykQxI=FvunTpW7kN?OJ6;uRw5kzcbE+>oSco zUx(m_T4-1hW6L&N%W)xQQRvvrLr-tdvOsq$x>L1`K!YlFpdT3Yo8?uj;Gknw+=?6E zpRZSR(=-jQ3gY+}l#D^a>Yj6Z=&o)#CR7RuwdEq%=0^~;s;O&6SoJ+@P0%4H5i;Cr z7{D5sFeG*u__l$PniPo5ObS-Qs)6GWdX5)Vbl-&DcYMQkZQBV!fB-`_0BJPcs(?kz z_ch1YJ--?mzV6;(+X%(ndo0<3zW-NjvGMIYJb;3KCL!$~?h)(OMLzdh2 zfvgsQr@m%E3&G_uEyK4$-FJ1e`xe+*!8nBALPYOCcT#G8=m!Dpitj)n1fV}5=9?G@ z9!Tw)z6qBEx*lB7briE;LN!=7sL4BwriyREQ-JP-n1m7RkmXvC7r$aubx;h#2{mtq z_-9utP831&Rw8&fk?lLCRk;)0Js6z|aQ1v?63e#jif?HUVl5WQTq31!9gR@2i@r1E3NcX@>z+G@5UV#C1 z1pn_2qp8Xq=wiqWq!G>^=wOAB(?HCXOU$;V#ig7*j z4qR%vX&PskkM2Y;M%n+I^Dl$Xa!}=}esc1rCi@3B5TP^g~EPt%0xZ7^M68w1$?A_+12W>@j1b9wInNK@fDG zVvH--%5owrpk-Jg%p`*x2u9HD7Zi!ia`U?hW$1B_#KIgl-XN@Yvxrk99l-F*{RqW zp<<&ZdeHFj_tgWt8$SN7?g80o8u*t&w$BoRcTM;>w7WpI&l6Ue@Qsq~r?v^QZ3o$C zzWkR$w*T&~l8r;V3uODAoNSfhV3cg;Eyub^n!YDKQUjv1jsKqT+4%+(6on@q!vVW`ua2$p zrT2O3EO{Eo2kD?h@q)aB-w{SE{ZZ5fyxn}WRDam`5xmoVU-N~{Wu#zs;1WI_306y| z2<_|=@lZVN!8H>33+;?TP>Pq|o9%c*?bYqxAf4-b*g{3OsQviB=ZdWH!)R1oASUr? z{1{TuvmeKw^yC{fFToyPx&x559+Qbd@M&Ww8b68BjsFQh=s@GA@RvIH)A$QWKP&$H zy!i7~@#h!CpMSystnTmzjbFhd$BQ(@9q@YiqKM$q9uK-t5PxaSOx`NEfx-g0uL1mQ z$n7j5N8|Ah$Q^l|CAf|%0nv23R3_T#6H)r+%qVRuqC~QO2b3Oo16#9`!sW3rmADy) zuC9i$!!?K$e9$&{)3^+$7+Ms=Y{4Jk z%0zJp2BU4F)bjDTmyXHQaAbt;{F_v4N!{#;y+xrI?&%@gaY<)vFdRLc`t8P>R2InW z%|gGM72^YF7L6d}_5NMc$}2gLwDgZVR&J)df#0B4AM(&BR0`ikEyjMSL8Gqm%lHvo zYn(t^qSd2Qw<NP3PmRnNp^aHV>_bJt?iCK=u5;x0MY@%O z+de7Y(h- z($%NABO)Z?GgG6!Rd(zw#(8jKYAnWh@Tplr+?7!=}dKm!?L2>pZ}jjjZhg4|a|7 z;Hy((F~)Cd9XCA;nrw&QKE(Rv;3GjKS)lm{0a_n+ZDfHh5I!qJ5gi(hp9Wb zRZeNAupZMd6GmmOGcgkqZ#cMEmiU!BQ8~k}z|Gy`-2C6C#&nFEzt2H@3!SS&G;>g$ z=e(N8gvH(W%C|av3VXdq$&X_d@Lh##wR@6tH9s{rV}zcY6+}L4c5)DR-ML!i98n`@ zA~*D@k>Bc&*e|%DhQ%l+COA{eQ)4p5iKk`-anCt%f;h2NHT9vXyRlWCoa8*YlR8?R z;AXu(HBMvPd2Ln@_nbTLx+Lxc#El}bGIYn(oz>X-)Vbqwk-Z zdRvu^J*TkL#oH|ywz+Zt;U7$m!I%jAeGcMV=sz5Oks{#diV^UM)cxhD`?gi;9yvup zc!~hzU#ThDt+`1a#4k>b&KRkGVO9{iod2xg*4+-6oj?#k-CRpoP+|8Vu6V*hg-K%n zM^krWtBg5G0Re?axrj$`7_3h4D*kY4oW{8G%~?TgnL9IUp?PvE_>qapisv9;dHH zwb71A`be7^p)q2YX9bZ<{F8!TcUvDFC9dGkjyv<^BUATbt9&`e`H~|snKKh~(Hm2v zG{%_^&I;n5bEZU`!L7^Kq>Ax^Qvo4vw_v5h0`(-5aeeCkY?Vuoa4so?aLJWGs9Zp3 zRBcU~^<0}8y)ljrW(Bd4V>7tHxhE~u=L{fnEQE(K1Be_8;Zn{3BFExh`SaOI{42PZ zsq`YQ9lPR9)b~F=H9xm1u}5iXkahz=STD0OJ~Kl&6ohooxS#)HQ)4qGpg+Pvd zsf+l8T^*-W`AnO(7vNfY+|15*x8pVreEDOtH}hLlcXq3!e+=t?0w$3k|R~lkQy0v6E{daFg1!}3^_3?hZpa&rbZGxt=5f}R0Hj)kzp zGl0mk5U$w_AaX43;4ja*9zTB`cZLq|L2z7GFlk=*rK!2NRjFM#g;Oc2>4JXQJMJ8R z_tZ#?N#l3T3S!F~nAsnr{aN^O06P+25HJL@wU{ zc2*F%niKrJ3uHYwOt%xBgh(;eA(YVX~d2+)-u z6L*>a_M~0rOH;QxCghKE5SyxxrMpkqY0pr6VCqgzRw!enO&{b@P=1`Fj8B*0>)zz( z$>SWEf|^9ET}Xqzn(Zpi#a$5!Pk~?jR)tMrxGEz zIA^zsi}{7Ad$m=roj&E^@=rpGFEs-#&bcfxLu-V06DGIm)F_Ve?$)dz?m6$uuQOaQ zPAC3CoWJHLvT-SDfBk8E?4vC{o7ln^u@R-93l%3iQa?I%=eEkiGGgfhyYeV@WkRmp z$39U)4#5hJ+z2Bl%xiymYDC8v`Gd29xaW+#9~<0pJsNQmbSbg+m3j|1LL)Xfk!k;C z>W*xcX%C#DPZV%WIERXujBseep0{708mlo5{o1S`?m34JUc&caV7z;zCi&Hfljhui zHZ}fRWz3;di9~=DB1d3^9}|uv{FkYb8RN%)o)yGKe$3$0=hFh=!^{98$Ko9C$fj=Q ztj6=fLUd6rU*Qv@dEM0UM4b+5KMo(ti7xx%T!y$NB37_h*qz_7F#%S+u6Rv+oC@F0B*TXpV_f>1vx3;j zr5VgzZYjlJo&iLT#XYi=XD^ApB}(_c7W6y#3~I?fD{d>fvo8LHsVTfw;W-P_N!L0m zYgxuMz=T}cF4IjaYgwApU>A#BWaBx2-a9=c#%~-{_KO4R@?g z@Q8nJ>ek1Y^Nm?S+;irfeqH#TPnVQh4$sQZRMT;)%&twesQVV~m0$Wqwxv#K=&;N` zp3MU~IaUSEO*o9ZcWV5`IJbLN5ciyOcUsBSrpA1$gJ$wd?vB+7$C=7gBQeH-Cuaq* zWe&_dN4Vok?i*9%zEvJVw|Wp3;UCoSZ@^3SX?o3w>bmYV7rK z=UyUwf{9%CAE&0mR=MzAz6h$YrCT^C{$Icrw{pP!7T995cbTxI-95$$Z7HDtf6DV0vj>-y^`O$jTkfB zQMs`1?)c2q(}}w={$SE>j6GAgIwtA6IEYO()#ke~W)1o2&*MwrxML2x9uTDo#Ho|3 ztiBfaNpU3}zMf4X!0d$aS>JNsc|Y8#gI=<1cs!n6o$03TAYEVuSUzM z=FUk9>GagNja<9{qy!i>6&%qJyu1w^> zA5PuXt#aVeQ-p`0Ie(HEVNZI7QIQRk81c=iu^VH=@68G#S8d-Ayu91)$5FYK#LomP zeobW3fyKMyqL1mI^q5*R;z(e*zJ*UNuIFwDhR39XtNW%#XpAp=X9aQ3`SQeukrWJC z1DeraVc4IDyM*ih=37b4se856;dFZAaLUob#>4_zBV%fU)1pm{;u!DBvx2ziynF0< zx=0;$>my!)Ck`u zEXlqxHG*S&`{1k~Hu7x-Pce5kg=w4tM2^MJ-d-cm?7-^o%c|D-_(8GD(xSeO#99DPQW-$ za$CMKHGX5f_}*DTE#%TV>vx3NnlPQmR8z?Y=l%}^+~G&?3uBOaIH8#Xh?T^exk+ z3+W*l5UtTF5q|JZ&Cd-lq=)Hp_uA;??vy@H=?RrHdASqv>baWyVrWf$EA(?imhO{Z z-lk7c^X3|V4jMK7f`0BhfS>L7VfZGscP(VyemwlZf5pFaF7Wslq^LQ3B38ZOo31<8 znjL?5E8QK}!w??H&2&*VAro$;d)k8*P6V)U`05|*Naw}pGCS?&`tYXY*dL+!bhrHQ zY+7E4J1w@->#VWfO31FP6z_lNGq1J6L3H7gFSo*Bx)b{!*l=~5_~?QdIWyR#+^h*L zI0J}WY(6)u@BwyL?u6@~?`n?&F4#e`TC1 zX5Yi*pZ%RAQ2-a0R=0h}u<?eoLNyD@E`^wsTnd0xHjz{{F? z*@>6GBVM+n`ahG8y!toA%MPUP1u*~zQzVoxs}}-$0WV8D3n7g@K21JJ$OWp~f$B>b zg%tb%%%*sxX5SHy)Y6ZM$DMfmE%CSukAE&6cjNJ4T!s$__?8k{Kc`*@6{cROhqu%V z_3$Ue%N(kIO+NDKf1zHe`lGlK6M*MdsrvJHp|4@$jk?uXE4**V``;+M@4)*nipqP? z!Z+n3Z($!UCjuB;;|ZW;ybw^laiAY8yc5tt;hli~h^V|5Kz~C#&g1b<V?4mx_BWD{ul8`9DE3y0|Ama_?&noZiM2I$o3ubkpui6#0&NOH|3+~?xw0y z^nEA#{xl5%>`Fr2Pl!iC{l5{9Kz%Ss_tOZA>T5!+-DZTvp9kD@ABw`tmi2OSmDCi$ z&Jqokh*q*hoSG6P(O#BlsYH+_OSDxYh?MS^4cRz*B>{k7S=ow81nIJ}mAov-n3Z)@ zSN(T$5IZ*uiz-ThN!2Y+I5ZwCAK(k;{L`RR_6w*(2KgOs z5c4;(jQJax$n0&9E|LWVG>%3x{K7Cjqzqm$RYFeZ!%ho9q!6FlqjuA60sphm>va0H zWWD8gnix;y?(e=N-m)({)2GKTr2CS(Pdon3`Pf+igRI`)$C{n1c;8ir9q!{{A!PWD zdXMjo7+#3~?uEudV16MzP)}ZG#k^bT-df>P@9ARAYj@hu=O2F``01RyYM99Tdt`?0 z8>D-K*lVxhd%%6(g*o|JEV2g-69}NMvLfoqL}FIDsNTR1e9rv_)Y6Wi+a-{VF9YGm z|AFQjU%}HTAsXLLy=nXa@6%r1>DPL%br3th=PH%cS(3;=Y$0RGTUN&KPZZ~P&# zdW*Ej_6FA&jemk>(EGVoCmfJ3b|a_j&Xxzyiy+EEi?Nr~*xLh6Nl~5Jy2+cm#ap_? z8@k2Yxi!dGw7t7t0Mz(R-e{J)qlYg|=I!L^NuLjjbOHBetaaqaLxG{hXLr-{8E!d8 z)pQRodKYAA{2`#jC0tCpalL(Qx!DQ4Cc|*3z0vd9iP)ch5uYYnhXcLT_zx(Z9;h|F zPp#LmQ-&8H*BXu>uMgVL9r8VVF1B}^LaSF{^y5q zTRWk^1(>hniX8bCml}VBVoMw9ru$yy#4l|Q{m%-}cZ&~S4;$MKQa>kyT)4!)j$OJ4 z?{qi`-|eWZ@Et*NBg*NKi|aVW-!6?HiC*p_-9fu)`?zdTh}(v=^tN|v0K~$`hgnIM zMw8M7T&k0OxfK5F66cZKYwMpfEk71x4D1g2Ez?78Ge43JNPdT2Q2IC@4(yXhD%C z3ue~5RxFyOO1mu!FNF0dDyubpzT;*jDc#x@g#u}Ww=jyINZWv4Wg>pcuh`IQ;a7}8 z6=@p^3SVQiph%MiH~1f-o}Ph7$qsTQeU@V1BE_Hu25w|(?R#-*`{CnOxC1R8^lLn7g5mT*iY zoTLO^<$jUy5G9a&G#(ZSr7YnQk?>fS@VH1=$`a0qgtJ*fStMv#f-VxQEWs8DZkA9L z3Gc}go)rntWeMj*!uc%W1(EPlmhiGjcqL1CRU}-@5vi+u=}?VZQ1EFvzn z)Oa`iG;$D$HSeV7ZMVWg*9<~S3r*&0h7-7+8S0K_SN*CHF_-y{;TXDMo0cAhURVtb z!}Q!J3L;0hm%HsX7`VoRqhLL^S`8vYvkeXZ8?IR~^&qH50b{zZGtaT~sviZK7or(v zI=*i>c2o^aR;~J0)m3008U^cUnyK4WJF=px<@#=D_*%s@szzAxD`wS-+={OURoiiN zBMME|(5lsn8-)g|n5G+f3T$Z=)gjNMGHLa?^zH1b0z=BE@AgfHbS=IC`@GEp2CvwqoP{y)!%>r7i;xf=m*A3SO zCBne6t!hxMD6kKYg4MlHi+s<~Aw^N>YPwgk&8i*vfL}2zH_%v!FCT`s=i7eBLd~$X z$Z&%QC`7ImDX>pSu%s~FNgv2&U1X)#;i!?%x7_G5E{%_k6h7~GzQt^#;@GyY`yt3| z*j{951{%;St{+CgPYc0|(6pi`a+n!udIUnaZseQ3!eMC?tYxssgVaDaP}!`wp>0+y zkPuu54Bf`aG6F9MD~1O-G|^88uW5yTRH+)iVJWbWkAgLQU2`jr?^$R%ssQDXF)$U} zVKz=$MxGJay6BnMRoB9?(YJqp&cDiuBS+|Yp#nnviDhN)LUeHL1} zsW~iiY~5mpWd|mt)v^K~!s0rfXLzB)JXvYS^J3x`rQsomCy<62qY48CD2+a;zW&dv+t(&_E^TMP3y6j#ovOt!l(D@*NUF zCx~o}AfG`vgTSzDR?!SMvh|24mkaqb5-gb&U|VGl&^2wSrz+G3N?KuLxmBN(n_*QL zsA5+<;A`1Vg=y%QV;D^Lbt|k?9Hxk1jDqzHr~%Iej-F>5PBma88(J0pjBL#bAf2`! zxR%RoOVcnWUAGcCZfHhPMfX@HGOWVF+nSM5}7*nh{ogFT{AlD2b5aR>J^V+k~dK z!@#!iHj0si@VMK?{;@TwRHKCA>|P>Z_fD3(=5 z!5UTAXqX5+f^0%*+P@y>+ZEr^ zP(ET-6{6);Ob{631o{o;);9F2=XjBZ(k_NjHXQ5?V4mYxHxAe*Pi-{2KlIH2wUy^z$q9^Go#eo%C~qetwjGeu93!L_fbuKR-u5DgFFY z`uQsTe35>B7(eeI<`y=^I$h%$64J%82NG zj%$GIP6akIfaKen!B)gHx~A?EN|w7}1m`kI4|jU?H7v|FYuwwd4SIDr!RcO#oYiEs zGF?E3uBIXn$X#fyCw)r5%zK!g;BVNHg-gtrMdC8WIuUMuHAE~9$aYb`7jGsyOW7(J|C+qFLcWu~s0+uH|>@}M; z1V%3-REFX`bOq~@3xi&>mIN_f06UD|Cwd@4uoM_P7ULjwlMYj(7a^4)E1S3LnSJ3t1119H1wJWDz$F;!ckMA5uw4bFfy62JHZed*gnqS;O^* z_%5PLu#QBC`nEfLCL&;b3pg4-c(v2Rk}ht#ueIv!K_ANozl5;bz{ioQK0gP7Bh=qU z0QMuX7P4l&g)O0IxN)9?B{I~bb+r2_MAtY`s81mU7HgnW=c;t)kb0T?h!P5%dQ5aWg$2A8QCe)1An}_+KNSx=8ZT_A_}o z!sVsyLsoiB3JhfBf-^x)h;J zD|cL}uJHwimF32uyAB4`cx|j+qMi7)Mi+lp-__{j&#lHa`b|&fE%m&5!Y~qQtk=V* zlW#Tt3NNwPV!bt1!$v$Tg(v9tVviv@+N*UTX&7vc#ck;K;T~&YeL%>sTv@-B9x0}F z2L0{;bi9=wx(nh#1QVjaz7IG#%^tY}iOC{fHbK0xroHhzI)f&H@vf6c6Ly zg+jm?%o_jlGtD6ABqa7KpzN7+QM8V30QKH5emOlPyFpP+Lt)VNtf1C^| z=Q}CqsLT->OU0=h-$i-HWS)o#*0Rj+rp)6qlk`pqttw?|*!U9VF4nv2SL@*#>nAlt z>lvf`rD@{!BKZQKHuH76!^8{*?t0Y>*-Y zVLw((t+%gWm8XMabI5tHm_x)5F*pnP_e)S9J(ex0VXXJi(hZH8gBX!*b`?sK1wzr^ zN)IUwTBEJz7}(um{I}8tlvLOb8%JSz8qeeBJBF{zUeZ&0-ys(9tCo+$GXk+GQQ~mDt6js1B)H}+jhOT%^^#8j1Ms^ z?GUXpVa>TfdvloHKTbSO{2IU4pa~_-HYo~>X>MD<_!x{`0Ey<*OllGH`m{AIJ>o%WAo|9QVV1gI++hL3j_+a9 zXoO=zms->qeCT0%K)$^Vr9)em^As8yB88S6*K1gJx(s1Vh=w$OEnu|hTKEDSA{ U=JTa`8Ntr-1?sr@a^NrjKXtMd^Z)<= literal 62007 zcmdVD36va1dLBre4K&a|;|A{{K@trPs=D&dB!?q{0LkGr3Bm;D62U3u5!qRVx>#8S zpa+Cb&j^sx9zLnOlI686S$?*6_pL3-_DJ(AuVi~H&04m+l17p>yW>N$o@DRa_q^*} zuWfmy{r-r^qq?fmU9|x1<-BQBMnwMc$A85ifBX^ooxA?j+5h7K{$Fx9?nd?YjS6dD ztM@wX7Hjv1$>K|cdNX*rQ1pYtGv775HC#$|xZUpXVlp3e{CvrOLztdZ*4SLOCVn+RbH-2t; zd9~h;242PQw3Z{c)nYx2x?gtNZgVZ}k5LN9PzUum9*uwg@rC;zqgb9>_)%m z*1}Gw&%lXCKHB}*e5q8*dn&0_Rh$3lGRlX8wO~Z;$>oaiL<;!EC)Py z(2qJmYR9=I2(s7jbk}f*(c5t%UX8U~ugQQ+pS5EyQZ&SUey7=K*Fpv`kj$XdY`VRc z+mD9H95JaLu7UdTz>5KQK%zKI_VnHOYO@~qG15g28%Wn;(5MAe2+M>fwYn%@M0sb>?+*GAQ8#_rrT#XK+4s6 z8*lCD1|csQ3MFX_x@%wwS7lLtJ2@hx9_ZF`A-t39X}ayzfx8MQ+ZkwjXhdQ-s>zwn ztkW`yS7oi$gm&$US%1K-<2nu>kp`yUSzT>1sl1ulA)L~(InK*ABzeCa3Aakbe{Q+R zJb6I)pnOb4beN=l6bCU(j*E5`lvbcQtS6o`Q(A+mtgk};k0mE1$Z-m?=*j3*fn3oi zqr=gW=xB5-Iv$;f9*;`V6St$Mqi3Si(Nc6KdN%q9iq1j`qe`?KRU;+Y`_{|nF1+z_ zr4p-PQQ-$&mlgCD1T7{91Yh>Hf2G5K) zs9~<^b#Bz5OHi7$;nSlH<3X$C!fLBk#UOx+Y{w$?cBEk(I{t4&X5`$Co{OH3&P6Xp zuiS}Vy%T*rdM*0I%45+A8oVC85nYVlj4mZ}H<*yS=&jq)~L6bad zOk&BtH+xWE7F?+N{UK(~w_q%GR(dcc$s&w?zc=vv1JpyyP_%<{g^OjG#B#SJPxPIG zWI@arn0?4x@fmk67X84ET^7GePt$CVi3KoW&|aypR(R2_KG{Mj@Z0n+FPisZ2+Cfw zRo~-R0nzmgy1~9;TV0OvRA)AWUb8mP2xA9m2jGkKD;u5e|z^B(xfO?um z*Gbm!3&ZakMn9e$Cg~j&&a`Si7woj?M7Ie?s_xeyApO-r8S|0R3GT*LyZ>oGV_P}$KUA$m; zao|nDKl-nP7a0BN=%=F}0Y$z{4JQq!(DHBPEsLWowD`Ha#fF0|H2-^9bC}#(53bKJ z`XT&kvAzoqC;Pd&q*9s8HM}xS2ScDb-y)y1N5VkdJxH@`!@Z$lUf>=k-k!_7y<}0^ zp^w8^JP$5FlB-Y)6|bZw>U{}fpe8h-$2IPAB->5_1)=;v zh)bc6B*-0MTtQ#M=o#Taf%$N{c3*Rw@C=2n0lNm24C-}h4XzfZupMyYhZnzh$PMv7 z#gF8WY*d)}F#p0Qz>Gx=$y)z5HJl@%Am0MkjK4Y8V@(EcC@a|2?*#5z_PCcn*1}eQ zc#*#mF-#2n)qPN57mf~GT^bPF82${eQPiIl=Af2Nz?@-R<&xt!iJ`YDH`BUXH=*CR zhT_H2Ducsyqc7c-aPaxhuhrlHw_}izJ5+a)IoXB}?;pb5;3(}Ou#)e*B)Sp3FRBho za|!>e!xbypJLrdHyNsDpyd9m5LeX}Az(N-e9>fmDON=`?35BeMgEqIY@Ns%ra==3b zn{JD@7O4TeoB?P;!^|ok?f2>}?!C9+z{A52VVU6u*5a-UXYh{flur%9oraUf3;7Jp z8Fx5>Q{5!TI-@5jF7cG3Ka{u0#ajSBKpq|mVJy5e@*Qs$y&f!8pdEp$Ekn5CW#4UM z$pg2VmLt9XaoiRT7EsMY7-d?_$Ac+fY93|_IH?y!`NCDky7|IPN&_4;!Or6lvwAy# zhfJ;^mK9jY(Fza7noG+(Ci)ud*0JhJ#g`YsOcaU^bGd|3f>`uxaImoil(KxF3y~#< zNvs6nJ9l9dxQ^{_BOrjawpe3dyhvtcQIydfEtfpEhP+~b%Wad_7xVS9)TBM_dcRxu zudWU6@J0vZa}7Q!t@Yj&?;ag3hA6JWQi@7)ML9M{q;~?31i#?u(sa18jaNqB9es~z z#iszdR3odB>f9l+>oxWssF%(p632bKMgUKVGT(2;H5gD@s>$y6Q4v->tOuEvug+tA z*sEdC2(qNmVi2?c-T>;Kk@#?-tmbm70@ME91(;$!vZKX%xkQq_O=>l{+1=i7F=g!G zu@@M35D4)bkR1*tckb9gz+2#cCarvh+w)DqAYPiz3a`GnM@EcxQaKsdWS+O+iZyI} zcH09F@IO>@IIk&0PqJ$HA`cxz-^_~l@wa5yAX>`G1%Bz!hS4Xp8sQ-WA2`er0w9H# zr1P8w9inHmw+`}t5G88&>tUVZCUb-K)i#1UVi+_6fs0sB4;xpDgWJPjAJhX;E@&u* zO2g)-=Y#lMNgDF}5NWuog9FI5acWg`<4Ha4AK3?Rq^RRg!OsG4Ux1F$i+@ z>uq>BfJ`Dmv=l9PT#GEz@ODi6oxiybAksK@jJdxRx2qDiCmhxq%~dv#hV z&(_)^j1{gh zqN0Y!6opylD_;IOEgAU_g#E;iYteP_ngrN~tKz4fFD2eRn(oqht`K9uBAa(MOup^j zc9MrI@-E)Fw_Sim9?PMB?%qOA<0g3rFBLnuTM(OgkJm&vMubmNGN)5F7Y|H%h|KaZ zQabq_;}x`=s|~tvP8i%q?mly=5)1hl=E8Gft>N?XV(}8K`N+eCFqk<`e*lPNH9n zzAhSw*hE3iMX{9nZnNGe{Gk7LiWMYEG8UAgEtX5%q6pWV7EQ8}N1HfZ#Nenqn6Y-u z+@4Rd#UgC7k!ch}x=#Wd0=TYXa*$9!JIVPb5aRvdUB0$YG0sfI_0;>391uZeGGGt~ zzG^$3>kh3MTU{6zs>7=6;qj_^ESwvP!9G!_rWHG1(xouS;)3tVgM~&t*1~)wTTo@O z18P@;>)&6irSCpdc$dm(RSd&A;7cpS-`yUZ5t?O7$)km)n0RSR#D|O3thcZL;4O|8 zTJY(l7GJ}1s+1flRK!?f`efFVLqYvoC0nJG;I$%nS!gL@Onj9!{LK6F4?K{rw@R2i z+%9{It-gGtyM*u+W`Z-No3sm3>LDK6YnMb}1#;blKen{|PUYE;e9Pyax_N8q%=_y_a3A%Y!9VDq=;=a-*- zcE0p%=`Bv>xFjd$0NWoo`lS%8ExDzOn35`JMGarX%Fu0A~lwhS!SZV_fFzloa#LHsLap~rTH{ZC-sd20Hc81ZniEh8G zbRFAL0#hL+0lmFEpHWrdLoY6gSI(y0q{M}A#QlD3D-DnoAqm~1WY-*>S1X~QZem>xCjUW#}tD=44uD24LJPDdjr;6yDS9? zTTU6M3S{SHY(Fd!!AdWDjK2+OAmvy(bLM#t=T=c*1i*T`&3Z(E=Q+2ROXsmZ@UXUp zM6foPOX67)k^53T1{zqou%J@WW?UD#Q71+o_v*&@RU?oO# zo{Ukuf0m;!u)oCZ5Vbgqfk2hmjV^c^y3LrKEs?Du2%^>NWN3)t;O|+<7*Ug#5@B8@ z(=ytaYzp55B4)h9px@>?&Lvyj`9-@+jgWRQ_iCM1Ey6HiRSxY+pP z0&U*5ID`y09}&PllOrHqrD!c8;V^Jy`Z+p~L~N;2sGGXu;7JowMx>M=Nf(qrcWrhZ zhKHNH)1O;9UHZsGZld_~nWf6JXHK8tU|~zZQE41Efj44SiJ|L7<;)m#F=|jAc0mXt z5tGE?op*EYiIKn38GsW~#`4P5PQSnaE`TGIIl&8cqDLa$tDU}(#X_GX5=(iLREdbk zP=iWLj>*#LEA7)~ij?Lu1}Frz!XK6d@dYJ`c*G>p?EUvkMa0FUM70Q%-WnagfLWn1 z%Mx{!L#MVQL#lKKakNx;eY7oMBW#+WKwNs}nPO+_@gVpGCJE?#IPa+Mj)EQ&8+w=i z8+(6z2*R$4=A{uTN!qe@5Puqz5g$G=rDz?_l%6T-Bp2co77dtlr{3my1MyN(1Ld13 z6Gq-72;f&POHbraSwlH!>g94g_wD4jk%Ep(yX znbmoXoC6LvmJ>auAR#$0m9Rb`*FH>4?NVa^ZH3({VbzQ+b+;+r;}BC4XKGc6k?6B@ zjV4k20jhkKFJepclTp8jJC|oGFA& zB#bl!m+Yi@0s)Q`Hsu*1PicLg5fCA7T;^JcAcWk468u2&M7q2R9>DnpTUMb0!<)Te2kFr>uTy@FCm8dN2K=6f}=vFM?kivpE zFD)Q=3{vJR(PmO0gHIrFwieXW<=!KFfkxZMeD|2IXut=oXesTh@qHBHD)a?27hzq6 z#VGY9Be8s`rq?K#ghIJSMU7{p+pjDkz<%Y-FpVsvZGt-HEo{b#M(f z?}*li(?U{NnT;hQj}K*4c`!pPE+{rFVvr}&Hatp_ZtZoTL=V35$=6>mT|D>3%cYOL z{KmQ0UVri2g$r-JeEIUnhN9R!VNn4M$G#hwEfT+wYB6XbBalOr zo4eHH20|a$8{owciuV0Zw~4KIq-|jh46?$SVS9rpepEDAAJi$r?Xpp@fC&$9+eAOLS+uS^mGQHbOj@pn}F}U4v}e}eHBR)SKqxkAWz(+=etT>Z`!nGAuQj8)naxOoLy&aP9m z503xME0BD0`eNGWxOG#`Q}M05qbo@7qvQzWaox;d6IGCAmRijhNV3n4*1{A}xGyWr zAwFGt8IJDk#2m()fyV^{3t_-?1AwZdcGTg`qzGVUZ&6%K?1{@Aw?zR$)XBJHQ8+MZ zaMnOLc<~~cTE47WxBd2TUXkubWQ!@e3zrny@DxMXZ{!r!dk}RBZOVSL4rtRSef7Z{ ze2-yOk7#McT-fUD#Y4pwaGVhNTG_@y7HZN|M4?iJitC-;RRXrMYyB%oI%Zy`SeBXT0rRh@p(%!g3=6Ww+Qm z#}1T8;V6+ITyj^oA=!h!u|RL+$}Y6|Au4RSR}tJ4rh_sqcpxp^I6XqSb4@1VmT5$} z@srs+cnAio-VQqyw;M@3NfC;^iM_P%-2T7=$>VRr5yKc6tU$I;BLrHepDeslkC9J| zNguhN@i0aGaN5VX?OaT&3I>S}_jp<{(e`Cn=LAXiQ0_BjPY9VhmI7#FY)A;IH(~Gw z(h8nTEB#&vS#?>uMapr4j|5jiQ!-WXsKpwfhlJxj zwBb(SQ_2+;TUKPYdq_9h-;Xdc1T~)31FwUlf54YXIT%9inwIVzp7eRHLJgS+sU46F zBwK4uP?-6QjMjzRFDgRI$w zAJh(H^3O2(X0kV{;T!2kvd6R`{HcqLuR;B|JCIjnV~REe$O%h!v342imNh$>HfS%?m{=yOspLZF0z=Gh;VJjM&TY#yRHWVA`L zSEvBy4qB*@!L3TtoJU-U2hP+&CXXUN=v%u-0k=C@6Nv0AxR)83VRBYolWO4A^HC}mwS7I8W z^*yp^G0pK4K53WZ2Vsz_&)*a^l*=XjiYy~bfRuAGsZxyx5b~K;jFB4&BePtjRxXg4C&3$Vdq>;) zHJC{F2E&!FiT4ll>f&i3o=Q-lF6#2FS~vvTZsPy9hF_Fkj6i@Wj7>VAOewaU-YEit zW&y3x2#IuE!_SuT0BnZDL#S?HJxtRYb{UXyk{{DOBRU;FUx>q1937Gg zNgKX|!a@b%*<>$iXBjCP^@4iIcKkFWJVwzFr$;F}y`O3_>4|J8=CnLaB6>WTH<0HP z*0&&GlOSl`BQGIM5>9Z4DV+}`W;8Y+fviacDB~I;!M70FeWegeZp4&0F`$!-J;sj; zyEtM(srB(Pg+Q>lM*w+Qt!NcJD}ddns4~IYOGo=~atKaoqQ#M`8fN(%Q$O|jWu09L zUK^O-y7t<#@vX1MpKW^|X;nYbe6zK3snIt-^R3P&K5_Nj3)qa{D`K$)1me1Is@7Vx zm>(o>6%ZYddA}%)N?8tXnPxOZ@7ff9d{L=XE9Nq$^Zqi!Vc4MTwt^JtlVobsIAZ#G z8G-d-^5|W=95((6j9%lv!JmQ5U_P8PB$cs(eWR0jBujLJkINJmut+XUhg8g)9+K4J?IqXR>K}$c0hIb0S1?yt|DPul(e3q=GHAGdW42NMx6CTt`wCYTlbbQs>78X zWBt=fQoOJpEr=G1BM&Dqj;z>&(+R(aG+~|NLP_fgB;f7*o7B za~SPNHap9fETp@_+#^9a28Y_|@JlT{{W3`Q(BclG6Re%2bFZHJt?$@z>WQEHkl=(L?et-@hqe`>wPc?>N{7uq zIxj8G(?I^Pa@s-a`GYu!i!;=X#hnj4K$hekvFW*-dfURGWXpzavcT5-K(7WG^Qx-l z+pZQUmTNekqlV08o~2r!>}zwvsD)O zZdG>!BMf{y)O9P=G)G~+t!R!P*yvMXrf*agGqfB>!{gnd`^+~T(=!~V7|hXJ-S?fq zvaHYsM0Ba^N>$gZAv0|TBosxp4RjIsx}iJ1W8NJ)k-)MQ#%u>f!8v^2_e@hY?JBE! zfeGw&N4GMTn;=WI>f9Z=;s({wb1em87Y24!aZN*W4BrELO;xx3DhoUpQssJv7qFnJ z8r4v>{SXom+Iq;Lf6zFznc#EN)gW}8O+?dGEKgMx$59~ZOf{iIq3LTH_+c7u2-XA+$N>puCMlV(u&SwQK2Az` zx?PnFcm`IVuUz6~;q&A0>Y#UxAw?c(MwkQ{On!hpla2IG$EaMWAC#;b=$eTEYNigh zfla=u7|?wc4qITVF62uCEg+Pd9(bYYsGh3dol~Ha&J5MG48v2r0P?S5YYe5jlTi8lh@GgP#!ZZc*E65$$} z0R?lQwH^#w5bCz$k#$sclUW+pIj*gGx?!2Ds#aY~Rhi-`dSIFsyE{c~7vwRkmg{l+V(Ab6TLM(4F=QjwWl&)%_>80vU8#C# zR4pF_H#{FKVTN9$Y8mY<-Ki{vWt5j1_3FhG4O#II0o^o<#!y(KVG!u!V_g6Ut!L*1f>< zp&1xIw91F<5X(HxCXsV7F?t&2Ti7Q^l%k-S4v(dZNez?CCfejH0Ae}1>Q@2Of?I(h z>$>YWFnN}4+NKST`<`MdAcX2VdZ2soC>X7V7DOV@azIOJ3!L_ zzXR0>lmHgf#{}+Rmc_*6n=l)s!%uaq#9m{|IhK49rzPO;Y77iZww*{o7x(O}@vxJ2m9$(SG_9_beO z%8o&DfUkvUSBYO$0RJA#JQ^WlmlPwx@F@hje4{K^zXDpCGLs+*C1W6nRnX-a6sXK< z^UDZjWO9$hLK`+dO<3*51sWB_!eI8&?v9TfZE<99m)P8X<5NeIIkDS=@W?}h0r$LU zP@ll-MBsZ!(8gO5=0qws?yF=>-TLF_1gw9H+>|9|0SsTpTDP+ z=Fsi|rTAR@;Pi!lw`S!tJknHAh9Uc_nVFn%nqEwN%!ViJsBCagTxwq$Dms>;# zmG1E)T)c|C3WRqXKTX~5d>bZ=;uufigkHT@M{a%TC3lU*&*A(bowO+4nHTd*#z>GhG-qU&u})=I_A0d_0t#?!6*nv`d6p@oNw6p~xR7wF&P=e`%P%h<^d;e-!`xlKAHziGTjF_~%#nKPx-jLF3o( zv+;HO0cvDaHbL#kTP()iQ87?cj8d5}RMrt#VD&p3?T+}^fpqd<>q=x<_)j zQ<5|K^1vG;^Em6gx=t0jA_%!8SrTGE{Nv`bLB!&QvB43<#XB;%$@N%hlwv? z8z|;P(dMeVmyYDra6EvoJjT881B1amJY*5p9a-)jV8&z=ob{Iy4pQ9@A)c6f8+iQR_ zon_l1os%P{5J%!Dlyej~?cW_Pt!!V}#-zgAKtWLHm8p@DAigC7aehV+NkMA_GB0vS z_na}uFVXcFd_JWFO#Ik*+G$Tcn5{DB#HntIMtKB{0)w`XGwABn2#ql)nia$|3fq$8b&HjU}l)b*3c4@`~vR@t%t6jp>;-vu7*80W#4rp9872g$4;?mrJM&=E48 z$T*n?U!EHEt@D5%Uz2?oc(8Mv2Y-EPEXH{76SIQ2|2#N{&kEqyi4EtBZ%mE))_H)# zBU#@C9_$+D!Ea8D#TXC1J}ZbV^I&P#`MXN%lM>|toaN`;`H6OVLWLCOA_sPL0VJCtjEp#C_+)3F5?7&D84D!`LcMPI8`X zW{y@SxLLu}IE`_~ofX7==gwo7#l?iU+61!U#J9c|&)W&%Ag;_zY=M|eGNGPyKMj|_6i6iE+>0vc;bT(PP&g_}Yy}^(ukMQlJ zCDPAMO~$PX$(~c#UE}>0X1KX=N8&3}V=yKQU*;e_L`UNAs}xc{R}867r0zGT9@|!_ zd*l>F^(hpPe+j2Jfz3^FCB88=I%A~%%~?U@a{hI}t$Q6nJAr6GdY3L;iiM;WTsnoL z6O+V#+uZ$f@lH}?AjP9x#G|MND-+y{Kb)1cc`)q{W(Bcj?#yh3=E=X{hd3r1qNnd0 zNA_`-LUujEgb7~6lT)KHrXr7X5Fe&BBGOWNM6ZRreE2{o3jHfnk8SJLsE>6`iUOn_ z=fOs;(T+*>=={_OjS>6BSwZ9y|AOGxy|zb3i7U88WOKeWrXIsq`ErblevZUs&P=dH zt5c&i#+hJN5ci!kCE^V3fkq}U^aW{10q)yirNWN)q$%T1PCcHja_I@qr4%7tyCo1R z7Z4gXTa%VQ-#;~aV;s9ZD~R$oYZ^eQewyXH=`_y1sOer{D_kJ45lr941bud*^ed_y=CgmllipZ|+fV>2e8 zU*#Y^#F_QfC45w`j`Om7$xR6qxF{cY#q%QsxE}=HBAM*X{I63FcB`a+3LAj}C!CTF z$|+7|fm2!HRAj}ZnfLdn#&3)nzdI|4Ttj|a@N=V?cV=Jn`Ma`BiY{Gsw$*soL3||X z{%pE`^zQ6T)eLd@O=4nuCM_xUPmT8&oA+`MAEM4Z^>V6aDWgIpxX|^M8AvL0P6B8!NQ=>S>kY{HFk?Y-Q!PAZOt}$Z@%hO|=qdPb0 z+ctDOpOlbXK6 zW0d{3vx3OQ``^q8A~$n_zxTk*%>W|DLL?{803xTw$yw8P2#fT@#zxuE8;beN7G%29 zA0OL$ZF{8HBj5ZGIId~!uRVv)k5DQVZ3p2S-H1}q6^|1g zsb83Sa9d?z8L@PMU3nC{G9g!{ja5Pp!3vJt2qPz~YyaNVh>kJx=Vt|R-x>KJGTm{F z8*!4D#@g5FJ={@^*x*E_{p+a*vQ?%%bc#Njz%k(*Dq=Fip$W-vzc)2jV;uUIvx2zq z99q1LFVtZ2?va_~S2#{ub05Hme(yy*ecX#UbSjnzkU``KjPPT^xrBXFBQwU2J+p#X z&yN{=`g~a+e3%(P{P;X-sV-M+#{Px%(&M9ux!)CAqC<~~vkC8oHP zQ(OwNGGUT@erl}7B*mT;#Flw9^BOA;-^=~YH12zuPS}+$51L(kCv76Tys1aERdyA^ z_i~3b4fn=`6=J{ws{-RDOp3Ls@f%~@6%JyCrP-`HQ^qDH-En|juWN1-pUcA6JZa*? zx7~}^J0OvTvTP@^<$I0cnU0Gm<6dF2Flwnu)=<-lIwoG>uz*z^)F97l&$jZkyDtQ#l44R`jmZn z1eXymO|XA|acaEAxb$PQf>_U`8K${>rWDFN1Be`p`!rLYy)1G|Qrr8c-|yhVtR>^D zxcFpqTl||-Q+TVwa~4x4-JO}vmStR5OvsguGF{42-q0dXaDu-+HI`$d^eeN1`2PVD z|6uB|ZIy{TPt^l_HH@y*plcm=tW5BT|NYdxk1^-}nia%-XU^%jgx~pGDK*Q%S^42? zI#-p=YZGVG$M@Z@h08NpN?mH9gEIe|HxKCKSQR)o;Z*J;Q{y+rxd&$jao;(&*-q~H zsWIQG(oEjT-LW#^IMa($BQeH-7iI;qWe&`|M%Z*GcXevqx5|SJc5-*DOvp72rp987 z2`&e*p}&96m&lv#T_$X4yHxlJMZa$EB=!A`sWBhp->=OIB3Ix4X;u)q`U)w!2kJWmh#U*C zUq1tgoEFBcp?tz3y`S>KOT@?ypKNy5RO5nnHr8vnUE=S zWU|>|+a&Aq+|+1|QQw-C`i&Wr)}Qz+t~?avUZY>~W((xhfg^NT>EuL=&rLnlt#aVW zQ-p`0IsYXwLaJScQIQRk81c^3*o`sbGqZxoP1`30FYk3Y^{5Py@uN;Dzb2~5cTYWr ztupCY8Vch`U>Bl=FJ7(X(=XIx(s`Wkm>QumzPvvxi2Kf$XVz(wKWGieQMtyDc7eMR z>)ys0GJk36QEin|r`M}fju!GQ3TTb!)Py~xAD?tRU_?@18nOw+Z*^IIUCi zSpPa>n26vvi-0d~5bq2&$T0o~Q;%t@oO>EKX{1P%B~siSmQiSl)Ck`uM4EqbY6Qpl z_SIQItmoSdo?`B7im7o15IGh)AIOHWi zcyVl25V?{Zo)tu{szM_E%T(3N^*-!6PO{fS+{7>U87I0=D^n9<>#7P{!OAHX>4sv_ zf0{4@e|&0u#>C@g4q}GI-K@HL0-rosg#*M!)$_TD1aD3~z^xJ-*M}1x3V zQ*gU{@FgyHGZYFg&5lXSh(9qkI%7=vK0(nBZO%G@Q<&KjfJb3FUECfyIobLrryk!{ z$$gTJWM+8q_^QNXl;)FE;jd1O)fmdSesTFZ%n>X!=uk8o!jnhcOTo=fd`jH=@ z`=eQfJHG<)KXDKr;tW4`Y0$&kXL6wSiTg#oWY4Lt?01Zck4@d_n4x-jRuH*boa7)j zTx-tiP#t}x-o}Z{IxZD~DfgQlL<1(%{=(E_m^_P&32t)i6prQyBq)ZIA~D8@b5mn5 z#)yy23Sx{AC7k%h$Jdav*JB%g1ZwNwOUpkQ$LTYNGdMV_N#A^1x|kf20nr-m65$WN zhxWzc#pE#ESz8;uvzE%|sXV538gF+(-l$WP-wCUwUkLl+kR|)&H%#fHp1iw82Q+HD zM}K1aGr%8)uY0;T0@m$E!%zGX{!8Y3mwzFHy2GdR(kFcTZs%&V;|=d5yQ6v#z$3Yx zEXXco!JTAJd(c9nBMXLa{N9daUVJO8({8Q}Zwrp)giUtKukn#WD z+H&!1YoEETWe%qczr4~4hRM!mz0HOz+r%|^LVaeKnDV(zn8F!ApI}i44S#a1bBjM5mmO@ToZ*NI;mF_Qm)C*z2sm8uiJckKGo&j)emX+5N|p z*HS+>_0YFS@I*c3k7CGECk2M&>Zcgey-(tX<{00b13@Vfc4zML=WP1fsc{`+(^qB% z@o>iJFAGj@wECTOCS81sts>_I6Y1T8K)*9J{##|&A!NJ?1oHS#&W$Won{(rzPmRhL zH@-P5i2KfsLvP?5HysMOJ3HnM-Y0XF96r@bF_^@UEFPEhW9QVkjPYaJtRU9&BcJ7V zbA`T}0hd@D&lF6U(iuSHSp3kef<;)+M@SFCGpoVPsHKh+eavnVYo?Wl`DaL1j__}g zuI%UQ#g!fW>!T|>@pW^0G5g9c|CsP3{|n%v(#p0k3>$A?y^8JWZC@NV+Vbbhw(lJ_ zejt6=j)yO&4?FPijr3tB9_HZ^(C#)~|A_p_Uw=nD>_GYZ@+U9<(e#19{vA9l;cbMq zR<`x=N%ToBp+I#zQ2i{3LoEUG+r>}n_AiK^)YC7BpF8pMUyGl+@bdr`)_8351_z%Uy9A5w5z~2{eIj#?f~fe4 z^5+ZB+wuJ83eP+6{0;H)9`x`B@+a@%aokV@Fu2PTKwrcI0mTys8Wf%h=yC1_1K}AD_A{c-n%@J3!_ZwE^a6{wL*6j?Pb|4}{Kdqz^RU|Cl}y zy&l6^4|;uN7alH(2jWvt{3Jg8p!~_f{&f04V1G|M5C``mEf8>sgUjM4aqzPEN!++D zeiGS!SpMVyza}1NiA4I*RZg@ zDi#5E(Xi-?fSc?`Q>;nLN;$qx{yf3X3e~g_y<~+rIwe}7zpPMC3qhK!&`1kGq~w6? z$iM+C2>=Ak+L~!0NSC!W^R^&k*49eff`(b4ofblll7)0s)wFb9p{bJ=?k_gYD6mj0 z%}8(n)Q#7PB#|&#Y`T6KcbT~DvX4DwEc1kP;!}gkqFlk&V(Efp>%`{TMt zj`cYYd3ad9rq3_2X6HJdch#|K?c>M3fZ^-xJ)TK8ycqrIi;X`H%r7Pf>+xHxSa&Dc zTPu7(K3S-_?N0lA{z>_Pm(0oghKant1MF5F7$ke)U$EZb!km08HrWG)2?Q`! z`6Awvg~Y66A$ z?7i8=zz^Wl*$5f*8MbrWR!lTXOV0IH@!a@%dMTqw`*-r(k<@eAk!L!WDPf&qms zZskPX*>Vx2Ac(TjLgdCZ_TGS#QM^ul-R520;XU2q9o^ym+!hlk{tPj4~B0;v!!+K zCi~yu#4l|O{XhZwZt*GXVdE$YHv+luGXGw7=@Mc%!%6raD?l7Uay`n)kxOeh$KNiE zAc;}#8~MO03BqVmvJZFSWM5##3r8ki6wY6qSe0z}IVkpbjVQ5aoFm)|b3{wUP-(nQ5EL%q-;c$$$lx4EzIxj>t zU0=8ks_;!lp~|xLP=&*?4yr6%-?k`D83rTr1b3U})!ck?n<)(^oXq`@y2b)GFL)w5 zBaIE79;T;9(z?g#iBz~z!Y@>x$_kzm1*fTi=Ay=uDELTLa8?v7Qvu0IqbdrttUwn9 zW>#Q{0w*hYP857JD|kT^d`njFq9}MND>yF-Udakx6$P(l1)mTFuV)2sh=Mn>f=i;{ zt*qd(DEMSn@F`L7nXKTmqTrpZ;0iBDC&^?N;+Jp{$m`gNkCrs?OU#7ZV%iB9utLEg z*^Rq0;PAi<%V`cN%$T7TU%}=B-3aZUbbO6Dj;A|z3igRn zuvWFIDTZT&dg$o3X9ucRH8s^y1Jg4#M-Oe&Q+&s;EJY0i%~q?9W7=V$GE>v+&`rTU zHVW1Y@xQ<@Y|FqqEb!f`4$Q*9w?kdGLQQiN=G%(q_<;@5D9rSYs$zzg<7jwH!InnB z5)mz1Va#?wR_rtRzGs@MX;)d*3rqmkF^Z6>TEJ{iWmeT!91ElI?W$f4gB0wkQLwJ6 z*nVJm%=8RjHw`-gHdfUz9J6YMn(I_G5YY%3NCJY}y5X{_W(K+mnANJ2f_;1xtj~PY z0Z4}_26Hr52fqT#vO*gJ2W50!sp>$BnKlEh6h*ZSP$KYkLw9_~Ou;@i3RZE0YUsI^ z0x1duyQ;XRp*e={0lul~wqIodK7<$;u4i}w3#zJ74OQC@fkJ5OVG8ym5-eGe50Zzn z^%qUqYw+600jxB-j7#IQBaJUuuBS6YH7&#N6fXdoRl^PSs)`O2)AoW8_*Db&BGB|O z3@xUGRV4%=Y&-NcFU8@^C|F%(p$n;jY~W?hv;#vkb&wET@KwctW~sjG2d3&m4mFGu z!mH_l7n+Xhsd@_bnNhGtXqZ}6_0T>5Ar$nY0W{PJU@;VrgoiOpcg&Ea9cpMPHpuF$ z7>JWe9TOR#mI6rK(Kv6g@Ca zi={+RM!~u&6wB3oLvdY0wH%)jwX2S+>Y-7!eDK@wd|S7fp;xPra@#fo%MP?KG!>U+ zV)NW6SfgsVx}zwtccBtkDo6?P1p(y4W>v;KP}>TsfvQ7fbVIdu%MMLg0?S}7`be?0 zN5Mk7buaLIAL{N|Rm=4?gN#zu(`-V=g$499*eD1X(=jBO_Cgluj;2)A!13Gw5(>EsQDHlQ4?C#Ab{c{287f*F{6BDA=!U{nHPkglQyi7(Z5iN!Z8J?JskLDAGc9vQ!TJhFXgRv-S3yz>28Y2o z>8|5I=`7u}P20zRo?jc^Rd3ah$70%m|y zx{Y3R$cRGY4-MNlp}U6VxGt=-t7NoQN5Q(f=X-&oGZ%toLWJzls)C%M31)eg=>j^` z0dj{SL3aYEv8UQW0F4L~Bb%o6QLs>L$G0pZA7s{4JPr04X2Jj&tN>CE(FlF$Lsiku z(1!qeRm)Rc&k0peu``w}kAk&b7*7*w;Cg0N)eXZiJ-v$dA=4d*mTPJtF!aO-7$z_S zR>`&8u!`0;R47viZ5>z`M#!gO>w4fDE{GPI5OkkGxLn`BplMxX?+Up^)z2c{O5-8Z2x zL}N?$wN$`fSPwQ(@e*@G7nHMH2ewRiLI&T(qG{CfF&rI&g6Y-wRl@+qR68^TPqS%y zK+f8i$XEO#{rOY$=kL>>@1Z|;=+CdvpM?JWMf&rz^yi1^&tIoMzeIn2ng0AH{rPX{ z&tIlLKSzK5d;0Se^yka;=j-(62k6h&=+9T^&!3||KSqE44E_1L`11jxZ$VS!w=}*T z1V);|An+#=_ZbEJ=!pIok+BxGHdo6wURkmaRfaEE9944?Q)iDq9w7>RNie zP+aK-A)L!NIo#>hSCP=vtZ{F*Ht5yi1SfkbhE|ht%VZydb+t4QfZBbnwYX0OScVUi z6Z{FO%(&CMA_^-M^+e$LjQ~+O6rUGO)0kdz5U0Cv+cM5gUaj#|8l>5*hOPAXA^6u` zlhqJ+5H~i*!|3_s0Me~^alF>9N1Yx4K9m;4&B1Cd9JGBD?v47bW(~I?;xmaB!8#Hm{@d>KnFxpRqf_X7 z@p`9+R4810Uu)IdgFZG8zJ?gvz(dMKpP!#Z&ceqCzyTE20@kdz>KHOg&vURuhI+V$ zem{>;8z%~lDWE804Rq>Um+l-&4;4$}u8Z3}*EJ0w7=0qj5z#d042UW9HUKjW|G=ON z0bwl_fvjBgCd?g{SsMfAB9K-!Ik>ZfgAQlrU4qt_cux72ddIJ=x zyM$$<#%aoKFrQPohHxSqMsFlX^CEbg5vz46T$`AiCU@2NR>N|oG3c&=K{fvNuyGar zL~k}a_-Ey@MvQ;%G_KR%~t+9U_#(lWQTG%NN@+*_k?j%QwrJX^)I{+Q;B#T`35%_I&u^SO#L!ogS zeT|kQ4~`8R-%sU7q;d$jBwrvN=+6fWOvGn0ej5e>cNf(7hoET%K{p5>#}94KBnzT< z3B`XcLFDW)T|MX4hdfnJ*0eo#aqzL2GnG3yR$xMjs^m&@#n#*f@@v zr|}B@d|~*O40a%jauYMvyVxVxM|#MQ#FyX0%z!gBeKL@U`q!~{u!{b1XM1Ou9386( zI%`82UQSQcCl8Oc$`5eEVqg;S==Mn+H_Zl!)9mL3+1rQsBly?sbguGt!{j(GlXvQX zUOX)fl9?lZPb$72TUC>|yNI*8&? zAd5ZLZLXE^fd^2r(=Myn_uwD8>%FH9SvJ#|w?ee&Qq@i_5o0CRk-4&SPvSZsmzS#maVWQavO@T43Yzr7Kc=+D+RfxLC z&dp-*BI=qwiok02D5CM%qX@ZYk0O4a?RgtAT%Fa6sCHJLhO@JJ5uMH+MF={36tUy= z8{+x1#C%;$7$YZ-7%D5GjHD^YFwOhWWiCl^Eo5$=lG&3ZF3ct3j@%8%N)L#1Ik+_V xFgV#ExMY++S7TV~43mTM={=ZRI^>j>kWmmNwDr1H!}i-%C}Irx84SG2{|n=%2=4#@ diff --git a/_build/.doctrees/grids_2023.doctree b/_build/.doctrees/grids_2023.doctree index 7446ce6c783aec81a36f0f04d296e25361909d53..bdf10308437fe0d81476baed56789b751e8c8b2e 100644 GIT binary patch delta 21426 zcmeG^d0f?1_TIz(;DM-#JD>=P3XkQnlmXVXsEL}Xm}x%XAwCtsCB;&4NpqpJFM6tR zLo>BfK`YlRCYx%q(#FP_921*KtEr^PrZSh`x!d=BQO7?0KEHo{Gx+)VIQQOj&vKV@ z@45Hf?}8_TUw9$NuflKT_`q7fZo~bY&a|QeqwM_M3aUSyprCKhCn_j>%3T`o`(+Zs zZ`ZO`yN>4tGgVUEkZ82Nzr9MirVUVd6+f~>WB2`$D)}BIciBc3sA|}-fr<}LZ>Q?L z{(wtCgJ)!^Dzi7T7^8BOLczL?EY`R*qm3#pYoKIKc@LG0zD)GimA6$?UM(M{3LYE^ zF-Gs1CY8&qt5Kno#=4n`+p5h(?&O1-+y_;VX!IVV$=yFjiHCLX5Z;+FN(y8B*%%|v zrL`z~M9Y59LoCjyam6cfPPue5_sqXv2{v~Ip`4r*A(N}#BV{|z)(o2$C`!ic*@IPu zvN0?Xcl3jBqozDi5ssddr%J=~Al4`^)PmK`(W2DuAc?P-1s&X)o?|xef(p&@HMbfR zxcn(&$X$_+b7gW$1BNnAbx9EN9Xn-DRy9-QEQ$UPy+=rcCb zs2JmCoSc`cB(433s@*zYDUMP16SrCOHTkk)t@)|>TGI7%s5dglwQWo}e4M1bZGl5k zo-=^j;N&m4~f_L(0JxVKx(XvN1qY95AZ?J{BcXAib(9JoQkk2jD$f1jFRRz`i zsX6;kXk(LFPM$P9!-#gbHgYET8IMg!Qdp-~lf++7(9^;`QFqgzfkgN5iCU(zHI%&g zm}b*3Q7b=su~t50EhHKHN;IjDOGXBptdkrV{y0ReS_gi{1Cu&Q=Ej^!eH7HNB*%)( z1;s0C!Qbdvsw6ckm#P_SoLYLns+P4ZN9l2R9kuA}GQ}Lj*HiM`GA(XsrX-4+lO%42zRJtA`ZsHaeMUiq5&6|kLH?8?-F*CU?sihDbZARs=2v#Y$LJo=o7ZKZ87p3mFlsK| z#2U+bs*zepk9+)_nMFyda=8$Y*nbL0>^}u0_MZ}u?>{-T>*!y)(jHP|RyW+IAlI}+ z!}G&EG9~wx!#?Y#3J1@KHMV}%#+O$@)(*NFUw+n0p^9x||1)taNt?y4#_BV)f#3|V z?lNs4PM)Dnp-9S2;n@zl^c^Zq_=FZiA2#{8A%}ZCdu}fl3Im zvlrqtwJdez|3S-kH%3*4`ev&s(I0xNdC>glHe&2&8jhb^Lx4X5U4D|U*)uGH2r_~^*BFgs-rMNPCfyNAtE3#`2-{;pTy&nPe66&PAEvsJ&|Y5 zJ)V+t@5>)z724n#F-GQ(G@nEvd30Tkhkqo8K_u1Wvl)N;k+zQ_OL%KNe$o}h1f1{_ zO#o3UCg8h2(F71l^2K6|hzm3yc~bad4_xRWcccT(E0X`2T4wq_ZH~iL<~WRG##LjG zR?>pZuPg|TP>el7vtiN1tW?v3qf9E2z06fwg+8fz_YK2#NLu&#$GiDt9IZ>}Vm#>oL z?~P@tSF)VEo-Ef)36b%!ULk44MMolZ4h6m}~}fsWZVRs@dHFb=3u3XTSy4U)ElIflXCa_)!&lCb2e(A?+t{ z8zm)T?a!<$eltmnBaW%?p;BF3+CYaLdl!XZ^WiMSCNz7H&I}xQbTn&?4To4Te%zpu zU%kk(r9_ul9A=kkme_m~rKgv&2qn_#H)*_ZCMq30oDG)ZL|tYM96On{RVCb@;?~Km zoh*Kxj=%8C00_l|msp5WXx+?MY`sepqm!^WW8b1+A+e%z^evVp2^_wnL|hpLarm!1 zE&9^)teaKBfm>+n^84|sk;10TVxj5bBDEN5AY(~)x0>W4hDsBRk(&Ya2Gc%@81p+L=pEW~(g zyhXDV6yi6$PdeW_9Q3I9>r4_R9jo`Tc*TUapL$}@28o8)e3KvTJ>!h@0$rD%BC=GB z{!Swp9o%s^=@Dy#rpiHGe}o40L-Vzc`2HhA>5lB?#`;kKif{NVt>>y*QnToYriw?8 zs`m4$nTn@p^3HgK`2}Qlj>>W*NFC%@Ir>F1t}ig_^G&gjBOwiIpEdJnXG~+UOwZry zqF5uoLQfrjh>2%MnaFj2Bt=s!isIopgmKH;CPr9=79Ll)N!l}`OjWaABGdyFCTjDK zSd33nLbA2Z>6kPTN6j@y3>}AZ9NMB*m_5bMM0uWN;FJ{$O2&$bdMKTmAB&!OChx>o zNS1K2C9;iI9VfER1gEtj?DGj_@Nm$&51LQnM!ah6!!$W`9OGzGWZ?S;m>&7FcMEzB zqxSQb*n9zN*@C;qw6F+ox!8-vK>w$3k*aK9d;@`ydA|FZ=~xBY&jT*AULlghgx; zqw`eZ+@O82^n2PZX6S3WM#mSkfiNOa_)hkDTTL3n0;PjAV+nhj!B|NnWPt?%tNXFG zSdsw)@ZgFY3m5X_5iem&y(`8q)Z6gG)%9uuARBwHVNt&MMd>baqTvz{Kev$(Kev$( z_n;(HM&~vH;x5#?vaWKT+RK#ko!W^M(v|()ssdftYfv~(k_jC<^r3dKysh%lHB;!z9d8kLD`ZJ-RdidU+81}v#f0pSFN#=6eE!jUZnj>_M7B$ za1>;hsK$v`$n_IRa*`A&a*q^5j!_Km+r$zi3O{ke_Rnbo!Z{lG9Fwgfj(c&fPEu?@ z?8-FSD+!UwD^euM7gErBS4f;~n-#T{%^?=gZPwC+Y|&`s3aJWF@34ENAmjkusoH{k zA6d)~u<)6!N*dwyoZ70%UEHdPWIwMVa&+Qw>+`IQ*<#AssehiuSn^Ca2fMw%A}s}` zlY`@_KuY%b3ra?Vdp2EH(VkTHnec3ezNiEu$3{ubJ(?3bTR1e4+jIkyKSOQuo>oHm zG;y`Mlw6u@QyQ-`6O8fOEu+Be%&1Yo-59Ld&U#9LMOZ}G4o#HDLExzmG)sPjj_&7m zlH3?2Hg{jz*I3%l>%AyGsQVGr_KC0p_}WF_)4RBiGt zV(>4oXvN62h{aC3E&XWmEO6v*J>1BxP=ZmAhn^CVdo)!F;ZXE>^aj4OM@v`XiN(;p z7V_!B`80AK^~3&qHT9Ccx_T`^=2%M?jZ3=trbmc1)aV(trZ!K){0*IW*c4z zMAs)Q54MQE9qIa~Eq=ft1U3cYl~1I{=g7<`%ukjcUq|xzRQei^?~tGogCCq?eOR5v z?;~3M>sc<_fZ@5U4KDYA9(b~z1+#TLBLaor*Yos^T_l`&n%p|_))t+nJFXQ0yDy$* z?HSmEghz*c|3;;@AnD6};|Jpzv=5S(U5D=Q)t6I*pf9Jg{PI(rsYPP3ln{5UB*Yyn z3310t;gMq{AbB^H_yem|CFb3fMAUav3R^f>vZ8RXBq$s#35we(3G&-1RZX~9GFP}* z5)>|$1jP;2taB_@Nx^TZ-akht!LpbKQe#*H-KWSj`CM_>;Ub+<%QSgjSvCPS_PXTN zltLokOEnYsyEG^+rp8|~Nr{W8ZI?{e!vFf_68FETg)w|6IB?Kq)?Fq?Q@9PD_$OUX ziPGw!bOjOhovzFsFpR&VlUVVc$#%sQ(%?jc$(B4ZB@uaHTDE29btZn`1?#7>n3b2H zy9g7&qVMTaQmEe4`Tr%Ij{_nh9h^a!%^(kw#b1lDOANx34EXUD#qSiRq+~e7@fI07 zoxaA{DEe1hf4!wk=MpK(w%OH80He!p2EZ*fM0CQhUc z)5OVQuZfdsuZfdsVd4aM-BB))go%@&FmV#}nmC#EnmCy@O`K{jI%CRHpg3RR_D!WJ zoGD9!UfU*#2-_w>uWgfQVcP^KY@5s!woQVxfVM|8ThX?ue3 zNE8K-^3(d4gRnjlZnNzSl95aMd~wC|aE~-=8BV9Gz+%=!`Wmx#RFHGC_oX%48HA2PO=g(X3FzB5GmFC#(vGjx?gC(P&qW1+c?@78Vs zyG?G?zU=}l8FaGAjhgSLCTY9P8+{ZX3+_m}jdWtgKGX6&Qz$U2yEm4SE}}g%c&syc zBd>!)3wcg9$4pqDjI(P3w(Q~fi2#RNDOaI%Cs^UXOMgMj7ia|qi zZfeWj2NPipK&aL0j+-31dPFdWkNI@7t$yABzul=8hv!s z^HHAaEMGk!4R;EHeBY9#rl92e%TsX7EwHgLH8m|QsnC^Cn4X`OmXchUo|2rBl<9C6 zx(id2QXJ{-qI73csyjK=S&))m;7Cm^$ajz{obGZZy9!6FU>~H8U|X#GHv?Jk&F>pIKK#h6k!7!?F~54>RbvAG_SBoqo17ifX4H zc~+|%&CK&z@C@XI?53IN&tOalx7j_L^I18KOD3wf;V!mmea{uOjKeayYL4v#x@)U!?b+qL{Xdu@rzcxF1loyvUKSPsW5> zcp&SmD~QX()Q>2_Qee~NU5*t|T;AFH(QT$E=3$9As2@;Zy`U}5Md@iVJ>3&&x-rzrwjf9cDoFo*-%VkNIo{Z z*b|lI!;k=IZ&;%~e?~(+c$=FzDfxDc zO;IA&qpTTbnodk&FlZfLpF}xdpLnPYeWpRAugn1Y1cCtjltZ=z=@=shS62ajIz*I+ zuoemO$61)QlACj0B-W>jm6{zzw^+G(V@(u?RVK6L51Y)I7sTK{R+-H7WuBIhKk>s# zG&$DIp(8oe9FamlVlZ-+SzQNa=<2kHX$ARHN-UqNt5R47y`d;KYkET{q_jMO8&5o~ z8H+DkV8>_7>J++-W1caqi$DiilL8&+WWK^%^S69q5=}|*4zx0grc==dT2NZ=bn}NU ziopr1H6x^WgBaYg+U!GG_f+pA|Lz11TBFAe(z>UKG)!!y9er=&?qI=~AC+0YFo6%R zg-%MOIg?^74TKHzVTdZJT$+Rv)=_wgls#)%EN)+CDoEdxpifH(1?gK7^n6!q>P956?l4^@g)V|F7FANPc0O6cuth*I zA{$I9B^yjCzu&-jDnh2H#~|BMH&xbkY^1v78_l|_H=0U(ztOBaaB-u$6ob$C)+}zM z5!UV`5qB&GfBgDcNLFl^kSDqvO{WhC5D>j=o-`foI9TC|Wl|Ua7;h-238Ir4G z3vr#f#gx5vi&^*b7CL+KRxoNOMqtU~K<}Idy`@`WP>YqVZx+u7^!tG(8_5Fzn`|Us z@S1F-m?up(^1s?fj<)T$3$Nlsde&@u6??pS!mD`Mn>LU53yKO0oTgWiUnJAlcooMi zRRM+vo)k{SQQ8u3hjg2TFgX>yLwKp&>+iIiH=1^mO=s_r*}|vjiSNEhK82-JZiwg6 zE5ety!Efl#Pun1pzF_d>R*C|kK#`k+KJ^XYPECtY!JmckqE1*-3$b=lB$-uuyEb zolZxGNO@pTDDK-%Hy{H{0n(wLh3k$T#1(f!e+;T2U&-PCgk#1oCBU>uMyhKKeV3(mvBzLL=PzF?+-7*z3`f%`Fc)c znp95b^w;H8`!d`Xv?5fDEEs~zpQnT9&aZ$w=o2$9dOHjc5?qr#C#3o|vj)BDCLhzP zz~g3%^t5I#wKUFSJE?Jc?V&EQD6`g12hmPgwh<5PfqUa8y2h2*Y^AP}Lf4ci`ge0w za)Kiv#a1$HVre7)mhaeE=wW~-7<5C50-+uE+`@U~&1O0D9wn zCD3B`+5<3@vDLfJzY6y-m=(7Bw%6c-59|-)BcnCm_Xb2p@8x0;rD^%g!lzG~Tv#w^ zTFKO26UUWIo9doY<=Gd8Rd3ME+PkXGhi}l~_}(!5{tZZNzlZ8xx7HuR@HdAbJs^(| zJVU~8-XX}&Tte3!o^|vIAkShBE#yCK_>Iv`{3n2}>^#2wXGkFZ4B|gm_|L^ayl@Co zas$YGczpR!Z~l|Xf0po{Mf_(T|Cz&oayifb{O3;ob36S^TNYH}n&{?}ZwmhuiYG4& zAAS?M4dWs`CdA1VqC6(V$Q2^w3ii34&xk;-hjY&roO1=&T){C{aLW~(a;FuCbK0ct zPjA8OZhUpsx&mVWsoJ4YkWirI9_9$FY~?2*8;Y8@frcfu;8_9pFM~D;8+KP(OJYE z$sGT&yT|*xHzHm{ypMb@yK2NpdUK?%s`v4G5jSq!xN+}|d;i+~pSbs)SKLGYOJEc%s?%yRDJe zKfQ^Yuc7D1em5vffQ!vRf9(2wZxkZ5?{8mdKXCJOy5Nq-Bfl{j<4c5muipxQGJT-g zb%OvG3Gu$B*X^E8UpICS>m#o>xb3a@{o!PM>P_$OyFGpi&72JN9}Ty8Yvdg;)P>VFALrlwe#<*Pefpm1f_LmSachFEKK+X6tNCuv8@nxc>~iZK^jiMd zZFIfUk4_&Lo;2I;sD~TV`{={?ap~cQ7fyre#h~khbnU?r-CW?m>f@84ciO%XOz%TC zxLvQZ`r=L|(+6;iq1p@6`?{dm=`&w(d3r&Sy1LpP^t{#4;Lsbbw!GV`!2lmxIdX%s zw=(wJ-s<59^sCn@wY9Q8Jn1)1rx%7U24;NPzPJ5~_Pvuv`ynxgY6RM^1=-uLzj@mJ zN|3t!h9oMt--z39!vEhwBW6&u{Z^ZXudr$O$^;s=FMYKAb$3qNk0@%jOZe+i5T^Zh zpvP#^F1HujtIsSx+pe^$?ONE4i_-@JuQ~Py{TNe~+83wykNq)*NpWoZ{^{4;@Pe`5 zKXiyX&TxdG$*UohSSJWX~P>W54G)UjMc~ z8uV!@J40`Phn%*1+r!&l-|2a7Fd5MhTVMx+k<;>;E@oue0bNHPHQ056vDCPHF$z#BaGEvNPyA&kXwhc))ni;QM{gd9P@l-*?_U84ZS>+jp+xn>S1C@pu^Q zuC5LzjjrExi7SJ0XVffv_#Zv$;>YU98x8`3JXvky(_L@%spsFhy|%Nxv9#n+D~X8j z{zeBA)^+dz{vMGO>9(BPZg=7Z{LtZG&@$=Zc12I9-=+P>O)`e>8%^vroAH+QAe~8| zl!qr@|Lop+^^y1Ot#7O^EtQ$sO6}{@-}}-U=u>-!e9)XB5Cs>pbbwE2wiyy+%~KLzClFtoN-Qw3u#jAzzUREycII$=D3pqC zOyO=t;?(;#5x+Yh5!)Y|t|{uxF>7WK?3I{Nc3UjY^JcCg19K3RY#u7&yzu9*yyqT> z%j-w}_(R^POY-9gGI{Kd#$Li~i{Y`*KTs6BGgFCqi4299bFE|It% zG_eX`U3skA<-d=h342)7`a~~Y2>f7-)dtOO_=E1?kpJX0YvlR?`i*Cs-l&gf8iR>g zGNGIVBz%a1L+HU{zbPPEe$Vd*(9f~N`GXdd#2=sVvWCyA)dB>ElIjO-z=Pa!S;5dW zT>2u`Ho7##n%4Ab38l}ButGv>AM|&fI^At!T(FjV2M1W4@pY`4lm4y#;Hb}x0sPT3gG^H>b}M zB{pY0VoR%^H9wNR{6KPU&6J$!6EKvX+iJPtj?r@S!hO&;i}|_h%pCcP(+9oYu8NK=s#YO4VyXA-CjYPbntWER zBdMz~t-}%)*;+@4skDw6J6Gp@tSX2-5U+cz17Lj_i))HovLCeR_xXJEQ@ib5B|rXe zdJpnLYf6tpjyz`X5wUN)?VX5yVGAwAB93)Z_k@;6nn53&xP4d_PQ>;M79F}VXmogu zWDVws_Lm2+A+;R20p`spEzwvrO-TF+9UZ8&Jw1Rv7B1Gj)g_eyi$9iC=w*XubAm-y zEcD%h*kYimJ$YSh4Iz~aYMu)e{0>#wZ^A^!8u14we)ATl8u|!LOenY+VpIF{0uA2i{v@mkAHz0~*6j?hZKR2S+fJQXi|q8PN7=b%NT`F>=w8Y;o- zqQk4iLi~m;0GbiZZ1v!AB>+@&NIjUoB4VcRsJr>aatNF#S^k`ulodZRtO~aw{HLSa zeiOn$OkUgovy(efPC4NzrLCLa=a~TuZe(g;ujut)j! z(F1&zqDX|8f|M#4;LDW(Y>D;aToQ{m`tMQ_%MdIV5l7WxL%$slGyNO&`ul0yPW(#K ztT#cB1&JJ*Q@5dXK_4WqUe~`xODvd{Hql>SuP-?K-$I?uR^VQqgyafr5Bl&g0WpB7 z3zvZ&8k@*TXP6Y242-_MXROQgL!mr=WU?`&8-OG04{!uo)IzNJE zK(6;FK9e0v>8RdrsI7#G6eAs*7&Zio(f*z1#a)K(@YtCdR?+($kZj`r^K9a?x8f;9 z`TsG;3q;}Y1wmnZNT!#xXjs86foI+dX5NZ1^G@AJ#9HTL#09mE5;7dRMsvv8ApLK6 z=tiiz5p|Vm8^OyE8+hXc}rdjI8*b)OI@HYy)^8L=)b9xs>X*hBV~ z>>*<^UsvNL$ZU_xxhg>Kg94=Cr;oTR!mPalg9Vwj*~%VX49(iw&i+W$Xq;jQcTF{# ztnJEF-OgccUwNJa^2kzzh(QmY)&V?!2wT_{K2j2x9M&nk{AyOs`IbFY@4!&yUp44F z#QW8tZOd0J)$%z=hZ~`4S*vY_BA)h}WA6}lVVHxUKFRP4w%O2P!Dbh1QLz(+dX%8$ zsLilkRiFa#j#xU7ZDSH{b`f-mWeYS5;9rHxMy4Gyvk4W8l~b}rQNSz~FX{31#pj`7 zbzz$yI~$dUmAa|yagROwuGRNFui7urs3qaj0-JdWFY~@!Ig*#i)P*Gu4gzvsi!%XR z>kLk+tqMjlT0~}jvYUtcTtVA03>D{0TYEY@IoEU`CF+|Kro&5lR_k8-tk%8fcUJ51 zzb6hlb&QGqQugFNyC?UZUr(O@WM)rFu>*A%r>};rB_CkDft~Ly(*U#(1j8~yt6QZd zC3Ve9HV^&HjMZ=YAi_5eCy3g>5lkHS!;ZJVb~?Ry-0SWJLqv|@GQ03{=Grhl1C3l!S-+=!~Uh8L&?OO1rwB_V z5%OM~Gd0Nf!e4#xo_nsqVt;kvN-#d5U33%2uv%ByT3M#e?!gErF`aQ^(1O$?^W-jV z{8t7CD|G(Sd6Aza(Yt`tLO1V;rUDFrvo1|6(+17B^;HWQU zvc+jst`OH))HNQONw@VcBf1$h5woOH-rBia!fkvR5$;@P>gJab;o{RWpNIpANQuBA zyvnOE{X&|DRND$wq)gXy>FCe=B*>k2B$uLl-b3Uh@ z>9d+%5XZxi$BJ)uz7K$%@5eu6JNhX?uXTQW)<-O~i#@m=MAj?u$yG)b7NT0`M{S^} zb*S?Z+*khN7cSn1<2pJ1Q#Op)qhyhAoNrm+?LCf4<=N0Xbet`^>jyG}tepqQ`gwqC zoCnC}SwW;BDMEO%6CtOFWf)SAkU_|CU;@GgY4vds3WEa)dYs}068UzxsyduZMA%^P z`}UUODA7faUaR6CHDG5&yH>3zG>qIC(Et{rVF=HT7WNcld3LlK^;8WitGA9m{46L+ zkC43xKg56dO_7>z(0%&`sD>L`JL4_}_x`vGH}=^X&gF<_F{)d}JdK^72AM)-^Dn;zPDbHgB%h&hq^&lC z0PeF(H|nj5>o(w9+(oL(6;6CxqEkpq?AfEVvxg(f{;`6Dl7rE%GdgUzrRv(wva^Z* zSMh%=joVA_Sh$k{HfXh?Si8=pC!TmB@(O?N0GV}H0_0EIMM(7Um^_F>WbTEp2N!B| z!Te0yXmd6C5!GPvDF<#T_Ux7;%J*kMEL>;4kYj05wh;W3;4_v*$A=cGhgvzKBuN*3* zLWB6Yn1jTj$ZCq?cjQRK(N&dqlylp09!(KUBc47$QWzwDfYOTS8;S-BLvB#-#Bo67E32w)=x@YfYxp0PgSP?C{;fsl>LdL|Fnot?u5VipA-w3e*R7;J zYtX1J9z{|QdS2RZ@kgEfq7*D9?n4P@ydpCPWHiEu(?B ze>EJDD1DL}xt0Nm`&W5P$2i#6)tLA#(dnruhyzpJF+0BXSS0wX(;g?<2!_$06qJ!8 z#Jr#eB?m)b2naLZlSIdSPZD{ePb$(-%QJoJNh3WP9BEd>A5m5m_pe^7RwGV%q^*o{ zVzoXSt?EcL96z1l_=S(q?;(QGJp|E}`jZhB(10B9rVrct3cYSm9*VVf}oM6{hRIxeoLMLu|cTNAn4xV zkAxwmZeFWVn1Vs;v=N;F#v@8#@AMBLXc3ix_|`704S@}fKv08OsDa7DSXIMVEi=E( z8b*fDZBqnf2x?MwbA4l5Q;=qKax>!N$QWWAx5>wy*^Kx&GK3h%ssRD8dB#yUEqNTN zjn~%51Ce7KXMpiI64(=z+xiH3#<3U&@1S#~t&?RZ=tHZ@8q!+wkk-_YR>~U`XfcbH z3=tnvhM*zc+}ezW)9#Q(hwY8kG zb_N)aD1qG=oFG;ir;lMvg)Q*Fy*n0OPO;d*F$Y4c_eZF>NV!q9CLF97>^`@8LK7|3wu;b z!Jhar@wT2kj_Z0HS$52tk_-_aM~0wrTwB}78c2qS4 zg2u6mB;1;Ui4&3`;^W8=IVU7T#K(~#&O9MEGsY43uU^}xV7D9-at0WWBY{09GJ|6j z`p{-4d=ybs3$ecuo0pr(w1n5HyzSTU%KIk|E+_$q-^Jx3V~jA>w1n5OORHh&g5KcE(uZKE{$( zk{ok$1{jYefn7&tAXHvBA!}UVtPYWG=mZDJkQpvOIAL!{xe!Pzf~Ly_W3rW^?c{;p z)&pHJ=#w~I7$QE<3_%0Ewq>kh=?L+0W&|=q4E5V%Oypu7`xPSE; z3~`YaFKyP&fa8%SI3@Dnhf~vW6V{Yl|+gV zN|k$pd}xt_C$aIYrWl0~Eg&taRm+%?II{#ud`JZdjcFCZ4Ox64P~xL1P~@=Y1Bs8T z01*Rgnn&iGqgCC>9E#J}VntO8jo5o<(+t4zfNus@KL z?fAOMs+rJ-3RjuA>5VHv$-5Op1u}KPWZjk^wA@p6aIF9pt}=uaiEs+us%UvZ&ML=~_r$6K2Ro0ZynZL6_SQR%bp>Q$SPUl(nweZo;v^54ZMsSkH{em_P_ zeX3IoQLXbfd?q?dskHp`ELuiRN22JaO7U%-=FdVsVSVKFP_z*hLn &5R5EM%_bNN_f*xqbE5p*e5wJ#7}aT z+Lu1s{<=G-?MJ5fU3&Q8h0~y2!e5WJF9hwkqY~+>tS`G0dGa%yGoXb&`>BaKUB*#6 zPI|s#Cp}-G(k5K+hH{?cm?Kp-M_OA|`E*6SmoHg*EHS&vW1c55JIX$!)V@;bfM+~m z^M6b7gDOdAv%krrL_j25f9k{ALg;{iZpchVp@?fQzH4yQ?+)D7oe!wr_@pDvZRg4= zQVFAk3eh_2i-{fd@^124(Sf<`jm>9t+; zk==9n+{NhwGV8MOjn0RtpATTBU7x;QeJ$)#q%6g^E zyFOPjrGwY3#EbDla4iovm0s30ueh=h70?0-pYW!35l_+EA=d=RKutxmsQi#o9Se_9 z(w-ji93Lm=`ePK;TXvq%B|t^v#e1ke*1rXY#ik-WqKJ~rsBa4G2w?a&@tmwgA|^YBMC5C4jMIV$WU(yH@I^xW!G#+$zozS;R@{Hjt$2xiyZ zJbm#SWi@VaDay+t#Wv71DgBhNDKycr)*4J^q+j3}mfzBCD)KEc6>O zW?V>yB!VbJh*8iIBqaKIK-skWleua4w>0hkXg=B*Z))0U4O?l<;kM;LlK-r(OfOJb zLm$e`1xV2Y|Cp4S3&8{>5RXr(oHi*+KS!;x=2M~q@WYQCK)^CbOZuY-57(;~6lxi%eOx?3ZKdKjY)ZUsE=tf2>ThdGyj8wz6|H()6sz|~kOoq^F)OBW6d3dNv8Y()S%C<1WnejsZhH*%|yCWi_+2zhSVi0G8&de6_ZXBt66rQUv{pc zxE4*($ND(tKY%$&O|BOTYVz5zvr^M$`qjCZp0xkJGn?tBPhB5+O&_&xQGN{BK8>*! znW#`Pb9CD~abPe&HCz-d8x4A3KPbK@NRPzQR_@WlZPj@~+TGuqyZawc>VD_vv6k8D zUum{V_|-R{R)i$LWZ|Prfs$2ex9!${!`!X^9^Lw9Ly473kuu(VI(&0>A35FD$P=TC zF5+w)(rY23>vNy{31a2G>TULecE8(m_xn`$+Y4KttKY_(y5D-Wo1p}C?!%W11*mfY ze|H|hKZf>WkTr1$`C2R??-?9HdXAPIxoWhLsSFDStQ;aogL2C2K07Bld ze25)&nrx2jad}>1&&*{9<$5aC3f90d#Ro^clFnDRC8@bV$n-UWY@tSlt3yF3td%nfWzV7S zkkcT)-uJzF4jHU^ae6@-9>3>QNx|4$6%}2jYGH;kKfD(zgHe0Ep~NZe(!hQ*bgvbZ zZS`9#*a?ii6>UK@zCuqq{FF$zV9Yi=Woxs~tjofV?I(qawEZ4MHf1E!g`?kcebPhb zL$*(a<|w&pDB(Ht8GFosVXiSJ4flIA?SEFjY-+gEudUbLOI5J1;au!(7)!YhJ?1eo z<^}aSH?b5im;BEo?XYVYl8i zXjcM`a=Eg08`z2T{12oSF!^K}O0p|Z9ao_=u}%6A#Y+3M6%}q5r^@=W{G$e?o(BP9 zm-o%jpk_HNjve{&^v^Wi*mR5knmn`dIuJuM^8Kd1#}2V%zusuQtSK~{Sa=XfAo=8!1ab+JRq~A zo}nMtr};Z>57hnl#~pxCoAAAO#%Q$chE)^%bs=3=Ko=CLHWm)Lhl4&S=twjZ_w;hn z`BNgv>Qh7xAgi&b?}0iQS&gmGj2C|F0uj5{qmrJkv*$D$tukt*o|Kjr7Q*ZMi==%~ zzT)BHO*|Cdz@sg%+;fMeuG?!s%{bmAMXk<{26cb`_+|v>&<3!O%cOgr7*KAb0oJTD zB145A-q*j`ZQFA$KL@W1)iD`M6cXR(U+&+NN+*d!^VT z%WP72$9szpfAh-2y_JVsi`2VT{n(-jcfN5_+Fw*~5p1;Hpq?A{YtBfX`vdw5uSagnp@F77&)(Htrzs?y_L-sLNI&=oYG9t^1s_-&v5 zDbrV+JrE;a;Q^%hLbq^XJUTQrJd>@Gdq1gSIev%6-KQd@pj1nq2S7*ShLGDi0HV&%Va*eNcSugYs)?$jTVP z(vtX^eQjZZre7VB8R>u~*a+`A`^XpII4{PCvP%s^yA~te-R1t>S)TP8^(XPYZgcjF z=uqN&AH2h#Te!KfAjDKX@Mx&Wm0QBErTs@ka%*Zoilz#3t7|uxmKOTN{ZiTygx4== zOw2PW@p0?mGHDoaDKucqg>KRE4>)XO>|nxSAE}ZiiPuBzgh*U=o+ZDU%D@e7Bkku! z^V@d}ydE0Z^oPhxK86FBLIX(WDqoi4#S(%>8It2&Ku78j$PIfau{q~Sy}$Tu*kI8x zn)>=$*mSylgY;yX9z0mQ30Z(}xuI9O47=*(CBZD=$N78WFBw&bX@oGFlK26G_uk@* zyUTYLm&zEDI_p|>4!;XZ;*Tx`h}0<;yLd#Bx+H%>#88-C3mrATmGTwjVVyMap*;}g zN$UD_m~_1T{mWLTE<@n$VsSX^PP`J=sa~NjtbA|{{TH8GCM6OMmJ=xurIKGPS^Hu! zp_RB;vR(s(U*n$BAC`sE-o@6CHd>c?YliLAZ5K*RuB|T zX4AMlYCZ=`S})kYEbKAm*3iFv({V02L;o0YB+w@PezWZb3%HN{AH7NML4O){2jifG z%T%*xue4dIJUTpH-ryh5l^23OPEbJC1>xvX);ag6Rm;xt-eu|q_KGKavWd&?@t%uY zp!)#IU~7P6&Z7nzjrr_$hi!MSQr=ubr_z$rHVZx}_$0a$ zvG~Lm@z0)@i2t>J%Od{i6q!7ah-WAv;@^`3H;;&a$QJPrCW!dX$SQHyV4lqWuTpu8D|t91b8$0R@ue6}C=pX*)Qvgsl*3FO9T~eo9L8 zIfQLqSxcq@B~RZas7DJWQBaB3%Q5kaD!ug@h>=sa76Y}IzAC;f2Fez0AHpo26%3zS zfBn?|!@}(dcxTmL8A=GZaSGf#!tGVIaJ!f)+-6C(P?#BwyIW!Q|3Obx^9+h+U|RW2 z<9Wm!d^4(^!k{5_AVPtrshtHTOw0x!!&wkWb)^gwmZ=+C-+?U;K}O=)U%SgE?X2YtjU)oNTzkX-pB zUuh#kF;KXT|24d(ORhHrOOlb-cc4e7SbMc)Te$s$6pJqgk=60Al~H9&DdNRMzyvBL!k6(xuovSW zIj_a|(~Ga9D1skMSv}|3X)u&njQ@TL+&qi%tL?>j;cSbs(KurFvFjW)1Y6GNBzDU<%J}*x_^iJJ^UV#es$7$Tdzx^^ z=H&kz65!eP>a(*HOc5-?wijdm4rFoI-u4Bzx2t`<%9I~W(OycZl>L4$^_E;>wNOr#6J0DQGp3=rbL!V4C5s8V4S9bqA zBC6C7%lV%=k42!{e!VgAyRB7ezpi`7UUM?`R=3>7y0=l=+}hY^R2!{Ivs&A557sNS zgYEU|=60iX;BHkbt@Z7L*4p~P!NHcdc2Gf5h3dxk_CaH0G)ATVcCF1Zv)p_jL3&P|*Ii9p9$hUGcZ01T!&_lEMTZj_1&NnB# zX7c3JBm_1g$79&%q3@?tB7J70<>2A*cuJD<9n`J_$Bfx1CCj$uvzGX`Nsv#LZ6pEB zoBL&plT-aKj;n+goHZH-ljD>cXWP^>z24 zRmEm$w?A&LG~1XsB^+JpFF7wFf~bMIy|mII{SF(ncAe2-!!1?Uc9xw@{J)C-qX_Eu z(mNKoUP=Pkpw)_E?K+p9cmj1-tXKGZ6zQ@;+`H>k*N4Ycng#XOC~E{R)aZiwPTOd6 zHTn_NVDYK+5-+03Du#(VozMtziDGSbap)6KM@?#)dYZn=U!P=-JmY9hC`jB z->uZ&P1JNkqP9lYMZyhHG6PxiqXp~DG>S|qk##>(!3)e9ty+#tR9z!tMzIS>sr=(n zU|sqk8JMb5*=8P%Yt&#O<&MWyR%1#af+%xteIJ@%p0XiFo`2ZJL0md{AdVC0HW1NN zT?m0qpviS1!kTB5@>WVwSQ|nUhlCa7*kcHyiCxBCQ6e_-$(`1?fQ*hNF3|^Kwv3EE zr_}=^-zafMZ8N0=SJ>sWVqks|$}+jbxPSE-ujRY_j9zk81VGeo>C7q>?T9#5wIYro3(PyV2(LEstcGUcNF)pK8E9ya8zgXG^={TX1SU*pjm~+ z*UB}cR{5Mg%~QCbwt;j>I-nt=$DH9mKDM0UpT@RY-Y_cWCQf{Yh>tBp(Ae4&f6gAy zs9(*QY^i?r)?7W#Dqg)=-b^W38gg@1@#^)mS+G;}7(Y|0<`pW{%&K`zccmSr>2-xl zb@#4=LZxEOkwj&oQY9+Wg-XSBEee&&>+-T&s8qb=OxK4Bm1=OrwSh>9{6eZ!ww>`4 z2?oP6q*VWS0-R~;v+R!-*)Y}~_qs{u$M0sS=o#M5OD2YB zHtGJmgudo5(f)M8YpEp4FwqJcozX=5U1(5V6YWRkvoDQ_HoYTc;+9^RT2d3{cbL3E zIZQ%}FHYRumA#j&%`@!1JJrq2jq|eiCV*wxd(|sx`+_8UuYBiR?7af(Wn}N=2F2~Y z{qRugnNQKKRkKgdzI0m(?%zvcrHuk>lg1auN^5-|mMpD8B%8HpWz_~tanzW$FhYSh zRTF_skQp}GT1tHz8$c6A+3`XPZPhTHD7#0BeKy)%jhftDG9~HmhNq}AdYomUT{p~* zi6qN1(AErt;G8|qvzxHaQfKrv%TBwowY+IIH?hB2mfGt2@>V6G&uCkUb*orFW?Hv+ z9=x2aTil>x0ikrYq4O%2o6nMH!ha*3ki`N*S|U}ul|*TKd5cErTj1H@RubetfY5pO@}HK^o_R0-2T4G)!>!&b!>wY` zihOP^?>7AWLKW9*-hsQZv0e3=2uNJp+(uca&GpU3#^%9VvsT^M^jfv1+iY#t+{(_* zn%8QezZ89{+F&Y4XbnVcbtYw}rp&V1r4Ux9S%Prs5r{<|Wg`M2o@*ThH<$9@f7<0$`N#hr`?@zC?%B9PUm zK1Yj$I4fZsM~DO}$JqQMX3XXCtM0j{Tt?`bY%kwUDS` zMOHc(OFB>wkr-bIK4r^v^lQRL;r!BNCWQVwQ)mXw|VcX%Q9Aw@#qVEXxE zWL>3f&h!LVnDa3;Th5~>s3&V74#5~Br&K9#EKv~wLN8U9tC}H2=j;7CYAjBIy6DpJ z+cBXjk0Y~>v*O@_K@0JYpoKk|lF=eqDM&Q0xQo`{LJ(1zo0F1&MiNf@3JpW-;w{}D zOekZ9aQ|ASe^$;pe&o?xnnD6VmMW|d2PnwX=z>3qvh~nxiR8Ea7Eb)4uPT)# zB-dD^()N~ixp({>j5?AlB015)2@hPDJG2yFj08i3FVY27k|#X6EMdYA5q}a3sB(%l zYIH%SWNjcbE2U>e?o5iU{U&1*uYp@ z^ptkPWVWznpWG~~_Lk)`BxT*DnfOu;$wSr(f)jdDJB&P^C)||YfRZ7HEv^p^>S0@P zLyi))Wj_SFxgS1qGi+QWbEoVlBKgJ0g)b9X#|{_ppa#)I)zqQPRAF2AxVPd6##0p5 zY^0mGFPmz%%||V$5_-6Fv&^|k#Z0+`sxwr{nRy`6E;@WJxx)|;2a`V6zZ8wI8JXnZ zv6g!YO@z=oriyt49DWXoWQoP)BnmG>FHjT4yk>uLK}@k8lF;KY7LI13gj=cGu8$|f zF1S_9H2H^+!*T{=F{9=RNkkJj*pq)CQ`ZRdCK*M{ZIZS=^??NnsaYiwdGZ5>g29Ql z@ExNaPzFqmf9h~c#aR)fg{vCNM`EtDN5_iN`yx2FW95hND358IxZ_qo5V&BjYmFQyMfb+M-zCjjX;QdUoZ%EjE z6#Ir^-wd3cIK&v z&X#$~Xxv@8dZu5CN?^jKK$}FeX0oZFg5(%5!>UwE8Bf{6_&et{j9>BnJdD4ULic%w zk)gye{zeMiJj3`pdl+AJwqZ0HcbCKX!tWr>5b{$t>fK2l^}R5bsNjO)wH7O998>H{61EN|Z}!IMU?+T;lLly3BF>ZZR9>9^2#_0SyaM-0i!RcY@nCX@w4ax6F2G2HT1lZ565pYcd0Yf6G)Uvh zMBLc__V6xSUBmXl_R2`5aQODa--K1REX=f#&n>|rNJ;PEf5Irzs4Y7qO35K>$K4oB zVC%#%b4|s)MWpdRsiUeL4EA^uwUqZ3QDniR9L@{WOsfE&X!9grRX_Q*DCif1%C6QDZ2BTXkpQVOl07Q$yr7&w zlmt}X!ldHWLagNzq%VuR!@l&{=TW`3F#vJ(ZDEKTM8q^)Nid;^FD5 zNK-}@KBRd)9-n$`T_w4F4N-QwPJR1HirkyNNjT2xBadr_HoaE8aZ;yc4;837fB8Y= z+dRehgXtR+AM{)F7`0G5hNPMAQ3ta{-q2F}8FgX$@VliS8g52pk3Uh(Mk#h^n9lV{ zcZi5FwR_9?w9TALXt4-M%#%F#y&y^LkHWyiN94=1d$EE7;Vqxs=_>pE1Q7&>j@KLd zBOiMY=W+K0K6HeCwFfQLn>pXId$l`vuhw<1wsfy_+TNoZ6z9P$1Q!huPk`>gZQpFW zL+HcK_-H`aTN7{uhd>;lNZH_s`VG#tx{V<%!WO-yNVotVc)k2 z`<}T7I{>?ECK0w{=Kh@i*_F4gtT^9BK5dm0xf%` zcO~V&-Sk`Z#_qQ*e49Gd9t6V`>~6Y)!L1dH#`*_l9XrV9O7Do3pZl6DTrx{L8N2HZOe>cqw}F#)@gbAW8(Ec77F6%XTrtpTZRxPX73- z@1^i;W7f_U1pUIRVN&68=T2g|a}+ODfvng7E!Ha4jg@M3rMf{IGH^t7rLwWIR$W|R zQ%IfdYIqRAj$~YeDI_$z8FsfvjfW9KGWLdh7Rwwy1sjNe%j=3bRZ;-B z`igNaw9hO+&_ldakY(!tU9c*33*(mz)mo6Voy&*sIWOK>SRetb5p8epL z_`0yU09C~G5beWD6@E?|8Teaxw8q!@pE0VuzzV?S-Wg9{4d25X;qS^~pkw*O*F@NY zKob+8Iq-vh-5l`%ql@S>CYc(~{gND4(G*nFQSDlKB)mnqZv%hgr@pES2gS3c2iGTNZu;mA2^Qp9A(Plh3o zFq(zm5t+^V0}lFJp*xR+J81PA5SYP{B?<#9u8@Xv&%hM?P}927b@)q8d~Jf?_Moh_YZI9bBFxuof~Xs}CHv zo;Uyy)yDiop)C?Fp-23OvqnOhFD6FF8;f$CD!F#{rkTD)!=z?F=P}N%QX(G z0hf2h(Guf2B1LhPj=AV(#gcG&SNt??80$NK3vU{iL~t>~+~I#O!T#f8#D>^e9HRik z7~+EFGjSTf&ri`a;vj&CN>#s$-ry913SMp<;5TugMXYEz;4$(W6M_v&k3K41AQGB% z4Hv*TZ80t@Z6{KTyXh(2+~0sM)*Pg0INM5 z6fbW<5h{tcwhrKF7@m|6Dy#`8Jdk^fPs)MhWmMk9eH7tT% z?6HbHRVL&SPUx81M<$W8dZ{NT+6 zl_ebBN#P@3-(_3y&ica?lF)D)K9aPYK{&_v4DAU8y%A3Hg`l@BTRw4KvZb-lvgP9`!eAcR!caoCe0K;JO?wvo zJ3gJwc$63Z`!~<5O;GVRHyh_wn;-!!t2TjpWuDpu@||<3O(3w8)FD^PUvMp2Zcrq( zG}n;-ixY$|U7-T*?3{%PXg#vCysH|rQ8b-H8A1Hfa;CUM>GH9v~ockFfC--wJ;@r;=Ik}%9;@r;=lKXRYB+mT| zA-Ufu@siFLaqee`GjqRYmSpZHu36vC;{L39IAGnZUS?Ipsg&1K%43Io#}K+hN=$I| zbiw^;HN|a+IQKJz779e^xDf zaDNt|vTE6b`;A^EiV22@bN`x_{h8d)5Sk`x0x?8R?q`TN_cMg#e$uUHjW|QZxt}3& zaz8`Fxt}2<_h$(chKO@NLrCs7DzK%GNSyl_LUMnWB;Z!Wxt}2f_pci((43l&9;RgO zr}5gTWpV#H#n8v~{&lVQSF`kfhR}ML;yZ>AdjEPB(=bGw`xzpq>}QBL_cKIJ?q>*1 zR;weD`)LC`i~AWO&i&kqoZQb4aqedb$^BV;#}IMuXNa8K&k%9$XNa8K&k%9$X9&Ul z8wP95$^Dwf$=pxG-pbVbHxgg@)&k%z9ce417TM_4eh7jCe%>@zXeug0Kua&p6_CVZ+W{ifQI4iV>mh9K^*mA4FySaCmo zrqo6)99T1Jqw+fNa;lBW4JsU1$?g*}$QKSQ@;Mt`KP`KciAF-WaA4Uq(=s}lW+bc& z2Ug+0qQh}e6xo?a^C*Weg6j{*l^KSR%8apjOVj}vBCgCZ1SvClTM<`g7(ysB`Mi>P zq9~P$A%rrM4|QcS%m!&mI>|R;BAQgwXq|g#!!ISm^zkfgFVcOUVAhfn~`4Ed7gJNAX>6 z;lR??K8Slwpk&!k_JP8I#qN^AfyKtFFIESZecA$png<6P8#~p?Rh20CZeF!1`Mc4!+NXIXCI4NFlE!J_ z-zQpsAN_-RO+!SepCoUk(=>wM)u^}L77>RqH90$a&by0`togi=p(>ie|xr&Lm%kM|<|B&B^* zFHcYwns-VFQspd`09j1r3o+ekIJBztW(r z`N&7kS@T^rO^g@Q((Ut$D&4-T<`s!GDtTaJ!q1oA|1Iyvcp^C^QuuRvL!=qS`1+7` zsKy{uozHy6Cgs;$6jL`JDXAjChkqg@frj_ImV(NkT3p@*hBruTtiK><~tIHdai`; zZ-IzMhQ`A&l4K%n()vz$ZDB!;5fZ67d;6Soalc&ML)wJ!6;?&G~RT*i+w?v(jmx`4OvH}K4d>2|fu(BgS~62DaFAG%7P z$0N0ybdYcXnXr(}oFy{_^#`S}<;#vt=&&RbjniGq@F+5AQ!a8`0Z)be*wV#A=?=2y zN`QU;=B^`3nfc4d{7QdGCPK#U*e+a2|lQa{#V2@jS)y?vTTKolFsiM;+J_e-;F!-giT*WWA zO8;){sKtNWqS>jd-h^rZU?O_JxJA`(#{MB{8>8^nty!wTxMk=9`jx0Mpzkmk;91B- zAKMqA2W_R|u&m+qP@x9S60Vl46tRVap4X+iXRLD2?i!#cnWFrAlwXW%oOZ&Rf$P22p8IVS$=m`^pZHUBRA2)&(t*o0sxp*fEt`-l9NtgsRi$4kduxZlys!$ zrCftwx~y~D9pn6oJ_Db8mSXmyohX`)rAtPmz>3tYb5SsTI5HWGf@D*(&PBoCPM(>L zjoi(tS?8i)I@Tz;WfXLjdT1vKrcWCrgHiBZYSy_Zm<}*V2BQFj)U0z+Fnt0c8H|o1 zq-LFqg6VkFWH1U&nsI0+3a8H{B*W1Gh4aWdXMGn|QaxYrM>MaZxPO&Sh!{!zP+pkB zP6ZS_lY9V~4_458tH59lh=ha-HiVvSD&&nJXp)h&I}e1OV-^HWt@I=Sb}RJEvLI+e z;i!vo+|@kzU_47y|k1+HiVu<7KDskP03_qL+H6xvO$ql5$;1$G-ZxI{)C@8uGA={Jd7mL9?`LrxL&SNX zAq4MdP9KJd^FBjJ-p@tOIPWur;QdT##I1<)K0^rJPs^rbk4T*N8A9-WTHLA)5$An| zAl|RQSa;XFubCy8_eo+B`Yhh(a~W~o=W`i?_cOzEx5Q6u&Q_d%bWMT;29W{Lz zf_ecm<${RwK0`>}Hz=JreYh2I-e(BG`_(MQWr#TMGlb;*tVzreao%SLDfe^HBF_5^ zA?1Eb5)OMr;=Iogg7<5=Xc6aqh7fY!9Mn1Gz8>jh-lrj_EFrUapU;NGd7qEkNV%Uy z>Fm=wW>URGu49Ne?{g~z?`LuyLuiVq>BA6`_fs;agyYQ+ao%T$oN}Kb;=IoglJ~Q? zjv?Z_&k%z5D_L47L&SNXA#%!nhKTb%LrA%w#rq5q=Y56{a(|A5TVjy3&ZCDZnfGbD zNXpFOeLheT=Y2k(BISOT!om=7xz7+n?q@PCL&SNXAq4Mdu09MA=Y58dyq_ia8A20P zO&^Akyr0Fm3=!vjhLF6UB}y0~&if1@c|U9EV2C*HGel0g&k%9mX9&UjX(>2EQNj>$ z-e(BG`{q7yPPwmXoXq<~Y?_?2c%RRO#Cf03g-E%dHNP1m&if1@c;B4giE^JI;=Iog zg7-6bnG6x_ZcG2`wWqj_ZdQui<&+Rk(2isBF_5^A$dR7h{SoHAtdkTf{61z zLkQkC6_)ftjq^T32;Mg#=Hz`%pk&@BO40H-i}yL9Se*CyNQdP8tQD3a;=Iog#QQny zJPZ-%eTERcpO)+~lrjtv=Y58dyq`7R3=!vjh7i1;IRhCY&if1@c|U8%%@BHM)%0Nq z!TV{c|7=>sd7mL9?`JI?+=@8wGlby%Ogj%l#Ce|~i1*KA=h3}O=6&iWDJ-*ie=FI> zxuudUZl)=+zd7mK!?`N707(#Q0nm!CcOp%_a(H_(|?=uAPel6#q#(AG1&dmF| zY011#Z6ql(i}$yad4F5+KJubxjW;8Y2*LaL$QkE-h9KV0VK(DdXa-Z$harfs^72KT z_ZfnC-=027=fTgE1fxYX!psDtEVf=w2}Zd=MKppffK}BrvB*f<4cx+7ekS{fNst!N z2#7Z_;z6{WO{N(M+#(tw%4u36CsU0?a}kY@8PE{dRyd$RXe*h!R1T|%Yby*Pw3SQ) zCqu-w6^0O+dZy0A5PBA=MV=v~wvx3=Wr(=8!Vp4R$=szfL|j{82%)W1vUaHq5!Y52 zLTD?QyHtkIbHkzqO^Gw@QnhqX*3?-|wik+6Bn~^S;}#lr8RxW4GK6l6>LWu?6N+dA zkqA}tewLkx$rp`9WngV>0iP#4Mr_uog?XpXHS*q7mvsr2#uJE#h*& zh(@r3IN9qQm;3B>7IMFcMlkZnWm#yLoN>9&

thh(;J3Y1K4Y?vsvML?h&v`|Li~ zL{-WgyU&HbU&&%zhKTF?3?X%%ECVM)#Ce|~B=2V_>kJXs_ZdR!`?)$2m-`GM^!*|l z0ke+X=W)5uUT3NAXN@;QXcbOz9Yct{ZssnNA>w;ohLAc>mOqFg;=IogIeDKU;=Iog zIeDKU;=IoglJ~Q=3=9$HeTI;{p9><+`wSs?-wY)vq7k}o5bP}~#$~TF@qQ7FaKyBb zyq{&~DWVb7@e`U+iB^0FTs^asbsn1HMKnUF^JKbHi)aMB*JWD7<$e*3VDEL=aUIur z*y}9hem?hkT<2kkoH`G;BChi=gwT01d7mNTIuApT&QnAq95F3~&XX@nC2rqm2(s_z zjz+LkLHrEmT3CHbWnYM?5(=%1X8Y$bY2%NG4(QH*E;h`Y`fU0rK#Z&mIpTXguU zP08Pkw$)BTcjj!-GS|i@@tNo-rP9*O79FFd&YP>!;Hs>)>Di(cpCIYSk5GTlm@V3X z(@8%f?V2N7^qcKuXv9l4_|P^3t=j2egPNN3var4+J4K; zQ-Z?F`?{8nA48^7PGwQ;0`8u~I1b<(1JZK;<7E+zn zDz!D|IL_(IaIwnursdcm?JW#AlnNXLzgVo0P$PjJq!k>@!L$_0kh&PV>ZjXYuWX44-d z0XWioj{{0mY!Rd^(u0Q|;B;c+qk+bu?}!w!M(Xb`q88hO_olf9k5U-_dg9&Ch_s@t^UKK>myyE`?Q43RUCv50XE%|v(v|zj=!&j9JLr3n_5@Um zLDpv|ArpAhr!3)nwI%-Mm`GjcXM&RWqw9_iz52nRKNgS3VJXR|)##Bbro)Rwc(pQjFEL zDj!ib4pb;hU=&STAd=C@6peP7ND46!sB!iK|CN;ZQ6inN7lflTYo0?rL3Z`v%$zWvAn2}v9 z3a4!v$#7)cIFEQ<>$@;->-myw>!$ey5FfHQKfgy5EhwO;ov|MaY?RL(p{Cu#SDI*?^xZXY&d*e&*Rc9=ey)**tDgp~iFF4b!17=GZwM%Zq|( zA)2hIku)vTcx?EMU76NBl4(|`@!(<7BRrRtuq#qRQ=zoPM5z{27HWL9>KfNucr#I` z@m%wnX;G;0hDAsn+!GTGGptbK>ozS4HNHxvV3;pnCTcu6A3pJ~|HVE0pYl=HI`1Vj z|LRl9@E>(ZoFTg9$=S%M5gET3*2=DRo`_;ZeGhjZ-Lkp1vD3P{=oa;=?a%R|ZMEGn zXO3=>Zk`4{6CI^gTAI-2L_$xar#?@g)Nh(Xq0zLIE9V;U*M8G+mDR(<8wk(Z~}c>O===h^Uk4!pJ*7 z@I$}pwN9UY1p+o+PC+O?ESV&K)$LDzPZ)&q4?_+!s&0P~g>=Xuo-d*n+Y;^P<{CT- zLixkQ!HWc;L}hsN@3Z-n*Eg%R_4D#4CxB)7lhrHp_><*3=i*NmST7@gGB@Z;!Vtwh zF)SC_KbCB{Act1EKRJq~Jq*ccHTqX%V?vV>Q9b>>8(LB7@7K0 z{mD@&PqrcS1hODz8=`CoJ#8!qnk^`5 zmf}ygA@o$SAZUin=T8=}FOfevZ1de4qHKuxbYQz}4A;fe@^W@qciBAWHkkcW>pKL?KrvpQX z>5#7#@#(-2G#$>_pUh1!)OdF|Mx1!sUV_5IS2%2Z*YU@0*KfW9z9OmnuLOR}+jSa) z@p#aq>tpYDyn=@g`@2rpI~dco9>UE1{>peT+;ysz;qf~b?krqcWyq@wS2z@1){Eo; zDb#q-OgP?DSg4p|=j2b0f@vX|tf`SSP4y>7!L&F{1|zvzsPV8K7+X9oc9UsF^0!dq z{r({&%5AS(afF(mGb~haXradAuvOirMO<%TH*8M5g?B}9y@eri>MaZr*IO8(P~(}` z*~6ES`jRx}++m?13lwU+o(@cl_;g^sGv{FdVsVSVKF2DiNxoa>#8Pd%&4 z3;jmj>v}z}KR#{0b-K{>y4^aT>^*%Ne|pDW6XwPV?mqoh39jY#rH{71?#^lZk?DPx z9)5V?G-#Lb*Q4zVLHq6S`M%2fvOA$P0t?2R0WGw{QxkQ1uivWbYz5>#?)(5c>6)ns zw9`~Lg**QMPh>fRFF)@gx4}5rb>1C}{ho{S`OD%Mw&V6&4o)ezd^)s$D*c$bpSKzM z63&0p0OxlBzw*dLQ+OAW7G%AhOrsr*~?`$44pcWl$Rky0!?&e0b);e%^s^ww-@U(Le=y&I|^Gf{a z{3OU95Ep+AjRZ&h01XGFA6R`lw{kMQh^6b$TP1L@q%y!$Usu75tabh_AhCEv$ke%M z4Ak^(S0s}M{)dq9WW92{zFpzWG)~od?AQygD(27eq&+KsnLlqcby_4K5#n3WF0}d= z6J9e}cxt2rn=a5CS;Z3O_tPn$6^guCnnlL%rIAU{(#%GwdHp@|Suv7Q7TF}oH?RLr zHc;gI9XYT6>!dg5o{3{6`*xlB4X6Nynlxwx9+FETp^>R6MOXi%1UbugVxwrXoI0~w zseOIApuc`{r27ex*fz4kLwrGD6YvRKs5JYYh zMZifTeOf4P{!I9xGp=RUN6sl?+HiGqZo63j0+9+1Dzwz!S>+~;yxARK z?vY|Hl<(M!jT6@HO@&=4-&3WILM=qiKVN z+wi-TpA1Rb@B&`fpOxR^ZN{?0s8N)SN;1l_^H{&{9q-D$!8X#I*_pNagK@MqVGBST zC}w`JE9YWC%5xy4EoGKoC6>K>dso`j)ZQOT8O`pUpT9S%gq1qK9J{7x#q`n>awiJb zl$%o|)hqEvSHzA7Dg{`+XYGFN&E2mx-LGBwa)yrI`6YA^6fxf13g4XF``5hFKXj4I zZ|pfE+nc?#+!Nj^oARQlR&5o$enoN9Jsd!qp)i! zckLeDn!AS^x`*xgdT6|KRyxq!br58xkK zRemnU6ndH%{Qu+=$QSAyh`r}JvPdGTq3;Ap9N8Wmi6uY?d10hNjD(;qtru$FgexO2 zw6>fhqCF~qbM8^u(xYN@KC(rzc4=odd|a{(A76cbhL6X;Jwe_@w_E4hm#?$?^2YP) z%kw|_h3?BEc3-~c{Q5G2RYz*On#aC?2C07=&I&_qK2L+xx>^;KL25m+OZrUMg1iQ) zKMvn8+H9`}`8KY9m<<%wmgUCv-_QT1G)N^A{5%X&Rb`NB`SPIIiW0G{mx*c0t!_1H zwd&4JwYh!Z)i%Ax*1=|TZLLzFzeD9Jr>Mi*Dyi8Ny@#YI;4d*?7s)e>GanK_qf%A&vwt-|!k zbv_dw3>Ky-3G!7mGC56Cub0oB*);WjI7h}gXq_Ah3f>d-#_3)51yID8>L zX{&`ngbwyZi!cWpsJ@fLf-q1iBIYqrwZjjcan2D?( zsQz{Kk~z~r^TYFy z4R)W=ZhzcfX|~~fDIvnFzr=Ch4Yzsga6}2wS74nRjCP&TVZ$v|*LIejP5i%#|Kn)S z_7cTzCxd03SykUpi!&d(trlWD5h7j_A>#To=W=FMeE(&1W|bS16zskw(&4+eJ=kZw zBoTW=0SQMg?3XlTVGx26xLn$RcB!U$lAj7+)Rx6bK#{e)r|k{>k&lQ3=W+K0#!)2E zZx328UFu{efDs3s5q*D;F^zyM@a#huMFS#(Q=;cP1^kIm2FT*;wn3sl_p0k(w zfKzfW6Aw7WddZb5xmb7p2$uY@Xp_oJx;`;+@g2X&*F9TKJFPI6v_9hCCwQb)JTnSz!f;seSM zG@x7MEkjnT0maXh1k}YIYGwjzo=EEKZ`wxg3wdCe8&vF}^vPf?H)0zIK2}Hfi#=4a zhjPa{@2*(+iak{1(7n(ag9p>kRs zza;liwr}zm$kVs_)W;ta4##L9=NV3G|LkmJ(|>3N3UtiV+CLM;h&to$`m{DuBv-xK zU7gkrU$rUuKS$eYyLr>%DW*nk*WX82L+AVGpYIm|4xR7BPZ^=WLsaYhOME6eN~yFo zPix0$Im5S_5^SOQ1TiZ=N&QU-w&;8oZMKd8Of9(2i>~p3XT^4a`>_yA0;lWud}@(6wIW-D zKD&Z6EyRFRYv`05eNR3>?(ycJkMix3C_#@-_E40=5J&F`Sbb4=(PeYF)Vn|qJhYus z7BDtvWx(%vPW4Z~AO&83>>t2$&V81YQ*PR^FE1a2C;tJW&Ra0@!NBbW7{MM+R|f3w z_nSzX!1V2VM-~O?lYW2`IW*3w0nay`*2Ke!Bkn%>9E?Xmk|gs{E}lpuyN4_W#0=tD zRGq)YUh3naH}WaHf7yA)?c;0{-U=L!7V!H%y3p;O=yV7J#Cib}=?+xaskXd>n)gi* zRcAV&aC)~np77gv1)atcM-6vz;0jC&*ENdNQ{4U7I~Eg_RS+!akG&qX`hz$!MnfE^fd68aQnm{*HpMK(ksDt!W-&|M(aT_# z+KY5~u0@&-+Wlh2BK^BKSIY9zTH_!YG5cH19Ja7O6xaO55GN)lO6A*)n~5DPF5 zl9(4PaX?k_ks%RDwnJE+(1B5`ZTOOUU*@Ud6&9gmC+Y-~5cOe{kXj$58YRCFOb!nL zBr(EOr8ADiF3^LeoRt0fNi$lNM&R+_JQ8P^hq4KG2Ki zV1&hBOhOrp70d5njCB2)n_Wa}LjO=366>1X!*86chqNR472U(<6LuuizsAQU zq3Z`c(}ljsrzW{!Ez-a+`)H-)sdC%6&!xY z!FLDhbO4u?&M zvXc{Cj9EulCADH!0Hd#(%?-$hu=a%WOk+kaN2ao#J9(z^{hW|N5l{YQlj?`(A{C9{ zul-VJQ22*>3}^7v9&Lfeve-OPTOD)l#Oxb+UAd7Th}~cqbgo)|Mijf(zc_cVKlOiv zz5Y4f>&U^0sBJg;cgDerKYsJfgB5F=+Xs#FI#`hamUXZ~y^lXS2`zH=@ID+Jcd z=wJmmC@Cmtd)Ik?8;2UCH7q=+#;a5;D~p^8Y_JgdSYEoL5Zq)Hl`g{Hq#v{kw5$uGR@|29`J@0xlAFhsxNXDhOa*0dnX)IhL8ZY-D1*>0h zx$1By{E>1W`sbjBnTLX*>i zASyoLb^`-L5iiBx7^RbLTQZ%fkrXItuu`m(S!W!?DT!Hq%sS!_>7yAm8jcoY#OcH* zEzV9S4V+9T`T~Vg&!SV-DG5+ir&FGz8tWN!$_g?PM?GfIDeIg@4t8RQIGOmU$Jxo0=d1_C z<;}$~x$ggG>w&Clj9)IXjv192TJiH?zo;byP$gHkn1HtSF}(WMYUo znfS2D*~ygWvB`cfsK(4z}=K@2IUdUYGDdrqPOMvJ;*&t_Ut}GS3N`d@YI(julNw0>7p|iDgfssHh#>mTD zDSEnS$l0ltrKnfwP<583UQJQetKp&QY+YSoBv30nRh@^oQq*kYCX6Q_jH`F0YyA;CVCsaykdk4Juq- z4a0?|XH~LmisVt@@^XV2EAc(X%mPUq%OL}g_45>vjP+Gd^*E9o{ zZd=NB5sfTdUipr-XYHy}Hq~?NsSB4E*fD!EUAVl+gqXdJE?izjrY*9y&ax>NE-xa} zj*;^#QNb=;UQ8wTJrD1 zvYs$(8Q-Fs{WnZAe3!=BG7VdHz?OrLK$Gvc69lO&&e&j&xPhMlXY2#gcS6{*#O=WD zw`15%3iVaWLVazV9Mo4z_~U*Qxo&dF24e^yR@?VyuauZ?i=;`PMAfsi$D@8b^7I<^%% z&djaP$g!Dm&2D0vV>x!?aQPn1u@mj!*xwoBiJt~^GR5xp7~7i)t)A_kFQ#WbEWv~^9j1Zrx}v< z-*=C2EbI?y62ipVcVh>K3%tWaQUdRM^yY()-}_-vRT&Ad>xBegf?X5+uC8@=Rke6o z15{i$5Jdo=m|DAS_`2nb%Pjt;c}p(zI1KGy`X0|@KLmW#Q{RhTk2cLYxju4^#1Lby zW_A9}(K_1?FlScnSQrR9J-p3o@5=iF8AqzymvQvftc-s;T1MWeG<9EMF~(PCV{hg7 zA!%G-xy&17wl#lG2QFnq?DBAj2aq&nsS&#<{{YK+-!_+?x$%uIHcWKOfU+{mfCB>D zVYmEJk8KbA>MMz{9<_VcdjA@h>4a-)wtCI}#}PLvZ9Y3)Qy;L|A-7;`xskf{Zy#%BeVU&cSwae(9&l8uruel8qo5KRv&bXV;1B6otxEuc4E!N7|{x9Fw zM91-jW7T(ySIgJS)qG%RbyE+SIG4@Jh7olCzf>1vrHwMT{oEM>+sJm4Yf705qippVM66 zR;2{!Hw=MI4UnD^u&ET6GlK9S-Bt-D)z!4#G2=~Hz-m{swSCoUxmc(oSwPI1sRnjW zneZtRpERT*_+;gIsTRgNikpwcjyaI#zl(aYi zb&eFd7#M=|2_m_wdyP<7PEZE^qYH3IJ(BaUXbw<$qaR1Th4@89=30geq%y!#VtkIu z%s>EY8YidXX;kpu!)d;E8u|{-mW9_)X(Md98btOdb5m1tt%*(V0WoZ(uH2lK%K@+| zk;c@0!jX*7Qb2H99YD#T2n6&p_-({3hGTGxN>6nvzqp3Hn65X#!B23xVJSxJj{k}h z-JFqmQ*%UeIwx0+eG7&Xnh1kI>zr=X!xs1zfMV>zQ0T!~2C4%pv|*4&(LGtP+)gM| zU_5)YZE+-Xp=g$NN`Zyrv)PNP;rpJin#k^s;ls!zYC}YF#S2B2%N%own)PzMWT}3KrTKkbXFAG{IJay0{XDoQsvX0eB?Ry;z%MEzMHhdKO z#BhaMU|lz$+dpXP1V*TP>VBL2=`>Ify}(e@BiTzDLVe8w!Xf+Tii%2+Fc6_gPs)WP z8qBI(f-)4(jKT({%e`)D(*ksQbQ|H@F*+)A0#rQkyGfQMYN>0OnjBl6NmhL{2jxy& zqk4X;63KPyNt~#s3Y2SDSHPN!XfHjv^)$>;@SBYx_S7<9e<@*4KLIC?+cW&KWr${( z=0M0+Owo2QSq>182m)Q0(alA94ldPJ`_a``K*j#v4I{cQKhJUj5FHTUK!1eil9hD0 z@+n`t+doCV9|soh8KobUo(aMZgegD|VF?&24*2_U6R%;pP2B7x1FTU_2*UbMKdVh%iZ_sP z*v)e8fpfI$hK^Y6LIl$=1SVN;px2&CFz}A5={i6%DKp%YtHhaX5Eu^juBPO5UoOQQ zn0JneswD&O3ZW8$wuG;Ssc@9tU_ScAP;~CVh z5xIjMBkXSz*`O|Gh&&|nOClE*L1-5HJRNNiIfE6>UMDh_2bm$VmIGNK@?RqV0g+dR zV4x8TUL7EM+gIZ1ARvf-;7U6k3!$snU&Nm->?er4Oyor(ZxZ<#k)IHGgNQ~--68TV zBCmjiGDo`8dwaGpYp<~83Tv&f#tLhzu%-%Ysj!CkSUZI^yT@87tdYXnDE7ZGMJ%7f zvMDT=!ZIl=kHWGjp}C5fV6&Sy*yiRPHn{oE*xE0U@!8rtWPG-^M#g7rpC?1JwSP@V zY;8VbYky2_Z0$>Q8`#>{>4>atuM_zx-HSyc8>c{iK}T#++C(L`C~X@OTa<82V~f5@ zM{H3lG1;OvRmq`TPN!NjEh=&g37b*?+%RsT1u^Ltr;2n-+z$x^3AbJMoPPG^uAduf z?Dx)PIOdXBdC*#hKWZCaP%*VW%&T{0O6IX##~X2=E&(R1Lz|vJ2b6~k&w3#((#TB+ zsJC#ZZ%zl_kG@Guq~>EaM9>Dv#qq@b)jQpcj8_QoI?re)t*Jz3&YKIjqrvOJ-uW$A zdmi5EQ(6YfF=g2ze^FJ!f=+LiE)u#p?NZTSIeFgO^Sc7bi7oFd zk<6g7vcg+dB)h3Xiit@MHf&-PU{|AmR6@7adb#jw?E!z62Igw>;BZSOY-+4zwEjk< zoz_U@?{ZLNL|VNOhv_zA#uTEV%{brgaV5N}&1bYDn=y56oP)<|k*s(NlHJ(B!7nBM z(w!W9ELnGI1B_>3A%yQ@VIfTLu`>rY{rDTXL*uO1wK-JvZJH2CF%^XDSfe^hV1-XU4=FJqHmp zCfbN~*<8)asKSWkv&6s0f?4W~9E?iVl*J$t|EsSI%B@IzU&%qc6-x{%4$fGs#YD$| z3bJkajN3a|3RWAIQPDXp#q4ShKCvOmsJaB6IdM3j-$W&w9p7wMU$O zTEjv8vl0u@pM8?0H*#=Avbv4j&~{8L+HMdDhBkAs?qCiyH{$PxawPJPka*b+ETfX- zk*wk^9GsP`8#@>!EZvFdPAvy7?Xxy zp+&A$U-qtM7QI##MR5YEe{d45Xw<;6sQ7&)Wl`~~Jb+nE2Qcf02qrhWe3;isFNYR1{D37s$mUlPi=OtOxR7nL!4B>&Grx z1K9nRRSAOwc;1_&_=^ENFO|(TuV8m7n=eWhmCd)K_?~Z*7#ZO~Q}N!WIJh?1Mdvu& zA_M+lVX`}SKy;rzxSbuF>Xo<*3rpjMg{Ar7rAe%g=c5wo>UFJ2N<_^>*O6Be^MWyKZv8S13I8XLg@XwEt zZ&E7kkxAxjqB+;M4 z7K7(Zk4bMrtrZ5HKZh(+QzjVMxfu4nLqt^gRR#4D(88h#uVG=){tt_mn3~!qC|$iu z*H)*gMWthA!aRLH6>LX~p)+eK*nXbdQ_eT7i^liI%XwL>Vh7(IR0N%Y_Rf$Z-05jGQ?69j~*g3w#4o28GU>xGo@3G>MCzA$xbd(H~EgndC&7aeWidT3(Bgg&z zR50i+gx#AtT-*nC;3^WQW{)LrSkB@Kcw+%NGyx)x4biM8}Z{u70q#r&Pbq z776iwUyairaM!rngPk3YNR63QDg3P-w=-nGq5sqLhhOVGY$@(ZxYfZgr7N4e2ktmC zVf08YeD}thOyL-6&#VkS?W)N0^wMAW`$G?1(`O|ecMJxv<%9iNX|i*eICm{u7L&X8 zx}D@7fv_(WZ_WgJS>Ec{;?9VZcLcoT6~`9&99}p1v$mu}9uGp!_0qKEuP5rRE7H^K z8Hu0#{>$`2Z7rTWT}$x8$2tZrGj*wNz%OPBQ-1{~X3A2}63x_bUmwZ^e=x9bt z3JlJyNIe6)KCI|zAf`u4ANSJ8W0pR?SVSIwpbsStRFOwGmPscIMLOLF rLcT@FwS@Ux8l{B1R$$}55~==9nJJa$PlP!f%Wm`gL%#DjHl+R=@6m>& delta 4969 zcmeHJT}%{b6y?Xoh>B7ZkX2ZzBcMok23c6@va(vO!u}R%(^QM=f znZ0u|q5kN*XQMSIG-t$z-)i<`XgtzBj|kn@w<8MVzJn+wkb=k(cpuT}Ks%ymYlji_ z7;T8Ajdnz}4SG19sYBMCS&T?5CWU4F7g(Dq-bScTfOQ*_kXgv1NkJ55ehys(kuOOpv}QURe+y8!3(%awXpivSaP8u?mJW@gcWjS~(s8yCqUFeJdn zO=tmS64iTEG%1;4`J*j6=slVZ(}o1-a4mpMg_&sUEhO8qY_bHFTx99 zg-4z^*!131tT8{g++)l$dfZ?-Bh8_~&$bFt8jqMSxs@Q{hzAKrJV-d=LBbIa5{|Sx zzQ^7kqaF_B%b~&R(=sbBT8WGW%21IUNc^ljQx7r4Ymo6!;dRS;J=`dk!-_K=EDGvN z1Fuzn7ZjBoECH()S!b32uT)_kggQcCE#L4YHra?)`xo=F^q zcZg{zBSDj!E$+?cxuzhtdkSK?rXZGU3SzmY zpk?*9<}n15J4AR>Pf`|Zjs`7?Y8$pAVv+W&AxUY`7mJYBn1n|x)mj>p;<;~Gb;Xg2 zYO&1Yt&?;^5wsg4U zTaH4OeZQ$fmVKE`)K=7FM%C#im(o0C6XC69x=R*`A2+W=5sSp`W}Gr&PlsQdmn&V7 zj=3XQD$b5%sd%|X8>`&5{23*IqbUKFnlE?CxkqIzIWPL~xl67L_`{btJ5u>_Th+FDZi!t*hf4#MZ7Flh@vTaEu&o5|n+2A# z4B@58hVat-`_cqg_!D^&x%cgL8;nLuBBa5iXHG59Fxpv87TFOCklaBvO!^ zL@^w_4bF8gEV56mMSUxfu`K$eZyPf6jS@sNeP%?K^A1EWYon?=KR^CbeR^-wv|ar+RIm?-s#`Q^x}Ox|w~A1) zewe0shv_u)(nolzyKRo;kAZy$+A># zCdEV;xi4U=<0{DtM(C-1H9{t)Yc!(snsuT2B%~aEp)=RWWpvaEJ*D&E_;nrnvh-3` zDZFU>%?mHu|FCGm(a{~4bmfM;eL1s9$7#?u_Bt{+@x$WisGl{#sh^%k>o#QjE9dX_ zSDM?Sb7b7=_xbDn8I_vKm`bTCJ_b_j65!1vUE~r-4y8mc1yd+JDpe_e9!izV=RyW; zTueknd;C%F!E%qcuJ&+N&HmcD!xe}8Rjc56Xx;p)nuv(10SzQSPJH(Q!@crPUHgJs ucTL6NV+UlRJhF{YL#*zc2h?3Zcnb(Qh#RBo?*oDkKk37&jh6!{NEbZ-6t diff --git a/_build/jupyter_execute/3b10867ba4b3bf65b1dee903696e5accfa2c51ba007dd2cfe381a0658d975cc4.png b/_build/jupyter_execute/3b10867ba4b3bf65b1dee903696e5accfa2c51ba007dd2cfe381a0658d975cc4.png new file mode 100644 index 0000000000000000000000000000000000000000..604743772dcdb124e526c53ff536d2c99428151a GIT binary patch literal 20187 zcmeIaXH-<(vNqa)2qF>$BuG$_f=Fs42T_!$D2Nz{0*wfga|T7CAW53k7>JT2NX{ro zRuPb#bB;~s)^hK2_Bnfu^NsJ`al@bcqu<7UyVsg)&YD$ERXxuPymMRe6d4m43WYkQ ztfZiULJ^`-D1t=NDX>|0G@V)mTOl8a<5A1*e2`aa1!qfYBU zOiM>)b(O+_?wH><-LQb54+Ck?ioe+2%VU~%}yLhtK)uj$;fD_ zsZS-&%{_}3YB>sox3gpH8pkkhdWq!qgK`Y-+s%SnJ0@XY;9GeU>3jn^yx*> z__m%dhunL=BL*$CkwN8Q_sOY$q70BfMf@25 z%Uhwa9EMviL?}VZDKsR6TwnV}kn+{5D7s7ce@||+vrk?vr9_*yCyb8NzDQ0@-7VwQ zXuWprTDoqzX!IrREe9v z#2eMXl_47f|^n5?J_cU_Oa;&AHffm zd&9jxQ+4Oig;&U}riXGwW<@k@ln5MA=H7`9Tew;o>L;2a&3?QisI9FneEQS(M(~-^ z%*cpqFdZ2W3%KD^k!QaHBv631|UB8#^>ulSnj%7b#p%k}=0(_md`>PfQpbH4*$pB1yMKP4t; zP=o4NXo`)Eg^jX0>d%({yk8XOzNUP*d~_H_DYsAM?a$_km0Bu!fs=8wT^W(5V3k%% zyPc?X>(*r1e9p&bU7y_XgHG;82l#v0kD`$;O|>$j^jv4TFdewIeyi#>{IFL?o>Ak2 z3TGSTL;BzVC4QaRm3_(~8Q~ERDdAYG zlA4;@D7ThsEsM^W-9vhkR+74tRsE_G4s*0up8Xz~&#g{1Y7E7#)xIE!jEie-ioB3< z_v7&b(~kDlKNStF`!;;4Jvq8f-@hAt3!?KbH~l(l{iEE;YRF}p1x3Lksj%4h<>8lS zbS#qg-@oM4zdFSsA<^4u9@USH?JY1xyQ~=(Sq(46`s~0SgjLKlZaO_SHkPiLM!}&N zYP|3#4~6&wES90K&@6I#JD$C|3YM2^?^DWxrrO9-I8UJFE&9FvLypZ>+8e^9B#imZ zk*ZT>#n1b1K6=C?AtI;;nuaJ%9YHJ4?CilUA&R9e4HqTFZ?jQ+Sev z-U9z0KkleM{-l+O-0Z}O6XJ=tVfAL{26*phDfJgUKiS1kP0hn>WbkloXYzfv;m)97 za@S720KTmF(k&*G4sAPojzBVaUeqC&o=vYwj7#=Oa&p8G9qi%PtB(%COj_Rl%ziBP z>eShWV1cR!@1`^EWkmGkw_(G$NTs1D^}`GW<4yJ zidZ!3Og(i3m$u8wd{}_-nd4(;=W3)r7Q9;`P`&iCW{^meXJr4~h)LkmW~jyzxi*$3 zNL3eg?;1Vn6|-M2Yih1~?o85`+0RDIi(WDBHU@`7&Mf}MJg4-PBCE?wdVTkwb|kYQ zAt6t4dxGdL&HT=wp_E?nPUAa&zScY*{O+{#Qg`;_0)tvYh!$%LDp}yEGqrQ4`pk2Q z2hw6iE&g1c@6HY`rDJEe6}ob5M9!&9pt@Z)I?5xubHy=*&G@Qe>Qi=`u-8rIt!l^5^IvGz`6@G~ENElH{%~*j==9mMC$B0f z90Pylez-FY8<3io_MSzIiI~NoH;73HRBii$Z4G(gbzz*-rM_hEJP&r=SHICO43tLB zb!CoQi_Z*K%L!Dh5LUWwj>Ved&hzpH>3i<@g~=Uakx58Tzj!m0xe0um;>Vk>175#2 zX^!Fnw_NdH?lL<&apYrz)o)sAy&{;@i*-H^OJ212jpaA18mw3qc^%B_OYclXs>O)} z{`vF3vSjqQ?9K$ulP6EobxMW9WVRUE;>D(6s<_Ub^WIsXCR)nl?o3mk&MqGMa63_Q z1BUl!&VJYf{}cAxQpNi1zGABm@M4v&W~f)>jCIl4db5n$>-Cg!RHskZISqR#4wgC0 z4wj4M<>d{yEmtPUdh~T_u6KAHMwTy?1^W<@xZXBA*v$31TvQeu5a2NTEOo4;kBb;@ zpnqXWQ#Cy5>6`HVpIvH5%zTp>Yaf>({_^7rEbJJEWE(_M_P42m9RJ&IMt2(+UQw{9 ze0kOdvBP4hqSw@6w(rX&n8dZ-b?{+3smkkobL$;)rb`2*eEL-h$4@cc`FQix-$4BJ z0{HXqu~Qz?cTn1r44U~)6t|R=-Z?Jzf$PnfzybdFN(dt)4Nbn5OT5zj$jO@kzdUO` zFsZ1aI^{w_!Tfz?v>qanKHU6wu6`0&%*_x6c`z1vd3ha=&91D+#qI0ZQoHHXXU77LUD1|UuthB{Se`YABq!L_;^m;2A?9&GPKUiWT zR>)|3=3^LE%!>7_m}RnI{i^}%`cuqOj#*dtZYwDnG(~XjgU6Tz4%idz~$--suRa5PW zs-3B~N~hw?83YYb`W~Bfs0-@2iN)gKsc-c9$%xrlqECx{&lL zcDZUVG~TKzR?=Y(rt(3)abS(jkJSa1l?TZD_5uowU?T;BrvXdA8fm+7#B zC@JZ(7^(p=^+pRSd8 z2ExV)Q~jvw)>Vdn#t+vjTRvVhR7?AHLU@G2!@FlYW?^k1pNx*zxv0f)YoV8U@6$hB zG6x#nIqw3tw;!lp-}+i?=zBqjtm^VmrCk=fLGXE>2&>n=jVpfX7EE6(ENwz+GU`f7q(^wKqej3Y&HzhdrJO8%aA^=|$(cj~5T}@1wHpM#jRl{g z@!ofs^(N#B6x)kwKi*&WM+Jn0Z19G`f3jNIl9eN^#hGzQGcz-%Gm?Zp^R4c${pkL@ zZ@DZaqQB%|rOkwMTavIWUlct~&Va-U01cG-?yJOr0=?ZVTELAprX_i*K-k_Mc|qws zmyt%cFO9hC9zD0q#RIk{2g{wN=Q49s0X}~lU;?@)UNvr83J+T9>3I}B+>X-8 zynnf7@VcELR>FPTI&>)RB=Pa%rx_kda#)$atnpgfz!8Y=@urO~syH4;(j=Sp{!TR^ zA)()&w1Ney_kU?Rf^kt%V=+4#eaOlyUe&{*#-XB%6 zw^R;`%Wu>WGP*I_DZNrdl$@OWqsqf=Y<#?u+kpnAbFIzlI4UM8_|&;ysGs?_a&sYa z&>5pX4~NFWz^R)k|679huXL|8d3SRj4SS*ku#6G-vlP9sG@NVD+slvN?yd&~1bAs; z!wIFFSI&VyGO8-lLcz@3Owtbolm~tGZqW1O&+4=};3=QdTx>3}pf2 z^9uY!L_~zfSV!*{b8S}l6?x=US67#=S1AdwpTn*19o&6=p`b(9dgLlI19!4k#=nZK^bzz2 zsp8ZAqRZypS%wg-qz^VaEqe2bZo@F{g}^`WFcC0ly|1$gpg)fj$cGo+}-``5k(^OE%YKgMBoz{tJn6;mJ;IzA8Rsfli-R{QhwZ*+Zc}Cp){Ou?SPsj#ZA-4&7 zbRg|8`|I1+hK4wZLF&EmjawELSwan1*Uh=u$5xeH^Fl<&$px?bQ*81+&U@mQap%3S zgvV}SZ>e1xK`VeInfYR?VM`R+VeXzfqrn*gJ&O>bDF9Q#F#l74pi8^$_P1A4Au{Nh zKv0X$>tE!)e7P+XqO*XQRpsVexK}8PR2*!I4s!@Pi*^h1Pl9%L!B&@b7S{K|exo&y zH8nMTZETz_4CResfG_PI@WS{%vY)1xP1E?j6V14+doR*HQ zkSWESW@gqIaW%nU5XACUKp$r`_{}#G9Em01E2tUJnt9yKhE3CG3%HDwl=Qp99s=kg zN<-Me&hG+lZBLYHgw15ulf#07%T8>sj=OZfhv*MR84Ri8WS^8~sjZ2+`cJ=2aR^0F z%t?k|?b2JM2eh@gxViIP)-j>X64xL$LfA-y z!4J63Xa7wH`isLL8Vg$vh=Uzd)_f1=h?Q{@g)|rg*>4D&91dpn%=i&5ARvm441I%& zm9-rlk?pa#k`i%DTigw2XXilKBVDJ#Z?m0g$Xvm=jJ8)s$yp>tIu_%_tlEo*JzJIr z%Mn=h6c$@udiB^B^PVjWD0ne{`1lc??qsDKeoIF-F$N+y4I7&}xD&6#^(3?IEJg(X zr8&(M^;>>4?ZD|c4LbbJdKgJ5yN!x(Yk&aR{G~^)r4m2XLZ_`GKV0R}TWpnd0R>5V zB9eiGut>cXect!k>&O!_O!M}kM1-Qq>YFy^Hr~>(Qr6u~@P|*A)9d-CGr@W43xnJ1WConB~ zW1}|!A=##NLL$Nb#B44$FMWXD9ITcHHqd|1ABdt>PnI=buFQeb-}O=oG`Ly9b62i( zHC_picymyOscr{cAsRhTPy?kts2i0Gri20{>rjw>2#u-D^O~;{2D@(r`U{@)Le|;?&x`(a|411Nx zlLZ4i?nbU&Wyx%6JSttkT9(aygqwmv2^%jdcq)JN9lSFqS3I20Z&1pj2kjssP}TKVXszu9;~^y0xopkolR5Cdy60w zRroSeL>O{gmKpLo@({Hg_+H_%?hJW4z-T>On9D+5qqSrrE(zd?Mphnj15qf9ZRb~nc%14_1?Y~Jbfzl{zI2za0_FI#;e*-A_D*NEnM&_)=z zjROA-!<+ENckBOu`@eMx+Lr5Ep|IO9e01o9l=&co0SIOcPPi)PEwXfhK~*_5-wG+QA8=lWF5sJ?eGr1$YmP*Dcx^r|}LKx9d7`YiJyL`iMyy_WGE>xjhiU6%-@ZQ4$-XjFu&%abQv63ct z5cn;a{_n6`(H+pFsE5)ZRPww6py};4X6^#EzX_Wz$gPJs z6$f3(@G%EbqO$gN3gNr&p(2q^dq=wC?wAaEeX4ET>u4{@)TI?G1Q_CHhUNui*kIxZ z?B9`DU$srCUzc+x`Oj*O8Q5nm~nK#2&b+hQ8Mn-+~rUx5q z(fh(zRq6+92Tm@opPvn{qu%m8tb@{8JJe2MMa)iLx}SBin+$S}058GgZ@F;#tbKhR z&t~iXSucr$_5XA~yBX@h1OZ`TX>Rx>)G=aW8!(x%%tZLr_9;awzBwWx!)cPe`()yB z7sa_-E2~Pl+goz44Yt37;vG4wG!_DVo_PpIs1?()iz!PkHO!3)&FHp#R zzk1#cqvy7G1&VFom#dH371=x#U@izC;u68{F8y<~HpeC__WM|8;?EIr*_#!~{Y>eF z>ve06#b7#O(f)oX>8CF0msp>N>Alp-|97*bz-B3(#=)X6Ni+jAg!09c@Jn3qvj}}Z zGV~sP`2sgLx1tM_=C`4g8>GVn(-^)FlMN1fq>;_5^==hFkPZW+h7$hkPP!nHL_?jo z7OJGzZ{9r4$jImp`Dh5UL&`MSSO3`JfE7}2CpJSldKTI@BUNr&kc$F7XX}vNv&g%Te34VYPqOVE z7>l0EWHfUzKT_&qkaZVV3}xmiB0CfPPe>8ifl3GumxqF#T~sl2LcsFrFflM&?0y>Q zf`6NvP)p%Z+yOs|_`?5~${S25W=JReDOgZYMZ5x~FC;CKhQ2Cp5h|k^8;=lkn|Kea zF`eX<>M-Ap0{4TuQ-HYzjj^TNc1!`?b-KUP2i|WTpc1W<3=Ca?EalEWpv}Ht z9aN|S9>o1W|CUmR07$6phcI1f?$LrJqn0y_6)dnEl*F`R<-x){bm`#3RgSl$Xr$ob zb#w^fIC5ph`X8QtKY**Q6;ewC=*|pPmgi<7v*?-nA@`Cs&-!$SDHM^QLBOxypO%&u ziNh^DbS%~3(z=3NlL)|SWK`5wK+Z19m3UGzvgRHmsH4BEA6?l8>O_q7WtgU~F%}IB zhH%7qL!piz)pzI0;v||6Wk@ zHjA>K-pP^ZFVjS?FR`TN+QhIaZ$3YORbEpyOl7uBtzA5MepS5n&kTi#DSAL2GsW$+ zvv{)WI_%wUgHj>1hP~)n`!E|4dTWw6b*Fl8;#Qp>ecYsA-n`Oqv9{k?NjduJ-`t;W z;U^cq{MHBcxt9h9IX<3)$E&*cro#%E zv{K?Ty5FE1cK@Rgf*+rlk^NtMiz6thP$h^UxIlGW0X15c^#%e?Pim0~G6Wo5cX7Y(qLR_01m5KiEvEUu!bCnOD^}Q^v8jXwPJ*e( zWxk;!03ID$Y0a5R=lH`M{sG4Revga<6OR7z)g*d;%>wdS(l)dv?%#0JgMd0U7y8gT z=oLPQ`|E-NQh5HF)BneBI}TVRQhM!nCXt>x1ry{8<-uschP!2tU`fUl_a$51p`As3 zRy3q5Q+pjkhwajU1XP~H9p<8PGr3_(#d&Hd3{HJUoA(Cor?ZF}g{%&C(zil*1C(_P z>9_%&cwWW&kFq|LKNcL_PW0RX0LC8SU3+z(*ugEapJ%Kp1~8%g=rAwr1TMf#5-NNIfWS7#?cemq~fPR_4% zC@y{f#ubT183%VfV$*Z&;t`Rv@HcVAASGST{Z&O-2n@lNVrIWMnJN6IFG%*O95}+W zU;y(E>2DiK@lj)5L6P@Yis}v!8v=rY%4Uj?J~LEd*TH4oQ~3foq?A;Vx@YesTvr4MHA@Y+v=xM!a}^WzqR+ba%7?+-c2sxHKDk;GXM7j z_LvXv`c6?TT-#nvco zPv?_P;2-OdU9x6}{7rol`Fnrm%o13T-+O|Z$!NBrI$cQBIZxoET}oO^Yik+4d`iy(%X2P_+iEkBWkMt4D1ntzy2k{ zi{hOd>wMXGWTv4*TteOmb24}Y*G(1F z43*HVb);QL^wzveXPr%8M4}jwYkuKvv_ku16Jvd@>5mc@p(c`oDjxAvmm?`bNm-*x zSRXvv)%suOlVDtULr$R#5cY{iqihN%g*ezoi76>i2gmC`QR|MiPpG4DFnCf^_t&?h#& z1JV&3r6^jIK$KzVc3NCA)qd9A!)Da$ZxO1{mXa_g=TnugmM*-)SAF(Xp``xSq#oXp z-ET~Buwyb2-F84cbuGs}ST{R8?}6Q&&Z*S$LsQarBAu$Saqggt{4M!s)g4PKoOuN{G(CX)3ti3z0*MT zn44642dd(X8YFujx>D3UWTtUapE+5bAc-P0%6TtW3Hr=QO5D znaUc!Pe>;H#{a!iLP7$^cjMr&unQ8U8|7Pc7_xJF%=Sf$XW!3PtWPHsxQcxKE-{nu z=-|E7%RcrknxeDVdDw2Tjx`P@B>J+1dTg*xP^Zgk&Yo(v04yu90g`l9P8+RCk_`4; zqiKtNANwdVt=54Ge|bg<^?abEy;C*^8$daURsVE?Z+Tkg)l`c@+XXJ-X=|N|`9qC) zRo^-_0x)xnY3X)(r+lS1O&B6e5?O*Xn1d>r%mMb$gqM13b(gAr%o(Xh4`mL-oOZ$^ zt8(54SWUnsS?={6=jbz&<>86@+hnm_?h6YJ<`B;R$HRS(rsz0&(BJ~YDq=a#J-{DN~Hs2n4@vd@mT?k=icY0YUdS04o^RnZ&*8s1(bOD=6ssu`V6rZ2`z25#Qy z{}Ai7=N{pIVO-5_jMSFOMKHoT-bz-S7FMm;jp_C5#8O5Rg}DBbAIZ@~{4SjmH>V$` z&~|<8S1$+8d#*ag;+WU*H|$f7)H7mb!j7A^Q`#2pOEa;5;~{2HYL~k0MVLH}d)eMm zT^PWoLU3H(*xN#(;FGA=zv-SeR~H{4FjvQz&!(b**7 zt5&p~JEkm~Xb~tl{^?Zt>B#Nv-dgv~$(=3xd1}S-7*m@YiBIhnb2L)jX0|DBh0c04 z*X`9)hFyY=VLGj~^cx4tkD3onU}xA$dvhIcClpuLdxG=UJUr5FkEW30Oj(&xT0Td# z(iO8REomz#w;%B&QNGtio=oECPUIJ9hL#Gs=8#W-E5BuCRmkmI|Iz|p=DjVM*M}GP za5s(e6rA3F?Bkj`L5e@(@qX>oZ1#7|xm6+4d4?c z{^|8&FZYgUYeLVFHkE99IV-*D1Y2zm5nemIh;FZ|YK)vI|0Iwn*7)naItkNJijar) zrpfTQvUPV49iORi%??pX72zl2Xe}E7DKG2X;$!~^N$>VQyJZX3>5jHC2?dw1dSNfT zQ)Di<*~&g(;+IQ8#p=3xw4$0F^CY#C$#b%piHDpuV(%1zKRHXQ)s-w;y^j{+8uYFn z$8!_*>p7Dy02OU+x9k-$)oUQLF4oLt4X>~EmVlr0<-LR#k)-(PbQ4`Y=w9TNpV)O$ zyWk*lvDHc}X-4YfXi4rRtXw!9N8mh8kx~;c&VK39B(aV9625U&213cLU2W=_w~b|% zGle&KASVk=u28S%4-PX`)X4u5DsXc6MO*CgVy}cNP1E@&G&4_ zT;2mzFApK{(R*=kO)A;*2@PUmsUAsNB2}eAqcnAcMDdq@y{E>pwm(MOCIzl#GZv7_ z8NH^TK;qI!6^)zYyCz(6UJoJORaKlYgwyoh>{~6*W$ChFT(ggz6z|D|k!euF2w| z&KvU7fO}~uc)Vo#1ZllwOqWkN$?TbTj7xIlW>*D2lWm`9*$`w2^x2EKiJmLnQS*?E zrEyDqDQf+BSi$zF*?Opw_}O+@M9heqU59Rz^Zq{HFC$5p4pEQ2Yxs?IPr1Vjv@@r8 z3N(~FWf{|2l(8Hk0mJO1Y|Iq;yJfzU{xVejnKr9dTrpkN4~#ULRCS4seVUF!eBzmE zd&#l*kL3$>%CaOy-g093-(Sm765ct()DT4ZXlMF1^UP zV9XFYLh7qoZ}VVM@4{#e?EuNp%ahIJL{?*XFNT`({;jIzI>tWE1R=4y_2HzWBD=lD zLpDMSQM_2b0L}TGWQ6D6f8ftw!me=NkM$Ja+Uv`N5ob6jv2TQO9y1r5X=RtJQwbd2 zeP()U<7gbqXpPtFE~>fe^-fKP*tnp!IB@AKT@TrJiKgj6mb%zd0;c=x4!71vosiZ- zOMZ8ZEjEwQD3JNV(|>i!1OUe?-mX(Wp{(X=EU2$%&0nUd!yI-CccY-?V}_xhd?-&z z`P22X!gj)8d!1Q9kIfx7v=6>A|J=M~?c%}F+v92NH5mnO-VoyX{eBlvX`H|e6UO*o zk5;*plAmktV#Y(FIV1Ji3de?9pKiZUQIy2?fL?`rS}ps`&OV8CN?p!@vc%Mrxo(co zX+7LGy3G%Hk4I1bxi5bAq#EI$+(r-H3bK-_nq`CO5Gg zYkW*y!Q8E6xs7B4X>ZroSgddTOiG2SJ_P6ywHK7#X`g3et4b+8&BOKklM>Xci$*;M zX;393Kfmc2A2<$7Cm$rti>v8VqKl_=#5O)et=jz$ysZ4(a@5|tL>srKN@mcGjWlY8xAro&563^^SYT84>twX?uGOOrWkzCtV<-SMvl#3c>y@iF@0%Qmp9BuI5buJ<$ z7n@wXQ@e=M8%D<`c?9$?Xtk4~a zgRvyG=+20P!%ft=fMESEGcP_b;|(#jzQj-f41zjv0OpvVopf^;q#+sYda_+7m$_2lEkNs zEPIWIrq#}R2eXN15KuUU`Ljvkjynn1__t(G;wL|G=h>GO5oupBYyIs%IJ&mPwe2Cr zEdO~%G~h%_*$elJ_dZc_Tr*UnaoYLNzwai^SR+A{WOd81j^o9{Eq{Dt%<8I|v#}t2 zG@6i9Ezf)3d&G|ZXrHv*TI1)kT(ph;wryVKnXnjJkIz@JvBD-~(9eIeGExhqC}AiU zK&j9L9?)GQY2_3Bkr9hy;HKwC^46Gf75~|IgQ*Uvsx7>aU8SkWmzW;7e3(i|MQ6Qg zWpS6FY1_>|iQpF@$80wTo+$HinD{TkgQFVZ2?3o)@~^M2B%K|UZx~_`UpSOu|E;Sx z{wCMl*^F-OC&y5QiZI>&{wZ628ev}j{q^%7BVO3Wrrdk~fs}Z6wCeO0je%kJGR4Em z_bzgU$=eQCkPJc9#p1gIML0rk-Teyv?b9G4*t;3OovB}Oc!a^Cykvx znx5@D_7-pFHQ$Qyv$R*FO4b|OP@Ow*RDJonGnM@_hW6wb(@9d1ULs~GF>?IgD)*>7 zmFDai8%`)X;-HEJ#f(xk{p?h~*HAJzFv+}PIJm|mCo@LJ_k&}J)c1JIjbAch9brp0 zHXfkYJjuYRhg@uI!LN*SQpvN`w&+jN0e|IT(xmwVAODfnmFB;C)K&&xMt_iF<==#N$^ ze!EsvA77~5v&H1U#T#cAqx{Fm8mkZB8sALLkG8s_@yfEMRab&ruJNs0J`G*T&s!e{=q<$wCGow_My~t!ToSkN0_c%yeWNQWG_nT zW-i5re6szI&-0{pXGt4RR|>jh7>>w^y?CyDUu-uc%W}g+a35p6?UGAga((U4ZmARP zqC5Fnjw2%7{-}D6Gv$QZ5i7>3-NoR*(qJMfYjuawHLz)l|I3io%W<3(Z?S}YnNc9V z>JkfK{eaAv{*-N#S6GR-ZymeM!;u3Ymbo;5Jj(#&%a@-l0gm5s;~bSAy|dAKT}6E> zW^^IrBy)+IvAez6jzfnU@K_N-+Ru}AK%-)=ywVGWDTJaV_w5^^aJgzsCw`WyUF+^^ zvm-aRxSLm|)QFwlJpA3rBtu~GiiLUBASu8}Y*)dllG$euMgDpg87Vs0<@@?-Lp4Qp5xDRJ;| zyNU63dt7&ok3ILp^SRVstDes7d*EuIbl0RjDS_x)QkT8au&S^>uSZ& z@g=5{ji=?04|rL*UG|>PT-veC$$6`G)iG>a2=6WtuC?!#YQ<9`e8p_Ym-r+i1+c2x z;YMhVz!*i^DL{$Sfag$^t>UZ;QBt-}^;zWmgC}bAem3%nBsId}P>D^J*on_~e$F&e zqmP0oZ;3VDYOB`2___j}e$U!3iX>Zo+<`#>?Gs)uyRm@CA50W5>1%W9qpjs#Op6yU zg(jCRt9Mrtggm9#S{!*sE^tJu&sFC3^+0ApwKh6KkZ4JHom(B(3UvUpzCs>o#7*{@ z3y8+7xj@k@<pl8rhWp&Wa>*`v&t9z0lKdQ8wYgo*Rj zwRvEX9E!FIYyYbv5xezu;!m%6lPCnYDwdl6K%z}i45C_bJz zlZOOwo9wm}ec2X>M(u0MRXo8=e&O200A>gNF{45IxNsNKxTX6!+-nH;jd6(In)Dqh-T5v|GDBH19e~MLsNo0;@X1; z*xXDzPD$3+(J^{YLhk46K0HVX?rpu^{P^f@g25kgAazz+pJEGhKGOn~bO zb@>iiV6}!qae31e)K6UZ@xFybBWy?8B*3(gfOb4Wlhgw#sZk?E?g7w$5VLgYEbu{p0bL15!q6FK2VuxK z@QD}tz61mPAAZAPSvq+JsBE*n1s7!8wkGl#Sz8?RK|lQ-k*F^G2?xq4aCc9g6-8RP z2)Par#KTfsE?752b4J4E{`q%**E@M4gcbwpLnWXQ{i*hn134-iNT>{cez<``q^>VW zC|wu#0x#eUdh<;RK{)$hUgwYFfNjfV1YI5;>}eKT>H@u@K~r7khK>$1G!l*-JBC^* zu0D9J?{yFj9b{&2V2}&LnM2)Wj)*9w4S*n2wtru2n5-|yg3WXLeTGhHzJ%MB zMb3Ojf`k!x1K=-7Yg#x|V(W^GfLD85&~0l$sDS|?%M)RtedSgJ`r2rMR+!(Q>M^f7 zI*Z@ifRl3zbiH}M*EQDqL&2uvp*K9~R-NLZ!>GC4lMJHLDOm4KzQ?0~c7bH3=0`>s z(mA^k#U|z0ikbo&--v=scc>*weo4+u$Q*mt2qx8L5~GU&GV^3-8IzHkib@cpuyFu% zfdqlpHT5YoM>xrSEf7fZpxng*og%J80{z(FO)0EU*{q5v$_n z|Jq+9)x|Wu}5IoN_gYMAH3yIwe1# zv-TS(F|ojJinSapn|#E&_sI9MhF& z6Q!PD@~P0Cp91&6qe8cy@_A9*Wi6TU%CjgiYN6TL*#-uqAoRw> zY1$NVh=E|V1k@R~?q<3u?>tw8{ZG&eqMBP^>3^RXq$h14qFr-WGh@|mpgp|uu-dbd zpcNDpBRmCld0&7WMMFhp00eAl6A+FeqriZJ#^odWheuzY{e7M@mmgt)EX0F6dL3A*STOY83`VV> z2zjRGJW5<(*2x|D=8ZwBdXgm}Az{Ten;3pwHRxit0l}dSjII^8)CqejtjDR?dNH`z@N8Zv#P-h7+gjb-E^i{ zaC<2T;Tv?50&1J<_ppwPT3p^P=4 z9r(Ro!lRjrootDTM;BIl@TUd>IQNg`oykUtsw8&PQ80)F0r4Ue47m ze+zOnyDly5a2!sLy`vOlBw)PXBGqM;!&qfhCM3vyfhO@A=!p~{(lE$*y65ceZT9Hz zfQw=fd3q=Cx0nEI9XN%ex6q6R>B2*t91E3NI(PZ<<&FdIy{)y<=$Myd&lHP@NGN_3 zn5qNqtsWw$YQe;bMm{l3_=I?M;JU zS?$Y#0Ib*1m1m^rxIAaGB zrLuYC%mO$d~(xt6G38$l^tR*0nZ8-5`9Ks!@?&S%tHD+S7 zn3hR)e*REU{1iX{0KjZJ*v?Q7XVR2FOjCJ2;d)n}%_wC0>`e$Gu;_5WLU(~DAVGk> zz=geM;n04|rif?+klsgdr-hb-abS(kx`7%I01RMl5SZw=G%%}G1$0k@7^XE9JWfW2 zkE=M?>PKQNK-SL8foF~Pk$n5)$#JM0PJu(BKNSw(hp?UGWrRk;;!`+h0ziOX<1lO{ z;4bQij^}dD_kn490=-gNz)Uai2{Cej0%EzB9~AgxAE z^)?G1BCrkS${0cc?owrt#*yy>_;sSB!2c%a;HbBA zHz|NKXqE^}f3xIs@WL!ch?I?lCRK&!!!$G>nX9Ok$Q6a0G}I>==yW!XHEA z><8p?R@a&HMj=9=Y7~J76NcR(;=Kba(F*9LqP=!$xO&*4udoTxcBTSyz<}u>FC2lI z+|hmkoQjh=J6v5Y;k@#0dK%_O7Fjvr#r|S3SPV1-fz?l)aF{^FR zei?^FMT4gm>CyM9+yOUPsfYG5^A~CW$JPa;^#X8R1#WmtG>Fz{XlbL2_QP^RGkpuc zF&Kecd2S&ZzXJkT+rgM>w#N+&Fh+}lXI;D?X=7c7=Z=GibopX4*&K}lk;~u51tB|9 zQw6rF6yTapds2K(rpZcBg{aF4H7yb1UeVFZ1tMn zg4o{{!KI3zWrW}vGH5A=9LFToAoJD~_8bOwItJnk?vi-{iQ2Rxh|U^H6z|Fbu?m>R z4fj6XYl1^~x(dyE+L2RMreNa&-~)>OvP0~nEkNvc(tD*K5Vacwf>l-Nj4ZOHA{|XA zG3|>NgoJ*Y>jNVi4Ytf1?t1163!G^bUkc|BApr0%`UnaV_S)+ow$(Y~28{I1YA-Ju zCZ=a_veqpalz`-$eztxgNZ_RPVWky|lq0!g;rtPr)2E*R`5HUlrB)@K6Vl}MnAL4T z2uVPoXlXkbhOBQ1N$Aa+H{)PNV}VT_8>8piWNt7E+DJ8!j=ruR6-3~3^QBx7$hq;m zUZ1Z?h1lrN9l_xsosi~Z!7X;e`aLO+%Q)u%UMn4F*=}kGkh*i{4b)aLc3@}EKkPwF z_scUa;7b~UWI1MBW0GID42u8-yGeCt=Mon{6f%ptAkPIoWAF(|N-@a65&pEEHWl5M z!<|!TGcz*`oHNrfYK{H;SZASpm@#hQwzJ_T&&qO8AE`J@>*Sp*UMz$rpiIVyQAaM%~99FRko5Z%JJ z{0>{Gzx522A;?z2^QVCX8YsByP@0IqV!scAO#X>m=zn}k57H$pNKFui;S8u;I2mgp{o#sfU~`^PRD~aL^n|`NnO9oNETY{|AKI B(Ek7c literal 0 HcmV?d00001 diff --git a/_build/jupyter_execute/44661da8d7b6632d7323190eded41307ef7514e245c37c044cb00987aa2adae3.png b/_build/jupyter_execute/44661da8d7b6632d7323190eded41307ef7514e245c37c044cb00987aa2adae3.png new file mode 100644 index 0000000000000000000000000000000000000000..2629acc290267807b975288950c284371ad7182a GIT binary patch literal 23142 zcmeFZbySso*DksM0Rus4q!a~2x;s>)LrO$R=?3YBM-h+`0b!9UC5klCp%Ma%5Ri~s zv~+i!dHcTKx4*N`9($a<&l%^h^NhjED=Y5%{>7Zvysm5h!tSfdUp#;1JPL)nsHh;T zi9+G>qfj`hX9?ghb9ozI;g_iEy@#$^jux&SCQr>#swS>Zc8;!g)=#dwn?H52c68w9 z66WINxN7C<>f|EE&29gmZ{Tu#YRNr({%i<*$vGzlJr@*;#02@l`5>KRjY8@5D$3s0 z_DoqG_3+egI%!$oWyuu2dgI!)YwwgPZr_tl3VnO?VgAKTh4qg&uj=2<4}E*~C4Qdn zOvs@4q)x&4hce`^C}qSNpI;%8Rlp5;eq-~{)Pyps;v?5+QX#R zH1JxH05d=GQER~wdYOCe?d?+yL3n5I@l8sGM(Cs9eQ|-jFCrp{-oJmpwsx~_HLH!4 zpOBdDDho^Vs0qBRK(jPjo$%++pC^o3GqLEmZ?86-JUK&1SS@-5zMU;>Ys>Y?lP7fJ zQ%$)Wtr)bH^4G6ll`N3k$i8t`Rsi+z|9VHIx1=qyZ$$7;Pfx!}PF`HOFZ+>PU0vO# z@54Lu%d(kwbPml}#Kn`Rr_K2I`A6wrD#TB(uBw}v-547iTOqzD`|*QKDrS0SCMGd4 zG$)5uLqo&U$7hi$Gc=ak^hamsZ1=mnH&|GDG8JPtxqO+KG%0_Hp<6pUS-82Q6BDVA zj*my_qZHz&=H@~Y5~!*@R^ei_Mn*;+Avc(GUiq^G`E$P1zUo&eoB4je;O|I2DwFEC z0fT7nO09qsg(?ejy4olC?t>*V+DeurPGsGr6}VP7BLqus>LLrsl*GJN#wWm~4V;h> z*qNRs!#ZH`-oCNDtJxLtDm8U^<&vyyF7OPP zPUrm&YOP7?*w?QMhwShjMyuTLjQ2NYT<3f6rKP1|z^Mgo$XlWrJ?t2%s9H*`d#U-% z&cfP@pytI5+~1t*EjCy7_4N%651*=>OLJMUWoKg2kr8q_=X8CIxe)&$Y75UhCEtTL z)k3T#Osldqv8H>bt9oYLaL*@UX*o13?3$?Pkn<__>oa|~UpjEv;PHUdRKr^D^+qyv z9*-4$VtTR0fY@FznhN#I;yneD*S#n0t@=56E-)yqO}xQ#mf zc1Pu{tZv?YLF8=n_?~RzH{YPJ;5b^W308OD1)ec~);ww9TUbnY?%YvOR=zGGB4RY! z8q2DvqLO+089`K24PS}NEk8b&FR`rZJ)a*7fBW`rZ#Cew{nfR*Ynz)>+XF@(60-?L z{_kuD^68}g>0m-9CnqcZybpg^XdE=fi$_3&g@wWKsPu=1kpGeA$!`5=k=N$zhM?NV zvTstBOixVOgVdV(3eJedom#& zN?pF3`(&d{&j=?Dlk(l7BtAE!kv>~Bx!GgfujQl8r?cnJ<1P&(AIwRgwtmpaI4@D> ze|!*iN_ghX^e6si@(L~;iq%rG%Q3|t@SdZrgZqL_j9i+V^433d;$zaK(_0t=QXK1# z-^fK?5p5eTvu&B}NVXoSaL(Nscz^GL|NcyZuX%d{caC*$_Ch?Y(fVNAl0cKeme!OB z987ascSYiBnhU>6t;wDdTzvBF`MFZNq1Vp{NpP{t%N@_pkyR`ew^NHgy>VSG;_B6_ zfuA3j7sFT>de3Ju?TR{#h;UU-lcsr2oJzmuVb}XWapv7d z0=Ysi-MZwr-O>7-uJ=-|r4=MTKDF(_bV;9L;7QcAwaJB&Bf0DLn2c(9U$ALqU!tH0PETiqSZE4cZROk-k;(>A z?DyW&*(!eO>cT=Ei0t&cWTd24<8_j%Ndng-Bx-&X_dJy+FiiaO#|pVc|Kn|47PXWg zj~#1u@{gHs+;EzS*CnN=U+yvd^t;TKjC}e9Stk<{v+El6wpxmahLwT0w-_5+zL8b) z=T^-6R7>UBw+mjdkuH2r7jqE^{L0Zt|Ft@_u}2B zTlLO4?d(6`lQaTWmx6+VWaZ>GMqIimJTXH#Xb4b=(g9MdHJilnsMqekAb&*g>dl+x zQIBy|PfroZr21Yn@pglSUyH_J0J>qI$9y+cuL#+NMn{u0Cz3kuu2ip*Qc=k(D4Z=H z_xGvW<%1-blkT6?97#JhHFfv+VB2e>m6d+`aCdd?%dkVngU^qizj)D8U?lze^=s7H z#>Thr-=95ye#S81c-xl>E1~<~0cD0$5<&ATCeJ@8FuW+EsYwcV*w?51f|&kg zhXp$yZ(C=l#nIk+-zVMZz(ACk>z@Xgc)D#!r?Ur(1vzk?GiT0pLmH~vpQVLsA!`Cv zX7j6U_kha1$_c_u)ULRY(3?{T#B^e=p%CdVQ&THIvKSl`{v zaa-*7-J1xBI)Fhcbe-2U^qj!A6QUJL?pPOd7%C37EvS9d&>#bQjatO%Y6!_`ZHlF0 zl;q{y-<<DA?NCI{W8mM(~@NnHjWN zsu+5)pnfdRu=e-TVA1yoTH#KZm?U^?_*k^$PU5+k>7Uw{I5?5L$y90MFr!Kc~rEu*+5F?T?7|fmB-ui$57uXib=>aE0OTWw75j4=; z($a!F8nvlPx|E+vSDIu8tV-28cmCO5_*8)D$x>ETQ;R}N2h`zUc9w_f3+j2BU6+5C zH5@{6wcq@0TY#n)cTa?o9ss*ks7*0-euo(TE(z1g zsVU^^z1EwkB6D(b^eUfb!2o2)M<+qxO1gYqE)l{`Y)XpV)2B}{L3o5JsbX%J#xSyu z{?Cs)Ai^T|sJgo{s_eFu`e`Jc|8lPO&eD)6KnJY4PJ*mQ$mv^mjAizh}@{9Tynu?TD1j~_e$ zV`np>rJlxRWoKWJmab=tr7?||A1Fwtk??e?^Gkia^PNOG5sNi;*_dwijkfLk5aV^c zJrK#eli3IWJ~J~j&RaYnARsm^ZRJD2pLZcDA;k0%yv><8Ikb$7jPe^#^DABEl3;>G z>k1=zS=iaz_xAVE!565K0GM4#?y!JZX9-)@_yrM-<{y6;9E+No8qDEp{p!v3&Q2jf z)E2WCbX4)HSC{x5$7=5Enndsd+Tnx!wlrQZZR7mb9+0x5fel+(>I)t->j~>dd0Dz zb4&38Nf;!~LN#>q%LDfPAS~XP;f_S!XSrHA53KA^9C$kvT8@QASNv$YJG|7BU%irX zcNc;c*lCi$S$J1-1IqjcG+vQqqcpg-@;R?c$EKkb6Yj7RX^$J&p77 z@^YTfN+^a%v*{4f46B5vxf_sE&(3c2X{oQTw=k9jocb3R7yoE$YZJa&!-L#Eg!@~r4K8=? z;IgWvd?++km(Ba$+Z)TCU-6G>ve0^``06D_#xCXr{cnLdcu*01w_vyN!oJk9jz#l# z`e{V)Hr3sSC}#$HHR^DFe!j7>QAE1Xj8!`Sc?56g=!D+J#ztsF1V(seDx!q&YuaJf z!=B|%$u66cA-Z#+>FMKMrnZoASL;vxgQ`l%K5dF_9>nid+~Qz>qOL#RAUr3>vaX81 zwE<8Egc+*S!|~IHrB;{uEihOpPNsqg8E&p`%A5==t3(9Hr+RUw`>cq<^fWCEl^}Qq z5KaUQ|BI!irOhw%kXz>FbJDr)Qvv+zOr0}i(v|(l?&#>4BxK)4rY>IhXDWVc< z4R}z(;=M{W!rGB63`NH9aCL)AIe=iO@5rdAbpN30 zUP|o9HYV8#CEM1ybY=8#B@Mj2jknPMxqY%JoZftBXo$n0Dh_b?NMuZEKTT-%pK$x3 zz{K8Ym-mn?UtFYZzDpw6NFsgI07VE=K{7DR1h5xWE!+}wU;1%Tc%~{r-sST%HhC&&tBRPOFAta0l84z<_eq+EWz`2FqqtNEp zt&_be5=zcTjZh`Fc65C1hK-adG4h+=WoeMtefjrHMLOIMJX)?nwb1tBfF&l87ZO`4 zO1P3%)<TNIt>9T*i)!0A@MKI(*}Uze0jg|yVu({tW;K2^f&HIyb-1gruJ3LJ;7 ztc&s_9X$&&Eo9{rj<-)>(h1Xo%3gDseD~OotDJ>D|NcZP(V*^;!3)1a#~V9Z$`sw# zuRpm5d{rigQY=RMH%`Nw$uO-PqwvsBZEv3-&IX~k_}z4e4>g7F|E1WnO7JU4_crs2 zy&Ixsdhe8fxS#X_Vdj_T-`P76wRnimZ-Mv1YtN;GXwT4$r3oAHEU66aIbLM3)19 z&ZRIF4yQ8-tO5)FstMn$-U)Mdc1FP1U$zD*K>&`o#OGaLC#y!r9rDQ3%uEw(X6%X+ z>d^dp-QMH{6htE+mhz11$7Y;~X!tUFYFL;i2||Dk$g!-)^*vv6Hm@nIJF`ma#x_P< z1L_-=t5+MG1O6Y>g)Wd*UZtcUkV|Q64`960)*lUdz8g%M7C3_i@_QZg!<9z{w8S^j z&M!ws^dZ&DJ$=d-6BFaQGD4%SzH8WZm4kz0{1|GL-{p?#u`H@DIoUsJ<)}@}%;?N6 zr!tF)CBgQlBq1Rg^I4S~^IrV?l$js$IaFJcvhv~{qRN)FhG}VOeV-o>oVy$r8mB4J zO*CkzFdCe*XrPjVZkylil4ga~x-wdg;MppVRW*HmIzY5u!IE?TA60PTG&D3(Ex>KA zZ}qD8RydnNwt~`F3V?5BhX3iw@re7dJ#6K0*trmjs+|UwObKcut0~{sBmbl&1IY zt@kK%&-g@iSWH1kK#~yDa3Yg{Zwio_x~{HHz;5sr;46S}Q-cnW&JaQp(gCvFA?0i? zmlyV`Bnvx2Fq8t0n2elU7T%-?8KNzYt>$=V_y}0HCW{gvpC1;RwR#z86|ydvwnSw? zx(5u#2fW-~l}Wjiu;Yo0k!|0XD&qXjZm75^Ma22N z%3&H55Jf|F1U@0jQx+vdaP$0|b6wnyd%;zZYgAobOZ7^vVumW5Gb$m3sTdo-rIGY5 zo#F+QX94TEnc7rSQ&VMithVEG`IrqnSqCs27dQcE^TS%@g9K5lSL9Yc7UtIZitWHvXc%~y>LoV2E4?zH79-`c4J??GKT1Y z0ZP*HpJ&fHfGRNukc)YLFI+`mKLyQa{t{{`*rB~2b=Z4>(;;JIbbP~QV8d1QhY2qc z=p<^>2*?crfnm|n!p+o3$)pAKoJ+5&F#6Xg-DKp_!sEWZcEevffKN??3;fzz8U0&K zBIQ|pyw3Z9Ex>p}z-P~vbV>0egYo^vMgH5jZ)d}roD)?#eK6LA4%OE5iQo;7V=b671(wW*Nm z71h-}`lPqI?`FfS!3_2E_C`iWM_>069T=%}Q7y6PP%$)2%i#Ebq5N`|v$M;aAFcMN zD+VsKL*J!CFzPT6CQ_xY1>)ln;1Efpq3YE-TPRkbDC5wt=tict*5~x3eQmjXoH7}s zk|Od`z^c2!%+iwT$|5A%3pcLL`KUsD$j8?svE8Q?bpX*64NMtiBFza%hgKLB8ej_| z{0?_0^c*8hV2^OXKLMbKE_*?(16oTqY~HA1C?|V?gM7N`1Av)M+&!YZ`-q(Zw&_0* zty_)<2M2vkpDI-uKsbdtj5>s`Xu|q!*m(wLZGZZXk=ek2EhRnAYe(kHh zo0*+OiZhUphN|4y0jzZi8_tc)i4H)_oQKKDZJtV56;uVCK~z+9++_gpeK>dB!<;19 zOic|wEji#g)co`nb*2*(3=J9JcB9tGEyaBnc7{qal}bh{jY^>sjtPXSI#u`!a2J~= zhpSW{#61dKoI7j$g_1wZ>{ptbyRG=2_o>ZROKpRIpl$rv$Y}h|_|#^Td)+_*Pp7x) zJ=qb}Ru!6ia%tilxxUftxd>?oxwQmMD6J6VX3(7|5q5Bw@$|a=)>u zNoUX9(zYk_oWH+6QX&&EO4W4F?d?rP)8j?7e*^#w<-{fc|87WR4N~8&Adc+!&$H#m zv+Gh;1boG(BCl43f_|{hPaHTQuF^UP0#I&+;1Lo7&5GXu#rn%p%VZ&Y&%@>N@D$FO zXumn!Z7)L7LIBMeZ6 zu=T_|R+jqaE)o%$fr26d`vtjUyWgc@00OWR8Ykr&A3x>4hlPZ&IH*VZ0gd3RcOuf(mCC3M?9Ae-(O^1rjLG~*Kc2F*w z!C+~=&ISL>8K>3S-Hq9l%_reh(pWS?J3pt<45nYBo0~?a9}F z@F5gN9KQ_uAuu9} zSMc9uL|=hXI#Nc!lk&U%xsNd43u#F?Y2JTn2_VXP@(skH1ZskEFjwc()}muHt#A|~ z^8LI=g(!k+0J44pN_wgu~^og{OU;n5Y1H*4p+qXYYyh>Cq-`Egml~ zFCgaXZr;n9Zm^knEij3Esc9e8Qr1PuVis~LR##oDF)E^?uDz;J4hL6mxVQP*5@a7difJQ~pPG&C&TyW+sZyk68IF`>{VT z7*`iim5wlxfgk~m;381&REXpal>6ueNQ?^1_j6;> z6zmVWLESjmn#YrYd;>(yHQW9?XBRVgdQCm;gqcuF(^eAHp1c(x*@3UNX z&jGN|0H$ZnG z4UNI5NJwmi{F$H6%^iZLo4lXfg3$*ZM`C|E7TMBJLy-dW2OzWyIE_*IB;>J3;|~P1 zecyHX4nD43QAZKY+mxJjyN{0L@_s;ppAbm`*y1C+i%$m zGhS6)H72`X@2h?dM&MOini?>VVRiNFZe1!si*bSyr`uoScwi_EbP7nu@5F?i1bB!*|v(dtcS;#|@W@?Ls9 zg5AdU2px;o`ShU3td$gy{|_h&b$5YzOAzM?BxLk`1sE%3zBk7ONULJt5XU^HE+RiU zOZ9zsf_Sj^uek{ZzR15Q4^!Nhh(Y*5#aNb~d3uN^t8nNfE!lVHw0#jWr3v5wfao!Z zi34ah9-kdM0wQW`>DKR_@zMM!xN9e0T3Z}71 zIrF5BE$lOrjW+fI5phb}+_2-)SW?6}R(?yX3sZlx%?+{iE@;A5Ki}g6*Ra0;S=1%x z3@bdrQz>&L3kFXtjz4HW2w`Gn^+Aj97&1<1oE-W!+GETs1aTwfs54r&AQm;vTjp2z zk#Z0?&FLk?8z!stS)~;NQ|`G`)Pm$lcL{hOQgm1A_x^x&(Z;F=`EJ=@ilw z`1T+Bact-H&!3Kl5M`a)jrU5jM z2`>ACyqmhOkZW|_|7gY{C>Rey>FcDVwn*VI1zFiMkP)U}R;NM7qoBw@zC5PQ^_?Qh zln6eFMP7j)Gf)W;00w1a^kRN>6co>vEst2l5S!Q&NecI*c_8H@k;Q?aC@7)|!Ak*% z`5RQb_f%9O@<$Or8JEUv8hSD_I~$>)e*%eYxmwlN#}5Mq-!aC&xijpz3HolAa{!{W z=jp{FUkFto*_A7g*#6E@?m=4|va0AIb)x>mbb~?jLt-K(k=lE!g-4DoVl^~n2k4R9 zfb|KmQ0ZV9PxlC+!WTxO2UJs?5$Z6=nGeku(C3JVZU_p38z!96`In9^4t8;|9hlq{ zs#Ijyz2b5$vn{*Qpx{Ue=c)=th8!jrCFD4Uumk*4kg_kcJwSU~7<$c6Alx#bQN-f_ zC=Znfnu_>J#rIqsWPy<9+{w1kWl2in{QJ04f<6$Ud?8xlw@DvwX(36ocu5nvEfsi1 zq(JS1r;_mkV+5=xZjbxO6f)~%n_0kI0D5>U<7H>Z;j^>E_TOG&0b~TvOnGy>(BzpZ z53(de*^!k4R1^*HV{jod@MagMfq~j~Cg#lbSP0Nwt9UL3Uo>+{^&6t+BaTj9)0HyUz}WVUew4*8@fZ1%*mG zl*fah!Vt{fRYgTbm1Log+}nT0 zD+@?U*uvkHxofqtJ@^Q+A(2=^ftca`C~zk0Z_@5eNKI7*-V_KQAm+)yF_Vyx(7R(a z!H$}Pnizy}s+&+RNJ80bK9mKc@vsq?Bea;?Em)(OFy|oWCP6&goJ$X=VorlwgDuQ@ z3KGisxcc>GT2N=+j@(AT)=XSl8d9PqO8JQadqsHl`t@hvQJH3U$>K}3@WuuadV)9v zPC}#vz(W)w#77Fs&dj2PH@JdQsqAU~2q66SCKv|7fdB-}LicSx)VD}E1i#`By>9sm zfm)Gl1+^~<0s#tS*~^ra&G09>=#n8j^PyV!ytXC?1h)iYaDKG5P88IiJXPY;x&m z2u%*=lg;>+rl$2)*7Qr1l(QR&Z8iUjE9#JBO`Bd)ER9sg!X9t}fY=ReEr>94Z#>)F z>{-~m|N6`pbJy-|!Wx#nb>ZJO-2ZjBW6+6Mew7@#U!AAJ{T6ipYSkd;t%$#%j4jom zLB@DS&pb7#9MTL)i)IcQikYAe3sYERh*wrN)B86e5la9QULnyQ>#L=W(7ad-l4^y= zJfDH!Tp4je{4J)!)vkWb>K}0)(QhvV;(Yv@Ru(%*~ zI*rL9810tAXm7dFTTNDki7bU|Z=?r;CPX&;w!Z`YvG3mqIY)CBLvGRfnt6rzHuAa4 ze@%Y>r9Au}xwU63_`}GU@y<0k%J^ZQTqU5VfVjwZ@cU!_4r&0$lDlw;(3em@DvAg^ z-9)JtAETo1NMfa9a71wQFD!X@$-=vJyucn_U;inG92?8D5QRq@^l%^;u0RRq_Qq50KN<*DEuX6FB;LC#YWTE#VJDF7jXe738%{M!-^aV5{2 z-Z+f5ywF>Ao`iZbDkEcR9+I;jTKX{O`>A5;eqWT||ByF@JD|fFVEM6^-wGKQrf=2| z@1;$u-wgwhNfC5RxYl}S0oS>mP649hyQrV?;T25;v%~!)5$GpzG3jr zLK;5PU*RY>Eeel-xbEqz%(WZ+4o1qZo&xrZrCDQI+aHRu2wdGgAnR+g?c+QP%5KPL zP{ZP46|tlZ!`s)`(792##;Z9#mCloqc?RYE8g$guKfaMrKD8dq>g#?7G2~wE#jUS( zbr{8^b7~(Bzx_mEZT@(6OdTDj2Fxj&p};~Tw~A9c#Q2dJe59FY7EnJc1Y>aE)-{!s z&NKQQX}og-Y3HbJW@M2LiCKm)0qOV)>$Sj}!vM?S9+VadNY^jNwn3})a7<2Zh=V*yt z9H9xGzeX?IJbxB%SeABsCEv0>{oE1NAi>de{~x#srF*R^ZrXU%Fa7*br@iJUGOWfz zRdGS^v6t|%HoU`lRaR60PFh1p!}1D|5-RA(o zHUBQa<3VoX2Z^4>4PI1q_nHJ~A=BY$v44ynk0|<`J^2+=7Dc z_5C{YsEP{-T^pKwTJ-xkT7g`1aRa!Nru8Y+@X>o#Htuc|7kyv)@vN~d)e3f~C9pS9 zT)un(*xl6N^tyQ_sFN4awm><`6u#oc5=I9zg-9fGRdFxCg%ba1Zn-7D|os^Pdr(<;{DuY_T@% zDg*jko`(hno-?=NqaH&i?cxMSht%64Y z_-VZwPhP+f`hMHLz-&J<`c7|L5$l2F!fL*y;$ak-?tF{fUzbG$B%$}2&@2G?RYW;~ z3#{E-%)eRwQ^NLmOusw@Ni!h zNHd6a3b80rFeJ=mqCCJ?hvP{@9fst>q6j5FK;6yM%~AC26uSDiKRx*T(su-$Lub#O za~=VTMV~tB9vzMll~(@D*p5L~S5c{C zQ(x*ge=iy~vcHHX|NaOarICPP5#3+fu;Pxu{l27vU7Q%Mh^&_y2%efe?-o=L*l8L6 z3w3f%;yEP;XNZy{(ifDe6oyBM3JEkF97xE$aHfJc`x1V$rhM{2(%;JiI=A(A0qP6 zb*4^}z?vrun`+W>nH`s`}+luDzfPqc9PEM_ctdlUR4bA>p%93DgugJT-T)BQlcI6ve-b5rC!{r!t`f5?vJ&ZnDCh?w8|L` z4DWm-V&=~(qd%kwv@|jL&`NvAw>*HNGOpC!0@ES*%QQ3OF2bf}_CXi7P9-80vo4**_*}XG|I_*9ueKfQ7!I!Q#()gWNK6_Nq9-)}2-rHaao4P%wGcbytBv_d5FV z^>aw078_gckArdl!w$EvaRXe&k~@Mo-AzxktnuoaPd;g9iXAfSa1OS_z0k6f%on^! zC^WspS-yFASRY#}O$(BR%;mZJhKA=`_@k*F2kaFJ)=AdZ)POaKT5C`H#iMIw`g9sJ zS*AwhOV_Th=WSFrd>{0&vER4ZnUX z!xihc!OCYT5$s14SutjarCH*)uEHz%>CNI$yuR1$3sC?(l@dpj-!sty!m`YhzDgEK z*LtL1|NJgb^~l4ZVDT(TadXz=XVHZGK3jHAOgGhQH@3E>OHO^|rq#kR7GgNQk5rDM z0nE_tJW)4hc~T$MNomZnLnEMMrN2_bEzMr+@N+j@p-aufM1YAxJ_oJzRk$&ss63*H z`$x2;k@p)Y%_g87>y>y2kJp;n9Y0RKuAc-KLxiRi<^oJQjBNKzmPrIY3$116O zU~(Yy;6PI))^*5c$nyt?@aVhSl_UjPN@kfh0Nk#yHH6&j`%FmuB+`svsg~Eakk#Zu zk&)3tx(wb@Z_4Ml1ZH%t#!aOZ5^Dv7VBsVLLkM=~v4iFBlHO2B>zJ9uPcQEqpWV6l z`#eASS!X=~+~)!pCepljyXO|AYEDNF>C~h#(p4wVgo^A##VE7zS+d%?t+RVV3124v z*`(hIih2+mEcvf&}yLxiKWSgNb(5`1EIDxZliVl0&52twc3` zow%z@Mtha_`W~B+-p7$zA%1J8S*+#hbo4B^e;Lfqs*i>B*wOnJLMX7}%3DyTiUQk(YYo>k^Oiz6M1dl#Dt6uybEqZq&W zUpe|z(ng6RZJdtkZiO_Yx^kkwV?Ww*V6dn-lAusMyKF@_l=$I+#!jYOn{2C!^_eF| z5uCJ#6jog+Z>w=VNo*NHLkbH9H1Q5S884*Te4H?N1|1qby%&twGYst{spPfYeR_7g zmk%6nu$H-kM*mbODZGEOxds-0Fh>->Q)_oUt`8(+<6mcH$} zzo~?z!)nax>H{DS_f|$%LobAtboywvTGh#0|02l7VGm4KKRp!Np}F(mb(EitJNHs= z33ua|pKWBjG7ffX=DUH%sE$=C=+6e#u5Qk<<}M2jY=*~OpY}=7{8Fa}E?*qR7hZf& zS}o|SPZV{rc<0tkZPAscD)%Co@>H==s=9!&oA8hXZQv03VN2}W1Uh7YKP$a*b1!w| zl_#EyV|shqzK`+we$n84EnYWTR5*uO&1tv4H_4I#mT(YEGc@~u6nb8B_PkP3fZbk3 zyt6XY-W(B`H(K@P!Xy{A=O95dz|v2`+bi&1f3hi!(+g{lTUP+x+UyAGmWE(jY|{BW!rD`EX%?Tw3#$MIM~oYAy6Z zi?$)dX>o?#`eYLjy~We9%#HM6CA%WJ?l~mrk$~CaxlYOHgIUs2*3i%Z`9U(3aNk(w zCDp5ff@R%Rj#Pf_?@U9^{*0^VD{8#92A;|dXj(!nv7l#zQBMebGwyy@2~Fn0Qe97V zJ$6>dS8oy%6VHb1`oBG%*cp7!S@=qh&ne)tn-MD7G|UY8V#0Y%n|a)q9)jUT70?KD zfKC2$f$Oi8WmZbKTDNxx5&*z(20xP zY$qfYf$V#4;iNi1p!48dq2q?sYt7f59>1&M1J1*r%YXWMyG;5=KeOU+7Q5QY8kS(> zQz^3#ZdtFD?Kw~P-z9qw-(52>_Be8oIy~VwWZ2_F?CfAnkl8HDOW`HOWybqu(+Ec?MEr1E*Q8K4A{X`Wn==8ZnUs3>dMOefr`q?>>eB; zU+DS3IFkES>JiI0hz8%5Mk~rkx+X{;NAi-pBu~|KD_w_{Axw%;FAA|Mm)Z~a3pk7n zqM8Q=25#6XJ9&gMKiz0h)Uhniy6<_J4>zaWP30olwpJ;O5%1@i zWdB}rna_X&h!p8}qCchkAG9XkU5P3*dvN^aeJdMX@Pey`F*^$T6cQRv^mP%H3u}ywYKmAO=0#o7(CJV z`T=f2p{0>FaYo;`Res_^yCz4>=?41>y;A|R)b*BPbqcHRG&vh~W@&9@jg~if_fg{< z2X!)!H$W#%YLH*`S5a{)_4$WAn2dGv&(Fmx{zpYv9VhunztB7mj&*>TMORx<9w6F6OTK6Ybmq$)wdN`7FbLGhy09u2D!^E_qt_(^l7W?&Emt-dx zIiR?1;e;bEtk?U93sjBYQpmLf=cCOSe`NNv$n)FRMB$59SILuej&hRY)Q91vMLdH1jn2!#O07bfhm{X`GnQ z$PMTcvl}jsR2I{}W5P^i5@yWBH-{EO;i>8Da9bC_9BOx|l`G^?EM zx{BR1QtOZt%wm--a+d_J(v&muMwT`7?Hdx69uUH*>73ykEQh4RV* zbh~Ug8iIfa=|F{LFO1kHhw9^co@nh|on>iG^mB;#6z8wMW%}+J?(y+)N4|aa2)$ve zy>Rn$^gpZeal95ev{SdTz+;96>6_eB8oJIg{hW_S=?&3G;2xWWR+d>9{T1S@KH^m= zJ44^~Cfrqduy&Ubbfob#`&y}VUJ$id{awrAZ2w--Fy0R1X^OexL8!YASh89(8jbU( z`yC#l_W#l~a*Hdo`uPv^8^>Fr3bnWeypnidfbkeyZ$UukfZ5a2`;qaAolYF_5pD!7 zX`#Bw3E>WY=i~_018e%@#ha(cll2h{;z^|fhu`!rUJ<~4-<8Td&RWjZ$SC%(OfjeB zq2HrB3|o2}v@WCNL7=0AF0?)6vgk-_0>O(IO#;30-lsfz`gTQxgb;!Wo#KEFTKV5d zQFq-JzeQD+@l@kqzj8mgrxeJ~5?w@5{-0>uY&z)rKioUi1-Z^er2Zt^ZDP7`1!Acpdf{~g+Z!^7LNNR7OEa0E{4CP(4r7Dz-F2a7GdZN z0YdL9aHU_tStkeJ0EMg{5bWUe73$;;kijz$vfBh4)&qWAL|;ezZhmm2#~J81`C|{>Yzj&r>)$wQ zT>&Stpzuz>S3G=3jhJ_bzu52ZxJ>`JOh8Nrz8>T(8zMT9!tUK7zH;Cg!c4xu_zAs@ zz<^ryeYgz$@zjta;y==(5K{(NS6q*-E%kqa+|8(PknF0~o!L>cT@sPdb zb)z)kC0N&b_5PCJ8gz1LoYS4rMR9e4C-^oT@$x~hgazUra!LW5X;f(1LW~^K04FN_ z87}7rDIVGzlEL){a%SV5-T2hh4$ktCJK*d_i+eZ(9RL6!1yLKCf#sn!6b@*agF_vf z!Tk&2Vti)VX0Y%Y9LR(nvP{oHT-sx`$v!KUh*NtF{)FQMZTHa9p5i!;meCaee z?~7H$zt|7Uf%P3eBL?)i1*q_Fw9r3rmcZsxN!NoU_q>Ni-`4fKpu>4>XU76oMbylX zQ9u27IJ)Fui|x`Jtz*qs@Sz~5gwUDC9}h14%pe4GE(nh1YhWL{ZX8ex-|hV%Umxv= z-a|}J(4H@{LP$XHz>_v*6zOs0f6{ms8i_i=m>tIZ0-kI%s|d=50qd?gJLX7f=nH^< z^@0U~X%}cXHh_@&)PB4wg8k4XLq<<;51QNqD?b3db%)^dh{eG`zvs)5IXJCI1#yn0 zoz@+$@PnI%+q#1J!Eg6eMCC`CLlA%VoyC%p5;%jS!s}?gC6&_Fx$Sop)Tq=A$l(TX z;sD@OB4fDuc~8vWzIGU{*`tQ8i9C05q;ozSd=6@1o4!iFqd@ye1j|>vXMMg@egxa0 z4{}@z;<9e>W2buz{j36D%|Z?g&^Up-K+^!7tAiSpw6wOclXQMwqiWMzhMw}cT-}1S z{rb~G>GEcq2wvz6;Duv&c%Z)vIb{J3>gn;_{-p~|D8!6Xc8G^X3r;J56Rs?wC&*lC z5BtpbaQ=7MC&Xcj{D7B&7s0*J5*rG2rkgOryfDi`AZ37KW@H4MC^q_`Qh>cIE_OXY}G=b{#Za#W#QuLgg}x6mW(9usLu`0fk_90MYJmpf zj<>g;snq))(?#z?Lz^mSG7$v@1-S;*U*?gf4_?ab-z@y#U=f0T3dAPRI4mNLh6O7V zMqJl(Q@Oe`5e~6{Z&ZufPWRhEudl6vF>Z-XJ(O9q-yJOD7|?f`|8}*Qo5LXr$cB2i z3jJoGUSNh#z3dQ^G8FXKGzZX|KM?tXNIp~Z^VVu<67x6PF&JdVW{X-FT;iIVo0E|KE@*&B zzQA464Q`#!gQi`2a8-m7Ma@EcmVo{67eR;&f?#40f{u!()_Gt#ngv%3KX`5g!YMiV zU^-@D+wnopgt1P9TZMLEuja;+$e|sO0j`)XwW`1Zhat;{ z0pkI$5uAfItdb@%l=rBt4VFD)lnCrp)0PvMTML_ke0wSI{UIII&``OH98V$7=Ynm( z(E@6H6C9Dr(1=^&JSDdY(Ks<8BI3!E#N#qm3)m#qs7(NIbL=G0ItR`CNNpCuC@p1_ z${&k{CT&`7ZtfB=7ZyJ^$}BEzr#`%GSnuz*2`502SFYOTS2iQIg9qocEf z;@UonQQ84HCIjS8YZTJ&EdIp@s%jW*Xh~n{>Hb;oAZjL~x-uM3i^;sgaOq`{m>IJ{|cnk&{cKs+8 zpyV6vMRm&2>LHWZ5k1vwxvKqas9!^L5&1`Y6+7kXU0cb4?7b!jBIL)!#o zFh-=2(==N0!JiX|tu4^*0d?ua;Ks*sufLc=uMMn7LJPEs#@U&Vn29U;cNP&^c-?f;F(J_LSM`f=m88 z)E)@%O%(Uwf{x5L)-C9%)fjn(323NCwmT+SxS-+f^2;bU02s3J^1a{p9gd{4whJ|*R>e951H?$eFBOdv2{V62&1D2og&1JQ4V30o4A&4anz68h%I(y(LrT|t=^#29377)0?EBhQIoXexRJJ)$n{ zoaH>A=|ESz=KC)x8uo-JVK_Ge(2;S!G9*zPILhwRtGUr)^9#C$Ud#~UjbU-CjR#l{ z$H&Cn27eUTGtIy$e2;iG30nEVd&EUM2+1o2tq5-<D-DDTj$-G&(jpsBtJBiUQI~(5av`NYQv88;bQ15j*S%Iu{WYJJF&d zxS3Lss>nPb9xzrQnN|>-QWV+sxc%ABneaoB68OINeV_Yz-ut?3oBItYcN)W>M!qWw z94^=I{Ido1X+7i2rN-AWS`lw1MS6D8i^AFUdSa>i)bSulo1vTAH2LPEZl~9kS9g1< z_Ly>)5^dwYay)IhM#KZLSzYZ3#5GRA1y>B2LKEbl)|;=<5Ay&j^HZzK`Yc$|>d+6- zzjb$Y)tyYZG<9dywrzhInm*^~_>6&NB4ZA*8p5g*05<2SDTizBV+*ZDMdZGd%Wn9= zB8VqA?!x-DyXO>}UtI7RJa|{zyHSOP-?HLNPrseF z7eq(g3Fs)@jf2xGUe-s-`TrI#t!?-rUCEhAfjl+gMj!6%#4(J4z0e zrP&iBQX2EHH_|Nbuv$YFZ*VJMpR>amTcIA{k9O65bt34qj{u zGmi1Um#G5673CHe7gw29;=2%SQ-l@}MvCO0AqCT@_YTX!){*puqN9l{%e*Pc_O+^_T!7r{(7;8=!($w2YHdd z#m>{%kZVxVUr-2)rugQZDm5afn%U|#q8sgEkpy9*Qmnf9{no9*4zvaCA-yxS@*3B5 zc*}Dr)8HmMd0-eG{4+)*hfj&^Cwhssw|~I+@{0x-G%dqUEn>d~9xsUAMa%h%Y!P1B zV5pGDst+UqZaJRXPV<%r7c#Aa5%bptL8y-m4}ZuJ6y~X1(O6c)&NC4>BAHJ1aSDZP zoNLC+nIXOt)+jMg1+x&Z_{@okiK*<#>g{>$se~e4z5ZD9iU?AhC=}-;W{er5RR9DD zUlLK`X2{|D=FbP`tt64`m~TnUmM=nRP76Ce_LdPQy8ueFfI3wF3~}F-Id^^|;YciL z6+K=Hm{L&Ky60*@K^04;Uv+Q!)AG^L3v&asOqjVoF_BSlrY39;>vk4pfXJwUB>eB$lxog@)>rvM=X4PEVqzKJ^+A-1!nmhp462*tia zw8v+cuzrn}EHaj46OImtsW|VZK|Lb>5^- z*(3i)c@#MVXdGm}i8)irYZqsWS{@WOBV~1iy+c?fEsdd=xQ(XMI?t&5X{Tefxt5&= zD>-kYxmeG|!pyO!mf3Gci%BOre8{AUuNsovzZ9F#g1=w46k=oc>E6$@wYVXR*~huV z8l7jLk3KRg%3&=P*ZCr%d4_(Z%eZGDLJ382M~HWD+hm+P(KJE>qP9mzM+cD;s^lyh z>F8KtKV^<@x=8K1^P}_xOdOq0pQcg?wFC)R45eF!vXHWl_Ch$y z%j9fR&C{&S`$HR;H}W>Km2~Q-2^L5`C91yiU3Y4P25l{o2K@&O3SrHSR>q#?LZpSx zCf)HCRC8Yjt*x(1LmZswfB6npbzJRbH6dG$RJ_Pno1ol(9;RCQgY*QDh-%!orShpx zMIf!MxCW{Y`9j|+t@qQmi*cSDGQ~g%J)lnK0=%a*mK94QIHQ}jnQJi*oW+J8odYI* zgI0$tBiHj;2gY;#g2WL{rUPI!G`aAW-s3%@Q9%oa{PR1fcS*pO\n#T_91665 tr:nth-child(even) {\n background-color: rgba(139, 69, 19, 0.08);\n}\n#T_91665 tr:nth-child(odd) {\n background: #FFF;\n}\n#T_91665 tr {\n font-size: 14px;\n padding: 12px;\n}\n#T_91665 th:nth-child(1) {\n background-color: #FFF;\n text-align: right;\n}\n#T_91665 caption {\n font-size: 14px;\n font-style: italic;\n caption-side: bottom;\n text-align: left;\n margin-top: 10px;\n}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The number of different locations and cities for the data. Note that there are 31 different municipalitites in all.
 before may 2021after may 2021
Number of cities2119
Number of locations4823
Total objects57,62314,703
\n", "text/plain": ""}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "data-summ-q3"}}, "output_type": "display_data"}, "testing_training_chrono_2": {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAGsCAYAAACFCz5gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+UElEQVR4nO29eXxU9b3//5osM9kmE7IHshBZBAQs4kKgClhBqLWgfr3WnVt7i3Vprfa21WrFVsXaVutPb7229aJe22q9dau1ClZBLaCAQfbVhLAkJIRkZhKSmWRyfn+8czJLZiazz5mZ1/PxiDjnnDnzOTPnfD6vz3v76BRFUUAIIYQQEgZp8W4AIYQQQhIfCgpCCCGEhA0FBSGEEELChoKCEEIIIWFDQUEIIYSQsKGgIIQQQkjYUFAQQgghJGwy4t2AaDMwMIBjx47BaDRCp9PFuzmEEEJIwqAoCqxWK0aPHo20NP82iKQXFMeOHUNVVVW8m0EIIYQkLIcPH0ZlZaXfY5JeUBiNRgDyZeTn58e5NYQQQkjiYLFYUFVVNTSW+iPpBYXq5sjPz6egIIQQQkIgkJABBmUSQgghJGziKiiefvppTJ8+fch6UFdXh3/84x9D+5ctWwadTuf2N2vWrDi2mBBCCCHeiKvLo7KyEo888gjGjx8PAHj++eexZMkS1NfX44wzzgAALFq0CKtWrRp6j16vj0tbCSGEEOKbuAqKSy+91O31Qw89hKeffhobN24cEhQGgwHl5eVRb4vD4UBfX1/UP4eQQMnMzER6enq8m0EIIQGhmaBMh8OBV155Bd3d3airqxvavnbtWpSWlqKgoABz587FQw89hNLSUp/nsdlssNlsQ68tFovfz1UUBS0tLejs7Az7GgiJNAUFBSgvL2cNFRIStjZA1wooZkBXACglgKEk3q0iyUrcBcX27dtRV1eH3t5e5OXl4bXXXsOUKVMAAIsXL8aVV16JmpoaNDQ04L777sOFF16ILVu2wGAweD3fypUr8cADDwT8+aqYKC0tRU5ODjtuogkURcGpU6fQ2toKAKioqIhzi0iiYW8EMpcDaaud2xwLAfszgH5svFpFkhmdoihKPBtgt9vR1NSEzs5O/PWvf8Uf/vAHrFu3bkhUuNLc3Iyamhq89NJLuPzyy72ez5uFoqqqCmazeVjaqMPhwL59+1BaWoqioqLIXhghEaC9vR2tra2YOHEi3R9JitUGHLEAVjtg1AOV+YDR+3wpYGxtQOZ17mJCxbEQ6H+RlgoSGBaLBSaTyesY6kncLRR6vX4oKPPss8/Gpk2b8MQTT+CZZ54ZdmxFRQVqamqwf/9+n+czGAw+rReeqDETOTk5IbSckOij3pt9fX0UFElIkxl4dTdwvNu5rSwXuHwyUG0K/by6Vu9iAgDSVwOOVgAUFCTCaK4OhaIobhYGV9rb23H48OGIm3/p5tAujgGgpw/otsu/joF4tyi28N5MXqy24WICkNev7pb9oaKYw9tPSCjE1UJxzz33YPHixaiqqoLVasVLL72EtWvX4p133kFXVxdWrFiBK664AhUVFWhsbMQ999yD4uJiXHbZZfFsNokRtn6gsxfocxERmWlAQRZgiLttjZDwOGIZLiZUjnfL/skhWhF0I1g3RtpPSCjEtVs+fvw4rr/+ejQ3N8NkMmH69Ol45513sGDBAvT09GD79u144YUX0NnZiYqKCsyfPx8vv/xyQDXFkwXHAGB3AAMKkKYD9OlAepztSmvXrsXu3bvxne98J2qf4RgYLiYAed3ZCxTnxP97ICQcrPbw9vtDKZVYiXQfMRSK70Q5QkImroLi2Wef9bkvOzsb7777bgxboz18zdCvvGQezprxJfzmN7+JyueuXbsW8+fPR0dHBwoKCtz2NTQ04LrrrsPrr78elc9WsTuGiwmVvkGRlU1BQRIY4wg1+kba7w9DiWRzYLm7qHAsBBzPMCCTRAcajjWKvxl6/wAQj9wcu92Oq6++Gr///e9x9tlnR/WzBka4vpH2E6J1KvMlANOb26MsV/aHg34sYHtRAjAVs7g5lFKKCRI9KCgiQDTSvvzN0BUAjjAH1FBcKXq9Hhs3bgzvgwMkbYRYxJH2E6J1jAbJ5vCV5RFuHwIMigcKCBIjaDQOkyYz8Gw98MI24LU98u+z9bI9HEaagbtaKF588UWcffbZMBqNKC8vxzXXXDNUEEll586duOSSS5Cfnw+j0Yg5Xz4fW3YeREcv0N4DnDglLhZfrF+/HhdccAGys7NRVVWF7373u+judvaCY8eOxYMPPogbbrgBeXl5qKmpwRtvvIG2tjYsWbIEeXl5mDZtGjZv3jz0nvb2dlx99dWorKxETk4Opk2bhj//+c8AROCo7p2f/vC7eOi+H2JqTSHOmlCO3zyyAnpmUJIkoNoE3DQDuGE6cNkk+femGeGljBISLygowiCaaV8jzcBdswntdjt+/vOf4/PPP8frr7+OhoYGLFu2bGj/0aNHccEFFyArKwtr3nsf7364BVde9004HE4FoQY7ekvL3L59Oy6++GJcfvnl2LZtG15++WV8/PHHuO2229yOe/zxxzFnzhzU19fjkksuwfXXX48bbrgB1113HT777DOMHz8eN9xwA9Raar29vZg5cybeeust7NixA9/+9rdx/fXX45NPPkH6YDaHDsD//fl55OTm4m/vf4L7fv4oHnvkZ3j/n2uC/UoJ0SRGg2RznDtG/o2EZYKQeBD3SpnRxl+Vr97eXjQ0NKC2thZZWVlBn3t3m1gkfHHD9NDTvhwDYjXw5vb4t0vm4ZyzvoQnnviN1/du2rQJ5557LqxWK/Ly8nDPPffgpZdewt69e9GPTLT3+P7comzgk3+5B2XecMMNyM7Odis29vHHH2Pu3Lno7u5GVlYWxo4di/PPPx//+7//C0BKmldUVOC+++7Dz372MwDAxo0bUVdXh+bmZp8Lvl1yySWYPHkyfvWrXwEA5s6bh/5+B1a//9GQa6Zu1rm48MIL8cgjjwTwTSY24d6jhBASDsFUyqSFIgyimfalztAzPX6hzDQgI83dQlFfX48lS5agpqYGRqMR8+bNAwA0NTUBALZu3Yrzzz8fmZmZIQU7btmyBc899xzy8vKG/i6++GIMDAygoaFh6Ljp06cP/X9ZWRkAYNq0acO2qe4Yh8OBhx56CNOnT0dRURHy8vKwevXqoXYDYqH40pnTkasHsjPle6moqBjm0iGEEBJfGJQZBtFM+wKkeFNxzvDgSVd3SHd3NxYuXIiFCxfixRdfRElJCZqamnDxxRfDbhdFk52dPXR8KMGOAwMDWL58Ob773e8O21ddXT30/5mZmUP/r1Z49LZtYEDMLr/+9a/x+OOP4ze/+Q2mTZuG3Nxc3HHHHUPt9nZe9TzqOQghhGgDCoowiHbaFyAzcn/1Fvbs2YMTJ07gkUceQVVVFQC4BT4CYjl4/vnn0dfXB316JjLTvLtSMtPgNdjxrLPOws6dO4fWXIkUH330EZYsWYLrrrsOgAiN/fv3Y/LkyRH9HEIIIdGHLo8wUNO+ynLdt0cy7Wskqqurodfr8eSTT+KLL77Am2++iZ///Odux9x2222wWCz4xje+gfrPNuPE4f14/eX/xcH9e4eOUUtae0sd/dGPfoQNGzbg1ltvxdatW7F//368+eabuP3228Nq+/jx47FmzRqsX78eu3fvxvLly9HS0hLWOQkhhMQHCoowiXfaV0lJCZ577jm88sormDJlCh555JGhgEaVoqIivP/+++jq6sLcuXNRd95MvPy/v0dJXiZGZUkgZnGO7/Uxpk+fjnXr1mH//v04//zzMWPGDNx3331hL9J233334ayzzsLFF1+MefPmoby8HEuXLg3rnIQQQuIDszwYQU80DO9RQkg8YZYHIYQQQmIKBQUhhBBCwoaCghBCCCFhQ0FBCCGEkLChoCCEEEJI2FBQEEIIISRsKCgIIYQQEjYUFIQQQggJGwqKFKOxsRE6nQ5bt24FAKxduxY6nQ6dnZ0+3/Pcc8+hoKAgJu0jhBCSmFBQpDizZ89Gc3MzTKYY1QqPACtWrMCXvvSliJxr2bJlLPdNCCERgKuNpjh6vR7l5eXxbgYhhJAEhxaKSNABYA+ATwDsHXwdZf7v//4P06ZNQ3Z2NoqKinDRRRehu7sbAwMD+NnPfobKykoYDAZ86UtfwjvvvOPzPN5cHs899xyqq6uRk5ODyy67DO3t7X7bsn37dqSlpeHEiRMAgI6ODqSlpeHKK68cOmblypWoq6sDADgcDtx0002ora1FdnY2Tj/9dDzxxBPD2nXuueciNzcXBQUFmDNnDg4dOoTnnnsODzzwAD7//HPodDrodDo899xzAACz2Yxvf/vbKC0tRX5+Pi688EJ8/vnnPtu9YsUKPP/883jjjTeGzrV27VoAwNGjR3HVVVdh1KhRKCoqwpIlS9DY2Dj03k2bNmHBggUoLi6GyWTC3Llz8dlnn7mdX6fT4ZlnnsHXvvY15OTkYPLkydiwYQMOHDiAefPmITc3F3V1dTh48KDf75cQQhIBCopwOQzgGwAmA5gFYNLg68PR+8jm5mZcffXV+OY3v4ndu3dj7dq1uPzyy6EoCp544gn8+te/xq9+9Sts27YNF198Mb7+9a9j//79AZ37k08+wTe/+U3ccsst2Lp1K+bPn48HH3zQ73umTp2KoqIirFu3DgDw4YcfoqioCB9++OHQMWvXrsXcuXMBAAMDA6isrMRf/vIX7Nq1Cz/96U9xzz334C9/+QsAoL+/H0uXLsXcuXOxbds2bNiwAd/+9reh0+lw1VVX4a677sIZZ5yB5uZmNDc346qrroKiKLjkkkvQ0tKCt99+G1u2bMFZZ52Fr3zlKzh58qTXdv/gBz/Av/3bv2HRokVD55o9ezZOnTqF+fPnIy8vDx9++CE+/vhj5OXlYdGiRbDb7QAAq9WKG2+8ER999BE2btyICRMm4Ktf/SqsVqvbZ/z85z/HDTfcgK1bt2LSpEm45pprsHz5ctx9993YvHkzAFlenhBCEh4lyTGbzQoAxWw2D9vX09Oj7Nq1S+np6Qnt5CcVRVmoKAq8/C0c3B8FtmzZogBQGhsbh+0bPXq08tBDD7ltO+ecc5RbbrlFURRFaWhoUAAo9fX1iqIoygcffKAAUDo6OhRFUZSrr75aWbRokdv7r7rqKsVkMvlt0+WXX67cdtttiqIoyh133KHcddddSnFxsbJz506lr69PycvLU/7xj3/4fP8tt9yiXHHFFYqiKEp7e7sCQFm7dq3XY++//37lzDPPdNv2z3/+U8nPz1d6e3vdto8bN0555plnfH7ujTfeqCxZssRt27PPPqucfvrpysDAwNA2m82mZGdnK++++67X8/T39ytGo1H529/+NrQNgHLvvfcOvd6wYYMCQHn22WeHtv35z39WsrKyfLYv7HuUEELCwN8Y6gktFOFwHMBqH/tWD+6PAmeeeSa+8pWvYNq0abjyyivx+9//Hh0dHbBYLDh27BjmzJnjdvycOXOwe/fugM69e/fuIdeEiuvrpqYm5OXlDf09/PDDAIB58+YNuQvWrVuH+fPn44ILLsC6deuwadMm9PT0uLXrv//7v3H22WejpKQEeXl5+P3vf4+mpiYAQGFhIZYtW4aLL74Yl156KZ544gk0Nzf7bfeWLVvQ1dWFoqIit/Y1NDTg4MGDPtvt61wHDhyA0WgcOr6wsBC9vb1D7onW1lbcfPPNmDhxIkwmE0wmE7q6uoauQWX69OlD/19WVgYAmDZtmtu23t5eWCwWv9dHCCFah0GZ4WAOc3+IpKenY82aNVi/fj1Wr16NJ598Ej/5yU+wZs0aAOK7d0VRlGHbfKEoit/9o0ePHko5BWTwB0RQfO9738OBAwewY8cOnH/++Th48CDWrVuHzs5OzJw5E0ajEQDwl7/8Bd///vfx61//GnV1dTAajfjlL3+JTz75ZOi8q1atwne/+1288847ePnll3HvvfdizZo1mDVrltd2DQwMoKKiYkjUuFJQUICCggKv7fZ1rpkzZ+KPf/zjsH0lJSUAJDukra0Nv/nNb1BTUwODwYC6urohl4hKZmbm0P+rv4G3bQMDAz7bQwghiQAFRTiMlGkZxUxMnU6HOXPmYM6cOfjpT3+Kmpoa/POf/8To0aPx8ccf44ILLhg6dv369Tj33HMDOu+UKVOwceNGt22urzMyMjB+/Phh71PjKB588EGceeaZyM/Px9y5c7Fy5Up0dHQMxU8AwEcffYTZs2fjlltuGdrmLTBxxowZmDFjBu6++27U1dXhT3/6E2bNmgW9Xg+Hw+F27FlnnYWWlhZkZGRg7NixXq/NW7t9nevll18eCu70xkcffYTf/va3+OpXvwoAOHz48FBQKiGEpCJ0eYRDGYCFPvYtHNwfBT755BM8/PDD2Lx5M5qamvDqq6+ira0NkydPxn/+53/iF7/4BV5++WXs3bsXP/7xj7F161Z873vfC+jcqlXg0Ucfxb59+/DUU0/5zRJR0el0uOCCC/Diiy9i3rx5AMTcb7fb8c9//nNoGyAD++bNm/Huu+9i3759uO+++7Bp06ah/Q0NDbj77ruxYcMGHDp0CKtXr8a+ffswefJkAMDYsWPR0NCArVu34sSJE7DZbLjoootQV1eHpUuX4t1330VjYyPWr1+Pe++9dyj40Rtjx47Ftm3bsHfvXpw4cQJ9fX249tprUVxcjCVLluCjjz5CQ0MD1q1bh+9973s4cuTI0DX87//+L3bv3o1PPvkE1157LbKzswP6jgkhJCmJekRHnIlqUKaiKEqTMjwwc+Hg9iixa9cu5eKLL1ZKSkoUg8GgTJw4UXnyyScVRVEUh8OhPPDAA8qYMWOUzMxM5cwzz3QLhhwpKFNRJCixsrJSyc7OVi699FLlV7/61YhBmYqiKE8++aQCQHnrrbeGti1ZskRJT093+/57e3uVZcuWKSaTSSkoKFC+853vKD/+8Y+HAi1bWlqUpUuXKhUVFYper1dqamqUn/70p4rD4Rh6/xVXXKEUFBQoAJRVq1YpiqIoFotFuf3225XRo0crmZmZSlVVlXLttdcqTU2+f4zW1lZlwYIFSl5engJA+eCDDxRFUZTm5mblhhtuUIqLixWDwaCcdtppyn/8x38MXcdnn32mnH322YrBYFAmTJigvPLKK0pNTY3y+OOPD50bgPLaa6/5/O59ff+uMCiTEBJPggnK1CnKCE7zBMdiscBkMsFsNg8zX/f29qKhoQG1tbXIysoK/UM6IAGYZoibowzAqNBPR4hKxO5RQggJAX9jqCeMoYgEo0ABQQghJKVhDAUhhBBCwoaCghBCCCFhQ0FBCCGEkLChoCCEEEJI2FBQgFUKiXbhvUkISRRSOstDr9cjLS0Nx44dQ0lJCfR6fcAlqgmJJoqiwG63o62tDWlpadDr9fFuEiGE+CWlBUVaWhpqa2vR3NyMY8eOxbs5hAwjJycH1dXVSEujMZEQom1SWlAAYqWorq5Gf3//sDUdCIkn6enpyMjIoNWMEJIQpLygAGQdiszMTLdVIAkhhBASOLSjEkIIISRs4ioonn76aUyfPh35+fnIz89HXV0d/vGPfwztVxQFK1aswOjRo5GdnY158+Zh586dcWwxIYQQQrwRV0FRWVmJRx55BJs3b8bmzZtx4YUXYsmSJUOi4dFHH8Vjjz2Gp556Cps2bUJ5eTkWLFgAq9Uaz2YTQgghxAPNrTZaWFiIX/7yl/jmN7+J0aNH44477sCPfvQjAIDNZkNZWRl+8YtfYPny5QGdL5iV0gghhBDiJJgxVDMxFA6HAy+99BK6u7tRV1eHhoYGtLS0YOHChUPHGAwGzJ07F+vXr/d5HpvNBovF4vZHCCGEkOgSd0Gxfft25OXlwWAw4Oabb8Zrr72GKVOmoKWlBQBQVlbmdnxZWdnQPm+sXLkSJpNp6K+qqiqq7SeEEEKIBgTF6aefjq1bt2Ljxo34zne+gxtvvBG7du0a2u+Zg68oit+8/Lvvvhtms3no7/Dhw1FrOyGEEEKEuNeh0Ov1GD9+PADg7LPPxqZNm/DEE08MxU20tLSgoqJi6PjW1tZhVgtXDAYDDAZDdBtNCCGEEDfibqHwRFEU2Gw21NbWory8HGvWrBnaZ7fbsW7dOsyePTuOLSSEEEKIJ3G1UNxzzz1YvHgxqqqqYLVa8dJLL2Ht2rV45513oNPpcMcdd+Dhhx/GhAkTMGHCBDz88MPIycnBNddcE89mE0JIVLHagCMWwGoHjHqgMh8w0vBKNE5cBcXx48dx/fXXo7m5GSaTCdOnT8c777yDBQsWAAB++MMfoqenB7fccgs6Ojpw3nnnYfXq1TAajfFsNiGERI0mM/DqbuB4t3NbWS5w+WSg2hS/dhEyEpqrQxFpWIeCEJIoWG3As/XuYkKlLBe4aQYtFSS2JGQdCkIISXWOWLyLCUC2H2FZHaJhKCgIIUQjWO3h7ScknlBQEEKIRjDqw9tPSDyhoCCEEI1QmS+xEt4oy5X9hGgVCgpCCNEIRoNkc3iKCjXLgwGZRMvEvVImIYQQJ9UmyeZgHQqSaFBQEEKIxjAagMkl8W4FIcFBlwchhBBCwoaCghBCCCFhQ0FBCCGEkLChoCCEEEJI2FBQEEIIISRsKCgIIYQQEjYUFIQQQggJGwoKQgghhIQNBQUhhBBCwoaCghBCCCFhQ0FBCCGEkLChoCCEEEJI2HBxMI1htXGVQUIIIYkHBYWGaDIDr+4Gjnc7t5XlApdPliWNCSGEEK1Cl4dGsNqGiwlAXr+6W/YTQgghWoWCQiMcsQwXEyrHu2U/IYQQolUoKDSC1R7efkIIISSeUFBoBKM+vP2EEEJIPKGg0AiV+RKA6Y2yXNlPCCGEaBUKijhjtQG724A9J4C5NUBhtvt+NcuDqaOEEEK0DNNG44hnmmi6DpheKsICYB0KQgghiQMFRZzwlibqUID648CxLuCmGRQShBBCEge6POIE00QJIYQkExQUcYJpooQQQpIJCoo4wTRRQgghyQQFRZxgmighhJBkgoIiThgNkg7qKSqYJkoIISQRYZZHHKk2STYHlysnhBCS6FBQxBmjAZhcEu9WEEIIIeFBlwchhBBCwoaCghBCCCFhQ0FBCCGEkLChoCCEEEJI2FBQEEIIISRs4iooVq5ciXPOOQdGoxGlpaVYunQp9u7d63bMsmXLoNPp3P5mzZoVpxYTQgghxBtxFRTr1q3Drbfeio0bN2LNmjXo7+/HwoUL0d3tvmrWokWL0NzcPPT39ttvx6nFhBBCCPFGXOtQvPPOO26vV61ahdLSUmzZsgUXXHDB0HaDwYDy8vJYN48QQgghAaKpGAqz2QwAKCwsdNu+du1alJaWYuLEifiP//gPtLa2+jyHzWaDxWJx+yOEEEJIdNEpiqLEuxEAoCgKlixZgo6ODnz00UdD219++WXk5eWhpqYGDQ0NuO+++9Df348tW7bAYBheo3rFihV44IEHhm03m83Iz+eKW4QQQkigWCwWmEymgMZQzQiKW2+9FX//+9/x8ccfo7Ky0udxzc3NqKmpwUsvvYTLL7982H6bzQabzTb02mKxoKqqioKCEEIICZJgBIUm1vK4/fbb8eabb+LDDz/0KyYAoKKiAjU1Ndi/f7/X/QaDwavlghBCCCHRI66CQlEU3H777Xjttdewdu1a1NbWjvie9vZ2HD58GBUVFTFoISGEEEICIa5BmbfeeitefPFF/OlPf4LRaERLSwtaWlrQ09MDAOjq6sIPfvADbNiwAY2NjVi7di0uvfRSFBcX47LLLotn0wkhhBDiQlxjKHQ6ndftq1atwrJly9DT04OlS5eivr4enZ2dqKiowPz58/Hzn/8cVVVVAX1GMP4fQgghhDhJmBiKkbRMdnY23n333Ri1hhBCCCGhoqk6FIQQQghJTDSR5ZGqWG3AEQtgtQNGPVCZDxiZoEIIISQBoaCIE01m4NXdwHGXZUvKcoHLJwPVpvi1ixBCCAkFujzigNU2XEwA8vrV3bKfEEIISSQoKOLAEctwMaFyvFv2E0IIIYkEBUUcsNrD208IIYRoDQqKOGDUh7efEEII0RoUFHGgMl8CML1Rliv7CSGEkESCgiIOGA2SzeEpKtQsD6aOEkIISTSYNhonqk3ATTNYh4IQQkhyQEERR4wGYHJJvFtBCCGEhA9dHoQQQggJGwoKQgghhIQNXR6ERAmu1UIISSUoKAiJAlyrhRCSatDlQUiE4VothJBUhIKCkAjDtVoIIakIBQUhEYZrtRBCUhEKCkIiDNdqIYSkIhQUhEQYrtVCCElFKCgIiTBcq4UQkoowbZSQKMC1WgghqQYFBSFRgmu1EEJSCbo8CCGEEBI2FBSEEEIICRsKCkIIIYSEDQUFIYQQQsKGgoIQQgghYUNBQQghhJCwoaAghBBCSNhQUBBCCCEkbCgoCCGEEBI2FBSEEEIICRsKCkIIIYSEDQUFIYQQQsKGgoIQQgghYUNBQQghhJCwoaAghBBCSNhkxLsBhISD1QYcsQBWO2DUA5X5gNEQ71YRQkjqQUFBEpYmM/DqbuB4t3NbWS5w+WSg2hS/dhFCSCpClwdJSKy24WICkNev7pb9hBBCYgcFBUlIjliGiwmV492ynxBCSOyIq6BYuXIlzjnnHBiNRpSWlmLp0qXYu3ev2zGKomDFihUYPXo0srOzMW/ePOzcuTNOLSZawWoPbz8hhJDIEldBsW7dOtx6663YuHEj1qxZg/7+fixcuBDd3c6p56OPPorHHnsMTz31FDZt2oTy8nIsWLAAVqs1ji0n8caoD28/IYSQyKJTFEWJdyNU2traUFpainXr1uGCCy6AoigYPXo07rjjDvzoRz8CANhsNpSVleEXv/gFli9fPuwcNpsNNpvTgW6xWFBVVQWz2Yz8/PyYXQuJLlYb8Gy9d7dHWS5w0wxmexBCSLhYLBaYTKaAxlBNxVCYzWYAQGFhIQCgoaEBLS0tWLhw4dAxBoMBc+fOxfr1672eY+XKlTCZTEN/VVVV0W84iTlGg2RzlOW6b1ezPCgmCCEktmgmbVRRFNx555348pe/jKlTpwIAWlpaAABlZWVux5aVleHQoUNez3P33XfjzjvvHHqtWihI8lFtEksE61AQQkj80YyguO2227Bt2zZ8/PHHw/bpdDq314qiDNumYjAYYDBwREkVjAZgckm8W0EIIUQTguL222/Hm2++iQ8//BCVlZVD28vLywGIpaKiomJoe2tr6zCrBYkOrERJCCEkEOIqKBRFwe23347XXnsNa9euRW1trdv+2tpalJeXY82aNZgxYwYAwG63Y926dfjFL34RjyanFKxESQghJFDiGpR566234sUXX8Sf/vQnGI1GtLS0oKWlBT09PQDE1XHHHXfg4YcfxmuvvYYdO3Zg2bJlyMnJwTXXXBPPpic9rERJCCEkGOJqoXj66acBAPPmzXPbvmrVKixbtgwA8MMf/hA9PT245ZZb0NHRgfPOOw+rV6+G0WiMcWtTi0AqUTJ2gRBCiIqm6lBEg2ByaImTT48Cr+3xvf+yScC5Y2LXHkIIIbEnYetQEO3ASpSEEEKCgYKCeKUyf3jRKJWyXNlPCCGEqFBQEK+wEiUhhJBgCDko89NPP8XatWvR2tqKgYEBt32PPfZY2A0j8YeVKAkhhARKSILi4Ycfxr333ovTTz8dZWVlblUrfVWwJIkJK1ESQggJhJAExRNPPIH/+Z//GUrtJImNrQ3QtQKKGdAVAEoJYKCIIIQQEgQhxVCkpaVhzpw5kW4LiQP2RiDzOkA/FTDMAfRnABnXyXZCCCEkUEISFN///vfxX//1X5FuC4kxtjYgYzmQttp9e/pqIH257CeEEEICISSXxw9+8ANccsklGDduHKZMmYLMzEy3/a+++mpEGkeii651uJhQSV8NOFoB0PVBCCEkAEISFLfffjs++OADzJ8/H0VFRQzETFAUc3j7CSGEEJWQBMULL7yAv/71r7jkkksi3R4SQ3QjrBg60n5CCCFEJaQYisLCQowbNy7SbSExRikFHAu973MslP2EEEJIIIQkKFasWIH7778fp06dinR7SAwxlACOZ4aLCsdC2c7UUUIIIYES0mqjM2bMwMGDB6EoCsaOHTssKPOzzz6LWAPDhauNjoxbHQqTWCYoJgghhAQzhoYUQ7F06dJQ3kY0iqEEzOYghBASFkFZKPbt24eJEydGsz0RhxYKQoiWsdqiv15OLD6DJCdRs1DMmDED1dXV+PrXv46lS5eirq4urIYSQkgq02QGXt0NHO92blNX9K2OUJZVLD6DECDIoMz29nY8+uijaG9vx2WXXYaysjLcdNNNePPNN9Hb2xutNhJCSNJhtQ0f6AF5/epu2Z8In0GISlCCIisrC5deein+8Ic/oLm5Ga+99hpKSkrw4x//GEVFRViyZAn+53/+B62trdFqLyGEJAVHLMMHepXj3bI/ET6DEJWQ0kYBWaZ89uzZeOSRR7Br1y5s3boVF1xwAZ577jlUVVVxrY84YbUBu9uAT4/Kv5yBEKJNrPbw9mvlMwhRCSnLwxsTJkzAXXfdhbvuugvt7e04efJkpE5NAoS+UkISB6M+vP1a+QxCVEKyUDz//PP4+9//PvT6hz/8IQoKCjB79mwcOnQIRUVFmDBhQsQaSUaGvlJCEovKfBH83ijLlf2J8BmEqIQkKB5++GFkZ2cDADZs2ICnnnoKjz76KIqLi/H9738/og0kgaEFXyndLYQEjtEg1kPPAV+1KkYirTMWn0GISkguj8OHD2P8+PEAgNdffx3/7//9P3z729/GnDlzMG/evEi2jwRIvH2ldLcQEjzVJuCmGdGtERGLzyAECNFCkZeXh/b2dgDA6tWrcdFFFwGQLJCenp7ItY4ETDx9pXS3EBI6RgMwuQQ4d4z8G42BPhafQUhIFooFCxbgW9/6FmbMmIF9+/YNLWO+c+dOjB07NpLtSynCqWan+kq9uT2i7SsNxN0ymaW9CSEkqQlJUPzXf/0X7r33Xhw+fBh//etfUVRUBADYsmULrr766og2MFUI12Wg+kp9nSOaM5J4u1sIIYTEn5BWG00kEmEtD6sNeLbet3XhphmBC4J41Ozf3Qa8sM33/hum00JBCCGJSNRXG121ahXy8vJw5ZVXum1/5ZVXcOrUKdx4442hnDZliaTLQPWVxpJ4ulsIIYRog5CCMh955BEUFxcP215aWoqHH3447EalGonuMmBqGiGE+CZVUupDslAcOnQItbW1w7bX1NSgqakp7EalGslQzY6padGHS1ATknikUkp9SIKitLQU27ZtG5bR8fnnnw8FaJLASRaXQTzcLalCKnVKhCQLI6XUBxMflwiE5PL4xje+ge9+97v44IMP4HA44HA48P777+N73/sevvGNb0S6jUkPXQbEH6zzQUhiooUKxrEkJAvFgw8+iEOHDuErX/kKMjLkFA6HAzfeeCNjKEKELgPiC9b5ICQxSfT4uGAJSVDo9Xq8/PLLePDBB1FfX4/s7GxMnz4dNTU1kW5fSkGXAfFGqnVKhCQLyRAfFwwhL1/+7LPP4vHHH8f+/fsByPLld9xxB771rW9FrHGEkNTrlAhJFpIlPi5QQhIU9913Hx5//HHcfvvtqKurAyCrjn7/+99HY2MjHnzwwYg2kpBUJtU6JUKShXhWMI4HIVXKLC4uxpNPPjmszPaf//xn3H777Thx4kTEGhguiVApk5CRYJYHIYlLIqd8R71SpsPhwNlnnz1s+8yZM9Hf3x/KKQkhfmDQLiGJS6rEx4WUNnrdddfh6aefHrb9d7/7Ha699tqwG0UIGQ6XoCaEaJmwgjJXr16NWbNmAQA2btyIw4cP44YbbsCdd945dNxjjz0WfisJIYQQomlCslDs2LEDZ511FkpKSnDw4EEcPHgQJSUlOOuss7Bjxw7U19ejvr4eW7du9XueDz/8EJdeeilGjx4NnU6H119/3W3/smXLoNPp3P5UAUMIIalOqqwRQRKDkCwUH3zwQUQ+vLu7G2eeeSb+/d//HVdccYXXYxYtWoRVq1YNvdbrmSNHCCEM1CVaI2SXRyRYvHgxFi9e7PcYg8GA8vLyGLWIaIVEjoomJBwCufdTbY0IkhjEVVAEwtq1a1FaWoqCggLMnTsXDz30EEpLS30eb7PZYLM57X4WS5IVS08BOPMiqUqg9z7LsRMtElIMRaxYvHgx/vjHP+L999/Hr3/9a2zatAkXXnihm2DwZOXKlTCZTEN/VVVVMWwxCRcuhEVSlWDufZZjJ1pE0xaKq666auj/p06dirPPPhs1NTX4+9//jssvv9zre+6++263LBOLxUJRkUAcsQAnTgG1BYAhA+jtB7IyAFu/zN448yLJSjBWB5ZjJ1pE04LCk4qKCtTU1AytH+INg8EAg4HOw0Slyy6d5ntfiIBQqTYBF50m+wlJRoKxOrAcO9EimnZ5eNLe3o7Dhw+joqIi3k0hUcKoHy4mAHn93heceZHkJRirg7pGRFmu+zHJukYESQziaqHo6urCgQMHhl43NDRg69atKCwsRGFhIVasWIErrrgCFRUVaGxsxD333IPi4mJcdtllcWw1iSY2B9B2yvu+tlOyn5BkJFirA8uxE60RV0GxefNmzJ8/f+i1Gvtw44034umnn8b27dvxwgsvoLOzExUVFZg/fz5efvllGI3GeDWZRBmbQ+InGjqBnj7n9uxM2U5BQZKVUFamTJU1IkhiEFdBMW/ePPhb7PTdd9+NYWuIFjDqgTw9MKkI6OoD+hxAZjqQlyn/0uVBkhlaHUgik1BBmST5cTX7jkp338dgM5IK0OpAEpWECsokyQ+DzQghJDGhhYJoDpp9CYkcLGNPYgUFhUbgQ+8Ozb6EhA/L2JNYQkGhAfjQE0IiDRcQI7GGMRRxhmtXEJI6WG3A7jbg06PybzSf70BKeRMSSWihiDNcNZCQ1CDWlkguIEZiDS0UcYYPPSHJTzwskVxAjMQaCoo4w4eekOQnHu4HtaaLN1jThUQDCoo4w4eekOQnHpZI1nQhsYYxFHEmlPr9hJDEwp+lsc8B9A9IoGakU8ZZ04XEEgoKDRDoQ58qtSpS5TpJ6uBrJdEuu4iJHa2yIB4Q+UBN1nQhsYKCQiOM9NCnSq2KVLlOklp4s0SqlokvV0sKqQrrRJBEhTEUCUCq1KpIleskqYlqibxhOnDZJBEYM8pFTDg8Fl1mnQiSiFBQJACpUqAmVa6TpC6qJfLcMUBGmrg5PMWEClPGSaJBQZEApEqtilS5TkIApoyT5IMxFAlAqnQ8qXKdhAC+AzUBpox7w9YG6FoBxQzoCgClBDAw2FRT0EKRAKRKrYpUuU5CANaJCAZ7I5B5HaCfChjmAPozgIzrZDvRDjpFUXx48JIDi8UCk8kEs9mM/PzEHZFSJfshVa6TEBWmSfvH1iZiIm318H2OhUD/i7RURJNgxlAKigQiVTqeVLlOQsjI2HeKZcLn/h1isSDRIZgxlDEUCUSqFKhJleskhIyMYg5vP4kdjKEghBCiWXQjuDpH2k9iBwUFIYQQzaKUSqyENxwLZT/RBhQUhBBCNIuhBHA8M1xUOBbKdgZkagfGUBBCCNE0+rGA7UXAodahMIllgmJCW1BQEEIICYp4ZGIZSgBQQGgaCgrCCnSERAFvgy6Q+CnRrBVDfEFBoUFiqf7tjUDmcveiMY6FgP0ZMTMSQoLHc9BN1wEzK4BdJ4AulzVpEm0gHmlFYC65ntpQUGiMWKp/W9twMQEA6asBLBefJS0VhASHt0G32gS8uQ9oOwVMKgIy02V7og3EgawIzBoyqQuzPDTESOrfaovs5+lavZezBURU6Foj+3mEpALeBl1DhkwWevqArj73fepAnAhwRWDiDwoKDRGI+o8krEBHSOTxNqj29jv/v88R2Hu0CFcEJv6goNAQsVb/rEBHSOTxNqhmuTiXVXfHSO/RIlwRmPiDgkJDxFr9swIdIZHH26Br65c4iuxMIC/TfV8iDcRccp34g0GZGkLtiLy5PaLR6RhKJJsDywcDMQdhBTpCQkcddF3joZrMwNcn+s7ySKSBuNokQaSJnv4aD5J9JWUuX64x4pHj7VaHghXoCIkIyVqHgoRGotbvCGYMpaDQIJFWscmuirUOv39CUhurDXi23rf1Wctpw8GMoXR5aBCjIXK53ImqipMFfv+EkFSp38GgzATCagN2twGfHpV/R6pLEeu6FsQdfv+EECB16nfQQpEgBDrTdTWvOwaAnEwp++vwcGwlkyrWKqkyKyGE+CdV6ndQUCQAgdbP9xQdrd3AgAJcdJpYNDxFRbKoYq2SKrMSEhrhxNYwLidyxOK7jGQGn5Z/ewqKBCCQmW5l/nDRkZkO7G8H3vsCqKsEGjrd35ssqlirpMqshARPOLE1jMuJHLH6Lr2lErt+VqCCQOu/fVxjKD788ENceumlGD16NHQ6HV5//XW3/YqiYMWKFRg9ejSys7Mxb9487Ny5Mz6NjSOBzHS9iY68TCmk02SWtQRcSaRiOokKqwoSb4QTW8O4nMgR6+9Srd9xw3Tgskny700zAhcCifDbx1VQdHd348wzz8RTTz3ldf+jjz6Kxx57DE899RQ2bdqE8vJyLFiwAFarNcYtDY5Qgif9HR/ITNdqlzUCOnrF1dHRK/tqC0RUuK4lkIjFdBIRVhUk3ghnzZ5Yr/eTzMTju1Qz+M4dI/8G0wckwm8fV5fH4sWLsXjxYq/7FEXBb37zG/zkJz/B5ZdfDgB4/vnnUVZWhj/96U9Yvnx5LJsaMMGapNTjj1hkFcI+B1BjAq6ZCowvkmMC8b/tPgHsaZfVDFWyM0VQTCoCppUCM8q153NLdlhVkHgSTmwN43IiR6J9l4nQXs2mjTY0NKClpQULFzoXmzAYDJg7dy7Wr1/v8302mw0Wi8XtL1YEa5JSjz/YIWJgfzvQ2AmsOwT8eiPQ0CHHjTTTBYDGDqAkx31/T5/ETZTliaAIRRV7u8ZgrC8kvFkJST7Cia1hXE7kSLTvMhHaq9mgzJaWFgBAWVmZ2/aysjIcOnTI5/tWrlyJBx54IKpt80WwaYJHLPLX0OluWQCAfe3ApmNAcY4MQP5murvbgG2tks3x3hdi9VApyQEWnBaZQUzrAUGEJALhRPzHer2fZCbRvstEaK9mBYWKTqdze60oyrBtrtx999248847h15bLBZUVVVFrX2uBGuSstrFzeEpJlQ6et1FiK8Kmla7pITubpNsjnljJWYiK0NWOexzBH0pwz8jwNTVREXLqVgkuQgn4l9979v7gNl5wFg7kGYBUAA4innPBkOkMi9iRSK0V7OCory8HIBYKioqKoa2t7a2DrNauGIwGGAwxOebDdYkZdT7H+yzMgLzi6nndSjDU0MB4Pzqkc8xEslcpImWFxJrwomtqTYB/14MZC4H0tY4tzsWyurB+rFRa3bSkWgxTlpvr2ZjKGpra1FeXo41a5xPjN1ux7p16zB79uw4tsw3waYJVuZLAKY3qk1iXQjELxaL9MRECAgKhURIxSLJSaixNbY2IPNmdzEBAOmrgfTlsp8ETqLFOGm5vXEVFF1dXdi6dSu2bt0KQAIxt27diqamJuh0Otxxxx14+OGH8dprr2HHjh1YtmwZcnJycM0118Sz2T4JNk3QaJBsjolF7turTRIPYesPTAzEIj0xEQKCQiERUrEIcUXXCqSt9r4vfbXsJyQexNXlsXnzZsyfP3/otRr7cOONN+K5557DD3/4Q/T09OCWW25BR0cHzjvvPKxevRpGozFeTR6RYE1S44uAH86WAMyOXmfcw8lTwJJJgYuBaJvCEiEgKBSS1fJCkhfFHN5+QqKFTlEUZeTDEpdg1nKPJ4kQFJiMsQa724AXtvnef8P0xI0NIcmJfSegn+pn/w5Af0bs2kOSm2DGUM0GZaYavjI4tITWA4JCIVktLyT5UCcdhflA8UJxb3jiWAgopbFvGyEABQUJkkQQPsGQCKlYhLhaB7MzgNueBEy3u4sKx0LA8QxgSKLnkyQWdHkQgsRwOZHUxGoDnq13F7zZGcDSUqC2D9B3ATqTWCYoJkikocuDkCBJNssLSTx8iVpvmUg9/cCfj8n/M86HaAUKigQnVWbWqXKdJDXxF/DcxUwkkiBQUCQwyZh14Y1UuU6SmoxUXG3ROP/vT9QaMCR4tD6xoqBIUJJ9bQ2VVLlOkrqMVFzN5mAmkpaI1aBua5MiZYoZ0BUA3QXAn44AR6zOY7Q2sdJs6W3in1Sp8Jgq10lSl5FcFjZH9CvhksBoMkuA7AvbgNf2yL/P1ruv8BwJ7I1A5nVSb8QwR+qK5P87sCQX0Kc7j9PaEgG0UCQoqVLhMVWuk6QugZS1T8YaMIlGrKyltrbBhd886oykrwYq7gQufAR456T752tlcUZaKBKUZF1bw5NUuU6SugS6uJ+WF4VKBWJlLR1prZbJA8O3a2ViRUGRoMRihVEtkCrXSVIDq03KvX96VP612mKzuB8Jn1hZS0daiyXdOnybViZWdHkkKKlS4TFVrpMkPyNlK9GloW1iZS3VjRBg6TAC6HS+1tLEioIigUmVTihVrpMkL4H637XgByfeidW6P0qplFH3tVbLbhe/gtYmVhQUCU6qdEKRuE6t53CT5CUQ/3sqPMeJjGot3XgY6HEAvf1AVgaQnQ7MqopcX2IoAezPAFg+fK2W/mdERFxWqs0+jIKCaJJID/4sjpV6aElAMlspeThkAQ52AH0OIDMdGDcKmBXhz9CPBWwvAg61DoXLWi2TIvxZkYSCgmiOSA/+LI6VemhNQDJbKfFR+5GTPcCoLOf2kz3R6UcMJQASzGrFLI8o4S2am4zMSIN/KN8ji2OlFtG4h8KF2UqJD/uRkaGFIgpobXaUSETD10xzc2qhxXgFZislPuxHRoaCIsLQvO4bz9r0SsmgWc+FaDy0NDenFlrt+JmtlNiwHxkZCooIo8XZUahEMqjN3ji8nKxjoUQz68c6t0XjoY1VuhfRBlru+FMlKysZYT8yMhQUEUars6NgiaTbxl9teiyXaGbVUhGJh9abEKK5OXVgx0+iAd1WI0NBEWG0PDsKlEi7bUaqTe9oxVA0c7gPrT8hRHNzasCOXxtoKW03UoTitkrG78EXFBRh4O1GSYbZUaTdNiPVpvfcH6qvORAhRHNzasB4hfgSjcD0QGKwYkEwbqtUC9CnoAgRfzdKos+OIu22Gak2vbf9ofiakyl+hYRPsscraGWA9SQagekjxWBp0QqQigH6FBQhEMiNEszsSGsPQ6TdNiPVpldKgzufL5IlfoUkJ/EIco4HkRb2I8VgdawCnm/SnhUgFSc4FBQhEOiNEsjNokWTWKTdNv5q0zueidysKhniV0hyEq8g53gQcQvnCDFYA8e1aQVIxQkOK2WGQKRulFAq+sWiAqca1OZZ2S8ct41+LND/ImDfAdj+Jf/2vxjZ2RSrERItEunKnSMNsLrW0NrpjVD6m4hbOEeIwYKP/fGuXpmKExxaKEIgXw/UFgCGDOeKc7Z+mYU4lMBvlGBNYrG0ZkQjqM1fbfpImIMZ3U+0yEjP+VELUIvA4yGCDXIOlVD7m0hbOEeKwXIYAXR63xdPK0AyBOgHCwVFCGSkAfUtwL5257ZqE3DRacDJU4HfKMFYOuIR4BOroLZICiVG9xOt4e8516cDYyxA5i2Bx0OEEuTst31exDwQen8TaWHvLwZrYCGw24+dPd5FzFJtgkNBESRWG/DWfhEV2ZlAT59sbzIDHzcBP5wd+I3i7WZP18mgaMgAzL1iZqzMT94An3CEki+rRrJH95PEwt+gdqEJyL0luHiISAY5+xLzc2uAE6e8vyeQ/iaSwt5fDFb/M8AOHy4eLVgBUm2CQ0ERJOrAnqcHJhUBXX1AnwPITAdyM8UFEiieJrF0nTyk730BtJ2S82emyzFfKvd/rkQN8AlVKGkxmJUQb/gzfU9F4EXfVCIV5OxXzO+R56ih08d7A+hvIins9WNFXDlUt5BJhJOhBLh0lLatAKk0waGgCBLXBykzHRiV7nv/SHiaxKpNTjFRWyDnB2Rfa7dTuHg9V4IG+IQS4JqK+d0kcfFn+s7r8f9eX/EQrgPsgFniCLpHAdklQKBdgT8x33YKGF/o+73x6G98xWClmhVAy1BQBEmkI3ddH4bWbuCzFqdlwpXOXiDfAPR4sYDEy7QXkUDKEL7PZHX/kOTF16CnO+D/ff7iIY7rgVetwPEeAD0AWoGyI4Fb6fyJ+bxMQOdjnxZcCZ4kuhVAa7WIQoWCIkiiEbmrPgxWOzAqy/sxTWbg0tOBDYfjb9qz2oADJ8Us2nZKOh/VNROsyyGU7zMV87tJ4uNt0LOFGA8RCSudPzGfmQ5MKgZO9sS/v0l2ksl9S0ERJNGM3PX3gDsUwKSPv2mvyQxsPAz846D8PyDBqbUF8v/BuhxC+T5TMb+bJCehxkNEwko3kpifXCx/yTBz1irJ5r6loAiBaPnsRnrAx+T7N+1F22ym3vyjsp1iApBMl4ZOcdWE4nII9vtMxfxukrz4Czj0RaSsdHNrfFsa1ecvkV0JWifZ3LcUFCESDZ9dILN1X6IhFmYz9ebPzhy+r6dPMl5GpYfmcgjm+0zF/G6S3HgGHFptwBdtvgV2uFY6tb84cUr6h/GFEjMxadAqwWcoNiSb+5aCIkSiZQ3wN1v3JRq+NgH4x4Hom83UmzvLx13T55B/Y+FyiISVKFkCoUhyEcjkIBwrnaeZ3TU19GSPCAoSG5LNfUtBEQIjPfDhDlTeZuv+fG1/2gGU53k/VyTNZurNbeuX62zySGlTzaWxcjmEYyWKVSAURUvqEc5vHqhPPRwrXbKZ2ROZZHPfUlAEib8H/o09wOLxUkkz0gOVv07gkBmoKfDT5giZzdSbv8ksZcbf+8I9MHPcqMRwOcQqECqZordJYIT7mwcz2IdqpfPVH6hVelu7k1cAa03gJ5v7loIiSPw98IYMsRZ41oqIxEDlTxRkpvuv0Bkps5nrzb+7DairBOaNTTzfayxmaMkWvU1GJhK/eSx86r5K/qtVej9rcaavJ5MA1qrAT6bCXBQUQeLvgTZkiLWg1MsS2uEOVP5EQV6mdACNXvZF2myWyDe/OjtpNIsAcl0h1u24CHTaRyzy51qaXY2ip1k5OYmEUA3Gpx7J1UBdq/ROKnJvdzII4IiIvShaNxK9MJeKpgXFihUr8MADD7htKysrQ0tLS5xa5P+B7+33XRobCG+g8udrq8wHzhkNHLPGxmyWiDe/a+fb0Qvsb3euELu7zV1URMKic7wb2NPuXDwOcNbryNMnXvQ2GZlIWBcC9amHM0B6M7MbMoaX/Hc9Z6IL4HDFXqStG1pzvUQKTQsKADjjjDPw3nvvDb1OT/czYscAfw/8qCyZhfoi2IHK9abL10s2h7/4jGhZDqw24OjgA2l3AGV50vEkygPg2fnmZcrg3mSWWVldpTPSPRIWHatN/NCuYgJwr9eRaNHbZGQiEbHvOdircQ0FWWL5PGKR+/NomAOkZ39h7vVe8l8l0QVwOGIv0u5LrbpeIoHmBUVGRgbKy0dYatMFm80Gm8029NpisUS0Pf6CaLxZCVz3BzNQebvpRucBS04XS4g30RANy0GTGdhyDHhzn3sAZl0lcP302D8AoSh7z9lJZroIooZOuaZ5Y2V7pCw6Ryyy9oq3TJiePlmTJdGit8nIRCpiXx3sj1oAsx147yDgGJDYrL3tQGGW1I3QpwH2Ae/nCHY10N1t/q2riS6AwxF7kYy5SvbYKs0Liv3792P06NEwGAw477zz8PDDD+O0007zefzKlSuHuUkiidUGdNuBc8dIMGJWBpCd4axiGYmIXV833bEu4I29sbvprLbhZbYBGRQ3HAH06cDNM2P3AISq7L11rq7Lz5fmAueOjqBFx+49EwaQdi4an9idBvFOJCP2jQbpU9ZsBcaOGn4f1RYASycBG48MjwECghcAyZa+6ElYdTsiGCjrS5z0OcRF+lmz9EeJ6gLRtKA477zz8MILL2DixIk4fvw4HnzwQcyePRs7d+5EUVGR1/fcfffduPPOO4deWywWVFVVRaQ9/gY09cePhOtBK3niRyxAj2P4LBsQUXGwI3ZtCctn7KNzVZefH2uK7DUY9dLJu2bC9PaL+LT1i/uKJCeRdD0esUhsg6eYAOTZe79BgotdC1MBoQmAZEtf9CSc64tk8Slv4qPLLr9hT5+IincOJq4LRNOCYvHixUP/P23aNNTV1WHcuHF4/vnn3USDKwaDAQZD5O/+YAa0cF0PWinHarX7T0ftc4TelmBdF+GIrFjPvlw/z1tnP8YlsC4ZA7NSnUi5Hq12ERTeBH2aDmjvkdgKV0IRAOp92GUHFo0DbA75S7Z7MlSxF8n+w1N89DmcYgJwViFOVBeIpgWFJ7m5uZg2bRr2798f88+OttXAdXDpH3CmGnojVv5Mo953mW1A2hdKW1RLj2taZY0JuGYqMN674SkskRXr2Vcgn5fMgVkkMhj1/gV9dqYMZtNKQ6/KeeCkLA7W0QucUQzk6MWVO7k4ucSESihiL5L9h6c46epziolqk1gwVRIxuyahBIXNZsPu3btx/vnnx/yzo2k18BxcaguA7j4gwyG+flf8KeJIz3gr84Htx70HF6qVMYOd3auWnoMd7sq8sRNo7gJ+OBuoHTX8feGaHWNdP8Pf5yV7YBaJDJX5zgJTnmRnOuvPhDLgNJmd8VHNVuCiccCaBlksLDNNzj+3BrjqDApcwD1QtqffWbyw2y7Pc6DPq6c4Udc/ck1hdyXRsms0LSh+8IMf4NJLL0V1dTVaW1vx4IMPwmKx4MYbb4x5W6K1iIu3waXJDHy5Gvi4yd1S4W/V0awM4K19EripEu6M12gAZlXJ53vL8rjqjOAHPrXgk6uYUNnXDmw6BhTnDD9vJMyOsa6f4evztBIjQ7SN0SCZYx80yrOhotYzqcwPzV2n9jmjsuWZPrsC+LBRnsmMNHGjqDFSySZwPVPxC7PFdRTIJMNoEAvOOwfDsyy6TjaOWKTPtvUPr4cDJF52jaYFxZEjR3D11VfjxIkTKCkpwaxZs7Bx40bU1NTEvC3R8sN7G1zUgL4Z5cDUUnnI/a062ucQi8aXq2WbelNGYsZbbRqcBRU761CU5gKnjQrtnFa7u5nPk45e7wNqMgWNaSVGhmif2lHAXbOkpP8hs7PiamV+6Pe92udkD9bMKc4FGg7I//cPAH0DgCFd+pVkEriu/aZaavzjJulfVUuwP3EQScuiOtmozAeerU+e7BpNC4qXXnop3k0YIloDmjp4qAVsDBnOjIA+B5CTIdusg5HA+jTgjzukqp1ayrmrTyo/9va7F2kCItMhGA3ApBL5Cxej3mnm80ZWhu8BNZHLfruSbEsWE/+E64ocXwR8f1bk7nv1+VLjozyfx4HBCYlqGU0GgespBtRS401mEVZqUS9/4sB18uetvz5qCb6PDGRcSaTgbU0LCq0RjQHNqHdfmEd1K+h0Yp0wGoDPjgEne0UoXHY6sKsNMNvkJq4tcHYIrkWaXNFSh1CZLwGYjZ3D96lBSf4G1EQs++1Jsuf8EyeRCr6N5H2vPl+2fmmDZ/B3ms4Zo+F6fCLjaQl2zZ7p6ZNJ2ajB78HXJMx18ufZXwMS4PofZwXvYvY3riRa8HZavBuQaKgP9rlj5N9wlWJlPjC9dPjNmaeXCpV/2yv/v6MVON4lN1ajWYppqaWc03XO93mLCtdSh2A0SDbHRI9sDjUoydaf/AOqOisp81hEzp+1y2oTN9inR+Vfq234MQSwtQH2nYBtPWDfJa/jxUgm8nj9hqqgVYuvKYpMTNJ0Ula/Ig8oypZBtjA7OZ5Hz0mVZz/paaXxNglT+1FX64YrbadC/129jStavX/8QQtFCETSBGU0SCW8tlNilcgbtFhkpElwYks3MKtScsQBmU2Ye4HyPDFN9vQB6YNR2T19w9M8tTjjHV8k2RybjknMhFrw6eQpYMmk6JjztGY2DMbalWizlHhhbwQylwNpq53bHAsB+zOAfmzs2xNM8G0s709XM/vuNmBsAXDLORL8uaVZMj3SBk36E0bJM6pVE3ugeE6qPPtJTyuNt0mYKsQy04H9J6X/TdNJVkyuXiw6kYw5ScTgbQqKIHHt3NVgyFFZwOLxEh09tiC0h29SkbgxGjpFPTsG5LUhHcjPkpu2b0D8dONGyX7X4KnaAgmocs1j1nLAYu0oEUzhdqKBdMRaHZADMWMzxTQwbG3DxQQApK8GsBywvQgYYtz5Bhp8G4/701PQmvTAiVLpW9SYAMcAsLlZLKLxXt47XDzdjKq7R42hcF3U0dckzGgAFpwmwsvc69xuygIqjZGPOUnE4G0KiiBw7dy77GJVONQJnOqTGgqLxsmse1qplMT19zB5FrLqH5BzKIqIBBvESnFWOZCdDvz7DLmJW7qAudVAkwXY1ipWjcx0oCQH+OoEERdTS0XkaOmB9ka4fuFAOuJEH5ATcZYSD3Stw8WESvpqwNEKIMbfUyDBt+Hcn7Y2uW7FDOgKgA4jsLMPyEgHSnOc6wv5/HyX5+/To8BLO92zr9T0VIfivM98iQatinYVz+BH1d2jZnl4S833xGqTcudj8sVl268AGTr5fo5axbocarE/r21OwOBtCoogUDv3PofEMxy2iJgYkw9sbZFUyld3AxVGYP5Y30VhvBWyStMBFptYIgDJ7rh4nMRR/H+fikntwEmZQZxeBMysAM4eLcKhb0De+/oeubm1bJmIFIF2xKEMyFqaaSXiLCUeKF7KUwezPxoEEnwbqmD05t4pXghUPQrcsVNSu78+EZg5euQB3WoD9pwYnsqtxmhNKpIJlC/R8LUJwD8OaF+0e1pl8vXAgtrA61CoNSMMGbJi8GGL00WtpAEne5ypoJEgEYO3KSiCQO28u/pk4O6yi2Wg2Sr7+hxiabDYfBeF8TYQHrUAF48HDluBI2aJiZhdKYGYNofEUUwwiJJu7QZ2ngDKc0Ul72l3xleoaO1BjhSeVp0jFu/lyV07YtcBNzsDWFoKjLUDaRZgwAT09Lq/V2szrUScpcQD3Qi/zUj7o4HRACw5fXiskK3fGSsUimD0596pVYAbfwo884UUo+tzyKRjpHVyvCxYCsCZAWHUAy/vlH5NLbanxgz8aYfEdHlDa1Y0b1bRUh9t98TVRbXwNOCTY8AnR5z9b05pZGNOVKuK5/c+bpR2J4wUFEGgdt59DjF3AUBWJmC1yP+rg9uA4rsojOeMJF0HTCwW10lRllStcwwA4wuBnW1AZ698bm4mMKVETGyt3cDVZ0jMxvZW723V2oMcLp4D/dgCEVO1BcPLkwPOh1/9zbIzgNtHA6bb3DviPJegvWi4R8K1diTiLCUeKKUSgJnuxe3hWCj7Y02TGXhjr/z+FpuUa67KB/5tCpCVDuxpEzfmpGIRGU3mwCol+nPvZKwBZj8IPDP4+T2OkfsBq909psCTkhyJ51p3yLtLpLUbqCnwf36tEM7zqP4WDkVi50bnycCuDvQZacHFnARKTb5YnNTYlmwfazxpAQqKIFA7945eGdgBZxGYcaPE0gAMRv76CNDxfK2mIJXmAMesEheRnSEzhoZO+X+1gJW9TxbuyRg8v81PgShvn5WoeBvoszLcTbK+orTV3+yiUUDBbYDOoyNOWy2zPduLwBFENl4hEtaOZKoQGk0MJSIMsdxdVDgWAo5n4hCQ6XLP2hxiKu/pk2f8sEVcliW5wLYWsTiW5DjXclBFhS/BOJL7JtOl/H5v/8j9gFHvjCnwTIesNgFLTwd2+XGJjM7zv4iZVqxonpUyq00yKSvNdX7X/p4nV3GfmQ68e9C5z7M4ViQmc74mOIDcT96s3/F21VJQBIGrCerkKZkZp+lETHy5Cnhtj6jUfIPvojCer9UCK+oCPfXNEniZkSZlrktypONp7ZaATX/nGtbeOD7Ikby5vfmZXWdUrkVpAPeOWP3NypuGiwkV3Wog/Thg9bIomds1BSHQImntSJYKodFGP1aEoUMNVDSJZSLWYgJwj7dyXbdmQBFX5vQyGbzrKoFT/XKM+rqh079gHMl90+diws/KGLkfqMyXjKvdbfL588a6z4bzMp0TJ0/UtPVRWUCjl/1asaK5Po+ehalUMaCWM/cl9tW+ZONhCXz9Si2gTxfrTZfdfVLjr68ItG8MJr5GK65aCoogqTYBN8+UlfgOmyUgclebiAkF4o8bN0puLm8Pk6cJW1X2fQMScXzxabIATXYGcFEt0GmTvHBXMVFtkv1aNYdH+ub29nC6zqhci9J464irTcDACLO6tE7AWOb/mGAEWqSzM5KhQmgsMJQg5tkc3nCNt3Kd2fcNZnT1OaRabF2lBHaPNspAN6kIOL/a+ezubhs+8Phz7/QvANYPfna1SQTBSP2AqxXMtWx/WS4wf7IEoPtziRTnyCJmx6zataK5Po+ehanUOJFAxf4hi/wue9qdE8qF49ytS776imD6xkDja7SUyUZBEQJGw2BFs2LgmEX8onaHRPnmG5xiwtvD5GnCVgusZGfKeZoG3SZWuxSAOmwG2lxuFLWiZHaGNs3h0bi5vT2c6gJqdZXeF1AbxkiBV3mRFWjMzkhtXOOtXFFn+hlpEh914pSzDH12JjAAEY5+Bx4/7p2GR4Hnd0o/sWQicNZo2edNmLjizwrWbffvErlistSV0bIVTX3e1N9jb7uzKFWazrndn9hX+7aTPVJBtDBbxMgRy3Drkre+Iti+cawCfL8AyLAC/fnAbh3wvlnGGsB5j2kptZyCIkRczVaF2cCds+RGswTwMLk+vL39Yu2wDK7NoS4409MnwuSscvG39vS7V5Qcky9t6LaLuNFh0ESZMXL+eSjXGGgHEY2b29dA71BkdjetdOR2DeQCaV8B8E8vO78i+8MVaJ5ZKK5Lz3uiFb8yiQ6u8VaupOkkkPGQWe4R1/ujp09cm61dw+/BdB2QkwlsPCL3WGEuUPUCkHnC6d7pyAcO90kV2rJc6Qc6eoevZulrRuzLCjaSS2TcKP/v1wJGvbglGjqlv1bLVmekSbsDcVe49m2Z6fI7qu4sdR0lf31FMH2jvREo9sjkKVoIjHsM+H2bs86Qv/aOdD3RgIIiBPzNHgJdbU59+Kw24NKJEg1eZQI+PCQ3VnamVF/bcgyYUy2WCtcaEx290bVMhOq2iMbNHQlLjKMASL9XhJebqPgKoNwr+zMQeryCt9oi3X1AhmN4FopW/MokerjGWx2xON0e40YBZ5YBL26Te+SEh/Wxsxc40DFcTLj6/CcUyYAy9DyeIceVDf6pRMpaOJJLRCtWCH8UZYuAUydqKv0DYjXKctnmS+x79l15+sEaHX0yeRidB1zuZ+mAQPtGf2nBFXcCX/s1UFbl/BwtxdJRUASJ60Pa53DeTB290nncPDPwB0wdhE6ckiJVHzSKih5bIB1G5mBZ7YMnxayYleEciDxnHUDkfGbhdETRurnDDUw0lAD2WiDjKiDtDgC9ALKAgWagv9Y9cC/YmZa376vJLLVE1h2S2Vx6mgS3qYFfidAJk/Bwjbfac0JirGz9sl7G6cXyzK856DxWzfKoMg0/j6urwdU87+95dJ0Ru/ZVar8SjLUw0QODT/YAX66WZ/FEt9O6kKeXGho2h0zi/Il9b31XZrozIHyk7yPQvnGkqq9n6gC9yz2ipVg6CoogUR9S1XzmGnB1xCKdx7ljRj6PZ9TxwGB52/7BglnGwTKumelOd4f68O9ui67PLBy3RTRv7mAGeq/umhrAttSlXLEJUM4LPwvA2/dltgF/3QOcXgjMrpLiZKOyJHhNC6WISWxwjbf6okNcGuMLgfZTzjoOdoeU22/vkfeYPAYl16W2AfcZtl+fvxoY6qWvys6U96ZKYLDFDuw7IYXG0nXAhYPxIEcsMqEzGUa2eIbbtwX6/pHSgh2dUirdVdRpJZaOgiJI1IqYng8oIK/3nJDOI9BYA9WcedgC7GuXfWk6iQYflSWvM9PdfbHeTGeuM5AjlvBmD+G4LbRwc48U0BbpLADP78P1/tjcDJxWKIF3jZBI+GSrYEpGpqNXLJDHu8XtMaAAf94pg5labr/aJOWyx4/yngkGDF/ICvD9PBr1/vuq1m4R3iH3ExqoexAo+XopIPjGXukfMtPE9TS3RmIqqvIluHuktU/C6dsCfX8gacGv7XF/r1YsSBQUQWLUD08Fc0VBYBaC3n6pkJeRJg+mySBCApBgquNdQEUeMNYk4qKjB2jokGhqT9OZ5wzkWJe4REJN0wzXbRHPmzsYd02kOsRhv4fH/eG6VHKyVTAlI+Ptntx1QmrP9PZLcaU0nSw2uOuEuD58ZYLVFgS21DYg93O+wXtfpcZrhHovaqXuQaAUZkta/pDbaHAl1c3NsoTBA3MDe/bD7dsCef9IVV+bc2RsyM4E+h3AG3uAZV/ShgWJgiJIKvOl2NT+dlnpU10cpl+Rwd80mGblb7BqMgN/2yf+9YIssUxcNgmoq5LznugGLpkIrD8ssxqTAfj0mNxEd81yN515zkCqTeKnDSeeIhJui3jd3P7cNUcsUqo8M02E3HsN4ltVCbVD9Py+XFMF1d/DFaaMphae92RmuhS3KstzZm/k6sXy0GV3DvLeMsE8xYRfn79B1ghq6Bye6qnGa4RyL2qp7kGgtPfIM5+dOdz1k5Em+wNd0yPcvm2k9/ur+nrsMeDGdRLwDUiA7tcnSpXmQBMCogkFRZAYDRLJe8wCmO3yQ3bZZeZQbZJyrDd9yXeq1qgseegsNulIdDpAnyHL4t5+noiPDJ2sXnrMKq/H5MtsYl+7LMTz/VnOGcyedncxoXYUQOizYS24LULFVwepWnG2t0qmx4YjMiN0XQskmA7RVTDm62XFxbf2O8vyAsN/DxWmjKYG6j3SaBaXh1pCv7dfCtWpqYsFWU73JuCyDo3LwFOUE9rzaNIPT/W09TuLMPm7F31NirRU9yBQrPbhWRnqAmeZ6aGL/Gi5fTyrvir5wLoe4P4NTjEByAT0zX3irtECFBQhML4Q+MYZwMFOmeFmpotVYc1B4JwxwB/q5eb1DJ56dTewaJxz0BljlGC9HjvwtTOA5+qBWVXiY93cLAvu5Otl4FMrZR4yu89gPmsWUeHZUaiE+qBoxScXLN46SFcrjmo+VmdsnmuBeHaI3jqM410i7A6ZnZ1SjUkCvnr7ZfA4YhER6Pl7MGU0NXB1CUwqlo5fdVlkefS6gbgwgn0e1fu2t19K+Qdr3fDn0tBS3YNAUb9T16wMb/uDIdpuH9eqrx80Aj/4yPtx+9u1851TUISA0QCYsoG3Nrmbz4wGqdH/0g5RkaoZ03WwcjWLH7GKyXPBOJkxH+wA8gzOATBNJ76/8jznbMZVTRsNsrDNOy6L1Axraxiz4Vi4LSKt8L25a9SYBtX94LosgVp217WTcV2m2LXDSNcB88cCL+2UiH2V7ExJO3tjr3T6rpUOPcWE1i08JHw8XQKuZasbOoEpxc7XnkGWI7kwAnkePRfBmlwi8QOuNVG83YuuIuRv+5wiRA34bu2WbV+b4P/ztWiBi3T2WaxXJrb3y2/X5UU45OllvxagoAiDM4qBcqNUp3QowGkFMmttNItfLnNwobBxo5wPslo2VR3kdIO14FcfHCy6BDmfDvIwd9ulUwCcnY/rA6ulHORgiYbC9+au6XO4ux8mFLm/x7M8slHvvcOoNgH7TwKbjzkD6TLTnPdBVob4xqeWJq6Fh4SPp0vAtWx1YydQ3yKpxOk6SQlVJxzqvQ844xuyMgB9mgzypwYHDbVKord7yfO+VUvUzyiXe7Yy3/v7PS0q6w45i+sdtUpFWsC5/oivwU2rfY5nv6CKpJIccQcFS6TdPiP1hfkGcX2rLnaVvEGXeL5G+hUKihDJ1wPTy50FZ84bI/756nz5wdN18mfvl/SkiUUiJrIzgRllwD8b5TzKYN2J7EygVC9CJE0HTClxzoL7Fae5tDLf/YFN1HiHaAZ2eQ7m/QMy0KvuB8+FjlxNwWqH6K3DMGTIA90/IFHieZmyQuyHjcDbBwBTFrDpmJQCVzsCrfmSSfTxND8PDeoVYsEszZW00a9NlIGtJNd537mWyu6yywA+rlCsGq/ullUuawtkEuJNeHu7bx2Ks8LltNLh7jxPi4SaptptB3a0SdltVxrN0p4DHd6DmrXa56j9ws42+etzSI2fP28HKoyBT2SsNrHW1JikYJ25V76TrHRnXxLplYnHjQJKc6TvGT2YBJChk9+2NMdZ/jzeUFCEiGca0sQi4IlPAGU0cHaFPGgZabLE7QeNUlJ7VLb4u0ZlAxfWAoc6ZWDKTJfCNiW5Ei/xYRNw5RTgnw3SERRlyef5qrKYiLPhaAd2uZqHrTYpBKO6H1xnjG2nnCZn1w7RW4fQ2+/sMAYUEYofNjo76wFF9ms52p1EH28m/95+sUL29AE3nCn1alTKcuVeAdxn0A2d0od8cgT44qTcb5ubZbsh3f0ecw0AtdrFapajdw/EbDJ7d+e5WiSq88U62qMGjtqlfa7o06Xa53XTxH2YKH0OIHU/nv/cWfMHkOs+1R/YM9tkluXLT/YCzV1iobQ7ZEBfd0jqWeTpg3P7jNQXftEhYuXGLwG/3yKucbXEwMQi4NZzAs9QiTYUFCHiLQ3J1i8PVa5e4hpG5wBv7ZMVRKvygfJcZ4RuQwdwVx3wRacEZ55dIcGVeXp5YDcekdK8l04UweDPzAnELk0zUjEPkQzsGqlNnlYcdca4eBwwdlDZ5+tFtLX3DIqPAZkJNpmdQiQrQzr22gLpUIpzgYYDzs/J0zvFiVaj3Un0CSSOxxX1XgHk364+sQ4YBme8XX1AVydwfo0c47rc9hGL9DfqvT2lREr3r2kYXjTrotPkPvecEasWCYsN2NYqFpTibInxsjtk0qNSbXK6EI93S/+XKGLCahMLoquYAOT7VEWav2dWff+b+4DdJ6Qv7x8QMXHJBGBKEbCtTVJ8I7UycZcd+Py4fJ4+TaxaGWki5IqypQiaVsQEQEERMp5pSLmZ8sB/dFgW8vpytdxYz30u2RrZGTJYWWyD7guHWCl6+kQ8zK4C0tPFP5+mk9K8fQNArUluTi0Ui4lkzEOk1vwItE0jWXGazJK54Rp30d0nv6Orq+RkL/CV0yS7xjX2wpQFTCgMbNXCeGNrcyk/XgAoJeGXHydOjAYJXHTNBLL3+04jBmTg6O5zpoH39MsAVlMgA50ae1WQJebu/gGxJrR0A4ePidUzJ1MEw9v7xRKakeaM9WkySz8zrxr4vEVM9WNNMjPPyhDrmtUm5919ArhgrBy/tUXu/QFFhMrC0wDoxNryWYsz3VXLRa1UjliGr/6qooo0f8/sgZPAH7fLb2qxiZDr6RfXz9/3AzeeCTR3AwtOC05cqRVNPdNZARE6Z4+W/3co4moxDMbY1ZhkLNESFBQh4pmGpE8HTi+SBw0Qt0VZrpinMgcf7KpB1aoq4v4B5yBn65dMgTPLpPNQzZSbm4H9HcClEwJbGj1aRDrmIRLBpMG2yZcVx9t5MtMlKv7jJgloU4sDfXU8sLcdmFMl7TytUDr80pzh16/FaHd74/CVDB0LpZCOfmy8WpVcNJmBfxyQ7KyaArEAjDGKNdIzjVjFqHcvUKeatAcUsVbkG6S/2Ncu/cmcSrFCbGkRa0JRjvRBhgyJbzg6OHj2Dcj9aTQAMyuA//4M2NXmnKXXFgBXTxUhYLEDmTr5zI1HgKklwLwa+TzdYHu6+4B/HRZX4SSX4OZEcPOpQa6+6HP4fmatNvld97dL36BAfpesDJkstp2S36iucniQ90hkZcj3ut/DDVORB5TlyDjgueIsAKw/Ir+BloQcBUWIeFarrG+RwSXfILMNZdCfnpEmlgzHgMwsVNSOQx3kdrfJQOVJlx3YelzMkKrfNR6zgUjHPLi6IU6ckmtRlffkYvl+jlr8i6hItcnXefIGZw5TS4EvlTvbcdFpzmC2meXB5/jHC3/LImO5FNKhpSI8fIlcHeQZz830fq/YHFK3RA0WVqu59vZJLERlvsRcAVJR9+MmOX5+DbD2kMyQAadF48opwMeHB2e7euDMUudqxq40mIHX9kq1xdZuyWLq7pNS/1X5Yjl9ZZeIjNJcibdQC8J5XofW3XxG/fCAbFdqTL6f2SMWsUYATnGlwLlNn+4snnd+deBtstrELa6uhKq2q6cPGBiQPnLDkeErzgLSN2lNyFFQhIg6IG48DHTaJAizKFuKXql+x/4BmS00d8msJDvDGZlblCWvVXwt+KXOWlwXCIrHTRSNYjaqG+LASeDVPc4AyU3H5LtzdTd4E1GRapO/49QZSFaGHKcuvBZuBcN4MNKyyI5WRHzhtFTDlzhtGnSDHjzpHIQA573S0uUeLNxklvun0wbMqhTh+l+bRGTUmMTltng8sPoLWbtHZUCRwMw1X4gwN9vFLZGjF2tpWa48T2raZ2YasP24ZH+MLwQuHif3u9Uug+SAAnx1gpxDP5jG7loIzhOtuvkAeW4Ls4B/myICTO2Xu+zirrx2mp9CYYPfR55exF9mmntsiRr7FuxE4ohFfr/j3cMrmp7sERerQxm+4izguxhfPKGgCJNDFmBnK9BhkxstzwA4Bv1hhzqBheMGb14r0Nolg+bUUuDfpgI5Lt++N1Ob6yJTnqa6WN9EkYp58Ma6QyIgRmUNF1F1lfLam4jy9ZnpOhEe/QPDl/kNpu2qmfFv+7wPAtWmxMqwGWlZ5JH2k5HxNaCqgcBXTHaKU9d7pdvuPMZ1YNGnA23dkrp589kywBdkyTogOZmDwYQufUNvn/QrDZ3A/FrAMRjsqQ5S6gCq1jSwD6ZA2x0ywI4tAF7fK/EBRy1yn687JCKictBi4UtMANp086l09AJ7T8qE5fRCEWr6dBETk4tl4UVfGPUywJ9XCXx6RFxS3Xb57ox6KRvgGAh+IqHeLw5F3FCucRRZ6TJJBdwnlMDwgmhaEXIUFEHiLXc7KxPosgAbDouA+LwVMKXJw//6HuCCauD0Ykn/SU+TMt1v7QPuO995Xm8xBaovzltkOBDbmyhaBbQ8Z3SuIqrJ7F50xlNEeWuTa2XAfe3DiwZ5cxP5urZqk5zH00ztKW5CybCJx9LPIy2LPNJ+MjL+BlSHIoO6t3vF9R5U05BVsjPct2dnyv1jd4grxZAu5vF+RVyEU0pkMqMWxANErJ9WIHEciiLukrI8aU9nL3BGiSxC+FGTs96KrR8YnQcsPd3ZdnOPZEO51p9wLRKlQ3hLokcL1RXVZZfMCLMdONEzGDDrGNlNUZkv/dJ5o2XCeKxLXB+ZaeIa+sYZUjAvkOt2ffb7B+T7s3lZZj4nE7jyDPmuXSeU3lad1YqQo6AIgiazLBVryJCHf0uLqMjiHPnxe/sl7arAAJw7Guh1yI1zogc4eEAe0gGXIlWuK9ypLpSXd4ppss8hD77qs/cWGR7LmyhaBbQ8RZFnQJOnMnc9Xm2T+psYMsQkfKpPOu3WLmcAnD83ka9rK8garHjqZUYWjoUoXks/j7QssqKRBYYSmUCEty8x6ev5unSiZG6oqHEAaoyWId2ZCaJAMsRyM53Ll08pkYyOQ2YZCHv6nIuTpeskHXFnm2wfP0oGsI4eWQH5k6OyT+W0UcDysyQ+Qy2+1dApYmJSMfDidukPtRQoCLhPXDzX8zjZM/KzbDQASyZJXzOtDDh7jHxfeXoRYzkBjqSez35tgfRxFXniyrI7nFapk72yCOU1U6WNB0463cLeivFpAQqKALHa5GYqzBEf54RCqUkAyMAzuVhujF1t8uObDKJg/2+3qPZ8g/gpdTr/K9zV5EvwU2+/PKRNZkkl9XR5xOMmioZ531MUeQ7entfteXy1SXzJaoqeMlgVcGyBU4i5igpfHYe3a+vodZZM90aiLf3sb1lkxzMMyIwEIwnvjl7/YtLX87VkkvN9aqxFW7e4T49ZZaICiPXgsFkGp83HxCKqTxdz/IJacYl8csxpri/JkbTE7a0yKQKkj5o1RgLNezwE/RcdsqruLWeLi+Tz4/J+14UJtRYoCEQm3qraBCz7kkwMj3YNFi/USZGvxs6RhZS3Z/+oBVg8QYptHTjpnFBNLZXPWt8k/z+5BPiPs3zfO4CzXHs83a4UFAFyxCIzYDVgaopL59s5WHpVLbudmS4+yDTIHyA3U59DzIwqroOjt5vtsFlupL3tMpPwNN/H44aJdAEtzxldXqazWJinq8ebiLLapIPr6Rch1trtzLt/7wtnDIZKlz1wd0PuCDneoViI4r30s+eyyDqTWCYoJiKHL2HQ0ycZGdmZMptXq1d6DsCBCF61ENvcGuCvu4HDqgndIff8onFSY+IvO8W9es5ocXucUSpuxOYusW6ogv2zZqBLca6SXDtKVlP2tl5HS7dYV/XpUrPCG1oKFAQiFwPW0Qv8bb/ElajuCdf6Iv6ElLdnf0w+8Kft4gY/vUh+swyd9Gd/2SExG6rY8XVfuZZrV4lXXRAKigCx2t0jbU90i7lKHay67OIHS9cNVlI8Jdtdj7G7RAV7Do6+avCrC/tMLZUOQKtBf6HGBHjO6DIH1ypwzfIAfIsoz+/N1cLRbAVGG+V36+2XGVhm2vCHb3SeFBlb84X79hllgS+CFOj1a2HpZ9dlkUl08BQGTWbgua0yEKm4DkSBDMDexEbvYO2aOYMFq3r65b5f1ySfaR8Q68WpfuDYCQlKzMkQIdLTL89DVqbEECgKUGUSa+q+dpkoKS6p7plpwDljxO3RaJaBTw0g9IZWAgUB3zFqwcR+qJO+gx3usQ6ekxdfv6O378OQIZZVq03c3xk65zod7b0i+FzFjuc9EE+LpzcoKALEqHf3539+XBaGQqNzqfEBRQbDuWOBNYMFrlyP0Q+aK7wuHewnOryhU+ognDsmopcUMcKNCfCmvIsGA78mFHofoF3XLujodbqRVAtHv0O++3cOOGdRs6uAfzU5c/NVDBnAU5uGB19ua5ViQCMtghTM9UczW4ZoE7XTP+SRReM5EAU7AKvnzcmUYlNWG1BpkoJasyrFjdHTB+SNFWuIGnDZaRMx8eJ2iTdK00nA5gVjAX2G1LKoKZDBTB04M9PENL/5GLD+sAQg1lVKZc/aAu+uQS3dy0YDsOR0yfAw9wIF2QCUQRe0Xtw7O9rkefeV7aFOXrwVrnINIPf1O/pa40WfJkKu2erez+TpnbEwvoi3xdMTCooAUZf9BeQmzMoENh2VFQQXjpOHclqp+NPeOeDMUX7voMwgvjZR4iyKc7zPXhN1oImUQvY2+/JVo95zYaP97c5A1zy9/FuQJQt3qQIhO1P8yusPD5qcB3Pp1c7h8+OyrTDb+R6HMvIiSMFefyIvN09CQ+30vc3kXQeiYJ9x9bxTSmQQ/OcXgC4N+MpY4B/7gX0dIqw7bbLexEWnSZG8L06K9UGNo9CnD1pRG4FxM+S+vWaqWDHUAPGppeIWOWZ1pizaBuO8GjqH16bQ2r3cZAbe2CvfWacNaOwALpssKf//OiJWmzH5wPsNwJ2zgPFFw8+hCgVfFhl1wunrd/T27GdlAPlZEg9j9xKQbhuh6qYWLJ6uUFAEiNEgfsi1jUDrKee69PvaZd8ZJRIcWJgtMQ9qadu+AUnlmlMl/ktfJOpAE2uF7DmAu1a+Uzu2PL2YZT85KjErJbnSAarBmWrd/ox++S3L8uTBtdglinpsgXPG5RhMxfNlHQr2+hN1uXkSOmqn7hof5Epvf2jP+NB59cBru+Ue7bIDf6iX+9hsE2E91gTsPSHPzperpKx2Zrpz0qN6NRrMki0yKhvYdhy4qFa2H++SmfL+k/JZNYMZJgdPilvyvS9kZq2Kca3dy659Rv+ABFBOKpbYq9ZusYa2dUuf3j8gAd7fn+V70ufrd8zK8P87ej776ToJ3v/6RBFqmeny7+ZjYu2eUCi/5xcdIvrU0uH6NOdaUgY/NUFc2xwrKCiCoHYU8N1zgV9tAI7pZEGozDQZgL5cLcFPy74EPDBXzORmm9wwgawIl6gDTawVsucA7lldsKtPUsLSdRLk5GqKdc0YOWWXnHxzr1iWzL0yEzNkSIdzepEc761AltoOq10GA89VSUe6/kQqhkXCx3XdHzWmynUwGpUlk5Fgf3+jXu7znMHaFpubZdXiQ4PCQJ8ulohjaTJoNnfJbHhysTxDOoiY0EH+U5gtZfB3DbpKDpkl2+Nkj5TjrsiTe/ywWWKTjljFsndmmQQPdtlloJ5crK17We0zuuzy71Gr1Ab6rFm+F6NBan309ElWzCGz94mQ66SvtkD6ifQ0+Q0q8iQW64Jq/9euPvtHLVIL490Dcj/saJXvubZA+rP6ZrF+bzsu4mVXm/Q1eXpZF6YwWyZT5bkyxphtwz8rHhNRCooQOHeMrCyqVp9zTZlSb8RQlpRNxIEm1q4azwHas7pgaa7MyOyO4RHoqjWjsVOC1MyDKw8etUin2NEjvuWyPAl2m1HhXiArXSc+1l0nnIGaHb2DFfImyaywx+WeaDL7vv5YLTdP4o/rQOS6QnGfQ2b782pC6y8q8wdjfE6KePi8RUr9OxSxPuRkDgYb2qVEvHkwyPLCWpm45OqdMRSjDOK+MOrlufnXEXHPHq8HKozAsukyaCmK3Ls72mQylaYTITOlVNYaOtkjgkJLWO3OCrzpaTLDH22U7Ue7ZEDu7RcrTLnRaQ3wxHXS1+eQWBWrXQb1r00EGjrkO1gyyX/smNEg7pV36qUwot0hv1VhtlgmjlqB+WOBV3YCaWnyew0MyMR1XaNYU2oKnDV35lZLlk+PwzkmZacDs6piP3akjXxI/Pntb3+L2tpaZGVlYebMmfjoo4/i1hbLYCGXPSdkYNpzQl6rs9NwZ+TqQHPuGPlXy2ICcHaW3oiGQvY2QKuBq3tOiJiYXCIuD892qdaMcaPkQVRp7ZY6/urCbuk6Oc/HTe6FrapNwJv7ZLEeNfbCpBf/8gvbZD2Sv+wEXvhcjplZoV1XFYkd6kCk3o+Z6WKVmDZYayAUMaGy64SIBwUyuGcMVujtH5AZd3am3NdGAzBztJjRLb3yHFXnS5Gm04skmHNqidzfhy0iFtJ18jzsb5fiVpMH4wrSdYMWvUGXiWt6t+rm0xJGvbMCb4ZOJh+dvdKXAyK6dDrpu49ZB1dn9TERqDZJcOeFtfK9nVEig/jP1gE7T4gIe2OPuFn8MWQ16ZPfzmKTeJWGTnGrd/UBtgFxWenTReisa3SufPxsPfDSTuC3m8VFo+gk4PTTo9L3HIrTb6B5C8XLL7+MO+64A7/97W8xZ84cPPPMM1i8eDF27dqF6uoR6qVGgUQNnowWsXbVBBpr4q1dDkXSeW89R4ItWwcD5U50A6vqJbhtTrXMXkYbZcEm1wAs17Rh1bUyrlCi5/ecEBGj0nZKOvuLTovs9ZPEJBrWxyODcVyFWUBJttyfLV2yTsWBDhkkBwaAXkVERJpOllUfUICvny7itzhTakpMLhYh/uY+aVOazn115HcOAj+eI/f9yUHL3oDinvqqoqV0UUC+55IcEUYORWb3u9rEFd1kHhRkirMAWGG274mA1SbB+G/sE3eEK58ckbLc08pGjh1Tv6M+h0xuKowArO7bx5pkYtncJS6Z0lypUHqwQ45RFHHZfDy4nPyFtc4SBSd7mDbqlcceeww33XQTvvWtbwEAfvOb3+Ddd9/F008/jZUrV8a8PYkaPBlNYumqCUbA+GrXUYsIgD3t7r7szc3y7/KZMkvxjOZ2TRtWLRSGDJnVFGSJ2bIgy5m+2mXXVnEfEl8i7eZSB5+jVgn6PrNMAvoumwQMQAYifboIg+IccbX8bZ+4XXQA7qwT4VCQJTP3Tc1i/k/TyXkzdM7PcigSM1FXKc/azjY5J+BejRbQ3qTKaBCX5BGL0/qy+Rjwb2fIxGLbYJXQAoOsuLrITzzLkUHXgud6K4A878e6pCz3SKLKNa4mXSd9UlG2CIsBRSY36WmSMbjsS4ClX9wk7zU4z6FmG1otgwG1cV5AEtC4oLDb7diyZQt+/OMfu21fuHAh1q9f7/U9NpsNNpvT3mSxRNb2k6jBk9EmljEBwQgYb+0aky/He1uQZ2KRZPN4riECuAd1qmJDPS5NJz5pNbVYRWuzNZI8qIOSQ5HMjWunSXG2ra2SzVGWNxhMmStm8L/tkwFIpxPr2dljZM2hySUy8240O8WEet68wfo7mYMlvPcMxiUdtsgs2FN0a3VSNb4QWDxOxEC+XmI+9p0UEXZhrQzquXpx3eSPUG6/t9/9e3KlX5H9I4kqdWLa5wBO6kTQtLkUQ6xvlr7p9CJpU55eAmZVMtPEQjGgDLq6dN77LKaNunDixAk4HA6UlZW5bS8rK0NLS4vX96xcuRIPPPBAVNuViMGTyUY4AsZVFBrS3QPkrp0m2TxW23BLlBrUqS7QAzhFhudywkOfpbHZGkkeXK2l9gERFWeUAGdViAVibIFkMry4XfqpXL37QKiDu4vwnNHAB43OlPcuu7gHOnolg0GNk7D1A7edM7yyrJYnVUaDBCm+ulvanz3ovlQzK9RssLJcmXD4PI9envnMNIlX6R9w35+hk0nFSKLKtQ+yOST48lCnuGbmjhU36jmjZaXX9xucbUvTuYgfh1gxsjNF7Hmue6S2N5ZoWlCo6HTuclBRlGHbVO6++27ceeedQ68tFguqqqoi3iZG6Sc2I4lCb5aoJrPkjLtmedj6xarhbVVSrc7WSHLgeY+qwcnqwH5qME1yfOFwS5y6nojr4F87CrhrlnOhPdV1N7MCWHCaiO7zq53PSbUpsSZVrimbZ5ZLyqbFFtwaSZX5wPbjItYOdsjEQxUVao2Oc0YH9j249kEdvSLw0nXSpotqJSZL/Z6PWiSDbEuz1DkaUERA5GRItomr4FNh2qgHxcXFSE9PH2aNaG1tHWa1UDEYDDAYNHxXE80wkij0JTouOs19kaYLx0qRnESZrZHkwZ8wVq1sgHuqama6ZDp5S+8cXyRFnUJ1J2odowGYNNjmKcXBCyLV0pGZLgGsjZ0S1JmVIXEsN0z3Xbrb1/lG+g5d23z3nOGCb1Q2cEaxMwYMiF//o1MU1+VftMd5552HmTNn4re//e3QtilTpmDJkiUBBWVaLBaYTCaYzWbk53O6SKJDqIujERJNwl1nh3jHahOrwfHBktmluU6LQiw+27OvAaLX/wQzhmraQgEAd955J66//nqcffbZqKurw+9+9zs0NTXh5ptvjnfTCBkiEWdrJPlhvFd0UK0Gk+LwzPvqa7TQ/2heUFx11VVob2/Hz372MzQ3N2Pq1Kl4++23UVNTE++mEUKI5qHYJbFC8y6PcKHLgxBCCAmNYMbQhCi9TQghhBBtQ0FBCCGEkLDRfAxFuKgenUhXzCSEEEKSHXXsDCQ6IukFhdVqBYCoFLcihBBCUgGr1QqTyX+ucdIHZQ4MDODYsWMwGo0+q2tGErUy5+HDh5M+CDSVrhXg9SY7vN7kJpWuN5LXqigKrFYrRo8ejbQ0/1ESSW+hSEtLQ2VlZcw/Nz8/P+lvWpVUulaA15vs8HqTm1S63khd60iWCRUGZRJCCCEkbCgoCCGEEBI2FBQRxmAw4P7770+JBcpS6VoBXm+yw+tNblLpeuN1rUkflEkIIYSQ6EMLBSGEEELChoKCEEIIIWFDQUEIIYSQsKGgIIQQQkjYUFAQQgghJGwoKDxYuXIlzjnnHBiNRpSWlmLp0qXYu3ev2zGKomDFihUYPXo0srOzMW/ePOzcudPtmN/97neYN28e8vPzodPp0NnZ6fXz/v73v+O8885DdnY2iouLcfnll0fr0rwSq+tdu3YtdDqd179NmzZF+zKHiOXvu2/fPixZsgTFxcXIz8/HnDlz8MEHH0Tz8tyI5bV+9tlnWLBgAQoKClBUVIRvf/vb6OrqiublDSMS13vy5EncfvvtOP3005GTk4Pq6mp897vfhdlsdjtPR0cHrr/+ephMJphMJlx//fU+n/FoEcvrfeihhzB79mzk5OSgoKAgFpc3jFhdb2NjI2666SbU1tYiOzsb48aNw/333w+73R6zawVi+/t+/etfR3V1NbKyslBRUYHrr78ex44dC77RCnHj4osvVlatWqXs2LFD2bp1q3LJJZco1dXVSldX19AxjzzyiGI0GpW//vWvyvbt25WrrrpKqaioUCwWy9Axjz/+uLJy5Upl5cqVCgClo6Nj2Gf93//9nzJq1Cjl6aefVvbu3avs2bNHeeWVV2JxmUPE6nptNpvS3Nzs9vetb31LGTt2rDIwMBCry43p7zt+/Hjlq1/9qvL5558r+/btU2655RYlJydHaW5ujsWlxuxajx49qowaNUq5+eablT179iiffvqpMnv2bOWKK66IyXWqROJ6t2/frlx++eXKm2++qRw4cED55z//qUyYMGHYtSxatEiZOnWqsn79emX9+vXK1KlTla997WtJe70//elPlccee0y58847FZPJFMvLHCJW1/uPf/xDWbZsmfLuu+8qBw8eVN544w2ltLRUueuuu5LyehVFUR577DFlw4YNSmNjo/Kvf/1LqaurU+rq6oJuMwXFCLS2tioAlHXr1imKoigDAwNKeXm58sgjjwwd09vbq5hMJuW///u/h73/gw8+8NoJ9/X1KWPGjFH+8Ic/RLX9wRKt6/XEbrcrpaWlys9+9rOItj9YonW9bW1tCgDlww8/HNpmsVgUAMp7770XnYsZgWhd6zPPPKOUlpYqDodjaFt9fb0CQNm/f390LiYAwr1elb/85S+KXq9X+vr6FEVRlF27dikAlI0bNw4ds2HDBgWAsmfPnihdzchE63pdWbVqVdwEhSexuF6VRx99VKmtrY1c40Mgltf7xhtvKDqdTrHb7UG1kS6PEVBNQ4WFhQCAhoYGtLS0YOHChUPHGAwGzJ07F+vXrw/4vJ999hmOHj2KtLQ0zJgxAxUVFVi8ePEwc3Osidb1evLmm2/ixIkTWLZsWVjtDZdoXW9RUREmT56MF154Ad3d3ejv78czzzyDsrIyzJw5M7IXESDRulabzQa9Xu+2EmF2djYA4OOPP45E00MiUtdrNpuRn5+PjAxZS3HDhg0wmUw477zzho6ZNWsWTCZTWM9EuETrerVKLK/XbDYPfU68iNX1njx5En/84x8xe/ZsZGZmBtVGCgo/KIqCO++8E1/+8pcxdepUAEBLSwsAoKyszO3YsrKyoX2B8MUXXwAAVqxYgXvvvRdvvfUWRo0ahblz5+LkyZMRuoLgiOb1evLss8/i4osvRlVVVegNDpNoXq9Op8OaNWtQX18Po9GIrKwsPP7443jnnXfi4oOO5rVeeOGFaGlpwS9/+UvY7XZ0dHTgnnvuAQA0NzdH6AqCI1LX297ejp///OdYvnz50LaWlhaUlpYOO7a0tDSsZyIconm9WiSW13vw4EE8+eSTuPnmmyPU+uCJxfX+6Ec/Qm5uLoqKitDU1IQ33ngj6HZSUPjhtttuw7Zt2/DnP/952D6dTuf2WlGUYdv8MTAwAAD4yU9+giuuuAIzZ87EqlWroNPp8Morr4TX8BCJ5vW6cuTIEbz77ru46aabQnp/pIjm9SqKgltuuQWlpaX46KOP8Omnn2LJkiX42te+FpdBNprXesYZZ+D555/Hr3/9a+Tk5KC8vBynnXYaysrKkJ6eHnbbQyES12uxWHDJJZdgypQpuP/++/2ew995YkG0r1drxOp6jx07hkWLFuHKK6/Et771rcg0PgRicb3/+Z//ifr6eqxevRrp6em44YYboAS5MgcFhQ9uv/12vPnmm/jggw9QWVk5tL28vBwAhinA1tbWYUrRHxUVFQCAKVOmDG0zGAw47bTT0NTUFE7TQyLa1+vKqlWrUFRUhK9//euhNzhMon2977//Pt566y289NJLmDNnDs466yz89re/RXZ2Np5//vnIXESAxOK3veaaa9DS0oKjR4+ivb0dK1asQFtbG2pra8O/gCCJxPVarVYsWrQIeXl5eO2119xMv+Xl5Th+/Piwz21rawv5mQiHaF+v1ojV9R47dgzz589HXV0dfve730XhSgIjVtdbXFyMiRMnYsGCBXjppZfw9ttvY+PGjUG1lYLCA0VRcNttt+HVV1/F+++/P6xDrK2tRXl5OdasWTO0zW63Y926dZg9e3bAnzNz5kwYDAa3NKC+vj40NjaipqYm/AsJkFhdr+vnrVq1CjfccENcOq1YXe+pU6cAwC2uQH2tWqeiTax/W0DMrXl5eXj55ZeRlZWFBQsWhHUNwRCp67VYLFi4cCH0ej3efPNNZGVluZ2nrq4OZrMZn3766dC2Tz75BGazOeTvLRRidb1aIZbXe/ToUcybNw9nnXUWVq1aNew5jgXx/H1Vy4TNZgu60cSF73znO4rJZFLWrl3rluJ46tSpoWMeeeQRxWQyKa+++qqyfft25eqrrx6Watfc3KzU19crv//974ei/evr65X29vahY773ve8pY8aMUd59911lz549yk033aSUlpYqJ0+eTMrrVRRFee+99xQAyq5du2J2ja7E6nrb2tqUoqIi5fLLL1e2bt2q7N27V/nBD36gZGZmKlu3bk2qa1UURXnyySeVLVu2KHv37lWeeuopJTs7W3niiSdicp2RvF6LxaKcd955yrRp05QDBw64nae/v3/oPIsWLVKmT5+ubNiwQdmwYYMybdq0mKeNxvJ6Dx06pNTX1ysPPPCAkpeXp9TX1yv19fWK1WpNuus9evSoMn78eOXCCy9Ujhw54nZMLInV9X7yySfKk08+qdTX1yuNjY3K+++/r3z5y19Wxo0bp/T29gbVZgoKDwB4/Vu1atXQMQMDA8r999+vlJeXKwaDQbnggguU7du3u53n/vvvH/E8drtdueuuu5TS0lLFaDQqF110kbJjx44YXakQy+tVFEW5+uqrldmzZ8fgyrwTy+vdtGmTsnDhQqWwsFAxGo3KrFmzlLfffjtGVxrba73++uuVwsJCRa/XK9OnT1deeOGFGF2lk0hcr5oa6+2voaFh6Lj29nbl2muvVYxGo2I0GpVrr712xFTpSBPL673xxhu9HvPBBx8k3fWuWrXK5zGxJFbXu23bNmX+/PlKYWGhYjAYlLFjxyo333yzcuTIkaDbrBtsOCGEEEJIyDCGghBCCCFhQ0FBCCGEkLChoCCEEEJI2FBQEEIIISRsKCgIIYQQEjYUFIQQQggJGwoKQgghhIQNBQUhhBBCwoaCghBCCCFhQ0FBCCGEkLChoCCEEEJI2Pz/olUnvXYgZ20AAAAASUVORK5CYII=", "text/plain": "

"}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "testing_training_chrono_2"}}, "output_type": "display_data"}, "testing_training_doy_2": {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAHACAYAAAD6PfFBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACB60lEQVR4nO2deXxU1d3/P5NkZrKvZCULYVN2AUUDyqKCUqUo/nysKzwupS4oah+rtrbYWlDbujxarbUWtGrBPoraVhFcQC2igCCLiCyBsCQkQMhknSST8/vj5M6+r/dOPu/Xi1eYe+/cOffec8/5nO/5fr9HJ4QQIIQQQggJgYRYF4AQQggh2oeCghBCCCEhQ0FBCCGEkJChoCCEEEJIyFBQEEIIISRkKCgIIYQQEjIUFIQQQggJGQoKQgghhIRMUqwLEGl6enpw9OhRZGRkQKfTxbo4hBBCiGYQQqC5uRklJSVISPBug4h7QXH06FGUlZXFuhiEEEKIZjl06BBKS0u9HhP3giIjIwOAvBmZmZkxLg0hhBCiHUwmE8rKyqx9qTfiXlAo0xyZmZkUFIQQQkgQ+OMyEFOnzOeffx6jR4+2dvZVVVV4//33rfvnzZsHnU7n8O+cc86JYYkJIYQQ4o6YWihKS0vx6KOPYvDgwQCAl19+GbNnz8aWLVswYsQIAMDFF1+MpUuXWr9jMBhiUlZCCCGEeCamgmLWrFkOn3/729/i+eefx4YNG6yCwmg0oqioKBbFI4QQQoifqMaHwmKx4B//+AdaW1tRVVVl3b527VoUFBQgOzsbU6ZMwW9/+1sUFBSE9beFEOju7obFYgnreQkJhcTERCQlJTHcmZAYY24AdPWAaAJ02YDIB4z5sS6V+oi5oNi+fTuqqqrQ0dGB9PR0rFy5EsOHDwcAzJw5E1deeSUqKipQXV2Nhx56COeffz42b94Mo9Ho9nxmsxlms9n62WQyef39zs5O1NbWoq2tLXwXRUiYSE1NRXFxMaf6CIkRnQcA/XwgYbVtm2UG0PkCYBgQq1KpE50QQsSyAJ2dnaipqcGpU6fw5ptv4i9/+QvWrVtnFRX21NbWoqKiAsuXL8ecOXPcnm/RokV4+OGHXbY3NTW5RHn09PRgz549SExMRH5+PgwGA0eDRBUIIdDZ2YmGhgZYLBYMGTLEZ1IZQkh4MTcA+uscxYSCZQbQ/Wr8WypMJhOysrLc9qHOxFxQOHPhhRdi0KBBeOGFF9zuHzJkCG6++Wb87Gc/c7vfnYWirKzM7c3o6OhAdXU1KioqkJqaGr6LICRMtLW14eDBg6isrERycnKsixMVms3AYRPQ3AlkGIDSTCDDvUGSkIjSuRMwjPSyfwdgGBG98sSCQARFzKc8nBFCOAgCe06cOIFDhw6huLjY4/eNRqPH6RBPcORH1Epfq5s1TcBbu4BjrbZthWnAnGFAeVbsykX6JqIptP19jZgKigcffBAzZ85EWVkZmpubsXz5cqxduxarVq1CS0sLFi1ahCuuuALFxcU4cOAAHnzwQfTr1w+XX355LItNSNyhBqtAs9lVTADy81u7gJvG0lJBoovOh4j1tb+vEVNBcezYMVx//fWora1FVlYWRo8ejVWrVmH69Olob2/H9u3b8corr+DUqVMoLi7GtGnTsGLFCr9SgJLIsXbtWuzatQu33nprrIsSF1h6gE4L0COABB1gSAQSo2iYUItV4LDJVUwoHGuV+4fF+Xw1UReiQPpKJHrwoRDhDTjUPDEVFC+99JLHfSkpKfjggw+iWBrtMHXqVJxxxhl46qmnInL+tWvXYtq0aWhsbER2drbDvurqalx33XV4++23I/LbfQ1zN3CqA+jqsW3TJwDZyYAxCm+nmqwCzZ2h7Sck3BjzZTQH5juKCssMwPJC/DtkBorqfCiIeuns7MTVV1+NF198EWeeeWasi6N5LD2uYgKQn091AP2i4CesJqtAho/IWF/7CYkEhgGA+VXAouShyJKWCYoJVygoiN8YDAZs2LAh1sWIGzotrmJCoat3GiTSQcxqsgqUZsqpFncCpzBN7ickFhjzAVBA+KRvuZBHiGYzsKsB+OqI/NvsPkglYrz66qs488wzkZGRgaKiIlxzzTWor693OGbnzp245JJLkJmZiYyMDJx33nnYt2+f37+xfv16TJ48GSkpKSgrK8Odd96J1lZbyz9gwAA88sgjuOGGG5Ceno6Kigq88847aGhowOzZs5Geno5Ro0Zh06ZN1u+cOHECV199NUpLS5GamopRo0bh73//u8PvTp06FXfeeSfuu+8+5ObmoqioCIsWLQruRqmMHh8B2772hwM1WQUyjNJvozDNcbviz0GHzPAR6zaLxCcUFCFS0wS8tAV4ZRuw8jv596Utcnu06OzsxG9+8xt88803ePvtt1FdXY158+ZZ9x85cgSTJ09GcnIyPv74Y2zevBk33ngjuru7/Tr/9u3bcdFFF2HOnDnYtm0bVqxYgc8//xx33HGHw3FPPvkkJk2ahC1btuCSSy7B9ddfjxtuuAHXXXcdvv76awwePBg33HADlNQnHR0dGD9+PP71r39hx44d+PGPf4zrr78eX375pcN5X375ZaSlpeHLL7/E448/jl//+tdYs2ZNaDdNBST4MD/42h8OFKuAO2JhFSjPkn4bN4wGLj9d/r1pLENGw4ka2iwSn6gusVW48ZaUQ0lsFWzSoGazfBE9mWgj5dDmyylz48aNmDBhApqbm5Geno4HH3wQy5cvx+7du6HX632e39kp84YbbkBKSopDsrHPP/8cU6ZMQWtrK5KTkzFgwACcd955+Nvf/gYAqKurQ3FxMR566CH8+te/BgBs2LABVVVVqK2t9bjg2yWXXIJhw4bh97//vfVaLRYLPvvsM+sxEyZMwPnnn49HH33Ur/ulViw9wPE299Me+gTpQ9HVGVod9Qe1RHmQyBOrNotoF00nttISanFo27JlCxYtWoStW7fi5MmT6OmRPVRNTQ2GDx+OrVu34rzzzvNLTLhj8+bN2Lt3L1577TXrNiEEenp6UF1djWHDhgEARo8ebd1fWFgIABg1apTLtvr6ehQVFcFiseDRRx/FihUrcOTIEWuW07Q0xyGz/XkBoLi42GVKR4sk9kZzeIrySEwAuqJQDsUqEOs8FCTyqKXNIvEJBUUIqMGhrbW1FTNmzMCMGTPw6quvIj8/HzU1NbjooovQ2SkLkJKSEtJv9PT0YP78+bjzzjtd9pWXl1v/by9YlDVR3G1TBM8f/vAHPPnkk3jqqacwatQopKWlYeHChdZyuzuvch7lHFrHmCQtEbHMQwFI8cCOJP5RQ5tF4hcKihBQg0Pbd999h+PHj+PRRx9FWVkZADg4PgJyhP/yyy+jq6srKCvFuHHjsHPnTgwePDgsZVb47LPPMHv2bFx33XUAbIu1KRaPvkJiApBCbyYSBdTQZpH4hc1YCKjBoa28vBwGgwHPPPMM9u/fj3fffRe/+c1vHI654447YDKZ8KMf/QibNm3Cnj178Le//Q27d+/26zd+9rOf4YsvvsDtt9+OrVu3Ys+ePXj33XexYMGCkMo+ePBgrFmzBuvXr8euXbswf/581NXVhXROQohn1NBmkfiFgiIE1BDmlp+fj2XLluEf//gHhg8fjkcffdTq0KiQl5eHjz/+GC0tLZgyZQrGjx+PF1980W9rxejRo7Fu3Trs2bMH5513HsaOHYuHHnrI6yJt/vDQQw9h3LhxuOiiizB16lQUFRXhsssuC+mchBDPqKHNIvELozzC4EGvhoWVSHwSrjpKiD1ss4i/MMojytChjRCiJdhmkUjAKQ9CCCGEhAwFBSGEEEJChoKCEEIIISFDQUEIIYSQkKGgIIQQQkjIUFAQQgghJGQoKAghhBASMhQUfYwDBw5Ap9Nh69atAORS5TqdDqdOnfL4nWXLliE7Ozsq5SOEEKJNKCj6OBMnTkRtbS2ysrJiXRS/WbRoEc4444ywnGvevHlM900IIWGAmTL7OAaDAUVFRbEuBiGEEI1DC4VG+b//+z+MGjUKKSkpyMvLw4UXXojW1lb09PTg17/+NUpLS2E0GnHGGWdg1apVHs/jbspj2bJlKC8vR2pqKi6//HKcOHHCa1m2b9+OhIQEHD9+HADQ2NiIhIQEXHnlldZjlixZgqqqKgCAxWLBTTfdhMrKSqSkpOC0007D008/7VKuCRMmIC0tDdnZ2Zg0aRIOHjyIZcuW4eGHH8Y333wDnU4HnU6HZcuWAQCamprw4x//GAUFBcjMzMT555+Pb775xmO5Fy1ahJdffhnvvPOO9Vxr164FABw5cgRXXXUVcnJykJeXh9mzZ+PAgQPW727cuBHTp09Hv379kJWVhSlTpuDrr792OL9Op8MLL7yASy+9FKmpqRg2bBi++OIL7N27F1OnTkVaWhqqqqqwb98+r/eXEEK0AAVFOGgE8B2ALwHs7v0cQWpra3H11VfjxhtvxK5du7B27VrMmTMHQgg8/fTT+MMf/oDf//732LZtGy666CL88Ic/xJ49e/w695dffokbb7wRt912G7Zu3Ypp06bhkUce8fqdkSNHIi8vD+vWrQMAfPrpp8jLy8Onn35qPWbt2rWYMmUKAKCnpwelpaV444038O233+KXv/wlHnzwQbzxxhsAgO7ublx22WWYMmUKtm3bhi+++AI//vGPodPpcNVVV+Hee+/FiBEjUFtbi9raWlx11VUQQuCSSy5BXV0d3nvvPWzevBnjxo3DBRdcgJMnT7ot909/+lP813/9Fy6++GLruSZOnIi2tjZMmzYN6enp+PTTT/H5558jPT0dF198MTo7OwEAzc3NmDt3Lj777DNs2LABQ4YMwQ9+8AM0Nzc7/MZvfvMb3HDDDdi6dStOP/10XHPNNZg/fz4eeOABbNq0CYBcXp4QQjSPiHOampoEANHU1OSyr729XXz77beivb09+B+oEULMEELA7t+M3u0RYvPmzQKAOHDggMu+kpIS8dvf/tZh21lnnSVuu+02IYQQ1dXVAoDYsmWLEEKITz75RAAQjY2NQgghrr76anHxxRc7fP+qq64SWVlZXss0Z84ccccddwghhFi4cKG49957Rb9+/cTOnTtFV1eXSE9PF++//77H7992223iiiuuEEIIceLECQFArF271u2xv/rVr8SYMWMctn300UciMzNTdHR0OGwfNGiQeOGFFzz+7ty5c8Xs2bMdtr300kvitNNOEz09PdZtZrNZpKSkiA8++MDtebq7u0VGRob45z//ad0GQPziF7+wfv7iiy8EAPHSSy9Zt/39738XycnJHssXljpKCCFB4q0PdYYWilBoBHAzgNVO21f3bo+QpWLMmDG44IILMGrUKFx55ZV48cUX0djYCJPJhKNHj2LSpEkOx0+aNAm7du3y69y7du2yTk0o2H+uqalBenq69d/ixYsBAFOnTrVOF6xbtw7Tpk3D5MmTsW7dOmzcuBHt7e0O5frTn/6EM888E/n5+UhPT8eLL76ImpoaAEBubi7mzZuHiy66CLNmzcLTTz+N2tpar+XevHkzWlpakJeX51C+6upq7Nu3z2O5PZ1r7969yMjIsB6fm5uLjo4O6/REfX09fvKTn2Do0KHIyspCVlYWWlparNegMHr0aOv/CwsLAQCjRo1y2NbR0QGTyeT1+gghRO3QKTMUjsFVTCis7t2fE/6fTUxMxJo1a7B+/XqsXr0azzzzDH7+859jzZo1AOTcvT1CCJdtnhBCeN1fUlJiDTkFZOcPSEFx1113Ye/evdixYwfOO+887Nu3D+vWrcOpU6cwfvx4ZGRkAADeeOMN3H333fjDH/6AqqoqZGRk4He/+x2+/PJL63mXLl2KO++8E6tWrcKKFSvwi1/8AmvWrME555zjtlw9PT0oLi62ihp7srOzkZ2d7bbcns41fvx4vPbaay778vPlms/z5s1DQ0MDnnrqKVRUVMBoNKKqqso6JaKg1+ut/1eegbttPT09HstDCCFagIIiFJpC3B8COp0OkyZNwqRJk/DLX/4SFRUV+Oijj1BSUoLPP/8ckydPth67fv16TJgwwa/zDh8+HBs2bHDYZv85KSkJgwcPdvme4kfxyCOPYMyYMcjMzMSUKVOwZMkSNDY2Wv0nAOCzzz7DxIkTcdttt1m3uXNMHDt2LMaOHYsHHngAVVVVeP3113HOOefAYDDAYrE4HDtu3DjU1dUhKSkJAwYMcHtt7srt6VwrVqywOne647PPPsNzzz2HH/zgBwCAQ4cOWZ1SCSGkL8Ipj1DwlbohQqkdvvzySyxevBibNm1CTU0N3nrrLTQ0NGDYsGH4n//5Hzz22GNYsWIFdu/ejfvvvx9bt27FXXfd5de5FavA448/ju+//x7PPvus1ygRBZ1Oh8mTJ+PVV1/F1KlTAUhzf2dnJz766CPrNkB27Js2bcIHH3yA77//Hg899BA2btxo3V9dXY0HHngAX3zxBQ4ePIjVq1fj+++/x7BhwwAAAwYMQHV1NbZu3Yrjx4/DbDbjwgsvRFVVFS677DJ88MEHOHDgANavX49f/OIXVudHdwwYMADbtm3D7t27cfz4cXR1deHaa69Fv379MHv2bHz22Weorq7GunXrcNddd+Hw4cPWa/jb3/6GXbt24csvv8S1116LlJQUv+4xIYTEJRH36IgxEXXKPClcHTLtHTNPBlloH3z77bfioosuEvn5+cJoNIqhQ4eKZ555RgghhMViEQ8//LDo37+/0Ov1YsyYMQ7OkL6cMoWQTomlpaUiJSVFzJo1S/z+97/36ZQphBDPPPOMACD+9a9/WbfNnj1bJCYmOtz/jo4OMW/ePJGVlSWys7PFrbfeKu6//36ro2VdXZ247LLLRHFxsTAYDKKiokL88pe/FBaLxfr9K664QmRnZwsAYunSpUIIIUwmk1iwYIEoKSkRer1elJWViWuvvVbU1Hj2kK2vrxfTp08X6enpAoD45JNPhBBC1NbWihtuuEH069dPGI1GMXDgQHHLLbdYr+Prr78WZ555pjAajWLIkCHiH//4h6ioqBBPPvmk9dwAxMqVKz3ee0/33x46ZRJCYkkgTpk6IXxMmmsck8mErKwsNDU1uZivOzo6UF1djcrKSiQnJwf3A4fg6pg5A8BfAJQFd0pCFMJSRwkhJEi89aHO0IciVMoALId0wGyCnOYoREScMQkhhBC1QkERDnJAAUEIIaRPQ6dMQgghhIQMBQUhhBBCQoaCghBCCCEhQ0EB39khCYkVrJuEEK3QpwWFkgK5ra0txiUhxD1K3bRP100IIWqkT0d5JCYmIjs7G/X19QCA1NRUv9e8ICSSCCHQ1taG+vp6ZGdnIzExMdZFIoQQr/RpQQEARUVFAGAVFYSoiezsbGsdJYQQNdPnBYVOp0NxcTEKCgrQ1dUV6+IQYkWv19MyQQjRDH1eUCgkJiay8SaEEEKCJKZOmc8//zxGjx6NzMxMZGZmoqqqCu+//751vxACixYtQklJCVJSUjB16lTs3LkzhiUmhBBCiDtiKihKS0vx6KOPYtOmTdi0aRPOP/98zJ492yoaHn/8cTzxxBN49tlnsXHjRhQVFWH69Olobm6OZbEJIYQQ4oTqVhvNzc3F7373O9x4440oKSnBwoUL8bOf/QwAYDabUVhYiMceewzz58/363yBrJRGCCGEEBuB9KGqyUNhsViwfPlytLa2oqqqCtXV1airq8OMGTOsxxiNRkyZMgXr16/3eB6z2QyTyeTwjxBCCCGRJeaCYvv27UhPT4fRaMRPfvITrFy5EsOHD0ddXR0AoLCw0OH4wsJC6z53LFmyBFlZWdZ/ZWVlES0/IYQQQlQgKE477TRs3boVGzZswK233oq5c+fi22+/te53TjQlhPCafOqBBx5AU1OT9d+hQ4ciVnZCCCGESGIeNmowGDB48GAAwJlnnomNGzfi6aeftvpN1NXVobi42Hp8fX29i9XCHqPRCKPRGNlCE0IIIcSBmFsonBFCwGw2o7KyEkVFRVizZo11X2dnJ9atW4eJEyfGsISEEEIIcSamFooHH3wQM2fORFlZGZqbm7F8+XKsXbsWq1atgk6nw8KFC7F48WIMGTIEQ4YMweLFi5GamoprrrkmlsUmhPQRms3AYRPQ3AlkGIDSTCCDBlBC3BJTQXHs2DFcf/31qK2tRVZWFkaPHo1Vq1Zh+vTpAID77rsP7e3tuO2229DY2Iizzz4bq1evRkZGRiyLTQjpA9Q0AW/tAo612rYVpgFzhgHlWbErFyFqRXV5KMIN81AQQgKl2Qy8tMVRTCgUpgE3jaWlgvQNNJmHghBC1MJhk3sxAcjth5nehhAXKCgIIcSJ5s7Q9hPSF6GgIIQQJzIMoe0npC9CQUEIIU6UZkpfCXcUpsn9hBBHKCgIIcSJDKOM5nAWFUqUBx0yCXEl5pkyCSFEjZRnyWgO5qEgxD8oKAghxAMZRmBYfqxLQYg24JQHIYQQQkKGgoIQQgghIUNBQQghhJCQoaAghBBCSMhQUBBCCCEkZCgoCCGEEBIyFBSEEEIICRkKCkIIIYSEDAUFIYQQQkKGgoIQQgghIUNBQQghhJCQoaAghBBCSMhwcTBCvNBs5mqThBDiDxQUhHigpgl4axdwrNW2rTANmDNMLm1NCCHEBqc8CHFDs9lVTADy81u75H5CCCE2KCgIccNhk6uYUDjWKvcTQgixQUFBiBuaO0PbTwghfQ0KCkLckGEIbT8hhPQ1KCgIcUNppnTAdEdhmtxPCCHEBgUF0RTNZmBXA/DVEfk3Us6RGUYZzeEsKpQoD4aOEkKIIwwbJZoh2mGc5VnATWOZh4IQQvyBgoJoAl9hnDeNjUxHn2EEhuWH/7yEEBJvcMqDaAKGcRJCiLqhoCCagGGchBCibigoiCZgGCchhKgbCgqiCRjGSQgh6oaCgmgChnESQoi6YZQH0QwM4ySEEPVCQUE0BcM4CSFEnXDKgxBCCCEhQ0FBCCGEkJChoCCEEEJIyFBQEEIIISRkKCgIIYQQEjIxFRRLlizBWWedhYyMDBQUFOCyyy7D7t27HY6ZN28edDqdw79zzjknRiUmhBBCiDtiKijWrVuH22+/HRs2bMCaNWvQ3d2NGTNmoLXVcRWoiy++GLW1tdZ/7733XoxKTAghhBB3xDQPxapVqxw+L126FAUFBdi8eTMmT55s3W40GlFUVBTt4hFCCCHET1TlQ9HU1AQAyM3Nddi+du1aFBQUYOjQobjllltQX1/v8Rxmsxkmk8nhHyGEEEIii04IIWJdCAAQQmD27NlobGzEZ599Zt2+YsUKpKeno6KiAtXV1XjooYfQ3d2NzZs3w2h0zbm8aNEiPPzwwy7bm5qakJnJFaQIIYQQfzGZTMjKyvKrD1WNoLj99tvx73//G59//jlKS0s9HldbW4uKigosX74cc+bMcdlvNpthNputn00mE8rKyigoCCGEkAAJRFCoYi2PBQsW4N1338Wnn37qVUwAQHFxMSoqKrBnzx63+41Go1vLBSGEEEIiR0wFhRACCxYswMqVK7F27VpUVlb6/M6JEydw6NAhFBcXR6GEhBBCCPGHmDpl3n777Xj11Vfx+uuvIyMjA3V1dairq0N7ezsAoKWlBT/96U/xxRdf4MCBA1i7di1mzZqFfv364fLLL49l0QkhhBBiR0x9KHQ6ndvtS5cuxbx589De3o7LLrsMW7ZswalTp1BcXIxp06bhN7/5DcrKyvz6jUDmfwghhBBiQzM+FL60TEpKCj744IMolYYQQgghwaKqPBSEEEII0SYUFIQQQggJGVWEjZK+RbMZOGwCmjuBDANQmglkMNKXEEI0DQUFiSo1TcBbu4Bjduu/FaYBc4YB5VmxKxchhJDQ4JQHiRrNZlcxAcjPb+2S+wkhhGgTCgoSNQ6bXMWEwrFWuZ8QQog2oaAgUaO5M7T9hBBC1AsFBYkaGYbQ9hNCCFEvFBQkapRmSgdMdxSmyf2EEEK0CQUFiRoZRhnN4SwqlCgPho4SQoh2YdgoiSrlWcBNY5mHghBC4g0KChJ1MozAsPxYl4IQQkg44ZQHIYQQQkKGFgoSc5iKmxBCtA8FBYkpTMVNCCHxAac8SMxgKm5CCIkfKChIzGAqbkIIiR8oKEjMYCpuQgiJHygoSMxgKm5CCIkfKChIzGAqbkIIiR8oKEjMYCpuQgiJHxg2SmIKU3ETQkh8QEFBYg5TcRNCiPbhlAchhBBCQoaCghBCCCEhQ0FBCCGEkJChoCCEEEJIyFBQEEIIISRkKCgIIYQQEjIUFIQQQggJGQoKQgghhIQMBQUhhBBCQoaCghBCCCEhQ0FBCCGEkJChoCCEEEJIyFBQEEIIISRkKCgIIYQQEjIUFIQQQggJmaRYF4AQQiJNsxk4bAKaO4EMA1CaCWQYY10qQuILCgpCSFxT0wS8tQs41mrbVpgGzBkGlGfFrlyExBuc8iCExC3NZlcxAcjPb+2S+wkh4YGCghAStxw2uYoJhWOtcj8hJDzEVFAsWbIEZ511FjIyMlBQUIDLLrsMu3fvdjhGCIFFixahpKQEKSkpmDp1Knbu3BmjEhNCtERzZ2j7CSH+E1NBsW7dOtx+++3YsGED1qxZg+7ubsyYMQOtrbYhxeOPP44nnngCzz77LDZu3IiioiJMnz4dzc3NMSw5IUQLZBhC208I8R+dEELEuhAKDQ0NKCgowLp16zB58mQIIVBSUoKFCxfiZz/7GQDAbDajsLAQjz32GObPn+/znCaTCVlZWWhqakJmZmakL4EQoiKazcBLW9xPexSmATeNZbQHId4IpA9VlQ9FU1MTACA3NxcAUF1djbq6OsyYMcN6jNFoxJQpU7B+/Xq35zCbzTCZTA7/CCF9kwyjjOYoTHPcrkR5UEwQEj5UEzYqhMA999yDc889FyNHjgQA1NXVAQAKCwsdji0sLMTBgwfdnmfJkiV4+OGHI1tYQohmKM+SlgjmoSAksqhGUNxxxx3Ytm0bPv/8c5d9Op3O4bMQwmWbwgMPPIB77rnH+tlkMqGsrCy8hSWEaIoMIzAsP9alICS+UYWgWLBgAd599118+umnKC0ttW4vKioCIC0VxcXF1u319fUuVgsFo9EIo5FDD0IIIcHBzKrBEVNBIYTAggULsHLlSqxduxaVlZUO+ysrK1FUVIQ1a9Zg7NixAIDOzk6sW7cOjz32WCyKTAghJI5hZtXgialT5u23345XX30Vr7/+OjIyMlBXV4e6ujq0t7cDkFMdCxcuxOLFi7Fy5Urs2LED8+bNQ2pqKq655ppYFp0QQkicwcyqoRFTC8Xzzz8PAJg6darD9qVLl2LevHkAgPvuuw/t7e247bbb0NjYiLPPPhurV69GRkZGlEtLCCEknvEnsyp9cTyjqjwUkYB5KAghhPjDV0eAld953n/56cCE/tErjxrQbB4KQgghJFYws2poUFAQQgghkNEczknQFArT5H7iGQoKQgghBMysGipBO2V+9dVXWLt2Lerr69HT0+Ow74knngi5YIQQQki0YWbV4AlKUCxevBi/+MUvcNppp6GwsNAha6WnDJaEEEKIFmBm1eAISlA8/fTT+Otf/2oN7SSEEEKcMTcAunpANAG6bEDkA0Z21HFLUD4UCQkJmDRpUrjLQgghJE7oPADorwMMIwHjJMAwAki6Tm4n8UlQguLuu+/GH//4x3CXhRBCSBxgbgCS5gMJqx23J64GEufL/ST+CGrK46c//SkuueQSDBo0CMOHD4der3fY/9Zbb4WlcIQQQrSHrt5VTCgkrgYs9QA49RF3BCUoFixYgE8++QTTpk1DXl4eHTEJIYRYEU2h7SfaJChB8corr+DNN9/EJZdcEu7yEEII0Tg6H6ty+tpPtElQPhS5ubkYNGhQuMtCCCEkDhAFgGWG+32WGXI/iT+CEhSLFi3Cr371K7S1tYW7PIQQQjSOMR+wvOAqKiwz5HaGjsYnQa02OnbsWOzbtw9CCAwYMMDFKfPrr78OWwFDhauNEkJIbHDIQ5ElLRMUE9oikD40KB+Kyy67LJivEUII6UMY88Fojj5EQBaK77//HkOHDo1kecIOLRSEEEJiSbNZu2uDRMxCMXbsWJSXl+OHP/whLrvsMlRVVYVUUEII8YSWG2FCFGqagLd2AcdabduU1UvL4yzaJSBBceLECaxZswbvvPMOLr/8cgghcOmll2L27NmYMWMGkpOTI1VOQkgfoi81wiR+aTa71mNAfn5rl1zVNJ5EckBRHsnJyZg1axb+8pe/oLa2FitXrkR+fj7uv/9+5OXlYfbs2fjrX/+K+vr6SJWXEBLn+GqEm82xKRchgXLY5FqPFY61yv3xRFBho4BcpnzixIl49NFH8e2332Lr1q2YPHkyli1bhrKyMq71QQgJir7WCJP4pbkztP1aI6goD3cMGTIE9957L+69916cOHECJ0+eDNepCSF9iHA0wvS/IGogwxDafq0RlIXi5Zdfxr///W/r5/vuuw/Z2dmYOHEiDh48iLy8PAwZMiRshSSE9B1CbYRrmoCXtgCvbANWfif/vrRFbickmpRmSt8fdxSmyf3xRFCCYvHixUhJSQEAfPHFF3j22Wfx+OOPo1+/frj77rvDWkBio9kM7GoAvjoi/3IumcQjoTTC9L8gaiLDKB2Jneuz4mAcb1azoKY8Dh06hMGDBwMA3n77bfy///f/8OMf/xiTJk3C1KlTw1k+0gu93klfQWmEPdV3b42wP/4Xw5hoiUSR8iwZzdEXpuCCEhTp6ek4ceIEysvLsXr1aqtVIjk5Ge3t7WEtIOl7oUeEBNsI9zUnOKINMox9Q8gGJSimT5+Om2++GWPHjsX3339vXcZ8586dGDBgQDjLR8BRV7ihw542CKYR7mtOcISoiaAExR//+Ef84he/wKFDh/Dmm28iLy8PALB582ZcffXVYS0g4agrnHDqKL5R/C/cCfB4dIIjRE0EtdqoloiHtTx2NUhPdU/cMJoWCn9oNktvf0+dDaeO4gOKRkLCR8RXG126dCnS09Nx5ZVXOmz/xz/+gba2NsydOzeY0xIPcNQVHjh11DfoS05whKiJoMJGH330UfTr189le0FBARYvXhxyoYgjfS30KFJw6ig+cRdOrfhfTOgv//IdISTyBGWhOHjwICorK122V1RUoKamJuRCEVc46godOuzFH5zeIEQ9BGWhKCgowLZtrpP633zzjdVBk4QfjrpCo69lrYt3PIVTHzYBy7YCW2qZAI6QaBKUheJHP/oR7rzzTmRkZGDy5MkAgHXr1uGuu+7Cj370o7AWkJBwEUrCJKI+3PnEtHQC1aeA9i6gIhv47jgtFoREi6AExSOPPIKDBw/iggsuQFKSPIXFYsHcuXPpQ0FUDaeO4gdnn5cui01MAEBHt/zLBHCERIegBIXBYMCKFSvwyCOPYMuWLUhJScHo0aNRUVER7vIREnb6Sta6eMfZ56WlyyYmACDZrnVjFA8hkSfo5ctfeuklPPnkk9izZw8AuXz5woULcfPNN4etcIQQ4gnncOoui21feRZg7nY8nlE8hESWoATFQw89hCeffBILFixAVVUVALnq6N13340DBw7gkUceCWshCSHEGWefGH2i3F6eBVw4UDpkOhzPKB5CIkpQmTL79euHZ555xiXN9t///ncsWLAAx48fD1sBQyUeMmUSQjyjrM3S2CH/nuqQ4aQWu5aNmVAJCY6IZ8q0WCw488wzXbaPHz8e3d3dbr5BCCGRwd4nRslL4SwmGMVDSOQJSlBcd911eP755/HEE084bP/zn/+Ma6+9NiwFI4SQQGEUDyGxIySnzNWrV+Occ84BAGzYsAGHDh3CDTfcgHvuucd6nLPoIISQSMIoHkJiQ1CZMnfs2IFx48YhPz8f+/btw759+5Cfn49x48Zhx44d2LJlC7Zs2YKtW7d6Pc+nn36KWbNmoaSkBDqdDm+//bbD/nnz5kGn0zn8UwQMIYSQ2OJuHRXSdwnKQvHJJ5+E5cdbW1sxZswY/Pd//zeuuOIKt8dcfPHFWLp0qfWzwUBXbUIIiTVcR4U4E/SURziYOXMmZs6c6fUYo9GIoqKiKJWIENIXUSJF6HfhH57WUWFW0r5NTAWFP6xduxYFBQXIzs7GlClT8Nvf/hYFBQUejzebzTCbbXY3k8kUjWISEnXYCYYHjrQDx906KgrMStp3UbWgmDlzJq688kpUVFSguroaDz30EM4//3xs3rwZRqP7lnPJkiV4+OGHo1xSQqILO8HwwJF2cPjKOsqspH2ToJwyo8VVV12FSy65BCNHjsSsWbPw/vvv4/vvv8e///1vj9954IEH0NTUZP136NChKJaYkMjjqxOkY5z/+DPSJq74yjrKrKR9E1VbKJwpLi5GRUWFdf0QdxiNRo/WC0LiAftOMFEnLRLGJLm6ZnIScMQEnE5zs19wpB0czuuo2FOYJveTvoemBMWJEydw6NAhFBcXx7oohMQMpZNL1Ml56g/3yykQhb0ngVvGcerDHzjSDg7ndVQUmJW0bxNTQdHS0oK9e/daP1dXV2Pr1q3Izc1Fbm4uFi1ahCuuuALFxcU4cOAAHnzwQfTr1w+XX355DEtNSGxROrnyLFcxAQANbZz/9xeOtIOHWUmJMzEVFJs2bcK0adOsn5UMm3PnzsXzzz+P7du345VXXsGpU6dQXFyMadOmYcWKFcjIyIhVkQmJOUonaExyFRMpeiBdT097f+FIOzSYlZTYE1NBMXXqVHhb7PSDDz6IYmkI0QZKJ7j2gOP2FD1QmW1bxpvz//7BkTYh4UFTPhSEEEl5FjCmEBiSB3RZpIhI19vEBMD5/0DgSJuQ0KGgIESjDMwBTs/j/D8hRB2oOg8FIcQzytRHYZrjds7/E0JiAS0UJK7oa+moOf9PSOzpa+2OJygoSNzQV9NRc/6fkNjRV9sdd3DKg8QFTEcdGs1mYFcD8NUR+Zf3ixDfsN1xhBYKEhdw9cPg4QiLkOBgu+MILRQkLuCaDMHBERYhwcN2xxEKChIXcE2G4OBqm4QED9sdRygoSFygpKN2B3MyeIYjLEKCh+2OIxQUJC5gTobg4AiLkOBhu+MInTJJ3BDPORmCjXP39T01rrbJmH6iJeK53QkUCgoSV8RjToZgozD8+Z7aVttkxAnRIvHY7gSDTnhb7jMOMJlMyMrKQlNTEzIz+9iEFtE8zWbgpS2eLQg3jXXf6Qf6PTVYBYK9VkJI5AikD6UPBSEqJtgojEC/p4ywJvSXf2PRcTPihBBtQ0FBiIoJNgpDi9EbWiwzIcQGBQUhKibYKAwtRm9oscyEEBsUFISomGDj3LUYH6/FMvd1zA1A507AvB7o/FZ+Jn0XCgpCVEywce5ajI/XYpn7Mp0HAP11gGEkYJwEGEYASdfJ7aRvwigPQjRApPJQqBEtlrmvYW6QYiJhtes+ywyg+1XAyDDKuCCQPpR5KAjRAMHGuWsxPl6LZe5r6OrdiwkASFwNWOoB8Bn2OTjlQQghJCBEU2j7SXxCQUEIISQgdD6ylvraT+ITCgpCCCEBIQqkr4Q7LDPkftL3oKAghBASEMZ8wPKCq6iwzJDb6ZDZN6FTJiGEkIAxDADMr0oHTNEkpzlEAcVEX4aCgvQp1BCSqIYyEBIOjPnwGs1hbpARIaIJ0GUDIp+CI56hoCB9BjUsja2GMniDYoeEi84DgH6+Y3ipZQbQ+YK0bpD4g4KC9Amaza4dOSA/v7Ur8KWxg+l4w12GcKN2sUO0g7nBVUwAMkcF5supEloq4g8KCtIn8GdpbH+TKQXb8YazDOFG7WKHaAsmvuqbMMqD9AnCtTS2r4632Rz5MkQCf8QOIf7CxFd9EwoK0icI19LYoXS8al6eW81ih2gPJr7qm1BQkD5BuJbGDqXjVfPy3GoWO0R7MPFV34SCgvQJwrU0digdr5qX51az2CHag4mv+iZ0yiR9hvIs6VwYSlik0vG6m/bwp+MNRxkigSJ2PDmbxrp8kYAhspGFia/6HjohhIh1ISJJIGu5E+IP8Rxe2Vc62Xh+hoSEk0D6UAoKEjdEszPsKx1vPNJsBl7a4tnKFK0QWdYhogUC6UM55UHigmiPODOMscsZQUJDDflAaCEh8QidMonmCSU3RF+g2QzsagC+OiL/xvv98HW9sQ6RZX0l8QotFH2EeDavqmHEqVbUMhKOVv3z53pjHSLL+kriFQqKPoBaOpVIEesRp1pRSzrtaNU/f6831EidkMup8voaD4OPeLgGLRLTKY9PP/0Us2bNQklJCXQ6Hd5++22H/UIILFq0CCUlJUhJScHUqVOxc+fO2BRWo/QF82qsR5xqRQ3ptKNZ//y93ljnA1Fzfa1pkg6rr2wDVn4n/760RW7XCvFwDVolpoKitbUVY8aMwbPPPut2/+OPP44nnngCzz77LDZu3IiioiJMnz4dzc3NUS6pdlFDpxJp8lKAsUXAgGzg9H5AZTaQqJP7+nJSJjWMhCNZ/5x9JRo7fBxvd71KPpAbRgOXny7/3jQ2OhY7tSYRi4fBRzxcg5aJ6ZTHzJkzMXPmTLf7hBB46qmn8POf/xxz5swBALz88ssoLCzE66+/jvnz50ezqAGjFpObGjqVSKKY0/c1AgdOAYkJQEUWcOFAoLMbGFfcd02dahgJR6r+uZtGGVsEtHQC6R6uy/l6YxWpo9YkYvHg2xEP16BlVOtDUV1djbq6OsyYYcvdajQaMWXKFKxfv96joDCbzTCbbTLUZIr+EFxNPgtq6FQihf1oJN0AlGUCexuBjUeB423AuWXAO7vjx1ckUGLtKwBEpv55GoWe6gC6e4AuC6BPdNynNkuVGjOmxsPgQ+vXoJaBaLCoNmy0rq4OAFBYWOiwvbCw0LrPHUuWLEFWVpb1X1lZWUTL6YzaTG5qNa+GA/vRSJcFqDEBlh4gJQmoawFSDX3b1BlrXwEgMvXP0yi0pgk4txzIdLquWI/8PaFYSCb0l39jXb54GHxo+RriwfdDtRYKBZ1O5/BZCOGyzZ4HHngA99xzj/WzyWSKqqhQm8lNrebVcGA/2mjpAtq7HPd3dMu/fdnUGeuRcCTqn6dRpkVIX4orhgHJSdod5cUKTxatlCTgqmJgQD1g3gPosgGRr841OZyvIVEn3wFjEqAD0NUjBxdqqw9qicgKFdUKiqKiIgDSUlFcXGzdXl9f72K1sMdoNMJojN2dV6PJLdadSqSwH210WVz3J9vVbrWbOiNJrLN6hrv+eRtlWoR87n1RPIaKO/GXkgTcWQJk3gEkrLYda5kBdL4gFwBTE/bXcLxN1oMP9wMNbdJZe9dxdYbMq20gGiyqFRSVlZUoKirCmjVrMHbsWABAZ2cn1q1bh8ceeyzGpfOMWk1use5UIoH9aMR5zrw8CzB32z6r2dTZFwhn/VODb0i84iz+BgHIvNFRTABA4moA8+VqomqzVCjXcMQEvLZDWidOz7O1EWoc9atxIBoMMfWhaGlpwdatW7F161YA0hFz69atqKmpgU6nw8KFC7F48WKsXLkSO3bswLx585CamoprrrkmlsX2Sjz7LKgNex+BdD2Qopfby3ujPJS5R973+EINviHxjL1vR8YpVzGhkLga0NVHtWh+k2EEBKSTbk6y64BDbSHzah2IBkpMLRSbNm3CtGnTrJ8V34e5c+di2bJluO+++9De3o7bbrsNjY2NOPvss7F69WpkZGTEqsg+iWefBTViP6I61grUt0pv/10N0vzN+x6fxOs0ntoQPhwCfe2PJVoa9ceL1Y3Ll0cIrYf/aBXed0LCR+dOwDDSy/4dgGFE9MoTCLsaZKSEJ24Yra5pYDWlG7CHy5ergHj0WdACvO+EhA9RIB0wE91Me1hmyP1qRWuj/niwulFQEEKIBomGNc6YL6M5MN9RVFhmAJYX1OeQaY8Wp5+1PiCioCCEEI0RTfO4YYCM5rDUS58JXZa0TKhZTCjEw6hfS1BQEEKIhohFEiRjPgANCAh3aH3UryUoKAghESeazrLx7pgbL0mQSPxBQUEI8YtgO+pomufV6ikfTrQUDhkt4l1EagUKCkKIT4LtqKNpno+X9RB8oZYkSOYGmdhKNMV2fY++ICK1gmpXGyVEizSbZfz7V0fk33hY5TSUFXT9Mc+Hi2j+VixRQzbezgOA/jqZo8I4SeaiSLpObo8malvdua9DCwUhYSJeR0qhzNlH0zzfV6YCYh0OaW4A9PPVsb4H/UnUBQUFIWEgns3toXTU0TTPq2UqIBrEMhxSV+99fQ9LPaIWEdJXRKRWoKAgJAzE20jJ3smtu0cuD++8wJKCt446mtkKtZYZMVRiFQ6ppvU9+pKI1AL0oSAkDMTTSKmmCXhpi1wHYeV3wI56oLULaHFzDb466miuDMpVSKODzsf0na/94UQN/iTEBi0UhISBeBkpuZu6qWkCzi0HPq9xtFT421FH0zzPzIiRR03re8Tan4Q4QkFBSBiwN7cn6mTHZkwCOrqB3GQgLyXWJfQPd1M3FiEjVsYWASMLgKSEwDvqaJrnmRkxsqhtfQ+KSPVAQUFIGFBGSu98B+SmAh/ulyP7FD1QmQ0cadZGtIenqRmLAKpPAWcUARP6R7VIJIZ4ShiltvU9KCLVAQUFIWGiPAu4agTwp81Agg4Ykgek6+UUQSSjPcKZJTBepm5I6PgKg47E+h7MeKltKCgICSMn2oH2bqDAjaNYJKI9wp37oq9FShD3xCIMOl7zuPQlGOWhAuIxu2JfJaqJnCKQJZCREgSIftZRZryMD2ihiDFU5TbUsjZAKERzyiBSuS/o5EaiHQYdb3lc+iq0UMQQqnIbalkbIFSiGRcfyUZfcXKb0F/+pZjoW0Tblyae8rj0ZSgoYkhfWczIF+YGIMnD2gCJ8+V+rRDVRE50oNQkWpjijHbCqFjWZS08D63AKY8YQlUuUdPaAOEgWlMGgThQat17XuvlV9DKFGe0E0bFyhlYK89DK1BQxBCOMCVqWhsgXEQjLt7fRl/rjabWy6+gtQXk/BHG4fJ7ikXGy2g/j3gRxd6goIghDNGTqGltAK3hq9HXWifmjNbLb48WHQ+9CePOA67LmFtmyCyahgGB/1a0LHtKx37YBOSkAKl6KVotwnZMuJ9HvIhiX1BQxBDmoZeEujZAX1D+3vDW6Nt3Ys4pwZOTgCMm4HSVdWL2aLET9oSWpzidLRHI9Oz3hPkyi2awlopIPk/7jr2+FThwSr4TFw6U/hP2oiJczyOeRLEvKChiDEP0QlsboK8o/2BRGsVEnWyolZTgCntPAreMU++90nIn7IxWpzjdWSLER4BOY35Pzh27sshdTZN8L6pKZXp5hXA9j3gSxb6goFABWs5DHy7rQDBrA/Ql5R8sSqNYnuUqJgCgoU3d90qrnbA7tDjFaW5wFRMAoDvp/Xtq9Hty7tjT9XKtnfYu+V5MHWDbF87nEU+i2BcUFCRowm0dCHRtgL6k/INF6cSMSY5iQp8AnNUfGJgDdFqAHfVyJVG1iQotdsKe0OIUp8cIrGQf31Ohxcu549YnyoX7qk9JUdHRLbeH8jzcDbAy40gU+4KCIsZodf5fDdYBNSp/tT1PpRNbe8C2TZ8AzBwCbDoKrD8kt311BBhVoL6pIudO2JAInJ8FjASQ3g7o9gFmDWVU1doUp0dLwwYAFwD4yHWXP35PscBdx51uAE7PA1q65N/J5cE/D08DrEuHACXpwNEW1+9oTRT7goIihmh5/l8N1oGoZ/PzIRbU+jzLs4AxhXL10y6LtER8XQscbbYdE+kVUUNB6YSPmID+JiDttvBFFsQCLU1xerQ0PAXg74BIdPSl8MfvKVZ4snbpE4HTM4FxxcHXe28DrH/tAWafBryzWzuWqWChoIgRahjhh4IarAPRNIf7Egtqf54Dc+QI7FgrkJvimIU1RS/nkwH1ThVlGIFKAPrbvEcWdGZqZ/SvBTxGYLUClr8AlpcANPnv9xRLIjnl5GuA1dGtLctUsFBQxAg1jPBDQQ3OctGak/ZHLKj9edrfK2WuGJBiojLb5vEOqNdJzFdG1a5jwEv71Gch0jJeI7CeBgylAEqdrHcN6u0sIzXl5M8AS0uWqWChoIgRahjhh4JanOWiMSftj1jQwvNU7tX2eukzoU+Ulgl7MQGo10nMV+SA5RRwzGkdBrVYiIJFDT45viKw1DrV54lIdOxqGGCpAQqKAAnXC671Cqgmj/VIK3+/Rh8aeZ4ZRul8Oaog9mIwUHxFDlgyALhZ2EkNFqJgUFNH7SkCS+1TfdEiUgMsNQjKQKCgCIBwvuBqGeGHgtY81oPFH7GgpeepJjEYCL4yqh7w8pzUYCEKBK101Gqf6osWkXin1CQo/YWCwk/sX/Auiwwz6rIAjR3Aip3AT8YHVmm02qg70xfmBf0RC1p7nloUg97m881/At6u8fxdtViI/EUrHbUWpvqiRTjfKa0ISmcoKPxEecFbOm2JUOz3TakAJvQP7JxabNT7Iv6KBa09Ty2KQU/z+ZZMIKVWxvp3WRz9QyJhIYq0KVorHbVWpvqiRbjeKa0ISmcoKPykuVM2VM5iApCfvzsODOsXeKOixUa9L+KvWNDq89TSXK27+fxjTcDgHODbBltG0BS9XJ8h3BaiaJiitdJRa2mqT0toRVA6Q0HhJxkGOc3hLCYUBBxVo5YaaOIfWhULvtDiXK09inn4eJsUEFMH2FZTTUkEcnykiQ7mtyJtitZKRx2uqb54aS/7utM+BYWflGYC+anAnhOu+8qzAHO3TTUqDfTxNtty0RuPSgvG6UFYMYj6Gxy1l88TWp2rtcfePGy/WqTCqMLwCcFomaK15JMT6lSf1gWtAp32KSj8JsMIzDldvjT2iyyVZwEXDgR2NQDnlTuOlpyXi07RS1+Lq0aE/0XRaofmD2pvcNRePm9oda7Wnmiah6P5W1ryyQnWehcPghYI/3VoSVDaQ0ERAINzgZmDgHaLzaRq7pZiol+qfNmVBroy23W56PYuYF9j+F8ULXdogHcxFM0GJxhRpvUGUatztfZE0zwcbVO02qfZQh3IxIOgBSJzHVoSlAqqFhSLFi3Cww8/7LCtsLAQdXV1MSlPhhE4p8y7alQaYOflohW6LOF9UbTeofkSQ9FqcIIVZVpvELU6V2tPNM3DWjVFB4K/IiEcA5l4ELRA5K5D7YLSGVULCgAYMWIEPvzwQ+vnxMREL0dHHl+qUWmA7ddLsEdJcxyuF0XLHZo/YigaDU4ooszX7zd2SAuWWkcY8dBBRtM8rPzWO9/JQYMxSb7rucnAmSWh/1aspy79FQnhGsjEg6AF4uc6QkX1giIpKQlFRUWxLoYD3lSj0kAnu7mz9qs6hquCaVnh+yOGovGihiLKvP1+S6f87j+/t21T21SUVudqnYmmebg8C5g5GHh9B3CwyZbz4khzaM/WuTNP1AGjC4ABOfJzpAVGICIhXAMZrQpaZ+GXlwKUpMs8KIB8dopDvg5AV4/8jlbep2BRvaDYs2cPSkpKYDQacfbZZ2Px4sUYOHCgx+PNZjPMZltCf5PJ5PHYSKA00BsOyQpl75CprOoYzhdFy8rYHzE0rF/kG5xQRJmnBrHLAnT3AKc6HLercSoq0p1xtEbd0TIPN5uBf+0B2ruBgjTb9lCerXNnnqgDTssD3vlebhuSC6Tp5b2LlCANRCSEayCjRUHryYozfSDwcbXcrjjkN7TJdn/XcfUNJiKBqgXF2WefjVdeeQVDhw7FsWPH8Mgjj2DixInYuXMn8vLy3H5nyZIlLn4X0aY8S8a+D8kD3vpOVir7rH3hfFG0qvAB/8RQNBqcUESZp/JlGoGxxXK6wxk1TkVFqjPWusOwOyIxzeh8zoJ0YOVuW5h6lhEwW+S/SAnSQERCOAcyanU+dCeEAc9WnDX7gWtGAifbgdd2SOvE6Xm2aW41DibCjaoFxcyZM63/HzVqFKqqqjBo0CC8/PLLuOeee9x+54EHHnDYZzKZUFZWFvGyOpPR26EMzo3si6JFha/grxiKdIMTqihzV76ObuDNXYBFuB7fZVFf4xkJtO4w7IlITDPaf6fLAlh6HHPedAsZJVZ9CjAmRkaQBiISwj2QUZvzoSchPLHMu5g80S7/393jPqGaGgcT4UTVgsKZtLQ0jBo1Cnv27PF4jNFohNGonlbK14sSiDnY07FqVfi+CEQM+dvg+ApBdbcvHKLMuXy7GtyLCWUtmFGFwMcHHH9HqyN2T2jZYdgbkZhmtP+Ou4y8STr5t71L7o+Eb1QgIkHLAxlfeBPC3x23rRXj9rt+PBc1+7WFiqYEhdlsxq5du3DeeefFuigAQp8bDsQc7OtYtSl8fwmnGPJ2jzq7XZ3o7Oejw1UOpU40dgDjiuTfmiYpLpS1YPJTZf4SBa2P2D0RSYfhWEZDRGKa0f6czh1WusFRnHZZIuMbFahI0OpAxhfehLCAFHQ5HgSFP89FzX5toaJqQfHTn/4Us2bNQnl5Oerr6/HII4/AZDJh7ty5sS5ayHPDgZiDQzUdxzoUzRfhEEPe7tEr38hGed1B2/YUvet8dKjlcK4TLZ3S9HluubRYNHZJMaFkVnUup1ZH7J6IlMNwrP0yIjE6tz9nYwdwvFU68zW0Af0zHZ17K7Ii5xsVqEjQ6kDGG96ErrlbvsPdPa777MWkVv3aQkXVguLw4cO4+uqrcfz4ceTn5+Occ87Bhg0bUFFREdNyBSoG3L2cgZiDQzEdx7rxjRae7lGXBdjWCJxV4rg93PPR7upEukH+/r6TwBXDAJMZ2H3C83SIVkyh/grUSIzk1eKXEYnRuXLO/Y3A9nq5yNl7e4BdJwDRW1+G5gHXjorsNcajSAgEb0K3pkm+y+sOeheT8Tod5AtVC4rly5fHughu8beD99aZtwRgDg7WdKyWxjcaeLoHLV3SEtFlkZ/1CcCYQqBfmtyWn+Y5CVkgeKoT+kQZXpicJP+t2idDAiuzbUmRkpNkWTIN4UuCFSmrVCACNRIjeTX5ZUSi480wAmOKgJwUmTxrVCFwZn9ZT3KSpTCuzAnvb0YbtVtMvQnhfqnS0d6Xs328Tgf5QtWCQq3408H76swvHuT9HPYqOVjTsZoa30jj6R50WaRDmz5RiokLBwGfHgCq9/Z+zwjUNgN5qaFZbPzNqVGSDuSmOq7zok8A/msE8I9vgTY7caN0vDnJwBGTFCbtvftzkiObEtntNQQhUMPdsGo5kVsglGcB886Ivw5JCxZTf4Wwr7azL1p6KCiCwJ8O3ldnbrb4bw7213TsrPwbO1yPtydeGl/A8z3SJ8pOXAhpmfj0gOMS1+kGORURqsXG35walw4FHl/vuM7LWf2BTw7I5+Uct/63bcDQXKCzxyZClCRpg3IilxLZHcEK1HA2rFpO5BYoWuyQzA2Arh4QTYAuGxD5gLH3GrRkMe2rFoZQoaAIAn86+F3HvZ/DbAksZNLXse6U/9giObWS7qGRjbfG1909GpQjO+S2bpls6r29tn1ZyTIDoT4xdItNXgqQkuQYRaIIA3vR19EtMx4OybN58w/MAdYfkvvtPci7LMAXh6Vl48O9NhFi7/8RqZTI7oiFdcBdiuPxRUBrt+OKvzVNthV/SXCEOhXReQDQzwcSVtu2WWYAnS8AhgHas5hqUdDFGgqKIPCng/dnJBWICvZ2rCflf6pDeiO7i5uOR29jT/eosUPOR+emSqe2biE744JUx3vtrkP0p5GtaZLnH5QrO/o9J1ytCFYn3U75LOzDzjottv932f1fyUfQaXFduVbJRxCplMjuiLZ1wJ1ITjdIgbjyO/lsAPncfzgUGB+Gxbn6KqFORZgbXMUEACSuBjAfML8aH9NVoYguf76rdv8SX1BQBIkvMeDvNEUgKtj52GazdOKrbwW+O+E4KgZkI3FuuYwyaHczN6+liuqMtyRVzvczwyjno7fXA9nJrhYE63FOHaI/jay9mDvWClSVSu98xYluaoVMo2z/G/YLB3V0A8XpwHnl0qrVaZECKF0PdPeKC4OHmHdFfEQqJbIzkUzz7s4S4XzvFYvN3pPARQOBb+ptYnlvowzH9efcWmukI40/UxEGk+epDEDucxYTComrAUs9kFHgvRxqt5iGIrr8+W44UhHEup5TUISANzEQ6Uxy9pVvQLbjqFiZ4rAIKTiuGCZNw7GsaOGs7MG8eBlGYFSB/OdPh+jvfK+9GdciHP0zDkD+nr2gKM0ExhcD734vr0OnA4rSpI/E6ALg04PyPCl6KTQGZMl1HLKTpWUlSSf3t3TaBFEkUyLbE6k67Wm6bl+j43SdYrGpaZKizT618cl29yZzLTgBxhpvUxEmM5B4BNDf6nkqA5BCwxuiCSgd7Fg3va3IqYbO0R779qDLIutiV6/4X7ET+Ml4z+Xzpy0BQvMvUUs9p6CIIJFy7HGuoMpS6crcur1jn0XI/bGcCwylsvszcgX8e/EC6RD9ne8Nxoz77XGZsAiQHWb1KRkmuKMeGFcsrU2JOumT8V8jgENN0ql0/0nbdyqypRUj2imRA63TvjoGT41tY4drXbafDnIX6ut8r7XkBBhLvNXhywoA40+AhDWO2+2nMoz5gM7He9yTKdNWT6kAPqwGmjo8r8iprNqpLAUOxF4EKu2BkjrfPjX6YZO8rgn9vX/XHUpbovzf2zGe2nA11XMKiggTCcce5wpq7rYtla7Mree4cQiMBaFUdn9HrgrH22R4pUDo8eH+CoVApxgOm2SjdHqefE4dXUBDqxwJCgFMrgCK0uVoraEV+ONGOQ1y3Wjg1W3AnpOyM23skJYOTymRrxkppwGazEC2Ufpy2FtKQsHfOu2PkPTU2CYnudZl+ymqZDctl7t7rSUnwFjhrQ4P6AQS17jfl7gaSDgM9NQBCZmA5YdA4ruux1lmAF91Aau+k0J5dAEwpFKuxOy8IudhE/DsRvme2xNrEdjcaUud77zOSnuXFEvD+rkvWzh8R7wdo6Z6TkERYSJhunOuXDVNcv5YCStURnJq8JUItrIrQuR4m2MSqB4BHGsBjFmOHUyiTp7ntR2OaXHdjWz86RD9FQqBTjEoz05xzDzaBbR1yTIn6aSV4u87ZBl7hMyPYeqQTohXDpff7+mdEjm7xP2ILZbmT/u1TI6YgFS9fDZKZlDnjsFTQ6mIZHurRLpeXrfzWiiA93vtsawacAKMBt7qcGKz9+/q9gG6KwHdhQCeByxwFBWWGUDtk8DH9b2fBbDlGACd7IidV+Rs6ZLTt+eUuv5WLEVghsH9om0KAl7CpsPg1+TtGDXVcwqKCBKpht2dY19PDzD7NFl5inob11BM0eEi2Mp+2CTFhGIWVaIcLh4MHDLJkM9+qbbjy7PkccYkx0Yq2JFNIE61gUwx2DcMXRbpLKsIoGS9DCfu7p1LTk6SIiNBBxxtln4W9j4aw/q5li2W5k/7+t7YITuG8izb2iX2okJpfD01lIpItnco1idKp9cR/YBNtbZj/bnX7lC7E2C08FaHE31ZtXrfNd2HgLgVEH8BOhdLn4meTGmZ+LjeMZIJkPXD3SJbioD0lL02ViKwNFMKWfsl5RXKs6TA9VQ2f9uSknTZftln0DV3y3/erMxqqucUFBEikg27s2OfghI+d06pehx4gq3szZ02kWB/jcdb5YtdfUo6KypWCmOSnIs9Pc/1XMGMbAIRCso0inM2y9ZOm5OZgn3j0tIbEppukNMgpRnyHIAUFWlOq0w6N7Lu7l2szJ/O9V3pGGqa5DOsKnUUQ0rj66mxtQjgZJt0djvR7ih8AeC0fpFfS0RtjoGRxNNUoM4krQyJ7iI4LgCwwfZR9yGQ0AQkjZafvzoipzncoaSbd0Z5n91NaQGxE4EZRmDO6fL+OLe5imA+r9zLd/1oS86vlNM939uJlqF5wB1nea93kXTEDhQKiggR6Ybd3rFPoaFNbvcUPgdEfwQbbGXPMEiR4Jx/4ZtjMn32llrHEY4OcmrEORRUIZiRTSAOiBlGINUg1+rwJtTsG5f6Xiev/pky/fbFg4FHPpXHpRtk9M4xO8c0+0bW072LlfnTub4bEuW1JuqAkx2yvIBtKXelY/DW2M4+Xfp9uPP98OfdCcVB1V/RHU+iw+1UYL6M5sB8J1FxAYC7AFztdPwpu/N56fzN3XLV1HYnkZyul52o85QWEHt/sMG5wMxBQLvF0YKwq8F3UjVfbUmzGViz3zXpXZpebi/PCo+zeaShoIgQ9g23fZiRkgMhlIbd2bHP/rwtnd7FSrRHsMFW9tJMYONR1+1dPcDnNTIPwfB8OaeeYZAjfW/ZSf0d2bjrIPy5H4EINaVx2V4v/6UkySyehkRgYhlQ2yI7XX2CFBXVpxz9Brzdu1iZPxWntZYumT9Dp5OJ1U60AxDAzgbpUHrhQGl5sG98I5nmOJhz+/ssYx2qFy0xYxggozks9YC+EdCdAvB177/lADoApAD4AkCu7XveBhPmbuk4/K89jvtLM21RHvaEu3MM5t5lGIFzyhyfueJkOiBHtj++Bh2+2mXnpHeAf+2yWlKFU1BECKXhdhdmlKIP7dzOjn2e9nv7biD7Q224gqnsGUbg9H69Tn0J8sXtFkByouxca0wyF4E1Q6Q5dLNfKB1EoEJNyYvx1RHgwCm5LVEHVJXZQunS9PIZT6mQjWyXRZpVvd27WJo/vzsh63mGUVpW2npHcR3d8jpqmqQYvG+iG3+HCERDBXtuf55laWZsQ/WiLWaM+ZDWisMyJ4XuxwCeBrDIdoy4EMB/2z77sj6VZwE3pbtvF8qzItc5hnLv7Nuylk4gKUGGwW455v5c/rad4bAsqiFVOAVFhCjNBHJT5AjU2TM4PxU40Og5zMgXoYxCA/1uuBoub5Xd00s3rB8woQT47JB8eRN0ctTe2iXn5MOZfyHUqaBgGgTnMiuJyGYOkiMeIPDGNBbmz2azrM/5qbK+JOrk8wKALgBjCuSU1JA8KZLCsVx8JPHnWcYyVC+WjreGUqDnfwH8GNB95LhP9yEgbrPlpgB8DyY8tQuR6hzDce+UsjWbgZe2yKRqzud65ztg5mBpgTlsslmSK3pDugc7+XqpybEyFCgoIkSGEbiwUjrY5CYD/dJkhcpNkZVqw2FgVGFwL00oo9BAvhuNhsubYMlJBkYWAPtPOfpS5KdKT39nQjH7hdpBBNsgRMJU6Wvdl3CP/A6bgG31ttDlk3ar3JZnAtMqgepGW/SN2sM1/XmWsQzVi3Xege42wPCh+30Jq2UabjhZ4yIlDgKty+G8d97OZUwCXt8hLY32FuqDTXIq8PrRcvpWKbeaHCtDgYIiglh6QznX7Ac+P2RLm5yXDJw/0DaKC5RQRqGRyBYZLL4Ey8WDgM21jutjKI5Qm2qlp7+7dTs85bXwmrExxA7C39VG3RGJBtfdOSNlJm/utFlXqkrlOXc2yOs/3gp8XSuXjlfC4Sx2KZZ9njsGTo/+NO5KdkNPBDqiDOQ6Y513wJ8025Em2Locznvn7VhjkpzKrG+ziQmdTqbQ/+IwUJYlI7r0ibZyq8WxMhQoKCJIugF4c5NrpEKzWY7kxhe5/54/hDKyDXe2yGDxJViUaQD7cMNgft+fxseYKGPj7R1c7SNGvHUQ7lYbzTDKMLCiNKAgzTbvHquGIZLWJuXe2D+rPSflfdEnAFeOkL4TNU3Sf2jPCeDLI74b/1g5PfojusM5ogz0OmNtHveVZtvXfm/4uyKn8/3q6ZHJpdYdkGvgFKTLqK9I5ibxdqwyrWc/3Z1ukCKipdMxC6z9O6gGx8pQoKCIIGaLa2inQmPv0uK7GoKvPKGMbMOZLdIXnhoJX4LAORlOML/vT0fa2AHsPi4tH4r4s19ozVsH4W610fMr5Ujkk2q5/obihBvL9QgiaW1y7lztM7eWZsoFzw6bbPdUn+hbyMR6fQJ/5v7DMaIM5jpjbR4XBZ5zU1hmyP3B4K+wcq7LHd0yGuqj/VLQDs2TbW9VqZxasP9uOO+dt3PlJEtncnvsfYv0iY55OA6bpL9dUoKsa8H618UaCooIYrbIBtQ5yiPDCFx2GrDiW99pomOJ8wvjbXVAT3hrJHwJgoK04LPHKXjrSJW1P974FjjSLJd6Vzo/ZaG1KRXeOwh3q41WZsuwt5om6YioCIpQOsNQTf+RtDZ5cy4tTAde2Sbvg7PVx5uQibWfAOBbdIfD/yWY64ym463bepfvPjeFZQZgecFxWfNAfsdfYeUckp9usIkJQEaDtXfJqQVDouNKoOG8d97OdVaJXN9jf6Nte3dvkrrKbDkVqLwLSiTg9npbxJfa+gJ/oaCIIBkGWdnt80UYEoER+dKvQp8gOxtjItBhkYmOTGb5AoRrIaeQym/3wtinwXZeHdBTxffVSFwz0vtoYWCOVOzBZI+zlsFDR6ms/bHxKLDuoNx28BRwVn8Zmqms0uppvQxv57dPyOWcDfBYq2xkDIn+d0LhMP1H2kzuqXPddVwKQ094ej6x9hPwl1D9X4K9zmjkHfBa7wbYclOIJjnNIQqCExNAYMLKvq62dEnRaj8tmqSTf9u75EKCzqLM+d4ZE+W/Yy0yu20g99Hbc7hmpMwpo7RdSTrZbk4ZAHxWAwzOcVxwzD5xXbQsceGGgiKC2I/wc+zUaFeP7FSK0uULUddiC4k8cErmXzinNPClvSMx32afVvq1Ha6rA7odQfSW67BJLsudqrdlSFQ41irDrbyNFoDgs8cpeIuu+HC/XC5coasHWH8I2FJnu0Z362X4Or99WKRz5s6WTpnt0z4JVyiizN8GJxpmcneda7BCJtZ+AtEi6NT0EX73/ap3+XCI5gjp9wIQVvZ1ucvitICcwbGd6bJ4Dtkelh8mse5BVA7OkzlXNh6V06r5qcDek1JMlGXKtqGxQ7YXw/tJx+4B2TYrbE2T9lbEpaAIgWaz7GiPtcr5/kInRyBnk5iiRgfnynTLlh6bk05Sgpx3T9DJShbM0t6RSg2cYZQOT909rqsDAo4jCPty1bdKgeRugSgAMHUCp+d7Vvi7GkLLHgd47kiVtT+cl0HvETKs63ibXKzL6CGVt7fzKyONFL008ysoz//MEtdr8fS8w2X699fUG+6OKlghE2s/gZCnmPz8vrvrVKYWs5NlW7CrwfH70XBWjXpG3QCElX1dbuywifZ0g2xXT9mFLesTvYuySPvpVObItNxKIqzKbBntoeSu6LbI0Pjh/YBnv5KDGsDWZgYbCRgrKCiCpKYJ2HzUcYGuFL2rI5C9SeywSeaeyDDISp9ltFWY7h5ZmYyJskM6cEqKjf6Zrg0T4PlFeOc74KoRMuXxsVagoVW+dIqFINiGx58RhPMLqrzonhaIsl/PwW2oZ5iyx7nrSJW1P7os8l7UNNl8Qrp7gEYzkKuTzpo5KZ7vl7vzm7vltExSgqOFoqXL/dLbgOdGOpymf19m8kh0VMHOWcciQZdCqPchkO87X6cyFfd5jaw/iuC1z80SDWfVaE85BSoglbq8v3dK4/xKW44H0TtoSdEDg3I8i89oiSbn9m1wru0dtPRIi8Vbu6SPRYbRtv7NV0dCiwSMBRQUQdBsBr48LB34TGYg3WjLMbHBgyPQsHxZgT4+IDuyskxZaQTkqFhAdmiDcmSHk6gDmjqBVVtcG6aJZe5fhEQdkJsK/HGTtA7sOSnNaYNygBmDbCP+YBoef0YQzi9oul6+1O1dspGdOsDxOnyNMsNl9nbXkSprfygRCav3AduO2ZxkB2QBE/rLhE1HW7zfL/vzt/aef1QB8PZuOS+baZT3IT9VTmftanB/npZO15GtLwtJoKZ/b3k6ItVRBTvfH4v1CULOmBrE9+2vs6Mb+Of3trTrzt+/eFCUOsEoTTkp9b2lUzpAf1jtmHnS67o1RmBMkRT8nRY5uGs2y33K4O6qEY7ftX+/OrplW+w8HWs9NkLWAft38Js64NMaKSayk20WawCoOSWvIdWgHedMCoogOGKSVoRNtY4mKcXkpqhmJT2rvRqtzJbfv3AgsOGQ7Fx6eitzWaac0991XM7df7DXdTW+Y63Se1jxJ7CnPAtYtRdo640oUVaq3HZM/sZ55dJCEEzD488IwnlxLn2iY5SL4lvg7ygzkmbv4nTbuXc1AGOL5JLwZovMbFqZI2PaLUIe48la5Cwad9YDT30lM0OOKZTbUpKAscVAv2Tgb9vdN16JOjkifclJQI4ttC1vHu57YE+kR2vBOi9GKssi4H5aItT7EOz3levc1SDfeXer5iqhyV6vKUydYDjfPU/TP86WHGWhrSkV8nMgwjMnWbaZyvRzQa9Tt/13nX+vsUMO3txNxyq/H2mUSMBjLTLSLCVJCiTR6xRuEdLqPO8MbThnUlAEQUuXdK45ZZam8wSd/NvSKTuenGT5f+cK3GWR61CcWw7sPAacUSyTIZ1sl4ra3A28vwdISgTO7i+9g901LAKOS3cr6BOBHfXyReoWNutHt0U6Ak6tsB0baMPjjwna3QtoH+Vyeh4wudz/UWa4zN7uTNAl6XLBrTX7pSf4hiPypVa8sP++Q1pUFGuCJ2uRvRm7vsUxImVTre3YnQ3AL86V86nuGunRBa6jM0BaSMYXA3sb/R+5BYNWoirChVInnNdZmFTm/Xuh3qdQ9ivtR32vX1FyouyQOu2SsYWrE1TevXe+cwzbzk2WPkChvHuFaTKD8Du7HbdbhFxky5dF0FN5KwEMbO2NOskGRCKsTqPuLEfpelm+9/bIAcXeRltoc7TSXSuRgOZkaaE+0gzUtdr6lGaztDofMUl/M2++ObHIKusMBUWA1DTJqAylEQJ6IzQSgQRIIWHpkQ/UuQLrE4Eki5wfHZoH/GMncOEgOTXR1WOb/yvOkKLEnZgApPDIT3XMYYHe31ZUbQJkQ6NYP7osUgC1dMoKHEzD48sE7WlUo08ETu+1vgRawUM1e3syQR9tkbkirhwG/OewfB4d3TI+fM0++Ty6e6TJEfBsLbI3Y+9tdAxvtef7E7a8Fm991+sQatd4DchxXLFQwSJk+vHrRkmBGKnGoq9EVQC2OrGv0TFHzIFTMvLKW26VUO9TsPuVXAUTy+Q7/W2vZbMo3dZuDM1zDD0MlfIsucDV6zscU8ofafbPn6TZLK2wOSlywGQfvbDxqHynPVliArWIdR4A9PPlWiIKPTNkvgzDAPeWI7NFTkfubwTOKJIZXJWpkmilu1bazONtsl9p75KWGqDXutso03eP6OfdNweITVZZZygoAkBpiPLTgBNt0jdhX6N8sZUcE/oEoCRDVlZ3I9F0gzx2TKEMp0zVy3k+k1l2WMpLl5LkmEjKPqnTERMw53SZP8H+N7KN0ix/sg1ISJDzsPYjnsQEW6cWrPr2ZoKOlCNdKGZvbybooy3AQZMME+2y2JbfVlD8PlKSPFuL7Bu/JrPncnT1AIebpQWpPEs6ZukgfSqG9XOdLrKnoxs4ZAKykiM38oh1VEU0URyknRPOAcC+k/I9djel6M99CPU+uvu+Eh2UnyqtVOcPkHVtzwk5eClMlwOQc8uBf30fPvN4s1multne7ZhLxF9/kr0ngff3OS49oEQvNJndW1mtvx2ARczc4ComAPk5ab7Ml+F8PuWednTL+1eWCfzXCNnGpiS6j2aLBEqbebwN2GBXRsVSah3cCM++OSt2AhWZkXfU9QcKigBQOqfcFGmWmjZAbldERYJOhgD9v+FSUCh0WWwWDUXl9/TYsqK5Y0q5NHXbR5EA8oX84VDZIdl7C2cYZAe19oBUus3tUlygWe4flAM09cZCTx8YuQoWC0c6b/hqmBQR4OzvoaCDbEw9WYvsfyPL6Rp7hGwMLL3Wjsze/faRLifbe9Ps+hiZjiqUDr2A68gjXKHB8bA4kT80d8r30VlMAHJq8PYJwJZaR4uUv/ch1Pvo7vtKdJAy13/KDAzJkSPpLotMlKf4AllE+BwzQ/EnaTZLS5zzOkZKxNcVw1yTvtkTiEVMV+8qJhSU1U8znNKB2z//ZrNsr+3b42BXgg6UZrN05D63HBhd2GslbZPTr4qYSOkdGHp6FvsaPSePi0SIrzcoKAJA6Tg6uoG0XqfMiWXAzCHSTyHDCOQYZeetrEaodAj2jVeKXoqOknQ5SnamME2aCb897roWSEOb3H7hQNeRe7MZuHQo0PatHAkfaQYKUmXDc/FgOec6plCW1a/rDbKjiqQjXaD4apjsRYBzVlN97/0y+BlpMThHmp2/P+EYgmoRUjQ0ttsc7xQHMOWF9zUytQ81tR95KDlLwmHqVJsYjBQZBs+dmTL1OGuoHK0Gcx9CvY/O32/vAnafsNWb9i7HSKG8VMfOMFz+LqH4exw2eV7HqKZJTsdWZLlOIwKBW8R6TvnY3wSUDnZ8v+yff3mWayh3NHyG7KcwGjvkNFa/VNmnfHPMJiYqs13bbPtBaqfFvThWiKb/EwVFACgdR02TXH78w/0ydFRhSoWcc8wwyhciN0XmZ3d+2LnJssMfVSjFR2ePHBF19tg6gxPtUow4d3DperndU47/8SVy1D2+NwNkV4/8/f2NMgKkOAO4c4Lva/UVS68GByB/8GWCHpzjuN8+iZaS/lv5vy8zdkG6TAn+zFdyNc1uIc93Rj4wdwzwbb1MsT4gW44qFJo7/RuZ2nOsVT7TTw6E19SpJjEYKUozZWfmzkJYnmVLgxytqBZP75Ly/V0NwKp9tuPtrWU9QlrRFEfNsDpmhuAP0tzpGDbuTGuXTE39rz2hW8QsPsSHJcP1/VLuoX3SPXvsry0SbZ2zb1e6XlowG9tlX3DhQJuTaGmmowXCeZCanSyFmeIf50w0/Z8oKALAvnPa1SBH/lMHSItFTrKMolDW4MgwAhdWStVpb/YrSpfTIs9tBK4eJT2MB+UAt4wHsg1ASW9l/eqIPN5dlkjAe47/HwwGvjoqOy0Bqb5X7ZXioqFNRhMMzvX8UniLpX/nOymaPDUEaouX9mWCLkj3z0Ttrxl7RIEUbLt7rRQJOhn98fOPZThvZTZw65myM1OsFMoL72tk6ky9lzDCaJs6tYS7dRYAW+dyss0mEutbZMPeZJY+SoNywrvOjj/CvdMiLVzKu9xzUnbUJrMc0e47aRNH4XTMDMUfJMPgeRoxRQ+clidTU9+UHprD9WETkJEJJM/wvPppaw6QBsf3q7FD/j3V4fp+2V9bpLKSOk8n2d+rupZeP712x4RmhWnufX9K0m3WTPtlEZyvJRpQUARAhlGGOym52Y29TpKd3XLtDeeGRokSUERHkk6GDy7fITubLovscKpPAcu2Ag9PsctrEMLooCBdKto/bXZ9kSuz5by9t87G29ypMUl6ffuKeFATvkzQ5Vmyg1E6jiyjtFzYP09/zdg1TfJ5Npllh99pkdNaiQkAep/1v/fI+dLqU95feH2iZ2dQwPdUTLhNnVqxSvmD8zoLisPzyTZg9unyunbWe16YbkSB53P7SyDCXRmVKhar9m75Ho8tlnPtgKyj4XTMDMUfRBEjgKuVdVCObY2cYC1iSkd/vK03b8UTQPHdQOIa2zGWGUDD00Ca3fntf085h7OYUK7N3yRl/r4X9sc1dbg6/tpPuRakARNKHM81Z5jsJ+zb9PIsOUUCnawb9o6usfB/oqAIgJomGTvtHLt+zUj3ajXd4OiAd6xFNmAK9pXp+xOyQ1M6sXB43bubLlF+01tn422fMUmGkLlzAlLzqNhbw+XvKMRX49dslunY1x6UocBKRzQoR1qN3tsj721ti1zV1PmFdy5HZbY0DSdZXE2ZhWm2BtvjNRts5QpVCERj/YhoY7/OgvO9cc4povD9Cbn94SmhWyoCEe72nc13x+UU2qHecl8+zCaIwu2YGag/iKfMl6F0cs71Ny9FCq5jrfIdeeNbYEwBMPi3wOjfAvoWoDsD2J0IlBcARR5+y9e1uXs+9pF3Xx6W/iuesnvavxfO78/p/WRUWWW2+2mKVDc9c3mW9O2pyHaM+tvZO11TVSotPyl65qFQPfZq1X4aor1bjiJuSnd9eIooUARIe3dvjggdMDBb5jywxz7sMNDRgbuUzZ6mSwDvc4Te0j13eMjiZz2XxhIghTPl9BGTjMpp7JDPWEHxlzi7P7DzuPStKUmXob/2SWmcy1HTJEecn9c4jmaczaDeRGc4hEA0FlGKFZ5Eoq+cIvbiP1gCFe7K+9zdIzvsL4+4fi9RJzup+tbwWZL8tSL4ynwZzDLh7upvSpJMCHisVd6n/Y3AoSbpQL09DUhOAzL1srMt8tMB3R3Oz0dZZ+XD/bJcMwfLzryhzVEYuLNgOF+DkkvIfprC3gq1+4T0m3F+V5OTpKB0R/UpmQ05lgM6Cgo/OWyS5rXKbNe8EDVNslIbEl1f4ukD5YhmzwnZOHRa5MpyPxohQ08vqJTfa2iVc7T2BGJmd85oV5ohzYrfn3Cdf/c1R+gt3XNOsuMKms5E0wEoHCPvcKacPtYq76dOJ6Nr9Am21QP3Ncq60C3kvXUuq7tyWIQtLfjIApma2/k6fS3/Hg4hEO2VJ9WAt5wi/uz3B2/vii/h3unUUSbqpLNv/ww5pbbhsBSuSuK0SFuS3HWa9pkv3WXG9FUuT0L2YO+0YlWpLZ1/V48tM+2AbJsQO8PL4lq+xLbz8ynPsokJQDpRKv939l+wfy/cvT/KGkIf7peDzXQ4TmkpTqLO76ra88VQUPhJS6ejOlUoz5IKfHu9zfQEyId76RCZF2JskfSxyDBIBWlMAl7d0dv59B4/ptCWTCWQjrLZLMVEbqpj2XQ6ec6JZdJrWBEV/swRekv3fFYJcLQ59hU6XCb4cKacVhp5IaQ1Kj8VaO2Wn3U6KUDTDe7vk6ffsQjZ0JxRJBcrc8ab6FQWg3NHIEIglmm5Y+W34ZxTJND9/uCtc/Al3AvSbN9VRs5HTMC7u+VUSHayzLBYmS2Pj7QlyZvoPGySU72BClv7cypTDfpE6dje1S0dy5vNjoOyb445CjFnUaDUp8YOeb9S9fLcFmFLbvfi18C1I+XUiv3zMSY5rizdYzdQa+9yTdSlvBfu3g9lsKBMU3RaZNSf/bSV/X1S3lW154uhoPCTDIOrmACkd3WTGbjxDMftx1rlHGhRus2PwpAATB8E/O9X0nJgSJSVOStZdjSr9slKG4iSP2yS33FXtv2N8oX54VBZRucFczw1Ar7SPce6QofTBK/kJPDkaxKIxaUgzRYm19wpTeLK6oFJCUCawfN9CsUJ15NJOlxCIFZpuWPpt2GfU8SZoXlyf6h4e5d8CfeBOTJXzTvfAWVZMny4Mkf656Qb5JRbe5dt5BxpS5K3utTSJTtwd3gql9Lx17fKd+rsEmD1fhlub0gEfjAEeOlrGWqvCM4B2bJ9PXBKvsulmY7C3Tnvw54TtsieTUel31N7l9w+OBcwddjW+znWarOGKM7tKXaCr0fIaRz7NkR5Lzy9H8pg4bxyWFei9oT9/VVzvhgKCj8xW9wnaunqAWqbXU2QgDTNDch2nCY52S5HqhNKZGedkmRb3joQJa+8cAeaZAPT2CFHwcpoWFkK91irfDn2nJDzmUoGzwyDLI+izp2xCMDUGfio2JlIjDDDaYJPTpKOj3vsOg6lwRiUE5jFZWBv9sIvDsuG6VRHb1rfXs/2qv4ye6m76/c0WlXmoTstMpQ4oARjYRICsTCzxtpvQ8kp4inKIxD/CW/vgLd3yVlsdPWuPTGxzLb67czBcmG7jUelg2l7t/SxyDDKKTf7kXMkLUne6lKXRb5nnpYScJ5aVTr+nBQpDs4sllk3DzfLKcOzi22L+ekg27d9jfI+7zsprcFmi1zozZOPkpLYqqYJWL3Pln9EoaPbtt7PNSNlCGd9KzAkzzbgMHfL7ym/nZsiRSDgGL7rz/tzxCQdNZ2n0p1Dy633O8jomEhDQeEnyjKzzjHAyUmy8z7hRmwYEuX+Tw7YrAfTB0rTXE6yfOENSXL0Cviv5J2VdnmmfLn6Z8pOLN1gGxlnJcuw1mH5Mq9+Q5ttri8lyTVzoz3BjIrtidQIM1wj72azDLE7t1y+yMozau+SjfKsoYF1WhlG4PrR8rnva5SNVqJONhgzB3svx2GTnNZo6H2mSlnGF8vMqPYLh/l7D8MlBGJhlVKD38aIAhnN4S2c2Bf+vAOe3iV7sXGsVXZopzrktIZFSF+nPY1SSKQkybZGB1l3m82yXUrQ2TrPSPo3eatrFVky/fykMjnIOmKS78j+k8DJDmmNUbDv+FP18h70SwP+uUcOllL00k9k3QF535Rma3hvu7jhiOyYPz4gp3rvOUeGCO9vlNMZigXBkGgbgO1rlD5K9ihi4GiLFBPD8uU1bqmzXWNNk21dlS6LrQ11F7576RDXRdZKM2U9aOyQ17fuoK1vsU+41S819r4R/qIJQfHcc8/hd7/7HWprazFixAg89dRTOO+886JaBmWZWedQTB2kqczg5k4aE2UDoHQO+gS5quSKnbJi5adKMWGfXtVbUprmTvcZ1lL0tqXTC9NlJ6aY2fUJMrTpn9/byqGMWExm4D81wIxB8qWwV8fm7tAqcSRHmOEaeR82yQbjWKtjvhDlHnhba8AT5VnAT8a7dgLv9HYCzp2JuyXuM43ArNNkorN397iO4Py9h+EUAtE2s6plOfWC9OCjOcLxDiiOeB/scz1Pu0Vaw67odcA93mob9HT3SOupEu0Vaf8mb3Vt1lC5auZLW+WUhUJlNnDBQDngUhLt2QtJxXHxeJsUDl09QGqvCEgzSGuMIVG+s/YDvZbednK3Wba1V42QvhX2Vkhjkuyoj7fZFndUcE7FrdQ152u0CODLo8DE/tL/4ZS5d5CYKJNTKcI3zQC8v1dOfyshn3kp0reusV2WrSBNtsMfV8uyK2uezBwEnFMWufcs3KheUKxYsQILFy7Ec889h0mTJuGFF17AzJkz8e2336K8vDxq5bBX4PaON10WYEiuay54QJrAOiy2efUxhTL9clE6UGOSFTIJtrnOCSXuz6OQYXCfYS0xQZri9pwASnTSLJiUICvhgGxZwe39K5SXR58I9HTKTm/FTtt+xawbSiWO5AgzXCNvpaFQ5jKd8eYh7g1vnYB9ZwK4X+K+vRv44hBw8SBHp1jn8/hzD8MpBKJpZo2H5dTD9Q54Ok9Ht21qrTxLdkwXDgJwQNbnnt4R/aCc6Pg3eaprALDsG9dwx0Mm6btwXrntXtgLRcVxcVyxdFzs6JZWl6zk3qlbIcWFoTfkUln2294pU8nnUZHt+NvmbqBRyGUQ7CNq3KXitq9rztfY0SWnTP9vl7SC2B934UD5bJzbgUSdHJz+/gtpuVHCysuzgCtOlyKlvUuW6bR+2srzkhDrAvjiiSeewE033YSbb74Zw4YNw1NPPYWysjI8//zzUS2Hok6dkwmVZsrO11kIFKbJBbnqW6RVY0iedJr6rEZ6JQ/KdvQSzk8FLhniWVAoHaW7kVl9C3D5aTL7YooeyEuWL96gHFmpa50WIFNeni6LnJfsEbJ8A7Ll3zS9dERqDiE0LpIjTE/PItCRdyQ7LX86E1/HeNqn4LdTZa8QmNDf5imuduwzLTqjhvA4fwjb1JyH4xRr5ne9iwUWZwAf7pPh4jeMkR3fLydLi1m0OiV3de2wSfoWKGIgwyj/ZifL7cYkOyuA0ztnEdKKkGWU07pdFuCoCajMsh0vYMv7UpntmN8n0yitwYq/gz3dFlmGCyplKP8NY6Sl0n4K2F1ds7/GgjSZWMteTAA2C4M+0fU9VsJPvz/hmHG4pklO1YwukOfNSXZctVoLqNpC0dnZic2bN+P+++932D5jxgysX7/e7XfMZjPMZltPaDKZwlYeb6O98izX7Ud6rRBKQhqdTlb8D/dLa8WgXPkyKCb2HiHT/nozUbvr5CxCJkKZUmGbC7TPUz8kz3Zsit4WjqYs4Zuit4WsKoRqRYj0CDMcI+9IOhuGozNx5+hrjxZG6cGihmiiUAnXO+DpOKWT1OlsIYiKw6Pz2kKxpLlTtoEJOvdJ8zq6bdfo7p2saZLTAYZEmbJascSkHe11PO2WU8+V2cCUAbZU5Epopz7RMe+DvbW2MN2ztdCfuubJWR+Q290tjGYffqpYVeyvdeoA22etveOqFhTHjx+HxWJBYWGhw/bCwkLU1dW5/c6SJUvw8MMPR6xMnsy+7rb3d3o5lBFFV4/MmKiIDYXzyn13lJ46QYuQi0+NKpDH2uepVxoeJaObvYXC3dK9CqFYEaIRGRCqCT6SnVY4OhP7XAPOaGWUHgpqDo/zh3C9A57OU9MkQ8KVfDHKtF1hmnQCVoOYAHr9z/SeVx7NSbbdC3fvpEXINVYePFf6fdW3SmFy6WDZoZ9oB/aelBEea/Y5LvudmyJ/2z7vg72v1NklNstFMHXNk7O+8vvu2taObsfjnO+Lsl+L77iqBYWCTuco44QQLtsUHnjgAdxzzz3WzyaTCWVlZREtnyecXw5PHTvgWHm8dZT+doL2jXFLp/Skds45X5ElrSTOS/dafysEdayVEWakOi1/OxNvxyi5BtR+DyOJWsPj/CFc74Cn8/RLBcaXyJG3mkWXkg/CbHHteIfmybbJvrzBvJPlmdIRsn+mYxSFfT4PZ1+pwjR5vEIwdc2Ts74SWprvZlCgDCxT9HJ62VmQJCdp9x3XCSHcBAyqg87OTqSmpuIf//gHLr/8cuv2u+66C1u3bsW6det8nsNkMiErKwtNTU3IzIyN3LNfMCcpwb/FZPw9ZyCNiLtFdlbslJEOzhSmhSfWP55WqAwUf0IG/TmmL9/DeCBcz0/L9UCp584LK147Sg5qwoGn+xPJBGnNZuClLZ4HBTeNlWGhzov+bamTfYGy/oeSXC8/VWbp9JSvJhYE0oeqWlAAwNlnn43x48fjueees24bPnw4Zs+ejSVLlvj8vhoEhTNqahjicRVJNeHPs1ZTfSAkUsSynkfytwMdFGQapJhQlqb39B21EFeCYsWKFbj++uvxpz/9CVVVVfjzn/+MF198ETt37kRFRYXP76tRUKgNdmiEEBI84bAYq7XdDaQPVb0PxVVXXYUTJ07g17/+NWprazFy5Ei89957fokJ4h9anqcmhJBYE5T/RRy2u6q3UIQKLRSEEEJIcATSh6o+sRUhhBBC1A8FBSGEEEJChoKCEEIIISGjeqfMUFFcRMKZgpsQQgjpCyh9pz/ulnEvKJqbmwEgZtkyCSGEEK3T3NyMrCzvSTLiPsqjp6cHR48eRUZGhsd03Z5Q0nYfOnQo7iNEeK3xCa81PuG1xh9qvU4hBJqbm1FSUoKEBO9eEnFvoUhISEBpaWlI58jMzFTVA44kvNb4hNcan/Ba4w81Xqcvy4QCnTIJIYQQEjIUFIQQQggJGQoKLxiNRvzqV7+C0ajCBOthhtcan/Ba4xNea/wRD9cZ906ZhBBCCIk8tFAQQgghJGQoKAghhBASMhQUhBBCCAkZCgpCCCGEhAwFhReee+45VFZWIjk5GePHj8dnn30W6yKFxKJFi6DT6Rz+FRUVWfcLIbBo0SKUlJQgJSUFU6dOxc6dO2NYYv/59NNPMWvWLJSUlECn0+Htt9922O/PtZnNZixYsAD9+vVDWloafvjDH+Lw4cNRvAr/8HWt8+bNc3nO55xzjsMxWrjWJUuW4KyzzkJGRgYKCgpw2WWXYffu3Q7HxMtz9eda4+W5Pv/88xg9erQ1gVNVVRXef/996/54eaaA72uNl2eqQEHhgRUrVmDhwoX4+c9/ji1btuC8887DzJkzUVNTE+uihcSIESNQW1tr/bd9+3brvscffxxPPPEEnn32WWzcuBFFRUWYPn26dT0UNdPa2ooxY8bg2Wefdbvfn2tbuHAhVq5cieXLl+Pzzz9HS0sLLr30Ulgslmhdhl/4ulYAuPjiix2e83vvveewXwvXum7dOtx+++3YsGED1qxZg+7ubsyYMQOtra3WY+LlufpzrUB8PNfS0lI8+uij2LRpEzZt2oTzzz8fs2fPtoqGeHmmgO9rBeLjmVoRxC0TJkwQP/nJTxy2nX766eL++++PUYlC51e/+pUYM2aM2309PT2iqKhIPProo9ZtHR0dIisrS/zpT3+KUgnDAwCxcuVK62d/ru3UqVNCr9eL5cuXW485cuSISEhIEKtWrYpa2QPF+VqFEGLu3Lli9uzZHr+j1Wutr68XAMS6deuEEPH9XJ2vVYj4fa5CCJGTkyP+8pe/xPUzVVCuVYj4e6a0ULihs7MTmzdvxowZMxy2z5gxA+vXr49RqcLDnj17UFJSgsrKSvzoRz/C/v37AQDV1dWoq6tzuGaj0YgpU6Zo/pr9ubbNmzejq6vL4ZiSkhKMHDlSk9e/du1aFBQUYOjQobjllltQX19v3afVa21qagIA5ObmAojv5+p8rQrx9lwtFguWL1+O1tZWVFVVxfUzdb5WhXh6pnG/OFgwHD9+HBaLBYWFhQ7bCwsLUVdXF6NShc7ZZ5+NV155BUOHDsWxY8fwyCOPYOLEidi5c6f1utxd88GDB2NR3LDhz7XV1dXBYDAgJyfH5RitPfOZM2fiyiuvREVFBaqrq/HQQw/h/PPPx+bNm2E0GjV5rUII3HPPPTj33HMxcuRIAPH7XN1dKxBfz3X79u2oqqpCR0cH0tPTsXLlSgwfPtzaScbTM/V0rUB8PVOAgsIrzsudCyECXgJdTcycOdP6/1GjRqGqqgqDBg3Cyy+/bHUEirdrtieYa9Pi9V911VXW/48cORJnnnkmKioq8O9//xtz5szx+D01X+sdd9yBbdu24fPPP3fZF2/P1dO1xtNzPe2007B161acOnUKb775JubOnYt169ZZ98fTM/V0rcOHD4+rZwrQKdMt/fr1Q2JioosCrK+vd1HOWiYtLQ2jRo3Cnj17rNEe8XjN/lxbUVEROjs70djY6PEYrVJcXIyKigrs2bMHgPaudcGCBXj33XfxySefoLS01Lo9Hp+rp2t1h5afq8FgwODBg3HmmWdiyZIlGDNmDJ5++um4fKaertUdWn6mAAWFWwwGA8aPH481a9Y4bF+zZg0mTpwYo1KFH7PZjF27dqG4uBiVlZUoKipyuObOzk6sW7dO89fsz7WNHz8eer3e4Zja2lrs2LFD89d/4sQJHDp0CMXFxQC0c61CCNxxxx1466238PHHH6OystJhfzw9V1/X6g6tPld3CCFgNpvj6pl6QrlWd2j+mUbdDVQjLF++XOj1evHSSy+Jb7/9VixcuFCkpaWJAwcOxLpoQXPvvfeKtWvXiv3794sNGzaISy+9VGRkZFiv6dFHHxVZWVnirbfeEtu3bxdXX321KC4uFiaTKcYl901zc7PYsmWL2LJliwAgnnjiCbFlyxZx8OBBIYR/1/aTn/xElJaWig8//FB8/fXX4vzzzxdjxowR3d3dsbost3i71ubmZnHvvfeK9evXi+rqavHJJ5+Iqqoq0b9/f81d66233iqysrLE2rVrRW1trfVfW1ub9Zh4ea6+rjWenusDDzwgPv30U1FdXS22bdsmHnzwQZGQkCBWr14thIifZyqE92uNp2eqQEHhhT/+8Y+ioqJCGAwGMW7cOIcQLi1y1VVXieLiYqHX60VJSYmYM2eO2Llzp3V/T0+P+NWvfiWKioqE0WgUkydPFtu3b49hif3nk08+EQBc/s2dO1cI4d+1tbe3izvuuEPk5uaKlJQUcemll4qampoYXI13vF1rW1ubmDFjhsjPzxd6vV6Ul5eLuXPnulyHFq7V3TUCEEuXLrUeEy/P1de1xtNzvfHGG63tan5+vrjgggusYkKI+HmmQni/1nh6pgpcvpwQQgghIUMfCkIIIYSEDAUFIYQQQkKGgoIQQgghIUNBQQghhJCQoaAghBBCSMhQUBBCCCEkZCgoCCGEEBIyFBSEkLDyn//8B6NGjYJer8dll13m9/eWLVuG7OzsiJWLEBJZKCgI0RDz5s2DTqeDTqeDXq9HYWEhpk+fjr/+9a/o6emJdfEAAPfccw/OOOMMVFdXY9myZW6PGTBgAJ566qmolosQElkoKAjRGBdffDFqa2tx4MABvP/++5g2bRruuusuXHrppeju7o518bBv3z6cf/75KC0t7bMWB4vFohqBR0i0oKAgRGMYjUYUFRWhf//+GDduHB588EG88847eP/99x0sAk888QRGjRqFtLQ0lJWV4bbbbkNLSwsAoLW1FZmZmfi///s/h3P/85//RFpaGpqbm93+ttlsxp133omCggIkJyfj3HPPxcaNGwEABw4cgE6nw4kTJ3DjjTdCp9O5tVBMnToVBw8exN133221ttjzwQcfYNiwYUhPT7eKJ3uWLl2KYcOGITk5Gaeffjqee+45j/fqlVdeQV5ensvqjldccQVuuOEGh+seP348kpOTMXDgQDz88MMO4szbvQRs0zX/+te/MHz4cBiNRhw8eNBjuQiJS2K9mAghxH/mzp0rZs+e7XbfmDFjxMyZM62fn3zySfHxxx+L/fv3i48++kicdtpp4tZbb7Xuv+WWW8QPfvADh3Ncfvnl4oYbbvD4+3feeacoKSkR7733nti5c6eYO3euyMnJESdOnBDd3d2itrZWZGZmiqeeesplZVCFEydOiNLSUvHrX//auqqmEEIsXbpU6PV6ceGFF4qNGzeKzZs3i2HDholrrrnG+t0///nPori4WLz55pti//794s033xS5ubli2bJlbsvb1tYmsrKyxBtvvGHd1tDQIAwGg/j444+FEEKsWrVKZGZmimXLlol9+/aJ1atXiwEDBohFixb5fS+Vsk+cOFH85z//Ed99951oaWnxeB8JiUcoKAjREN4ExVVXXSWGDRvm8btvvPGGyMvLs37+8ssvRWJiojhy5IgQQna0er1erF271u33W1pahF6vF6+99pp1W2dnpygpKRGPP/64dVtWVpbDiqDuqKioEE8++aTDtqVLlwoAYu/evdZtf/zjH0VhYaH1c1lZmXj99dcdvveb3/xGVFVVefytW2+91UFoPfXUU2LgwIGip6dHCCHEeeedJxYvXuzwnb/97W+iuLjY4zmd76VS9q1bt3r8DiHxTlKsLSSEkPAghHCYPvjkk0+wePFifPvttzCZTOju7kZHRwdaW1uRlpaGCRMmYMSIEXjllVdw//33429/+xvKy8sxefJkt+fft28furq6MGnSJOs2vV6PCRMmYNeuXWG5htTUVAwaNMj6ubi4GPX19QCAhoYGHDp0CDfddBNuueUW6zHd3d3IysryeM5bbrkFZ511Fo4cOYL+/ftj6dKlVudWANi8eTM2btyI3/72t9bvWCwWdHR0oK2tDampqT7vJQAYDAaMHj06LPeBEC1CHwpC4oRdu3ahsrISAHDw4EH84Ac/wMiRI/Hmm29i8+bN+OMf/wgA6Orqsn7n5ptvxtKlSwFI34T//u//dvFpUBBCAIDLfmchEwp6vd7hs06ns/6u4uT44osvYuvWrdZ/O3bswIYNGzyec+zYsRgzZgxeeeUVfP3119i+fTvmzZtn3d/T04OHH37Y4Zzbt2/Hnj17kJyc7Pe9TElJCdt9IESL0EJBSBzw8ccfY/v27bj77rsBAJs2bUJ3dzf+8Ic/ICFBjhveeOMNl+9dd911uO+++/C///u/2LlzJ+bOnevxNwYPHgyDwYDPP/8c11xzDQDZoW7atAkLFy4MqLwGgwEWiyWg7xQWFqJ///7Yv38/rr322oC+e/PNN+PJJ5/EkSNHcOGFF6KsrMy6b9y4cdi9ezcGDx7s9rv+3ktC+joUFIRoDLPZjLq6OlgsFhw7dgyrVq3CkiVLcOmll1ojFwYNGoTu7m4888wzmDVrFv7zn//gT3/6k8u5cnJyMGfOHPzP//wPZsyYgdLSUo+/m5aWhltvvRX/8z//g9zcXJSXl+Pxxx9HW1sbbrrppoCuYcCAAfj000/xox/9CEajEf369fPre4sWLcKdd96JzMxMzJw5E2azGZs2bUJjYyPuuecej9+79tpr8dOf/hQvvvgiXnnlFYd9v/zlL3HppZeirKwMV155JRISErBt2zZs374djzzyiN/3kpA+T2xdOAghgTB37lwBQAAQSUlJIj8/X1x44YXir3/9q7BYLA7HPvHEE6K4uFikpKSIiy66SLzyyisCgGhsbHQ47qOPPhIAHCIhPNHe3i4WLFgg+vXrJ4xGo5g0aZL46quvHI7xxynziy++EKNHjxZGo1EozdDSpUtFVlaWw3ErV64Uzs3Ua6+9Js444wxhMBhETk6OmDx5snjrrbd8lv36668Xubm5oqOjw2XfqlWrxMSJE0VKSorIzMwUEyZMEH/+85+t+33dS3dlJ6SvoROid4KSENInee2113DXXXfh6NGjMBgMsS5OxJg+fTqGDRuG//3f/411UQiJSzjlQUgfpa2tDdXV1ViyZAnmz58ft2Li5MmTWL16NT7++GM8++yzsS4OIXELozwI6aM8/vjjOOOMM1BYWIgHHngg1sWJGOPGjcP8+fPx2GOP4bTTTot1cQiJWzjlQQghhJCQoYWCEEIIISFDQUEIIYSQkKGgIIQQQkjIUFAQQgghJGQoKAghhBASMhQUhBBCCAkZCgpCCCGEhAwFBSGEEEJChoKCEEIIISHz/wGS2qNTEX7megAAAABJRU5ErkJggg==", "text/plain": "
"}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "testing_training_doy_2"}}, "output_type": "display_data"}, "data-summary_2": {"data": {"text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The observed values from the training and testing data. Remark that the testing data is only 22% of all the data. This is because we are only in the first year of a six year sampling period
 before may 2021after may 2021
weight all samples0.780.22
Number of samples26373
Median3.472.28
Average6.133.25
25th percentile1.520.78
75th percentile6.694.31
\n", "text/plain": ""}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "data-summary_2"}}, "output_type": "display_data"}, "estimated-found-predicted-2023": {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNfklEQVR4nO3deVyU1eLH8c+ICqgwIAhqoGJaYu56cyu1VLLbLdvT69Usl1uZW4vWL8vqlpaVW7uaS3VLs9Jr3Raysmu5r5W7hEqpmIozKoIK5/fHwOgIyM7MA9/3ffHyPud55plzmoH5znnOOY/NGGMQERERsahK3q6AiIiISHEozIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilVfZ2BUpbZmYm+/fvJygoCJvN5u3qiIiISAEYYzh+/Dh169alUqWL972U+zCzf/9+oqOjvV0NERERKYKkpCSioqIueky5DzNBQUGA6z9GcHCwl2sjIiIiBeF0OomOjnZ/jl9MuQ8z2ZeWgoODFWZEREQspiBDRDQAWERERCxNYUZEREQsTWFGRERELK3cj5kpCGMMZ8+eJSMjw9tVkRLi5+dH5cqVNR1fRKQCqPBh5vTp0xw4cIDU1FRvV0VKWLVq1ahTpw5Vq1b1dlVERKQUVegwk5mZSWJiIn5+ftStW5eqVavqm3w5YIzh9OnT/PnnnyQmJtK4ceN8F1wSERHrqtBh5vTp02RmZhIdHU21atW8XR0pQYGBgVSpUoW9e/dy+vRpAgICvF0lEREpJfq6CvrWXk7pdRURqRj0115EREQKxZEGznTPMme6q9wbFGZERESkwA6nQu8F8Oqac4HGmQ7TV7vKD3thPo3CjAAwcOBAbr75Zm9Xo1CsWGcREStzpMHtCyHxGMzY4Ao0ZzJcQWbmRlf57QvLvoemQg8Aroj27NlDTEwMGzdupFWrVu7yadOmYYwp9ecfOHAgx44dY/HixaX+XCIiUrJsNugR4wou4Ao0X+yC34+fO6ZnQ9dxZUlhRgCw2+3eroKIiPi4YH8Y0d71/7MDzflBZmgbGH6l67iypMtMJSEF2A6sBnZkbZcyYwyTJk2iYcOGBAYG0rJlSz7++GNXdVJS6NevH7Vq1SIwMJDGjRszZ84cAGJiYgBo3bo1NpuNbt26ATkv2XTr1o3hw4czatQoQkNDiYyMZMaMGZw8eZJ77rmHoKAgLr30Ur788kv3YzIyMhg0aBAxMTEEBgZy+eWXM23aNPf+p59+mnnz5vGf//wHm82GzWZj2bJlAPzxxx/cddddhIaGEhYWRu/evdmzZ4/HuR966CFCQkIICwtjzJgxZdKTJCIinoL9YWxniAryLI8KgjGdyj7IgMJM8SUBfYBYoAPQJGs7qXSfdty4ccyZM4c333yTLVu2MHr0aP7xj3/www8/8OSTT7J161a+/PJLtm3bxptvvkl4eDgAa9asAWDp0qUcOHCATz/9NM/nmDdvHuHh4axZs4bhw4dz//33c8cdd9CpUyc2bNjAddddR//+/d2rJ2dmZhIVFcVHH33E1q1beeqpp/i///s/PvroIwAeeeQR7rzzTnr16sWBAwc4cOAAnTp1IjU1lWuuuYYaNWrwv//9jx9//JEaNWrQq1cvTp8+DcArr7zC7Nmzeeedd/jxxx85evQoixYtKs3/xCIikgtnOrz4k2ePDLi2J63IOcupLNhMOf9663Q6sdvtOBwOgoODPfalpaWRmJhITExM0RZVS8EVXOJz2RcHzAdCC3/a/Jw8eZLw8HC+++47Onbs6C4fPHgwqampnDhxgvDwcGbPnp3jsXmNmblwLEu3bt3IyMhg+fLlgKtnxG63c+utt/Luu+8CcPDgQerUqcPKlSvp0KFDrnUdNmwYycnJ7l6j3MbMzJ49m0mTJrFt2zb3CsynT58mJCSExYsXExcXR926dRk5ciRjx44F4OzZs8TExNC2bds8x98U+/UVEREP2bOWsi8xgatHpjQuNV3s8/tC6pkpjmRyDzJklSeXztNu3bqVtLQ0evbsSY0aNdw/7777LgkJCdx///3Mnz+fVq1aMWbMGFasWFGk52nRooX7//v5+REWFkbz5s3dZZGRkQAcOnTIXfbWW2/Rrl07atWqRY0aNZg5cyb79u276POsX7+e3bt3ExQU5G5LzZo1SUtLIyEhAYfDwYEDBzyCW+XKlWnXrl2R2iUiIkVjDCxNPLc9tA0suxuGtD5X9s1vruPKkgYAF4ejmPuLKDMzE4D//ve/XHLJJR77/P39iY6OZu/evfz3v/9l6dKldO/enWHDhvHyyy8X6nmqVKnisW2z2TzKsntRsuvz0UcfMXr0aF555RU6duxIUFAQL730EqtXr863PW3btuXf//53jn21atUqVJ1FRKT02APg4ztc0697NnT1wFTxOzcoeGmia7+9jDvDFWaKI78JQKU0Qahp06b4+/uzb98+unbtmusxtWrVYuDAgQwcOJCrr76aRx99lJdfftl9B+mMjIwSr9fy5cvp1KkTDzzwgLssISHB45iqVavmeO42bdqwYMECIiIi8uxKrFOnDqtWraJLly6A6zLT+vXradOmTQm3QkRELia8GvznLtf06+xLSdmznIZfWfZBBhRmiicS19iYvMbMRJbO0wYFBfHII48wevRoMjMzueqqq3A6naxYsYIaNWqQkJBA27ZtueKKK0hPT+fzzz8nNjYWgIiICAIDA/nqq6+IiooiICCgxKZlN2rUiHfffZevv/6amJgY3nvvPdauXeueQQXQoEEDvv76a3bs2EFYWBh2u51+/frx0ksv0bt3b5599lmioqLYt28fn376KY8++ihRUVGMHDmSF154gcaNGxMbG8vkyZM5duxYidRbREQKJ7fA4o1ZTNk0ZqY4QoFZuILL+eKyykth8G+2f/3rXzz11FNMnDiR2NhYrrvuOj777DNiYmKoWrUqjz/+OC1atKBLly74+fkxf/58wDXWZPr06bz99tvUrVuX3r17l1id7rvvPm699Vbuuusu2rdvz5EjRzx6aQCGDBnC5Zdf7h5X89NPP1GtWjX+97//Ua9ePW699VZiY2O59957OXXqlLun5uGHH2bAgAEMHDjQfQnrlltuKbG6i4iIdWk2U0nMdknBNdjXgevSUiSlGmSkYDSbSUTEugozm0mXmUpCKAovIiIiXqLLTCIiImJpCjMiIiJiaQozIiIiYmkKMyIiImJpCjMiIiJiaQozIiIiYmkKMyIiImJpCjMWZYxh6NCh1KxZE5vNxqZNm7xWl27dujFq1CivPb+IiFRsWjTPor766ivmzp3LsmXLaNiwIeHh4d6ukoiIiFcozBSTI83zzqEAznQwpnTvHJqQkECdOnXo1KlT6T2JiIiIBegyUzEcToXeC+DVNa4AA65/p692lR9OLZ3nHThwIMOHD2ffvn3YbDYaNGhAeno6I0aMICIigoCAAK666irWrl3rfszcuXMJCQnxOM/ixYux2Wzu7aeffppWrVrx3nvv0aBBA+x2O3369OH48ePuY06ePMmAAQOoUaMGderU4ZVXXimdRoqIiBSQwkwROdLg9oWQeAxmbHAFmjMZriAzc6Or/PaFruNK2rRp03j22WeJioriwIEDrF27ljFjxvDJJ58wb948NmzYQKNGjbjuuus4evRooc6dkJDA4sWL+fzzz/n888/54YcfeOGFF9z7H330Ub7//nsWLVpEfHw8y5YtY/369SXdRBERkQJTmCkimw16xJzbnrEBus1zBZlsPRu6jitpdrudoKAg/Pz8qF27NtWqVePNN9/kpZde4vrrr6dp06bMnDmTwMBA3nnnnUKdOzMzk7lz59KsWTOuvvpq+vfvz7fffgvAiRMneOedd3j55Zfp2bMnzZs3Z968eWRkZJR8I0VERArIq2Hmf//7HzfeeCN169bFZrOxePFij/3GGJ5++mnq1q1LYGAg3bp1Y8uWLd6p7AWC/WFEexjS+lzZ7+euxjC0DQy/0nMsTWlJSEjgzJkzdO7c2V1WpUoVrrzySrZt21aoczVo0ICgoCD3dp06dTh06JD7eU6fPk3Hjh3d+2vWrMnll19ezBaIiIgUnVfDzMmTJ2nZsiWvvfZarvsnTZrE5MmTee2111i7di21a9emZ8+eHmM4vCnYH8Z2hqggz/KoIBjTqWyCDLhCH+Ax/iW7PLusUqVK7uOynTlzJse5qlSp4rFts9nIzMz0eB4RERFf4tUwc/311/Pcc89x66235thnjGHq1Kk88cQT3HrrrTRr1ox58+aRmprKBx984IXa5uRMhxd/8uyRAdf2pBXnBgWXtkaNGlG1alV+/PFHd9mZM2dYt24dsbGxANSqVYvjx49z8uRJ9zGFXZumUaNGVKlShVWrVrnLUlJS2LlzZ/EaICIiUgw+O2YmMTGRgwcPEhcX5y7z9/ena9eurFixIs/Hpaen43Q6PX5KQ/aspfPHyJzfQ5M9KLgsAk316tW5//77efTRR/nqq6/YunUrQ4YMITU1lUGDBgHQvn17qlWrxv/93/+xe/duPvjgA+bOnVuo56lRowaDBg3i0Ucf5dtvv+XXX39l4MCBVKrks28jERGpAHz2U+jgwYMAREZGepRHRka69+Vm4sSJ2O129090dHSp1M8YWJp4bntoG1h2t+cYmm9+cx1XFl544QVuu+02+vfvT5s2bdi9ezdff/01oaGhgGtsy/vvv88XX3xB8+bN+fDDD3n66acL/TwvvfQSXbp04aabbqJHjx5cddVVtG3btoRbIyIiUnA24yMDIWw2G4sWLeLmm28GYMWKFXTu3Jn9+/dTp04d93FDhgwhKSmJr776KtfzpKenk55+rjvE6XQSHR2Nw+EgODjY49i0tDQSExOJiYkhIKDwK9wdTnVNv+7Z8Nxg3+wem6WJ8PEdEF6t0KeVElLc11dERLzH6XRit9tz/fy+kM+uAFy7dm3A1UNzfpg5dOhQjt6a8/n7++PvXzYjb8OrwX/u8lwBOHuW0/ArS3cFYBEREXHx2ctMMTEx1K5dm2+++cZddvr0aX744QefWsLfHpBz1lKwv4KMiIhIWfFqz8yJEyfYvXu3ezsxMZFNmzZRs2ZN6tWrx6hRo5gwYQKNGzemcePGTJgwgWrVqvH3v//di7UWERERX+LVMLNu3TquueYa9/ZDDz0EwN13383cuXMZM2YMp06d4oEHHiAlJYX27dsTHx/vsaibiIiIVGw+MwC4tFxsAJEGiJZven1FRKyrMAOAfXbMjIiIiEhBKMyIiIiIpSnMiIiIiKUpzIiIiIilKcxIvho0aMDUqVPd2zabjcWLF5d5PZ5++mlatWpV5s8rIiK+TWFGCu3AgQNcf/31BTpWAUREREqbz97OQErW6dOnqVq1aomcK/tWEyIiIr5APTMlICUlhe3bt7N69Wp27NhBSkpKqT9nt27dePDBB3nwwQcJCQkhLCyMcePGkb1sUIMGDXjuuecYOHAgdrudIUOGAK4beHbp0oXAwECio6MZMWIEJ0+edJ/30KFD3HjjjQQGBhITE8O///3vHM994WWm33//nT59+lCzZk2qV69Ou3btWL16NXPnzuWZZ55h8+bN2Gw2bDYbc+fOBcDhcDB06FAiIiIIDg7m2muvZfPmzR7P88ILLxAZGUlQUBCDBg0iLS2thP8riohIeaAwU0xJSUn06dOH2NhYOnToQJMmTejTpw9JSUml/tzz5s2jcuXKrF69munTpzNlyhRmzZrl3v/SSy/RrFkz1q9fz5NPPskvv/zCddddx6233srPP//MggUL+PHHH3nwwQfdjxk4cCB79uzhu+++4+OPP+aNN97g0KFDedbhxIkTdO3alf3797NkyRI2b97MmDFjyMzM5K677uLhhx/miiuu4MCBAxw4cIC77roLYww33HADBw8e5IsvvmD9+vW0adOG7t27c/ToUQA++ugjxo8fz/PPP8+6deuoU6cOb7zxRun9xxQREesy5ZzD4TCAcTgcOfadOnXKbN261Zw6dapI5z569KiJi4szQI6fuLg4c/To0eJWP09du3Y1sbGxJjMz0102duxYExsba4wxpn79+ubmm2/2eEz//v3N0KFDPcqWL19uKlWqZE6dOmV27NhhALNq1Sr3/m3bthnATJkyxV0GmEWLFhljjHn77bdNUFCQOXLkSK71HD9+vGnZsqVH2bfffmuCg4NNWlqaR/mll15q3n77bWOMMR07djT33Xefx/727dvnONfFFPf1FRER77nY5/eF1DNTDMnJycTHx+e6Lz4+nuTk5FJ9/g4dOmCz2dzbHTt2ZNeuXWRkZADQrl07j+PXr1/P3LlzqVGjhvvnuuuuIzMzk8TERLZt20blypU9HtekSRNCQkLyrMOmTZto3bo1NWvWLHC9169fz4kTJwgLC/OoS2JiIgkJCQBs27aNjh07ejzuwm0RERHQAOBicTgcxdpf2qpXr+6xnZmZyT//+U9GjBiR49h69eqxY8cOAI+AlJ/AwMBC1yszM5M6deqwbNmyHPsuFpxERERyozBTDHa7vVj7i2vVqlU5ths3boyfn1+ux7dp04YtW7bQqFGjXPfHxsZy9uxZ1q1bx5VXXgnAjh07OHbsWJ51aNGiBbNmzeLo0aO59s5UrVrV3VN0fj0OHjxI5cqVadCgQZ51WbVqFQMGDPBon4iIyIV0makYIiMjiYuLy3VfXFwckZGRpfr8SUlJPPTQQ+zYsYMPP/yQV199lZEjR+Z5/NixY1m5ciXDhg1j06ZN7Nq1iyVLljB8+HAALr/8cnr16sWQIUNYvXo169evZ/DgwRftfenbty+1a9fm5ptv5qeffuK3337jk08+YeXKlYBrVlViYiKbNm3i8OHDpKen06NHDzp27MjNN9/M119/zZ49e1ixYgXjxo1j3bp1AIwcOZLZs2cze/Zsdu7cyfjx49myZUsJ/tcTEZHyQmGmGEJDQ5k1a1aOQBMXF8esWbMIDQ0t1ecfMGAAp06d4sorr2TYsGEMHz6coUOH5nl8ixYt+OGHH9i1axdXX301rVu35sknn6ROnTruY+bMmUN0dDRdu3bl1ltvdU+fzkvVqlWJj48nIiKCv/71rzRv3pwXXnjB3Tt022230atXL6655hpq1arFhx9+iM1m44svvqBLly7ce++9XHbZZfTp04c9e/a4A+Bdd93FU089xdixY2nbti179+7l/vvvL6H/ciIiUp7YjMlamKSccjqd2O12HA4HwcHBHvvS0tJITEwkJiaGgICAIj9HSkoKycnJOBwO7HY7kZGRpR5kunXrRqtWrTxuMyCeSur1FRGRsnexz+8LacxMCQgNDS318CIiIiK502UmERERsTT1zFhUbtOaRUREKiL1zIiIiIilKcyIiIiIpSnMAOV8QleFpddVRKRiqNBhpkqVKgCkpqZ6uSZSGrJf1+zXWUREyqcKPQDYz8+PkJAQDh06BEC1atUKdV8i8U3GGFJTUzl06BAhISF53t5BRETKhwodZgBq164N4A40Un6EhIS4X18RESm/KnyYsdls1KlTh4iICM6cOePt6kgJqVKlinpkREQqiAofZrL5+fnpw09ERMSCKvQAYBEREbE+hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSfDjNnz55l3LhxxMTEEBgYSMOGDXn22WfJzMz0dtVERETER1T2dgUu5sUXX+Stt95i3rx5XHHFFaxbt4577rkHu93OyJEjvV09ERER8QE+HWZWrlxJ7969ueGGGwBo0KABH374IevWrfNyzURERMRX+PRlpquuuopvv/2WnTt3ArB582Z+/PFH/vrXv+b5mPT0dJxOp8ePiIiIlF8+3TMzduxYHA4HTZo0wc/Pj4yMDJ5//nn69u2b52MmTpzIM888U4a1FBEREW/y6Z6ZBQsW8P777/PBBx+wYcMG5s2bx8svv8y8efPyfMzjjz+Ow+Fw/yQlJZVhjUVERKSs2YwxxtuVyEt0dDSPPfYYw4YNc5c999xzvP/++2zfvr1A53A6ndjtdhwOB8HBwaVVVRERESlBhfn89umemdTUVCpV8qyin5+fpmaLiIiIm0+Pmbnxxht5/vnnqVevHldccQUbN25k8uTJ3Hvvvd6umoiIiPgIn77MdPz4cZ588kkWLVrEoUOHqFu3Ln379uWpp56iatWqBTqHLjOJiIhYT2E+v306zJQEhRkRERHrKTdjZkRERETyozAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilubzYeaPP/7gH//4B2FhYVSrVo1WrVqxfv16b1dLREREfERlb1fgYlJSUujcuTPXXHMNX375JRERESQkJBASEuLtqkEKkAw4gBAgAgj1ZoVEREQqJp8OMy+++CLR0dHMmTPHXdagQQPvVShbEjAYiD+vLA6YBUR7pUYiIiIVlk9fZlqyZAnt2rXjjjvuICIigtatWzNz5kzvViqFnEGGrO3BWftFRESkzPh0mPntt9948803ady4MV9//TX33XcfI0aM4N13383zMenp6TidTo+fEpVMziCTLT5rv4iIiJQZn77MlJmZSbt27ZgwYQIArVu3ZsuWLbz55psMGDAg18dMnDiRZ555pvQq5SjmfhERESlRRQ4za9asYdmyZRw6dIjMzEyPfZMnTy52xQDq1KlD06ZNPcpiY2P55JNP8nzM448/zkMPPeTedjqdREeX4EAWezH3i4iISIkqUpiZMGEC48aN4/LLLycyMhKbzebed/7/L67OnTuzY8cOj7KdO3dSv379PB/j7++Pv79/idUhh0hcg31zu9QUl7VfREREykyRwsy0adOYPXs2AwcOLOHqeBo9ejSdOnViwoQJ3HnnnaxZs4YZM2YwY8aMUn3eiwrFNWspr9lMmp4tIiJSpooUZipVqkTnzp1Lui45/OUvf2HRokU8/vjjPPvss8TExDB16lT69etX6s99UdHAfM6tM2PH1SOjICMiIlLmbMYYU9gHTZo0if379zN16tRSqFLJcjqd2O12HA4HwcHB3q6OiIiIFEBhPr+L1DPzyCOPcMMNN3DppZfStGlTqlSp4rH/008/LcppRURERAqtSGFm+PDhfP/991xzzTWEhYWV6KBfERERkcIoUph59913+eSTT7jhhhtKuj4iIiIihVKkFYBr1qzJpZdeWtJ1ERERESm0IoWZp59+mvHjx5OamlrS9REREREplCJdZpo+fToJCQlERkbSoEGDHAOAN2zYUCKVExEREclPkcLMzTffXMLVEBERESmaQq0zs3PnTi677LLSrE+J0zozIiIiJcuRBjYbBJ939yBnOhgD9oCSeY7CfH4XasxM69atiY2NZezYsaxcubJYlRQRERHrOZwKvRfAq2tcAQZc/05f7So/7IXhtIUKM0eOHGHSpEkcOXKEW265hcjISAYNGsSSJUtIS0srrTqKiIiID3Ckwe0LIfEYzNjgCjRnMlxBZuZGV/ntC13HlaUi3c4AwBjDypUrWbJkCUuWLGHv3r306NGD3r1787e//Y2IiIiSrmuR6DKTiIhIycjugZm58VxZVBD8fvzc9tA2MPxKz0tQRXqu0rrMdD6bzUanTp144YUX2Lp1K5s2baJLly7MnTuX6OhoXn/99aKeWkRERHxQsD+MaA9DWp8rK40gU1hF7pm5mCNHjnD06FEaN25c0qcuNPXMiIiIlKwzGdBtnmeQiQqCZXdDFb+SeY5S75mZN28e//3vf93bY8aMISQkhE6dOrF3717CwsJ8IsiIiIhIyXKmw4s/eQYZcG1PWnFuUHBZKlKYmTBhAoGBgQCsXLmS1157jUmTJhEeHs7o0aNLtIIiIiLiG/IaM5Mte1BwWQeaIoWZpKQkGjVqBMDixYu5/fbbGTp0KBMnTmT58uUlWkERERHxDcbA0sRz20PbuC4tnT+G5pvfXMeVpSKFmRo1anDkyBEA4uPj6dGjBwABAQGcOnWq5GonIiIiPsMeAB/fATEh5wb7VvE7Nyg4JsS1v6QWziuoIt3OoGfPngwePJjWrVuzc+dObrjhBgC2bNlCgwYNSrJ+IiIi4kPCq8F/7vJcATh7ltPwK8s+yEARe2Zef/11OnbsyJ9//sknn3xCWFgYAOvXr6dv374lWkERERHxLfaAnNOvg/29E2SglKZm+xJNzRYREbGeUp+aPWfOHBYuXJijfOHChcybN68opxQREREpkiKFmRdeeIHw8PAc5REREUyYMKHYlRIREREpqCKFmb179xITE5OjvH79+uzbt6/YlRIREREpqCKFmYiICH7++ecc5Zs3b3YPBhYREREpC0UKM3369GHEiBF8//33ZGRkkJGRwXfffcfIkSPp06dPSddRREREJE9FWmfmueeeY+/evXTv3p3KlV2nyMjI4O6779aYGRERESlTxZqavWvXLjZu3EhgYCAtWrSgfv36JVm3EqGp2SIiItZTmM/vIvXMALzzzjtMmTKFXbt2AdC4cWNGjRrF4MGDi3pKERERkUIrUph58sknmTJlCsOHD6djx46A6+7Zo0ePZs+ePTz33HMlWkkRERGRvBTpMlN4eDivvvpqjlsXfPjhhwwfPpzDhw+XWAWLS5eZRERErKfUVwDOyMigXbt2Ocrbtm3L2bNni3JKERERkSIpUpj5xz/+wZtvvpmjfMaMGfTr16/YlRIREREpqGINAI6Pj6dDhw4ArFq1iqSkJAYMGMBDDz3kPm7y5MnFr6WIiIhIHooUZn799VfatGkDQEJCAgC1atWiVq1a/Prrr+7jbDZbCVRRREREJG9FCjPff/99SddDREREpEiKNGZGRERExFcozIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKVZKsxMnDgRm83GqFGjvF0VERER8RGWCTNr165lxowZtGjRwttVERERER9iiTBz4sQJ+vXrx8yZMwkNDfV2dURERMSHWCLMDBs2jBtuuIEePXp4uyoiIiLiYyp7uwL5mT9/Phs2bGDt2rUFOj49PZ309HT3ttPpLK2qiYiIiA/w6Z6ZpKQkRo4cyfvvv09AQECBHjNx4kTsdrv7Jzo6upRrKSIiIt5kM8YYb1ciL4sXL+aWW27Bz8/PXZaRkYHNZqNSpUqkp6d77IPce2aio6NxOBwEBweXWd1FRESk6JxOJ3a7vUCf3z59mal79+788ssvHmX33HMPTZo0YezYsTmCDIC/vz/+/v5lVUURERHxMp8OM0FBQTRr1syjrHr16oSFheUoFxERkYrJp8fMiIiIiOTHp3tmcrNs2TJvV0FERER8iHpmKjBHGjjTPcuc6a5yERERq1CYqaAOp0LvBfDqmnOBxpkO01e7yg+nerd+IiIiBaUwUwE50uD2hZB4DGZscAWaMxmuIDNzo6v89oXqoREREWuw3JgZKT6bDXrEuIILuALNF7vg9+PnjunZ0HWciIiIr1PPTAUU7A8j2sOQ1ufKzg8yQ9vA8Ctdx4mIiPg6hZkKKtgfxnaGqCDP8qggGNNJQUZERKxDYaaCcqbDiz959siAa3vSipyznERERHyVwkwFlD1rKXvMDHj20GQPClagERERK1CYqYCMgaWJ57aHtoFld3uOofnmN9dxIiIivk6zmSogewB8fIdr+nXPhq7BvlX8XIOCwRV0Pr7DdZyIiIivsxlTvr9/F+YW4hWNI801/fr8wb7OdFePjIKMiIh4U2E+v9UzU4HlFlg0i0lERKxGY2ZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTStAJwRZcCJAMOIASIAEK9WSEREZHCUc9MRZYE9AFigQ5Ak6ztJG9WSkREpHAUZiqqFGAwEH9BeXxWeUqZ10hERKRIFGYqqmRyBpls8Vn7RURELEBhpqJyFHO/iIiIj1CYqajsxdwvIiLiIxRmKqpIIC6PfXFZ+0VERCxAYaaiCgVmkTPQxGWVa3q2iIhYhNaZqciigfmcW2fGjqtHRkFGREQsRGGmogtF4UVERCxNl5lERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNJ8OsxMnDiRv/zlLwQFBREREcHNN9/Mjh07vF0tERER8SE+HWZ++OEHhg0bxqpVq/jmm284e/YscXFxnDx50ttVExERKZoUYDuwGtiRtW1FPtQOmzHGeO/pC+fPP/8kIiKCH374gS5duhToMU6nE7vdjsPhIDg4uJRrKCIichFJwGAg/ryyOGAWEO2VGhVNGbSjMJ/fPt0zcyGHwwFAzZo1vVwTERGRQkohZwAga3sw1umh8cF2VC77pywaYwwPPfQQV111Fc2aNcvzuPT0dNLT093bTqezLKonIiJyccnkDADZ4rP2h5ZddYrMB9thmZ6ZBx98kJ9//pkPP/zwosdNnDgRu93u/omOtlK/nYiIlFuOYu73FT7YDkuEmeHDh7NkyRK+//57oqKiLnrs448/jsPhcP8kJSWVUS1FREQuwl7M/b7CB9vh05eZjDEMHz6cRYsWsWzZMmJiYvJ9jL+/P/7+/mVQOxERkUKIxDVINrdLNHFZ+63AB9vh0z0zw4YN4/333+eDDz4gKCiIgwcPcvDgQU6dOuXtqomIiBROKK7ZPnEXlGfPArLCeBnwyXb49NRsm82Wa/mcOXMYOHBggc6hqdkiIuJTUnANknXguiQTiXWCzPlKuR2F+fz2+ctMIiIi5Uoo1gwvF/Khdvj0ZSYRERGR/CjMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKX59GwmKQPnT60LASLwmdHpIiIiBaGemYosCegDxAIdgCZZ27oDhIiIWIjCTEXlg7dwFxERKQqFmYqqILdwFxERsQCFmYrKB2/hLiIiUhQaAFxR+eAt3EVExEKScA1JOIZrAkkoEO2dqqhnpqLKvoV7bqx0K3oRESl7u4F7gZZA16x/780q9wKFmYrKB2/hLiIiFpAE3A8svaB8aVa5F2bE6jJTRRYNzKd83IpeRETKRgo5g0y2pVn7y/hyk8JMRedDt3AXERELOFbM/aVAl5lERESk4EKKub8UKMyIiIhIwdmBHnns64FXZsPqMlNFdxA4xLl7M9UCanuzQlIu6J5fIuVXOjAFGI3n2JkewNSs/WVMYaYCc6SC7QgEdwJOAtXBuRpMMNirebt2YllJ5LxVRvYsOS+tQSEiJSgFuAnX7/QLgBMIBvYD1wJLyr5KusxUQR0+Ab0Xwqv7wbkUiHD9O32/q/zwCW/XUCxJ9/wSKf/suHr0bwLa4Qow7bK2D+GVy0wKMxWQIw1u/wQSj8GMrfDqcTizB6Yfh5lbXeW3f+I6TqRQdM8vkfLPBxddVZipgGw26NHg3PaMrdDtQ1eQydazges4kULRPb+kNKUA24HVwA7U0+ctPrjoqsbMVEDB/jCiJXD6XID5/fi5/UObwvCWruNECkX3/JLSorFYvsXHFl1Vz0wFFZwOY6+GqCDP8qggGHO1a79Ioflg97OUAxqL5ZtCgSZA+6x/vThjUWGmgnKGwIurPXtkwLU9aY1rv0ih+WD3s5QDGosl+dBlpgrImQ7TV8PMTefKooLOBZsZGwEbDL9Sl5qkCHys+1nKAY3FknyoZ6YCMgaWJp7bHtoGlt0NQ1qfK/vmN9dxIkXiQ93PFZ0jzfUF5nzOdIvNVtRYLMmHwkwFZA+Aj++AmBAY2hqGt4Aqm1yDgoe0dpV/fIfrOBGxrsOp0HsBvLoanA5gvevf6atd5YdTvV3DAtJYLMmHzZjy/f3b6XRit9txOBwEBwd7uzo+xXEKbIkQfCXnVgBeAyYG7IHerp2IFIcjzRVYEo+5toc2hTFXwYs/npvFGBMC/7nLIl9cNJupwinM57fGzFRUKWB/CPgIyP52dhKC/wLcCUxGlwZELMxmgx4xMHOja3vGVvgiyXPQf88YC60npbFYchEKM0XgSHP9ATh/cKwz3TXGxBLfcMD1B2FuLuWpWeVj0R8JEQtzryeVXo7WkwpFf5ckVxozU0jua9Brzg2qy54dZKlr0JodIFLuBe+GsVflsZ7UVa79IuWBwkwhONLg9oVZ9zTa4Ao0ZzKypjlvzLqn0UKLzBLQ7ACRcs/ZyDVGJtf1pH507RcpDxRmCiH7GnS2GRug27xz16QBeja0yDXo8jY7QPdsEfHgTIfpmz3vuXZ+D82MrfDq5pzTtkWsSGGmEIL9YUR7z/VYPK5Bt7HQQnPlaKVWxylwHsB1C/oOQFvXtuOUlysm4kU51pNqCsv6wpCm58q+SdR6UlI+KMwUUrA/jO2cxzXoThYJMtlswO3AZ8DCrH9vzyq3iMMnoPdH8Oof4FwKRLj+nf6Hq/zwCW/XUMQ7cqwndSVU2QojrtR6UlL+KMwUkjMdXvwpj2vQKyzUZZsCDAP2nldmy9oehiUu0zjS4PZPssYwbYVXj8OZPTD9uKtrPfGYa78lxjCJlILwaq51ZIa3g+CDwFkIToYR7Vzl4dW8XUOxNB+6vK8wUwjuexqdN0bG4xr0Bs9ZTj7tEK4FqFYBNwJ3AH/L2h6ctd/H2WzQo8G57RlboduHnmMEejawyBgmkVJiT4HgPrhuK9EBuNy1bbfAFxbxYUlAHyAW1/uqSdZ2kneqozBTCOXqnkYZwNuQ0iGF7Z9tZ/XC1ez4fAcpHVLg7az9Pi57HY3zxwBYfh0NkZKUAgzEdQn5fJ9llSvQSFGkkHM1ZrK2B+OV95UWzSuE7GvQty90rZx5/j2NwBV0LHMNOhOS/pnE4GmDiX/+3Dsyrnscs0bOIjrTGuuDBx+AsVfDlxesbBoVBGOuhiqJQIi3aleBpXBupdYQIAJLDSovN5LJ+YGTLT5rv16Xsmf1349k4CdIeSKF5A7JONIchASGELEygtCpoV55X6lnppDCq8F/7oTh4RB8CdDO9e+IcFe5Va5Bp9hSXEHmW8+/dPHfxjN42mBSbNb4yuasAy+uymMM0ypw1vVOvSo0H+t+rtC0OKbvKQ+/H8ch6cMk+qzqQ+yNsXS4owNN/taEPqv6kPRhEhzP/xQlTWGmsFLA/kDWPYxOZpVl3dPI/gCW6bZNzkjOEWSyxX8bT3JGchnXqPCc6TD9Z5i5+VyZxximzVpHo8z5YPdzhVajmPulZJWT34+Umvl8Ga5Z9g1RmCms7HsaXXjbgux7Gvl+BgDAcfLiX8ny2+8LcoxhagnL+sOQlufKtI5GGSvIZQ0pO5WBIZAy/oKxceNTYAgaaFDWkoHfgAt78KtllVvk9yM5PZ8vw+ll3xCFmcIqJ922dvvF71eQ335f4LGORnMYHgBVomBEAAxppnU0vKKc/H6UG2dgzxNJ9Fl5weWAlX3Y80QSnPF2BSuYDHD8BM5vgepZZdVd246fsMTECwDH8Xy+DOezvzQozBRWObmnUaR/JHHdc7+fQVz3OCL9rXE/g/BU+M+NMLwaBPcADrn+HVHdVR5ulRt/lhe6rOFT/ghPYfCQwcTHX3A5ID6eIUMH80e4Ra5rlBOH60HvL+HVExcs8nncVX64nrdrWDC++GVYYaawysk9jUKPhjJr5KwcgSZ7NlPoUYsMrd8P9jsh+EY8xzDd6CpnvxfrVkiOtJzje5zpFlv0rzLQPY993dFljTLkSIPtScl8+03ulwOWxsezPSnZWu8vH1qkrbAcaXD7p1mLfG5xBZoci3x+ao3f98jISOLi8vgyHBdHZGTZfxAqzBRWebmnURBE941mfof5bPtsG6sWrmLbZ9uY32E+0X2jISj/U/iETHB8AM7P8Oy2/cxVjkXGyxxOhd4LPBddzF6ksfcC135LOAyMJGeg6Z5VfrjMa1Rh2WyQeeri3f2ZpxzWWVTS4rOAbDbofv6NirfkXOSzR4w1FvkMDQ1l1uuziOtxwZfhHnHMemMWoaFl/0Go70lFEQ3MBI5l/YRk/VhjaRaXSKA7hGb9Dzh3T6buWKaH6fCl0H8JjGiaQv0fkzn+m4PgS0PYkxnB9G9Cee8mCPd2JfPhSHOtXZR4zLWKNLju83X+atO3L3QtP+/z43+CgFshZVYKyS8m43A6CLGHEPFHBKGDQ+Ebb1ew4gj2h0vCL97df0m43RqLSuY3C2g+Pv9F0hi4obHrz2zVMym0qJ7MqRMOqgWFsPlEBGeqhnJ9I4tMWDgA0aOjmd9+PskjXevM2APsRK6KJHRUKMwA6pRtlRRmisCRCrbjENwJ16WN6uBcDSYV7BZZZ4ZQYDJwH/D8eeU9gLfw+T8M4AoB/ZfAyNgkXh472KM7vXvPOB55YRb9l0Qz/zbfDgE2m+sb2TeJkHzCFWi+2OVaKyewMkTWgJ4NrfGNjQhIWpDE4Oc8p23GdY9j1oJZREdYKfFbX51Q1+WAC8fMgOtyQJ1Qi3xrOX8W0Pm9lOfPAvLxv1k2G6zYC/0bJDFo8GDGnvf3qkdcHLNmzuLzfdE0qunFShbUn8DnEPr5eV+GL9xfxmHGZowlcmCROZ1O7HY7DoeD4ODgYp/v8Ano/5+sngDbBT0BW0N5rzeEW2GQYwquLtrcLqfHYYlvOs50+GlHCq880ifXcQHde8bx8Cvz6XxZqM9/+zx5Gk6egYQUuHcJpJ6BalVg9k1waShUrwLVq3q7lvlLOZBCn4F98vzwnD93PqF1fPyNdb5kcq7UapHPfwBnKuzcm8RjI3OG/RemzeKy+tEEW+EL2BY4XhtOJqdwLDEZxykHIdVCsDeIoHpkKEEHgSu8Xcn8HUhOYUD/PizN5e9Vz7g45r03nzoRFvj9WA50ucj+/wFXF/9pCvP5rTBTCI406PNJVk/AY7n3BEzb5vs9AYBrEF3sRfZvw3VN2sdt3bqdK67IuyFbtmyjaVPfb0h2SB7WPIWoSsnsS3ZQr3YIv5+N4PVfrROSt2/ZTmyzvF+Pbb9uo8kVvv96ABxLA9Ih5DJcN16NgJSdYPOHEF///SZrzNUq+PcWuOdy12WNM6kOqlSz8/PJSObsCOUfzWB4e9+/f9mxVDh6KIn7/+k5MysuLo43355FzYhoQnw8lDnT4det2+ncJu/fjxUbtnFF0yY+/3rwC9DiIvt/BpoX/2kK8/ltiQHAb7zxBjExMQQEBNC2bVuWL1/ulXrYbDCieUqOIAPw7TfxvPzYYEY0T7HG5YBysh7I8SMXr2h++32BI80VZEbGJjH1kT60bh5L7x4daN2sCVMf7cPI2CT6/8casxyO5rO+RIoX1p8oikMnoe8n8NPeFLYu287q/61m67IdrNibQt9PXPt9nTGwdI+rl+/1X0NZf7wJvTq2Z93xJrz+ayipZ6yxqOSJdDjmSGHo0NynmP/zn4M55kjhhI+v9G0MHEm5+Pv/cIrD518PAAK4+KxFL4R9nw8zCxYsYNSoUTzxxBNs3LiRq6++muuvv559+/aVeV2C/aF+5bynOn77TTz1Kyf7fqqGcrNeTlDYxSua335fkAk8mE9IfrB5is9PzDqWBqf8Lv7fO9XP7urx8GHH0uDuxa5wOeWRPlzRNJYOXTpwRdMmTHnEFS7vXozPt8MeAB/flrWoZFMYHgRVGsCIINed5mNCXPt9vRf5rIGE3y8+xTzh92TO+vgvSOVKEFP74r8fMbXtVPb5T2VcE18uNmvxWBnXBwuEmcmTJzNo0CAGDx5MbGwsU6dOJTo6mjfffNMr9TmeT7LOb7/PKAfr5TjTYe/ZSLr3zL0h3XvGsTcj0ufvzVQJiPK7eEiO8kvG1zv8DJDmf/HXI80CizEaChYurSD8IPzneleQ8VhUMshVHn7Q2zXMX6UCTjGv5OO/IGczYfupi6/Psv1UJGczy7hiRREE9MU1Rf4zYGHWvx2yyr2xtIfxYenp6cbPz898+umnHuUjRowwXbp0yfUxaWlpxuFwuH+SkpIMYBwOR4nUacuWbQbX37tcf7Zs2VYiz1Mm9hlj4owxnPcTl1VuAcdOGdPrfWO+XL/PdO8Z5/E6dO8ZZ75cv8/0et91nK9bsXLVRd9XK1au8nYVC+ToSWPWbM399VizdZ9JOentGhbMlq35/J5vtcjv+Q/GmEbGmGrG8/e8Wlb5D96rWmFs+TWf1+NXa7wefzqNWf7zPtMzzvP3o2dcnFn+yz7zp9PbNSygoybnZ8f5nyFHS+ZpHA5HgT+/fXpq9uHDh8nIyMixmmBkZCQHD+b+lWLixIk888wzpVKf83sC8po9szcjkqh03x9QB7jWxZnPudkadlw9MhYYTA+u7vH3boL+S6J5+MX5TJ/kml0W1NDOXhPJtK2udWZ8vRsdwB6cz/Lg+ez3FaFboVXraG4dN59HnnWtoxFYw85vpyNpdVkoVTYC7bxdy/wdP5xPD2w++31GCLA7l/LUrPKQsqxM0dWsefEp5jVr+n6PH0C4geaXRPPu5Pkc2+OalWUPtBPSIJLAOqHYffxSmVv24rEXrv3jxcVjfTrMZLNdMKLWGJOjLNvjjz/OQw895N52Op1ER5fM2hbGwPRfQnnkBdermOtspp9D6dS4RJ6ubIRimfCSm3AD868H285QgnuEutf9iVoKna7HEn8cylNITmkK03+E2ZtyvrH+NDDyL9b4/AzKZ7G5/Pb7jFBca0ctzWVfDyzxu+9Mh+NVQ/nX1Flk5DLF/LmpszhRNRSnBX4/CAb7AbA/Hkrtz877j38j8DZghTVmsvnYl2GfDjPh4eH4+fnl6IU5dOhQnvd+8Pf3x9+/dN7R9gB47xbovyiah1+ez3S/ZI7/6SColp29ZyOZ9mso791ijZ6AciPrjwMT8Lw30wQs88ehvITklDSYvhZmbzpXFhXkWvwPzpWPbO/bU5tT0iDxzMXDZeKZSOqm+XY7ANcHzpvA/XgGmuzFMS2whmFGJrz3MyzcFs09Y109fudPMR/wfSh3NoVR7b1d0wKqA8zDZ0JAsfjQl2GfX2emffv2tG3bljfeeMNd1rRpU3r37s3EiRPzfXxJL5oHrimytkwITsJ9OwNnNJhKCjJek4Kl/zgcToX+i1xT/+tfEJKnZ4XkcB9fR+NYGty8wHVbBoB7W8H/XQUTfjwXZGJCYPFdvh0CjqW5pmXnt57Uh7f5djs8JOH6HTmGq2ssFEsEGXD9ve193vtqSGsY2wleWAGzsm73ERNikdt9SKGUq0XzFixYQP/+/Xnrrbfo2LEjM2bMYObMmWzZsoX69evn+/jSCDMipcGRBrYzELwXOArUBGd9MFWs80f60Em482O4pkHWJaVtkBLr6rH5fg98dDtEVM/vLN536KRrevaDzVOIqZLM8cMOgsLtJJ6J5LVfQpl3szXaUV4cTnXdn6xHQxjRAoK3gbMJTPsZvk2Ej+/w/bAvhVeuwgy4Fs2bNGkSBw4coFmzZkyZMoUuXS62lvI5CjMiZSt7/ZXzey1yK/N15aUd5YUjzbVw6fnjYpzprsu0Vgn7UjjlLswUh8KMiIiI9ZS72xmIiIiI5EVhRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQszafvml0Sshc4djqdXq6JiIiIFFT253ZBblRQ7sPM8ePHAYiOtsgtYkVERMTt+PHj2O32ix5T7u/NlJmZyf79+wkKCsJms5XouZ1OJ9HR0SQlJVn6vk9qh29RO3yL2uFb1A7fUprtMMZw/Phx6tatS6VKFx8VU+57ZipVqkRUVFSpPkdwcLCl34zZ1A7fonb4FrXDt6gdvqW02pFfj0w2DQAWERERS1OYEREREUtTmCkGf39/xo8fj7+/v7erUixqh29RO3yL2uFb1A7f4ivtKPcDgEVERKR8U8+MiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIeDh48CA9e/akevXqhISEeLs6+arwYebgwYOMHDmSRo0aERAQQGRkJFdddRVvvfUWqampAMyYMYNu3boRHByMzWbj2LFjOc7z/PPP06lTJ6pVq5brC79582b69u1LdHQ0gYGBxMbGMm3aNK+16+jRowwfPpzLL7+catWqUa9ePUaMGIHD4XCfY9myZdhstlx/1q5dW2p1L0w7AP75z39y6aWXEhgYSK1atejduzfbt2/3OE9KSgr9+/fHbrdjt9vp379/rq+jL7djz549DBo0iJiYGAIDA7n00ksZP348p0+f9ql2AKxcuZJrr73W/YewW7dunDp1CvCN91VB2rJnz54867lw4UL3eazw3kpISOCWW26hVq1aBAcHc+edd5KcnOxxngYNGuRo52OPPWa5dgD897//pX379gQGBhIeHs6tt95a5nX1ZQWp/5QpUzhw4ACbNm1i586dXq5x/sr9CsAX89tvv9G5c2dCQkKYMGECzZs35+zZs+zcuZPZs2dTt25dbrrpJlJTU+nVqxe9evXi8ccfz/Vcp0+f5o477qBjx4688847OfavX7+eWrVq8f777xMdHc2KFSsYOnQofn5+PPjgg2XeroYNG7J//35efvllmjZtyt69e7nvvvvYv38/H3/8MQCdOnXiwIEDHud+8sknWbp0Ke3atSvROhe1HTfddBNt27alX79+1KtXj6NHj/L0008TFxdHYmIifn5+APz973/n999/56uvvgJg6NCh9O/fn88++8wy7di+fTuZmZm8/fbbNGrUiF9//ZUhQ4Zw8uRJXn75ZZ9px8qVK92/K6+++ipVq1Zl8+bN7uXIvf2+Kmhbbrjhhhz1nDFjBpMmTeL66693l/n6e6t79+7ExcXRsmVLvvvuO8D13/vGG29k1apVHsvEP/vsswwZMsS9XaNGjVJvQ0m345NPPmHIkCFMmDCBa6+9FmMMv/zyS5nW9aabbiqx5ytpBa1/QkICbdu2pXHjxnme68yZM1SpUqUMa38RpgK77rrrTFRUlDlx4kSu+zMzMz22v//+ewOYlJSUPM85Z84cY7fbC/T8DzzwgLnmmmsKWt0CK2y7sn300UematWq5syZM7nuP336tImIiDDPPvtsidX1Yorajs2bNxvA7N692xhjzNatWw1gVq1a5T5m5cqVBjDbt28v+YpfoKTakZtJkyaZmJiYEqlnfgrajvbt25tx48YV+Lxl/b4ypuivSatWrcy9997r3rbCe+vrr782lSpVMg6Hw11+9OhRA5hvvvnGXVa/fn0zZcqU0q5yrkqqHWfOnDGXXHKJmTVrllfraowxKSkpZsiQISYiIsL4+/ubK664wnz22WfGGGMOHz5s+vTpYy655BITGBhomjVrZj744AOP83Tt2tUMGzbMDBs2zNjtdlOzZk3zxBNPeLw3X3/9ddOoUSPj7+9vIiIizG233VYi9a9fv74B3D933323McYYwLz55pvmpptuMtWqVTNPPfWUOXv2rLn33ntNgwYNTEBAgLnsssvM1KlTPc555swZM3z4cHc7xowZYwYMGGB69+7tPmbhwoWmWbNmJiAgwNSsWdN07949zzrmpsKGmcOHDxubzWYmTpxY4MeUdJjp169fgd58hVGUdmWbOXOmCQ8Pz3P/xx9/bCpVqmT27dtXnCoWSFHbceLECTNq1CgTExNj0tPTjTHGvPPOO7m+Jna73cyePbskqpunkmxHbp544gnTtm3b4lYzXwVtR3JysgHM9OnTTceOHU1ERITp0qWLWb58eZ6PKcv3lTFFf03WrVtnAPPTTz+5y6zw3lqyZInx8/MzaWlp7rLU1FRTqVIlM378eHdZ/fr1Te3atU3NmjVNy5YtzXPPPXfR915JKcl2rF692gBm9uzZplWrVqZ27dqmV69e5tdffy3TumZkZJgOHTqYK664wsTHx5uEhATz2WefmS+++MIYY8zvv/9uXnrpJbNx40aTkJBgpk+fbvz8/DxCcdeuXU2NGjXMyJEjzfbt2837779vqlWrZmbMmGGMMWbt2rXGz8/PfPDBB2bPnj1mw4YNZtq0aSVS/0OHDplevXqZO++80xw4cMAcO3bMGOMKMxEREeadd94xCQkJZs+ePeb06dPmqaeeMmvWrDG//fabu54LFixwn++5554zNWvWNJ9++qnZtm2bue+++0xwcLA7zOzfv99UrlzZTJ482SQmJpqff/7ZvP766+b48eMXref5KmyYWbVqlQHMp59+6lEeFhZmqlevbqpXr27GjBnjsa8kw8yKFStMlSpVTHx8fFGqn6eitMsY15u8Xr165oknnsjz3Ndff725/vrrS7S+eSlsO15//XVTvXp1A5gmTZp49GY8//zzpnHjxjmeo3HjxmbChAml1whTsu240O7du01wcLCZOXNmqdU/W0Hbkd0rUbNmTTN79myzYcMGM2rUKFO1alWzc+fOXM9dlu8rY4r+O3L//feb2NhYjzIrvLcOHTpkgoODzciRI83JkyfNiRMnzLBhwwxghg4d6n7c5MmTzbJly8zmzZvdX2wGDRpUqm0o6XZ8+OGHBjD16tUzH3/8sVm3bp3p27evCQsLM0eOHCmzumb3Iu3YsaPA5/7rX/9qHn74Yfd2165dTWxsrEdPzNixY93vwU8++cQEBwcbp9NZ4vU3xpjevXu7e2SyAWbUqFH5Ps8DDzzg8UU9MjLSvPTSS+7ts2fPmnr16rnDzPr16w1g9uzZU+C2XKjCDwC22Wwe22vWrGHTpk1cccUVpKenl8pzbtmyhd69e/PUU0/Rs2fPUnmOwrTL6XRyww030LRpU8aPH5/r+X7//Xe+/vprBg0aVCr1zUtB29GvXz82btzIDz/8QOPGjbnzzjtJS0vL8zzgur18buWloaTakW3//v306tWLO+64g8GDB5d6/bPl147MzEzANZj5nnvuoXXr1kyZMoXLL7+c2bNn5zift95XULjfkVOnTvHBBx/kWk9ff2/VqlWLhQsX8tlnn1GjRg3sdjsOh4M2bdq4x5QBjB49mq5du9KiRQsGDx7MW2+9xTvvvMORI0cs047s998TTzzBbbfdRtu2bZkzZ06OQdulXddNmzYRFRXFZZddluvjMzIyeP7552nRogVhYWHUqFGD+Ph49u3b53Fchw4dPJ6rY8eO7Nq1i4yMDHr27En9+vVp2LAh/fv359///neBBx8X53Mvt3Ftb731Fu3ataNWrVrUqFGDmTNnutvicDhITk7myiuvdB/v5+dH27Zt3dstW7ake/fuNG/enDvuuIOZM2eSkpJSoLZkq7ADgBs1aoTNZssx66Vhw4YABAYGlsrzbt26lWuvvZYhQ4Ywbty4Ej9/Ydt1/PhxevXqRY0aNVi0aFGeg7nmzJlDWFhYmQ1sK2w7smeSNG7cmA4dOhAaGsqiRYvo27cvtWvXznXGw59//klkZGTpNYKSbUe2/fv3c80119CxY0dmzJhRqvXPVtB21KlTB4CmTZt6HBcbG5vjDzWU/fsKiva7//HHH5OamsqAAQM8yq3y3oqLiyMhIYHDhw9TuXJlQkJCqF27NjExMXmev0OHDgDs3r2bsLCwUmiBS0m2I7f3n7+/Pw0bNsz1/Vdadc3v8+OVV15hypQpTJ06lebNm1O9enVGjRpVqJmJQUFBbNiwgWXLlhEfH89TTz3F008/zdq1a/OcSl0Sn3vVq1f32P7oo48YPXo0r7zyCh07diQoKIiXXnqJ1atXexx3YYAy591Jyc/Pj2+++YYVK1YQHx/Pq6++yhNPPMHq1asv+h49X4XtmQkLC6Nnz5689tprnDx5skyec8uWLVxzzTXcfffdPP/886XyHIVpl9PpJC4ujqpVq7JkyRICAgJyPc4Yw5w5cxgwYECZjVwv7utjjHF/w+jYsSMOh4M1a9a4969evRqHw0GnTp1KrM65Kcl2APzxxx9069aNNm3aMGfOHI+ZKKWpoO1o0KABdevWZceOHR7lO3fupH79+h5l3nhfQdFek3feeYebbrqJWrVqeZRb7b0VHh5OSEgI3333HYcOHbpoiNy4cSNwLiCUlpJsR9u2bfH39/d4/505c4Y9e/bkeP+VZl1btGjB77//nueU5uXLl9O7d2/+8Y9/0LJlSxo2bMiuXbtyHLdq1aoc240bN3b3RFWuXJkePXowadIkfv75Z/bs2eOe6VWc+hfG8uXL6dSpEw888ACtW7emUaNGJCQkuPfb7XYiIyM9fkcyMjLc769sNpuNzp0788wzz7Bx40aqVq3KokWLCl6RIl+gKgd2795tIiMjTZMmTcz8+fPN1q1bzfbt2817771nIiMjzUMPPWSMMebAgQNm48aNZubMmQYw//vf/8zGjRs9rsHu3bvXbNy40TzzzDOmRo0aZuPGjWbjxo3uAUy//vqrqVWrlunXr585cOCA++fQoUNeaZfT6TTt27c3zZs3N7t37/ao09mzZz3Ot3TpUgOYrVu3lnhdi9uOhIQEM2HCBLNu3Tqzd+9es2LFCtO7d29Ts2ZNk5yc7D5Xr169TIsWLczKlSvNypUrTfPmzc3f/vY3S7Xjjz/+MI0aNTLXXnut+f333z1eM19phzHGTJkyxQQHB5uFCxeaXbt2mXHjxpmAgIAc43+89b4qTFuMMWbXrl3GZrOZL7/8Mtdz+fp7yxhjZs+ebVauXGl2795t3nvvPVOzZk2PNq5YscJMnjzZbNy40fz2229mwYIFpm7duuamm26yVDuMMWbkyJHmkksuMV9//bXZvn27GTRokImIiDBHjx4t07p269bNNGvWzMTHx5vffvvNfPHFF+730KhRo0x0dLT56aefzNatW83gwYM9BsQac24A8OjRo8327dvNBx98YKpXr27eeustY4wxn332mZk2bZrZuHGj2bNnj3njjTdMpUqV8h3sXND65zVmZtGiRR5lU6dONcHBwearr74yO3bsMOPGjTPBwcGmZcuW7mOee+45ExYWZhYvXmy2b99uhg0bZoKDg83NN99sjHGN5Xn++efN2rVrzd69e90za7MHTBdEhQ4zxrhGUT/44IMmJibGVKlSxdSoUcNceeWV5qWXXjInT540xhgzfvx4j2lq2T9z5sxxn+fuu+/O9Zjvv//+oueoX7++V9qVPZg5t5/ExESPc/Xt29d06tSpVOpZ3Hb88ccf5vrrrzcRERGmSpUqJioqyvz973/PMS32yJEjpl+/fiYoKMgEBQWZfv36XXQgty+2Y86cOXm+Zr7SjmwTJ040UVFRplq1aqZjx465zmby5vvKmIK35fHHHzdRUVEmIyMj1/P4+nvLGNfA0cjISFOlShXTuHFj88orr3gMLF2/fr1p3769sdvtJiAgwFx++eVm/PjxHv8drNAOY1xT/R9++GETERFhgoKCTI8ePUpsNlNh6nrkyBFzzz33mLCwMBMQEGCaNWtmPv/8c/e+3r17mxo1apiIiAgzbty4HFOVu3btah544AH3zJ/Q0FDz2GOPudu7fPly07VrVxMaGmoCAwNNixYtPGYQFbf+BQ0zaWlpZuDAgcZut5uQkBBz//33m8cee8wjzJw5c8Y8+OCD7naMHTvW3HHHHaZPnz7GGNcSB9ddd52pVauW8ff3N5dddpl59dVXC/pyGGOMsWVVUERERHxEt27daNWqFVOnTvV2VUpcZmYmsbGx3HnnnfzrX/8qkXNW2AHAIiIiUvr27t1LfHw8Xbt2JT09nddee43ExET+/ve/l9hzVNgBwCIiIlL6KlWqxNy5c/nLX/5C586d+eWXX1i6dCmxsbEl9hy6zCQiIiKWpp4ZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxtP8H5Rj6JA7k71QAAAAASUVORK5CYII=", "text/plain": "
"}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "estimated-found-predicted-2023"}}, "output_type": "display_data"}, "diference-estimated-found-predicted-2023": {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZyElEQVR4nO3dd3hURdsG8HvT+0JCKglJkID0LgakV0UJ4itSpEhRlBIEBXmlKkVBiopK+SgWFFFAQUGiCIgUgdCEACEhgUACgQCb3p/vj4V9WVJI2ezuSe7fde0FO3PO2Wd2T7JP5szMUYmIgIiIiEihLEwdABEREVF5MJkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGsTB1ARcvPz0d8fDycnZ2hUqlMHQ4RERGVgIggJSUFPj4+sLAovu+l0icz8fHx8PPzM3UYREREVAZxcXHw9fUtdptKn8w4OzsD0L4ZLi4uJo6GiIiISiI5ORl+fn667/HiVPpk5v6lJRcXFyYzREREClOSISIcAExERESKxmSGiIiIFI3JDBERESlapR8zUxIigtzcXOTl5Zk6FKJKxdLSElZWVlwWgYgqVJVPZrKzs5GQkID09HRTh0JUKTk4OMDb2xs2NjamDoWIKqkqnczk5+cjJiYGlpaW8PHxgY2NDf+CJDIQEUF2djZu3ryJmJgYBAUFPXLhKyKisqjSyUx2djby8/Ph5+cHBwcHU4dDVOnY29vD2toaly9fRnZ2Nuzs7EwdEhFVQvwzCeBfi0QViD9fRFTR+FuGiIiIFK1KX2YiIiKiMroFIBHAHQCuADwAuJkmFPbMEBERUelcAdAPQEMATwFoAOAlAHGmCYc9M0RERFRySQCGADgFYBQAX2iTm00AXgXwLYDqxg2JPTOE7OxsU4dARERKcQNAIIAvob3MtAnaS03fAqh2r8zImMw8RESQnp1r9IeIlDjG2NhYqFSqAo9OnToBAA4ePIgOHTrA3t4efn5+mDBhAtLS0nT7BwQEYO7cuRg+fDjUajVGjx4NANi8eTMaNmwIW1tbBAQEYPHixQZ9b4mIqBLIBtAawPMAtgGIALAVQAiArvfqjYyXmR6SkZOHBjN3Gf11I97rCQebkn0cfn5+SEhI0D2/fv06unXrhg4dOuDff/9Fz5498f7772PNmjW4efMmxo0bh3HjxmHdunW6fRYtWoQZM2Zg+vTpAIDw8HD0798fs2fPxksvvYSDBw/ijTfegJubG4YPH27QthIRkYLZAZhWSLkAeAfAAeOGAwAqKU2XgAIlJydDrVZDo9HAxcVFry4zMxMxMTEIDAzULeaVnp1r9snMgzIzM9GpUye4u7vj559/xvDhw2Fvb4+VK1fqtvn777/RsWNHpKWlwc7ODgEBAWjevDm2bt2q22bw4MG4efMmwsLCdGVTpkzBr7/+irNnz5avcVSlFfZzRkQKdhBAu2LqDwNoU/6XKe77+2HsmXmIvbUlIt7raZLXLYuRI0ciJSUFv//+OywsLBAeHo6oqChs2LBBt42I6G7dUL9+fQBAq1at9I5z7tw5hISE6JW1a9cOy5YtQ15eHiwtyxYfERFVMvnlrK8ATGYeolKpytRDYgpz587Fb7/9hiNHjsDZ2RmA9n5Tr732GiZMmFBg+1q1aun+7+joqFcnIgXuS1XJO+2IiKgsagBQA9AUUucO7ZozRqaMb20qYPPmzXjvvfewc+dOPPbYY7ryFi1a4OzZs6hTp06pjtegQQP8/fffemUHDx5E3bp12StDRET/4wbgEyA5PBk3ut5AclYy1LZqeIZ5wvkpZ21CY2SczaRAZ86cwdChQzF16lQ0bNgQ169fx/Xr13H79m1MnToVhw4dwtixY3Hy5ElcvHgR27Ztw/jx44s95uTJk7F79268//77iIyMxJdffonly5fjrbfeMlKriIhIEdyBa09dw6j4UXj8+cfRqn8r1Hu+Ht64+wbi28SbpGeGyYwCHTt2DOnp6Zg7dy68vb11j379+qFJkybYt28fLl68iPbt26N58+aYMWMGvL29iz1mixYtsGnTJmzcuBGNGjXCzJkz8d5773EmExER6blz5w7GhI7BDz/+gPx87QCZ/Px8fLPhG0z+72QkJycbPSbOZuIsC6IKxZ8zosrlwoULePzxxwutU6lUuHDhAoKCgsr9OqWZzcSeGSIiIiqx27dvF1knIrhz544Ro9FiMkNEREQl5uJYfC/Jo+orApMZIiIiKjEPOw+0eaLwVfG6dOoCDxsPI0fEZIaIiIhKwV3jjo3vbUTLFi31yoPbBGPdlHVwTTb+dCauM0NEREQlpwYCng7Ajmk7cGP2DdxIugGvGl7wjPCE+2B34IjxQ2IyQ0RERCXnCaA74PGWBzxUHmhs3xjIgPZGkyPv1RsZkxkiIiIqOTWAJQCqAVgLIB2ALYAx0N4129n4ITGZISIiotLxhjahmQIgFYDTvTITLSXFAcCVRKdOnTBx4kTd84CAACxbtkz3/Pr16+jevTscHR1RrVq1IstI68CBA2jcuDGsra3Rt29fo73uw5+jEigxZiIyAHsAgQAa3/vXhGtismemkjp69KjenbGXLl2KhIQEnDx5Emq1usgypYqJicGYMWOQmpqKu3fv4qOPPsLTTz9d5uNNmjQJzZo1w86dO+Hk5GTASLX27t2Lzp07486dO3qJ5JYtW2BtbW3w13tYp06d0KxZM72El4hIqUzaM/PXX3/hueeeg4+PD1QqFX766Se9ehHB7Nmz4ePjA3t7e3Tq1Alnz541TbDFyQOwF8B39/7NM2UwWu7u7nBwcNA9j46ORsuWLREUFAQPD48iy0orJyfHIPGWl6+vL3bu3IkDBw5g2rRpWL9+fbmOFx0djS5dusDX19eovVaurq5wdjbBBWciIgUzaTKTlpaGpk2bYvny5YXWL1y4EEuWLMHy5ctx9OhReHl5oXv37khJSTFypMXYAiAAQGcAg+79G3CvvIKkpaVh6NChcHJygre3NxYvXlxgmwcvMwUEBGDz5s346quvoFKpMHz48ELLAECj0eDVV1+Fh4cHXFxc0KVLF5w6dUp33NmzZ6NZs2ZYu3YtateuDVtbW4hIiff7+uuvERAQALVajQEDBuh9lvn5+fjwww9Rp04d2NraolatWpg3b56u/tq1a3jppZdQvXp1uLm5ISQkBLGxsQAAa2trWFhYIDo6GitXrsTcuXOLfP+ysrIwYcIEeHh4wM7ODk899RSOHj0KAIiNjYVKpUJSUhJGjBgBlUpVZGKUnZ2NKVOmoGbNmnB0dESbNm2wd+9eXf3ly5fx3HPPoXr16nB0dETDhg2xY8cOxMbGonPnzgCA6tWr673/hV0unDt3ru7z9vf3x88//4ybN28iJCQETk5OaNy4MY4dO6bbJykpCQMHDoSvry8cHBzQuHFjfPfdd7r64cOHY9++ffj444+hUqmgUql072NERASeeeYZODk5wdPTE0OGDMGtW7d0+5bk3CMiMjoxEwBk69atuuf5+fni5eUlH3zwga4sMzNT1Gq1rFixosTH1Wg0AkA0Gk2BuoyMDImIiJCMjIyyBb1ZRFQigoceqnuPzWU77KO8/vrr4uvrK2FhYXL69Gl59tlnxcnJSUJDQ3Xb+Pv7y9KlS0VEJDExUXr16iX9+/eXhIQEuXv3bqFl+fn50q5dO3nuuefk6NGjEhkZKZMnTxY3NzdJSkoSEZFZs2aJo6Oj9OzZU44fPy6nTp0q8X5OTk7Sr18/+ffff+Wvv/4SLy8v+e9//6uLecqUKVK9enVZv369REVFyf79+2X16tUiIpKWliZBQUEyYsQIOX36tERERMigQYOkXr16kpWVJSIi27dvl549e8rly5eLff8mTJggPj4+smPHDjl79qwMGzZMqlevLklJSZKbmysJCQni4uIiy5Ytk4SEBElPTy/0OIMGDZK2bdvKX3/9JVFRUbJo0SKxtbWVyMhIERHp3bu3dO/eXU6fPi3R0dGyfft22bdvn+Tm5srmzZsFgFy4cEH3/ouIdOzYscDn6OrqKitWrJDIyEh5/fXXxdnZWXr16iWbNm2SCxcuSN++faV+/fqSn58vIiJXr16VRYsWyYkTJyQ6Olo++eQTsbS0lMOHD4uIyN27dyU4OFhGjx4tCQkJkpCQILm5uRIfHy81atSQadOmyblz5+T48ePSvXt36dy5c6nOvYeV++eMiKqk4r6/H2a2yUx0dLQAkOPHj+tt16dPHxk6dGiRx8nMzBSNRqN7xMXFVUwykysivlIwkXkwofG7t50BpaSkiI2NjWzcuFFXlpSUJPb29kUmMyIiISEhMmzYML1jPVy2e/ducXFxkczMTL3tHnvsMVm5cqWIaJMSa2trSUxMLPV+Dg4OkpycrKt/++23pU2bNiIikpycLLa2trrk5WFr1qyRevXq6b6wRUSysrLE3t5edu3aJeHh4aJSqaRFixbSpk0bGT58eKHHSU1NFWtra9mwYYOuLDs7W3x8fGThwoW6MrVaLevWrSv0GCIiUVFRolKp5Nq1a3rlXbt2lWnTpomISOPGjWX27NmF7r9nzx4BIHfu3NErLyyZefnll3XPExISBIDMmDFDV3bo0CEBIAkJCUXG+8wzz8jkyZOLfB0RkRkzZkiPHj30yu7//Fy4cKHE597DmMwQUVmUJpkx2wHA169fBwB4euqvvuPp6YnLly8Xud+CBQswZ86cCo0NALAfwNVi6gVA3L3tOhnuZaOjo5GdnY3g4GBdmaurK+rVq1fuY4eHhyM1NRVubm565RkZGYiOjtY99/f3h7u7e6n3CwgI0BsP4u3tjcTERADAuXPnkJWVha5duxYZW1RUVIHxJJmZmYiOjkaPHj2Qn5//yDZGR0cjJycH7dq105VZW1vjiSeewLlz5x65/33Hjx+HiKBu3bp65VlZWbr3YcKECXj99dcRFhaGbt264YUXXkCTJk1K/Br3PbjP/Z+Hxo0bFyhLTEyEl5cX8vLy8MEHH+D777/HtWvXkJWVhaysLL0B4YUJDw/Hnj17Ch3wHB0djYyMjAo794iIysNsk5n7VCqV3nMRKVD2oGnTpmHSpEm658nJyfDz8zN8YAkG3q6ERMSwB3xAfn4+vL299cZ93PfgINiHvxRLut/Ds3RUKpUuAbG3t39kbC1btsSGDRsK1D2YWD3K/fevtOdVYfFYWloiPDwclpaWenX3k4FRo0ahZ8+e+PXXXxEWFoYFCxZg8eLFGD9+fIlfB9B/3+7HWFjZ/fdy8eLFWLp0KZYtW4bGjRvD0dEREydORHZ29iPb9Nxzz+HDDz8sUOft7Y2LFy+WKm4iImMx22TGy8sLgLaHxtvbW1eemJhYoLfmQba2trC1ta3w+OD96E1KtV0J1alTB9bW1jh8+DBq1aoFALhz5w4iIyPRsWPHch27RYsWuH79OqysrBAQEFDh+z0oKCgI9vb22L17N0aNGlXoa3z//fe6AcZlVadOHdjY2ODvv//GoEGDAGhnZB07dqxUa6U0b94ceXl5SExMRPv27Yvczs/PD2PGjMGYMWMwbdo0rF69GuPHj4eNjQ0AIC/P8FPf9u/fj5CQELz88ssAtEnKxYsXUb9+fd02NjY2BV67RYsW2Lx5MwICAmBlVfBXQ0Wee0RE5WG2i+YFBgbCy8sLv//+u64sOzsb+/btQ9u2bU0Y2T3tAfgCKOqPeRUAv3vbGZCTkxNGjhyJt99+G7t378aZM2cwfPhwWFiU/6Ps1q0bgoOD0bdvX+zatQuxsbE4ePAgpk+frjdbxlD7PcjOzg5Tp07FlClT8NVXXyE6OhqHDx/GmjVrAACDBw9GjRo1EBISgv379yMmJgb79u1DaGgorl4t7nqfPkdHR7z++ut4++238dtvvyEiIgKjR49Geno6Ro4cWeLj1K1bF4MHD8bQoUOxZcsWxMTE4OjRo/jwww+xY8cOAMDEiROxa9cuxMTE4Pjx4/jzzz91CYW/vz9UKhV++eUX3Lx5E6mpqSV+7UepU6cOfv/9dxw8eBDnzp3Da6+9prtse19AQAD++ecfxMbG4tatW8jPz8fYsWNx+/ZtDBw4EEeOHMGlS5cQFhaGESNGIC8vr0LPPSKi8jBpz0xqaiqioqJ0z2NiYnDy5Em4urqiVq1amDhxIubPn4+goCAEBQVh/vz5cHBw0P1FbVKWAD4G8B9oE5cHr/7cT3CW3dvOwBYtWoTU1FT06dMHzs7OmDx5MjQaTbmPq1KpsGPHDrz77rsYMWIEbt68CS8vL3To0KHY3rCy7vewGTNmwMrKCjNnzkR8fDy8vb0xZswYAICDgwP++usvTJ06Ff369UNKSgpq1qyJrl27lrqn5oMPPkB+fj6GDBmClJQUtGrVCrt27UL16tVLdZx169Zh7ty5mDx5Mq5duwY3NzcEBwfjmWeeAaDtdRk7diyuXr0KFxcX9OrVC0uXLgUA1KxZE3PmzME777yDV155BUOHDi332jj3zZgxAzExMejZsyccHBzw6quvom/fvnrnyFtvvYVhw4ahQYMGyMjIQExMDAICAnDgwAFMnToVPXv2RFZWFvz9/dGrVy9dwlJR5x4RUXmopCIHYTzC/VVQHzZs2DCsX78eIoI5c+Zg5cqVuHPnDtq0aYPPPvsMjRo1KvFrJCcnQ61WQ6PRFPjSy8zMRExMDAIDA2FnV8Z1mLcACIX+YGA/aBOZfmU7JFFlYpCfMyKqcor7/n6YSZMZY6jwZAbQrvi7H9rBvt7QXlqqgB4ZIiViMkNEZVGaZMZsBwAriiUMOv2aiIjI7MUBiABwHkADAPWhHUtqAkxmiIiIqHQiAHQBcOOBspoA/gRQt9A9KhSnIRAREVHJJQB4HvqJDABcA/AigESjR8RkhoiIiErhJoDIIupO36s3MiYzREREVHJpj6hPN0oUepjMEBERUcm5o+jswRqAWxF1FYjJDBEREZWcGsDwIurGACjd+qMGwdlMREREVHIaAE8BcAWw+t7z6tAmMv4A7sDoCQ17ZiqJTp066d0oMSAgAMuWLdM9v379Orp37w5HR0fdnawLKyOtAwcOoHHjxrC2tkbfvn1NHQ4A7W0jfvrpJwBAbGwsVCoVTp48afQ4hg8fbjbvCRGZwE0AI6Gdnv0ZgB8AfAIgHNqEJsn4IbFnppI6evQoHB0ddc+XLl2KhIQEnDx5Emq1usgypYqJicGYMWOQmpqKu3fv4qOPPsLTTz9d5uNNmjQJzZo1w86dO+Hk5GTASA3Dz88PCQkJqFGjRom2Hz58OO7evatLhoiIyswR2vsR7rj3eJiDccMBmMwYRF5eHvbv34+EhAR4e3ujffv2sLQ07f0M3N3d9Z5HR0ejZcuWCAoKKrastHJycmBtbV3m/Q3F19cXO3fuhIWFBb755husX7++XMlMdHQ0xowZA19fwy5naaj3y9LSEl5eXgaIiIiolDwA1ANwoZC6pvfqjYyXmcppy5YtCAgIQOfOnTFo0CB07twZAQEB2LJlS4W9ZlpaGoYOHQonJyd4e3tj8eLFBbZ58DJTQEAANm/ejK+++goqlQrDhw8vtAwANBoNXn31VXh4eMDFxQVdunTBqVOndMedPXs2mjVrhrVr16J27dqwtbWFiJR4v6+//hoBAQFQq9UYMGAAUlJSdNvk5+fjww8/RJ06dWBra4tatWph3rx5uvpr167hpZdeQvXq1eHm5oaQkBDExsYCAKytrWFhYYHo6GisXLkSc+fOLfL9y8rKwoQJE+Dh4QE7Ozs89dRTOHr0KID/Xb5JSkrCiBEjoFKpirybdUBAAN5//30MGjQITk5O8PHxwaeffqq3jUqlwooVKxASEgJHR0ddXNu3b0fLli1hZ2eH2rVrY86cOcjNzdXtd/HiRXTo0AF2dnZo0KABfv/9d73jFnaZ6ezZs+jduzdcXFzg7OyM9u3bIzo6GrNnz8aXX36Jn3/+GSqVCiqVCnv37n3kewpoE/VJkyahWrVqcHNzw5QpU1DJb+dGRI/iBWArtPcifJAfgE3QznYyNqnkNBqNABCNRlOgLiMjQyIiIiQjI6NMx968ebOoVCqBtsNN91CpVKJSqWTz5s3lDb9Qr7/+uvj6+kpYWJicPn1ann32WXFycpLQ0FDdNv7+/rJ06VIREUlMTJRevXpJ//79JSEhQe7evVtoWX5+vrRr106ee+45OXr0qERGRsrkyZPFzc1NkpKSRERk1qxZ4ujoKD179pTjx4/LqVOnSryfk5OT9OvXT/7991/566+/xMvLS/773//qYp4yZYpUr15d1q9fL1FRUbJ//35ZvXq1iIikpaVJUFCQjBgxQk6fPi0REREyaNAgqVevnmRlZYmIyPbt26Vnz55y+fLlYt+/CRMmiI+Pj+zYsUPOnj0rw4YNk+rVq0tSUpLk5uZKQkKCuLi4yLJlyyQhIUHS09MLPY6/v784OzvLggUL5MKFC/LJJ5+IpaWlhIWF6bYBIB4eHrJmzRqJjo6W2NhY+e2338TFxUXWr18v0dHREhYWJgEBATJ79mwREcnLy5NGjRpJp06d5MSJE7Jv3z5p3ry5AJCtW7eKiEhMTIwAkBMnToiIyNWrV8XV1VX69esnR48elQsXLsjatWvl/PnzkpKSIv3795devXpJQkKCJCQkSFZWVone0w8//FDUarX8+OOPEhERISNHjhRnZ2cJCQl5xFn6P+X9OSMiM3VFRH4XkeUisltE4gx7+OK+vx/GZKaMv2Rzc3PF19e3QCLzYELj5+cnubm5hmiGTkpKitjY2MjGjRt1ZUlJSWJvb19kMiMiEhISIsOGDdM71sNlu3fvFhcXF8nMzNTb7rHHHpOVK1eKiDYpsba2lsTExFLv5+DgIMnJybr6t99+W9q0aSMiIsnJyWJra6tLXh62Zs0aqVevnuTn5+vKsrKyxN7eXnbt2iXh4eGiUqmkRYsW0qZNGxk+fHihx0lNTRVra2vZsGGDriw7O1t8fHxk4cKFujK1Wi3r1q0r9Bj3+fv7S69evfTKXnrpJXn66ad1zwHIxIkT9bZp3769zJ8/X6/s66+/Fm9vbxER2bVrl1haWkpc3P9+M+zcubPYZGbatGkSGBgo2dnZhcY6bNiwAgnIo95TERFvb2/54IMPdPU5OTni6+vLZIaIKlxpkhmOmSmj/fv34+rVq0XWiwji4uKwf/9+dOrUyWCvGx0djezsbAQHB+vKXF1dUa9evXIfOzw8HKmpqXBz01/xKCMjA9HR0brn/v7+emNySrpfQEAAnJ2ddc+9vb2RmKi9ice5c+eQlZWFrl27FhlbVFSU3v4AkJmZiejoaPTo0QP5+fmPbGN0dDRycnLQrl07XZm1tTWeeOIJnDt37pH7P+zBz+H+8wdnkQFAq1at9J6Hh4fj6NGjepfQ8vLykJmZifT0dJw7dw61atXSG6/z8Os87OTJk2jfvn2pxuM86j3VaDRISEjQe20rKyu0atWKl5qIyKwwmSmjhIQEg25XUhX5JZKfnw9vb2/deIoHPTh1+8FZUqXZ7+EvWpVKpUtA7O3tHxlby5YtsWHDhgJ1Dw92Ls7990+lUhUof7isrB4+TmHv15w5c9CvX78C+9rZ2RX6GT8qtke9f4Ux1HtKRGRqTGbKyNv74ZFP5duupOrUqQNra2scPnwYtWrVAgDcuXMHkZGR6NixY7mO3aJFC1y/fh1WVlYICAio8P0eFBQUBHt7e+zevRujRo0q9DW+//573QDjsqpTpw5sbGzw999/Y9CgQQC0M4yOHTumt05PSR0+fLjA88cff7zYfVq0aIELFy6gTp06hdY3aNAAV65cQXx8PHx8fAAAhw4dKvaYTZo0wZdfflnkbCkbGxvk5eUViONR76m3tzcOHz6MDh06AAByc3MRHh6OFi1aFBsPEZExcTZTGbVv3x6+vr5F/sWsUqng5+eH9u3bG/R1nZycMHLkSLz99tvYvXs3zpw5g+HDh8PCovwfZbdu3RAcHIy+ffti165diI2NxcGDBzF9+nQcO3bM4Ps9yM7ODlOnTsWUKVPw1VdfITo6GocPH8aaNWsAAIMHD0aNGjUQEhKC/fv3IyYmBvv27UNoaGixl/se5ujoiNdffx1vv/02fvvtN0RERGD06NFIT0/HyJEjS3yc+w4cOICFCxciMjISn332GX744QeEhoYWu8/MmTPx1VdfYfbs2Th79izOnTuH77//HtOnTwegfT/r1auHoUOH4tSpU9i/fz/efffdYo85btw4JCcnY8CAATh27BguXryIr7/+GhcuaOdOBgQE4PTp07hw4QJu3bqFnJycEr2noaGh+OCDD7B161acP38eb7zxBu7evVvq94mIqCIxmSkjS0tLfPzxxwAKXgK4/3zZsmUVst7MokWL0KFDB/Tp0wfdunXDU089hZYtW5b7uCqVCjt27ECHDh0wYsQI1K1bFwMGDEBsbCw8PT0Nvt/DZsyYgcmTJ2PmzJmoX78+XnrpJd2YGgcHB/z111+oVasW+vXrh/r162PEiBHIyMgodU/NBx98gBdeeAFDhgxBixYtEBUVhV27dqF69dKvvz158mSEh4ejefPmeP/997F48WL07Nmz2H169uyJX375Bb///jtat26NJ598EkuWLIG/vz8AwMLCAlu3bkVWVhaeeOIJjBo1Sm98TWHc3Nzw559/IjU1FR07dkTLli2xevVqXS/N6NGjUa9ePbRq1Qru7u44cOBAid7TyZMnY+jQoRg+fDiCg4Ph7OyM559/vtTvExFRRVJJJR/Jl5ycDLVaDY1GU+BLLzMzEzExMQgMDISdnV2Zjr9ly5YCvQN+fn5YtmxZoWMiqPIICAjAxIkTy3R5qioxxM8ZEVU9xX1/P4xjZsqpX79+um56c1oBmIiIqKpgMmMAlpaWBp1+TURERCXHZIaojB5c9p+IiEyHA4CJiIhI0ZjMEBERkaIxmUHFrqpLVNXx54uIKlqVTmbur8GRnp5u4kiIKq/7P1+luW8UEVFpVOkBwJaWlqhWrZrewmyGuj8PUVUnIkhPT0diYiKqVavG5QqIqMJU6WQGALy8vABAl9AQkWFVq1ZN93NGRFQRqnwyo1Kp4O3tDQ8PD+Tk5Jg6HKJKxdramj0yRFThqnwyc5+lpSV/6RIRESlQlR4ATERERMrHZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaGadzOTm5mL69OkIDAyEvb09ateujffeew/5+fmmDo2IiIjMhJWpAyjOhx9+iBUrVuDLL79Ew4YNcezYMbzyyitQq9UIDQ01dXhERERkBsw6mTl06BBCQkLQu3dvAEBAQAC+++47HDt2zMSRERERkbkw68tMTz31FHbv3o3IyEgAwKlTp/D333/jmWeeKXKfrKwsJCcn6z2IiIio8jLrnpmpU6dCo9Hg8ccfh6WlJfLy8jBv3jwMHDiwyH0WLFiAOXPmGDFKIiIiMiWz7pn5/vvv8c033+Dbb7/F8ePH8eWXX+Kjjz7Cl19+WeQ+06ZNg0aj0T3i4uKMGDEREREZm0pExNRBFMXPzw/vvPMOxo4dqyubO3cuvvnmG5w/f75Ex0hOToZarYZGo4GLi0tFhUpEREQGVJrvb7PumUlPT4eFhX6IlpaWnJpNREREOmY9Zua5557DvHnzUKtWLTRs2BAnTpzAkiVLMGLECFOHRkRERGbCrC8zpaSkYMaMGdi6dSsSExPh4+ODgQMHYubMmbCxsSnRMXiZiYiISHlK8/1t1smMITCZISIiUp5KM2aGiIiI6FGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRTP7ZObatWt4+eWX4ebmBgcHBzRr1gzh4eGmDouIiIjMhJWpAyjOnTt30K5dO3Tu3Bk7d+6Eh4cHoqOjUa1aNVOHRkRERGbCrJOZDz/8EH5+fli3bp2uLCAgwHQBPSwLgA0AlakDISIiqrrM+jLTtm3b0KpVK7z44ovw8PBA8+bNsXr1atMGlQvgEoD5APoBmArgPIAMUwZFRERUdZl1MnPp0iV88cUXCAoKwq5duzBmzBhMmDABX331VZH7ZGVlITk5We9hUCcBNAHwLoAdABYBaARgN4Acw74UERERPZpKRMTUQRTFxsYGrVq1wsGDB3VlEyZMwNGjR3Ho0KFC95k9ezbmzJlToFyj0cDFxaV8AV0H0BFAZCF1zgDOAKhVvpcgIiIiIDk5GWq1ukTf32bdM+Pt7Y0GDRroldWvXx9Xrlwpcp9p06ZBo9HoHnFxcYYL6BYKT2QAIAXAZcO9FBEREZWMWQ8AbteuHS5cuKBXFhkZCX9//yL3sbW1ha2tbcUElPuI+qyKeVkiIiIqWpmTmSNHjmDv3r1ITExEfn6+Xt2SJUvKHRgAvPnmm2jbti3mz5+P/v3748iRI1i1ahVWrVplkOOXmhsAdwA3C6mzAlDbuOEQERFRGZOZ+fPnY/r06ahXrx48PT2hUv1vbvKD/y+v1q1bY+vWrZg2bRree+89BAYGYtmyZRg8eLDBXqNUagL4HMCLhdTNBuBp1GiIiIgIZRwA7OnpiQ8//BDDhw+vgJAMqzQDiEokBdqBvtMBnAIQCG0i8yS0PTdERERUbqX5/i5Tz4yFhQXatWtXpuAUzxlAMIDNANIA2IFJDBERkQmVaTbTm2++ic8++8zQsShLNWgvOzGRISIiMqky9cy89dZb6N27Nx577DE0aNAA1tbWevVbtmwxSHBEREREj1KmZGb8+PHYs2cPOnfuDDc3N4MO+iUiIiIqjTIlM1999RU2b96M3r17GzoeIiIiolIp05gZV1dXPPbYY4aOhYiIiKjUypTMzJ49G7NmzUJ6erqh4yEiIiIqlTJdZvrkk08QHR0NT09PBAQEFBgAfPz4cYMER0RERPQoZUpm+vbta+AwiIiIiMqmVCsAR0ZGom7duhUZj8EZfAVgIiIiqnCl+f4u1ZiZ5s2bo379+pg6dSoOHTpUriCJiIiIDKFUyUxSUhIWLlyIpKQkPP/88/D09MTIkSOxbds2ZGZmVlSMREREREUq040mAUBEcOjQIWzbtg3btm3D5cuX0a1bN4SEhODZZ5+Fh4eHoWMtE15mIiIiUp4Ku8z0IJVKhbZt2+KDDz5AREQETp48iQ4dOmD9+vXw8/PjvZuIiIjIKMrcM1OcpKQk3L59G0FBQYY+dKmxZ4aIiEh5Krxn5ssvv8Svv/6qez5lyhRUq1YNbdu2xeXLl+Hm5mYWiQwRERFVfmVKZubPnw97e3sAwKFDh7B8+XIsXLgQNWrUwJtvvmnQAImIiIiKU6ZF8+Li4lCnTh0AwE8//YT//Oc/ePXVV9GuXTt06tTJkPERERERFatMPTNOTk5ISkoCAISFhaFbt24AADs7O2RkZBguOiIiIqJHKFPPTPfu3TFq1Cg0b94ckZGR6N27NwDg7NmzCAgIMGR8RERERMUqU8/MZ599huDgYNy8eRObN2+Gm5sbACA8PBwDBw40aIBERERExamQqdnmhFOziYiIDO/q1auIjo5GVFQU6tati8ceeww+Pj4GO35pvr/LdJlp3bp1cHJywosvvqhX/sMPPyA9PR3Dhg0ry2GJiIhIAS5cuIAePXrgypUrurLatWtj165duglCxlSmy0wffPABatSoUaDcw8MD8+fPL3dQREREZJ5u3LiBfv366SUyAHDp0iW89NJLuHnzptFjKlMyc/nyZQQGBhYo9/f3L9A4IiIiqjxu3LiBiIiIQuuOHz+unGTGw8MDp0+fLlB+6tQp3WBgIiIiqnzS0tKKrU9NTTVSJP9TpmRmwIABmDBhAvbs2YO8vDzk5eXhzz//RGhoKAYMGGDoGImIiMhM1KhRAyqVqtA6Kysrk3RqlCmZmTt3Ltq0aYOuXbvC3t4e9vb26N69O7p06cIxM0RERJWYp6dnkRN9xowZAy8vLyNHVM6p2RcvXsSJEydgb2+PJk2awN/f35CxGQSnZhMRERlWQkICli1bhuXLlyM9PR1OTk6YOHEixo0bB09PT4O8Rmm+v8uczKxZswZLly7FxYsXAQBBQUGYOHEiRo0aVZbDVRgmM0RERIaXlZWF69evIy0tDY6OjvD29oaNjY3Bjl/h68zMmDEDS5cuxfjx4xEcHAxAe/fsN998E7GxsZg7d25ZDktEREQKYWtrazZXZMrUM1OjRg18+umnBW5d8N1332H8+PG4deuWwQIsL/bMEBERKU9pvr/LNAA4Ly8PrVq1KlDesmVL5ObmluWQRERERGVSpmTm5ZdfxhdffFGgfNWqVRg8eHC5gyIiIiIqqTKNmQG0A4DDwsLw5JNPAgAOHz6MuLg4DB06FJMmTdJtt2TJkvJHSURERFSEMiUzZ86cQYsWLQAA0dHRAAB3d3e4u7vjzJkzuu2KWlSHiIiIyFDKlMzs2bPH0HEQERERlUmZxswQERERmQsmM0RERKRoTGaIiIhI0ZjMEBERkaIxmSEiIiJFYzJDREREisZkhoiIiBSNyQwREREpGpMZIiIiUjQmM0RERKRoTGaIiIhI0ZjMEBERkaIxmSEiIiJFK9Nds4mIiKiKiwOQBOAmAA8AbgB8TRMKkxkiIiIqnSgAQwAcfqCsPYD1AGobPxxFXWZasGABVCoVJk6caOpQiIiIqqarAIZBP5EBgP0AXgOQYPSIlJPMHD16FKtWrUKTJk1MHQoREVHVdQvAwSLq/rhXb2SKSGZSU1MxePBgrF69GtWrVzd1OERERFXX3UfUa4wRhD5FJDNjx45F79690a1bt0dum5WVheTkZL0HERERGYhbMXUqACboczD7ZGbjxo04fvw4FixYUKLtFyxYALVarXv4+flVcIRERERViBuA7kXU9QFQw4ix3GPWyUxcXBxCQ0PxzTffwM7OrkT7TJs2DRqNRveIi4ur4CiJiIiqEB8AKwD0hrYnBvf+fR7AUgCexg9JJSJi/JctmZ9++gnPP/88LC0tdWV5eXlQqVSwsLBAVlaWXl1hkpOToVarodFo4OLiUtEhExERVQ3XoR3smwxADcAd2vVmDKQ0399mvc5M165d8e+//+qVvfLKK3j88ccxderURyYyREREVEG87j3MgFknM87OzmjUqJFemaOjI9zc3AqUExERUdVk1mNmiIiIiB7FrHtmCrN3715Th0BERERmhD0zREREpGhMZoiIiEjRmMwQERGRojGZISIiIkVjMkNERESKprjZTGRACQCiAfwDoBaAVgD8wLOCiIgUhV9bVdUVAM8CeHCBZXsAvwFoC54ZRESkGLzMVBWlAXgH+okMAGQAeAbANaNHRERESpVv6gD493fVlAhgUxF1aQBOA/A3XjhERKQw2dD28H8PIBxAGwD/gfa7wwSZBZOZqigTQF4x9QnGCoSIiBQnH9qxlt0BZN0r2wpgDoA/ATxp/JB4makqcgHgU0x9S2MFQkREihMP4EX8L5G5LwPAS/fqjYzJTFXkA2BhEXUdoJ3RREREVJgb9x6FuQLgphFjuYfJTFWkAtARwBr8L3GxAzASwDoAHiaKi4iIzF/OI+qzjRKFHo6ZqYpyAXwN4EcA7wJwBSDQXvN8FsAfKP4yFBERVV2e0P4BnFlInRNM8gcxe2aqongAC4H0Jum45H0JR3EUEXYRuNn0JnAL2oX0iIiICuMFYH4RdR8B8DZiLPcwmamK0oAbC29guu10PP6fx/FE/yfQMKQhnv7xaUR9HQXEmjpAIiIyW/YAhgH4BUBzaHtjWgHYBaA/ABvjh8TLTFVQjjoHKy+uxNKVS/XKw8PD0eP1Hvj757/hw+tMRERUFFcAvaFdXyYT2gTHzXThsGemCkrITsDilYsLrYuJicHFmxeNHBERESlSDQC+MGkiAzCZqZLS0tKQnJxcZP358+eNGA0REVH5MJmpghysHODo6Fhkfd2AukaMhoiIqHyYzFRBXtZeGPfKuELratasiaAaQUaOiIiIqOyYzFRBtvm2CO0QiuEDhkOlUunK69atiz/W/AFfK18TRkdERFQ6nM1UFVkA3re9scxzGf67/b9ITEmEk4MTPOM84bXWCxhv6gCJiIhKjslMVWQFIBJQN1FD/aYaQdFBgCOAodCuEcD+OiIiUhAmM1WRDwB3AIsBjL33PBvAJgD/BbDHdKERERGVFpOZqsgKwAho1wdwuFfmAKAdgGXgfZmIiEhRmMxUVRbQ9sZMBXAbgCWAFwAMMGVQREREpcfREVVRPoDN0F5iun2vLA/ay0x9AVw3TVhERERlwWSmKroGYEYRdScAXDZiLEREROXEZKYqSgVws5j6U8YKhIiIqPyYzFRFdij+Fu1+xgqEiIio/JjMVEVeAIYUUVcNQEPjhUJERFReTGaqInsAswF0eKi8OoDfob2dOxERkUJwanZV5QvgB2gHA5+Btrem3r1yprhERKQgTGaqMo97j+amDoSIiKjsmMxUZfkA4qGd3WQLwBP/WxGYiIhIIXhBoapKArAOQEsA9QHUBTAGQJwpgyIiIio9JjNVUT6AnwGMApB4rywXwNcA/gPghoniIiIiKgMmM1VRPIBpRdQdAVcAJiIiRWEyUxWl4H89MoU5aaQ4iIiIDIDJTFVkB8C6mPqaxgqEiIio/JjMVEWeAAYXUecCoJERYyEiIionJjNVkQOA9wE8+VC5C4AwcAVgIiJSFK4zU1X5AvgJwBVo75LtA+09mXwBWJouLCIiotJiMlOVed57tDZ1IERERGXHy0xERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKZpZJzMLFixA69at4ezsDA8PD/Tt2xcXLlwwdViVSxq0d9FOMnUgREREZWPWycy+ffswduxYHD58GL///jtyc3PRo0cPpKWlmTo05csE8C+AVwA8AaAngM0AbpoyKCIiotJTiYiYOoiSunnzJjw8PLBv3z506NChRPskJydDrVZDo9HAxcWlgiNUkIMAOgLIfah8HID3AFQ3ekREREQ6pfn+VtTtDDQaDQDA1dW1yG2ysrKQlZWle56cnFzhcSlOIoBXUTCRAYDlAMaCyQwRESmGWV9mepCIYNKkSXjqqafQqFGjIrdbsGAB1Gq17uHn52fEKBXiDoCzxdQfNFYgRERE5aeYZGbcuHE4ffo0vvvuu2K3mzZtGjQaje4RFxdnpAgV5FF3xbYzShREREQGoYjLTOPHj8e2bdvw119/wdfXt9htbW1tYWtra6TIFMoVwFMA/i6kzgJAG+OGQ0REVB5mncyICMaPH4+tW7di7969CAwMNHVIlYMrgBXQJjR3H6pbDsDT2AEREVUhN+497kL7+9YDHKdYTmadzIwdOxbffvstfv75Zzg7O+P69esAALVaDXt7exNHp3ANABwH8AOA3wHUgnYmU20ATiaMi4ioMosCEAIg4oGy56H9Q9LHJBFVCmY9NVulUhVavm7dOgwfPrxEx+DU7EcQABkAbGDmqS0RkcLFA+gAILqQulEAPgbgYNSIzFqlmZptxnlW5aECf3iIiIwhDoUnMgDwJYBp0PaOU6kpZjYTERGRol0ppi4H2tvLUJkwmSEiIjKG4uaw2IHjFcuByQwREZEx+AIoas3XNwB4GzGWSobJDBERkTF4AdgOoP0DZVYAXgPwNrhgaTmY9QBgIiKiSiUAwFYANwGkQru+jBcARxPGVAkwmSEiIjImt3sPMhheZiIiIiJFYzJDREREisZkhoiIiBSNyQwREREpGpMZIiIiUjQmM0RERKRoTGaIiIhI0ZjMEBERkaIxmSEiIiJFYzJDREREisZkhogqhubeg4iogvHeTERkWNcA/AHg/6D9c2kMgI4AfEwZFBFVZkxmiMhwrgJ4FsCpB8r+AhAM4EcwoSGiCsHLTERkOL9AP5G57xCAfUaOhYiqDCYzRGQYSQBWFVP/BYBkI8VClVMutJcxrwC4ZeJYyKwwmSEiwxAA+cXU59/bhqgs4gHMBdAIgD+AZwAcAJBqyqDIXDCZISLDcAMwvJj6UQDUxgmFKpkbAIYAmAPg7r2yowDaAzhiopjIrDCZISLDUAF4AUDdQuqaAOhu3HCoErkM4M9CygXAeGiTHarSOJuJiAzHD9pp2VsArIX2z6VXATwHoKYJ4yJlK27weASAFACeRoqFzBKTGSIyLD8AEwAMgra3poZpw6FKwK2YOmvwm4x4ChBRBVABcDd1EFRpdABgCSCvkLqXAHgYNxwyPxwzQ0RUFWRCuTN/agL4FgW/sYKgneHkYPSIyMywZ4aIqDK7CeA6gNPQ3iurJbTjSwJMGFNp2QPoDeA8gJ8AxAHoBaApOBaLADCZISKqvBIB7AHwCoCMB8oHAJgHoLYpgiojR2h7Yt42dSBkjniZiYiosroB4GXoJzIAsBHAZmgvPRFVAkxmiIgqq83Q3gKgMJ9Ce2NQokqAl5lKSwDEA3JbkJ2fDWsLa1hUs9Beg7YxdXCll5OTg+TkZNjZ2cHR0dHU4RCRIcUWU3cNvL0EVRpMZkop91IuLmsuY+OmjThw+gAaBjbEiCEjEJARAPva9op5R3NzcxEbG4uVK1diz549qFmzJt5++200bNgQ1atXN3V4RGQIHQF8CcAL2oUL7aFd/v8wgOZQ5B9gRIVRiUilzs2Tk5OhVquh0Wjg4uJSvoMlAcf+PYaOvTsiPT1dV2xpaYmfvv4JPZ/qCWs/63JGbBwnT55Eu3bt9NoBAPPmzcP48ePh7OxsosiIyGAiAYQBcAawCdq7lncF0AJAtXv/OpkqOKLileb7m8lMKVy/eB0dn+2IyMjIAnXOzs7498i/8H/cv1yvYQy3bt3C008/jWPHjhWoU6lUuHDhAoKCgkwQWTlkQXsDOmsArqYNhchsHATwfwDWPVReE8Dv0CYyfsYOiqhkSvP9zQHApXAr+VahiQwApKSk4MrVK0aOqGxu375daCIDACKCQ4cOGTmicsgHEA1gMYAPASwAsBW88RwRoF0k70sgp3cOrq29hrjv4pA8MRlIg/bnRSGXxYkehclMKeTmFTUtQCsrN8tIkVQsRXXWRQE4Ce0aFHEA7kC7lP4vAG6ZLiwis/AHcHXrVcyuPRuNJzdG7SG1MSBiAP7d8C+yr2UDOaYOkMgwmJeXgpuLG9zd3XHz5s0CdVZWVqjtp4wVqKpXr44WLVrg+PHjBepUKhWC2wSbIKoySAaQCKQeScWN9jeQ4JkABzsHeN7xhM9dH6huqHiTQ1PJA5B07//u0CaYZHTxPeLR560+OHHqhK5sZ9hO7N67G8d+OobGFo1NGB2R4bBnphRq5tbEF+9/UWjd7DdnwzNFGfegd4c7Vr2/CnZ2dgXqpk+YDk9LZbQDyUDi7UTMSZmDen3rof3A9mj5fEu0mdEG4UHhyM/KN3WEVVMcgEXQzqTpDGAZuJ6JiZxOO62XyNyXnZ2Ndz55BxrRmCAqIsNjMlMKFtYW6BHeAwd/PIiunbuiRo0aaNWqFX75v18wxmEMHJ0Usk7LbaDp/KY49dMpvDH8DTRs2BDdu3bH7q92I7RaKNT71aaOsEQkX7Dl7BZ89MVHyMv73+10r127hi4vd8GVHGWMYapU4qBNYKZBex+dCACTAPQEExoT+HHbj0XWhf0RhuTsZCNGQ1RxeJmpNNwBZz9nBJ8Nxo8Lf0SapMFOZQe3I27AZQDlnPltNJaA1QEr1H2uLpb0XYLk/yTD9o4tXKa4aG9I962pAyyZhKwEvPfpe4XWpaSkYP/x/QhoE2DcoKqyfAA/QDsg+2ER0E4RHmHUiKo8t+puRdY5OzvDwoJ/z1LlwDO5NFwBDAZwHKjWuhpqPlETbq3dgK+g/Uu0lmnDKzE3AJ0A5AC2P9jCfY47XD65l8hYAnjCpNGVWHZ+NhISEoqsP33xtBGjIdyGdoG2oqyBdvo8Gc3L/V8usm7MqDHwcPAwYjREFYfJTGmkAJgJ4OeHyv8B8BKUMx24OoDPoU1qHrYC2tVCFcDW0hb+/kWv69O6eWsjRkNQofi+XitwILCR1YqphQXvLyhQ3qxZM7zR+w1Y5yhjkU+iR+FlptJIBPBdEXUnoe3ZUMjYWTwO4BiAbQB2AQgA8BqAQGinOSuAt6M35k6biyFjhhSoc3NzQ5uWbUwQVRXmBmA4gIKT5LRGAFDGcKxKQ11PjTE1x6D3L72x4bcNuJV8C//p+B808W8Cn1QfLjBJlQaTmdJIhnZcQFGuA2hqpFjKSwVtAjMB2iTGCtpLTEqSA/Tq1AsfTv8QsxfPRkZGBgCgfv362PTFJvjbm/9qzJXKNQC1oV0i/zi051T+vUdbaHsEb0I7VZuMwwGo9mQ1VJNq+KDDB9p7M82E9rNap61XFIH292wetKsXVzNpNGRGmMyUhjO0X/h5RdR7GzEWQ7I1dQBlV2NODYROD0X/l/rj1u1bsLOzg7ujOzzPeALZ0PY0KcVtAKmAJl0DS0tLONk5aXs7lPKFkw9gLpD2WRquuVxDwo0EqFQqeHt6w/eWL+xn2QO88mdcO6C91QcA/PFQ3fsAekExl5WRAO0A84+gTYo7QLvid31okzQluQttT38atAmZF5TXBjPDZKY0vAAMAvB1IXUtoZxfCpVFLoBGgO03tghYFoCAjABt+eMAlgA4AaC7yaIrnXgg7k4cftn2Czb8ugH29vYIHRKK1m1aw9PHU5tImzsfIHFhIrb9uw0T35yItLQ0ANpZMys+X4Ge7/eEm3fRs2uoAhQ3Bj4WylkB+Ca0PcjbHygLA7AbwD4A7UwRVBldgbYtl6HtpYwD8DyAKVDOMAUzxBtNllY8tOtmbIK2yxMAngLwDQAlXtW4CSAD2rTWE8q61HQdwEYAbxZS5wpgJxQzM+vK+Svo9EwnxMTE6JX3e7YfPl/yOTyDlPFb7u+//0b79u0LlKtUKvzzzz9o3VqBXTNXoe118ob2RqZKshrAqwBcgeze2ci1z4XDPw7AKQCNoE0GlDCh6Ti0fzAC2svjagCXoJ2U0RTam2Yq4fLlDSDnnRxcfeEq9kXsw8W4i2jbpC2aOjeFb4yv9rtFwT3lhlaa72/2zJSWK4C5AMZCex8gF2h/GVQ3ZVBlkAztL4hJ0PZg1ADwFoChUM7lslwAS4uouw3gIhSRzOTE5+DzLz4vkMgAwJZftmD8a+MVkczcTrqNhQsXFlonIli2bBlWrFgBZ2cldDMBiIF2cPxqaC9Z9gcwEEAdUwZVSsHArYW3EFEzAss3L8fd63fx0oCX0H1md9SSWsq5hLkHyO6UjWuTruGf6H8QfzMebZu2ReDNQHi+4wlooIhkJjcxF4efOYweL/ZAZmamrtzPzw9//t+fqJNQR5usUelJJafRaASAaDQawxzwTxGxEhGIiKOIWNz7/zoRyTDMSxjFL6KN++FHXxG5acK4SiNG/hd3E5HMVzIl98VcEad7ZZNNGVzJXT1/VTw9PQXavj6xsrISCwsL3fOBAwdKXkaeqcN8pMvRl6V+/fq6uB9+tG7dWq5dvmbqMEvmkogMEpH1InJQRA6IyGYReUFEokwYVynd+uWWjBszrsBn4e/vLzH/xIhcMXWEJZO1NUvCvg0TW1tbvXY8+cSTErctTvu7QAEuh18WtVpd6M9Hl05d5Pa526YO0ayU5vtbEevMfP755wgMDISdnR1atmyJ/fv3myaQeABjgKRZSYj4JQK7P9uNU1tP4cbHN4BZ0F72UIIEAOOKqPvpXr0S2ABoCVzZcgVrB61Fvxv9MMpmFI6sO4Lbb98Gmpk6wBKyAPLz89G/f3/8/PPP+Prrr7Fp0yZs2LABrVq1Qm5uriIu/7k4u6Bhw4ZF1jdq1AjVXKoZL6DyiAayZmTh4hMXcSD3AP7K+guR9SOROi9V25OZ9cgjmIVY21gsX7G8QPnly5exeOViZFkpoyHXHr+G5155DllZ+vEePnIY836Zh8zqmUXsaV4uJl6ERlP4/bD+3PsnbuYWvIkxlZARkqty2bhxo1hbW8vq1aslIiJCQkNDxdHRUS5fvlyi/Q3aM3NaJG5bnHTp2EUvo27YsKFE/Ral/etNCc5J4b0y9x+rTRdaqeSLXDp+Sfz8/Ar8lTNr0iy5E33H1BGWSGZ8pmzetFn++9//io2Nja4Nrq6usmHDBjn05yGRHFNHWQK5Iv/884+oVKoCn4elpaWcOH7C1BGWjEZEc1EjP//0s7i6uura4ODgIJ98/IkkXEwQKdmvH5ObOGFikT1lTk5OEnclztQhlshXX35VZDvs7OwkNirW1CGWyMbvNhbZDgByIvyEqUM0K6X5/jb7MTNLlizByJEjMWrUKADAsmXLsGvXLnzxxRdYsKDgypYVSWOrwcT/m4g/9/0JAFBZa0dqRURG4bm3X8CvX/4Kz2zzH9sAQNurUdTQbxdoxwiYufTUDMz6eB6uXk/UfRb3vffpB3hu0Auon+1kouhKIdUSuWKJBYsWA1Dp2nInJQ2vjHoNh/cdRnpGrvkPDLwJ+ObUxtcbNmHipFAkJSUBADw9PfHZJ5/DK8sf6fG52vFZ5iwbuKCJwQsDBiIvL0/3eWTk5CH0rbdRO+hxdG5aQxE/I6nZOQV+Nu7LyVchPScP6dm5Ro6q9KIvXy2yHVl5gtspqXBXQDt8A2oX2Q43NzeorOwU8XkUxt7aEiqV6Zb4NuvZTNnZ2XBwcMAPP/yA559/XlceGhqKkydPYt++fQX2ycrK0uuKTE5Ohp+fn0FmM108dxH1GtaDiEBlbYtakzaX63hERESVQcR7PeFgY9j+kdLMZjLrMTO3bt1CXl4ePD31ezs8PT1x/XrhA1QWLFgAtVqte/j5+RksntSMVJhx7kdERFQlmf1lJgAFuq5EpMjurGnTpmHSpEm65/d7ZgxBXU0NKysr5ObmQnKycGXJC3r1R44cQYMGDQzyWkZxDdrp2XuhnQ74NICaUMxKlJp4DYaMHqK77PewPTv2onWHVkaOqvTuJN7BCwP+gyNH/im0/r2Z72HSlEmF1pmVLGiXLShquvwsaNcEMvPfOjlZOZgxawaWLy84cBYAOnfujDUr1sCjphIWaAGuX7+OnTt/w2efLUdKcgqe6d0b48aNQ2BgACwszPrvWZ24i1dxPvYcNm7ciK1btiI7Jxu1avnjrbfegpuzG3p3fAZWHmZ+YgHQxGgwc/EsxFy5hJdeegkO9g64fv061q1fh2mT/4u+XUOgqqHMu7HaW5t4lkLFDt8pn6ysLLG0tJQtW7bolU+YMEE6dOhQomMYcgBwamqqvPbaa4UO3GrXrp0kJiaW+zWodE4fOS12dnYFPo9nuj8jN2JumDq8Evsz7M9CzysHBweJOq+gucAXRMRdCg4q9xGRiyaMq5TO/HtGbzD2g4+9e/aaOrwyuXHjhsTHx0tGhpLWkNDKT8iXk3+flNDQUNm0aZNs2rRJPv/8c5k1bZZ2QLZSZIjcOHZDVi9bLYGBgWJlZSWtW7eWPT/tEc1ZAy0fUomU5vvbrJMZEZEnnnhCXn/9db2y+vXryzvvvFOi/Q29zkx8fLyMHj1arKysBICoVCrp3bu3XLmikAUbKpmcuzkScTxCBvcfLB4eHlKvXj1Z+dFKib8Ub+rQSuVO0h1Zv2a93hoUgYGBcvjAYcnJUcJUpgecE5Ehol2HyVlERoo2yVGQ1NupErYrTHx8fHSfh1qtlrVr1sqNOOUkyZVKvMjVM1flaNhR2b1pt0QeiZS7UXeVtb6XiEiqiESKxP8SL1d2XJGbv93UrpNj/ktJGV1pvr/NegAwAHz//fcYMmQIVqxYgeDgYKxatQqrV6/G2bNn4e//6PsHGPx2BgDS0tJw/fp1aDQaODs7w93dHdWqVTPIsals0hPScSf5DqysrODp7amclU0fkJubi/i4eNy6eQtW1lZwd3eHt69SlmN+SDK0t8oAtCtkK2TR3wfl5+bj0qVLSLqThLy8PLjXcEetmrVg62ju08oqMYF25fV8aGf3KfC80smDdkacHQBlXlmqcKX5/jb7ZAbQLpq3cOFCJCQkoFGjRli6dCk6dOhQon0rIpkhIiKiilXpkpnyYDJDRESkPJVmajYRERHRozCZISIiIkVjMkNERESKxmSGiIiIFI3JDBERESkakxkiIiJSNCYzREREpGhMZoiIiEjRmMwQERGRopn/PdPL6f4Cx8nJySaOhIiIiErq/vd2SW5UUOmTmZSUFACAn5+fiSMhIiKi0kpJSYFarS52m0p/b6b8/HzEx8fD2dkZKpVhb02anJwMPz8/xMXFKfq+T2yHeWE7zAvbYV7YDvNSke0QEaSkpMDHxwcWFsWPiqn0PTMWFhbw9fWt0NdwcXFR9Ml4H9thXtgO88J2mBe2w7xUVDse1SNzHwcAExERkaIxmSEiIiJFYzJTDra2tpg1axZsbW1NHUq5sB3mhe0wL2yHeWE7zIu5tKPSDwAmIiKiyo09M0RERKRoTGaIiIhI0ZjMEBERkaIxmSEiIiI9169fR/fu3eHo6Ihq1aqZOpxHqvLJzPXr1xEaGoo6derAzs4Onp6eeOqpp7BixQqkp6cDAFatWoVOnTrBxcUFKpUKd+/eLXCcefPmoW3btnBwcCj0gz916hQGDhwIPz8/2Nvbo379+vj4449N1q7bt29j/PjxqFevHhwcHFCrVi1MmDABGo1Gd4y9e/dCpVIV+jh69GiFxV6adgDAa6+9hsceewz29vZwd3dHSEgIzp8/r3ecO3fuYMiQIVCr1VCr1RgyZEihn6M5tyM2NhYjR45EYGAg7O3t8dhjj2HWrFnIzs42q3YAwKFDh9ClSxfdL8JOnTohIyMDgHmcVyVpS2xsbJFx/vDDD7rjKOHcio6OxvPPPw93d3e4uLigf//+uHHjht5xAgICCrTznXfeUVw7AODXX39FmzZtYG9vjxo1aqBfv35Gj9WclST+pUuXIiEhASdPnkRkZKSJI360Sr8CcHEuXbqEdu3aoVq1apg/fz4aN26M3NxcREZGYu3atfDx8UGfPn2Qnp6OXr16oVevXpg2bVqhx8rOzsaLL76I4OBgrFmzpkB9eHg43N3d8c0338DPzw8HDx7Eq6++CktLS4wbN87o7apduzbi4+Px0UcfoUGDBrh8+TLGjBmD+Ph4/PjjjwCAtm3bIiEhQe/YM2bMwB9//IFWrVoZNOaytqNPnz5o2bIlBg8ejFq1auH27duYPXs2evTogZiYGFhaWgIABg0ahKtXr+K3334DALz66qsYMmQItm/frph2nD9/Hvn5+Vi5ciXq1KmDM2fOYPTo0UhLS8NHH31kNu04dOiQ7mfl008/hY2NDU6dOqVbjtzU51VJ29K7d+8Cca5atQoLFy7E008/rSsz93Ora9eu6NGjB5o2bYo///wTgPb9fu6553D48GG9ZeLfe+89jB49Wvfcycmpwttg6HZs3rwZo0ePxvz589GlSxeICP7991+jxtqnTx+DvZ6hlTT+6OhotGzZEkFBQUUeKycnB9bW1kaMvhhShfXs2VN8fX0lNTW10Pr8/Hy953v27BEAcufOnSKPuW7dOlGr1SV6/TfeeEM6d+5c0nBLrLTtum/Tpk1iY2MjOTk5hdZnZ2eLh4eHvPfeewaLtThlbcepU6cEgERFRYmISEREhACQw4cP67Y5dOiQAJDz588bPvCHGKodhVm4cKEEBgYaJM5HKWk72rRpI9OnTy/xcY19XomU/TNp1qyZjBgxQvdcCefWrl27xMLCQjQaja789u3bAkB+//13XZm/v78sXbq0okMulKHakZOTIzVr1pT/+7//M2msIiJ37tyR0aNHi4eHh9ja2krDhg1l+/btIiJy69YtGTBggNSsWVPs7e2lUaNG8u233+odp2PHjjJ27FgZO3asqNVqcXV1lXfffVfv3Pzss8+kTp06YmtrKx4eHvLCCy8YJH5/f38BoHsMGzZMREQAyBdffCF9+vQRBwcHmTlzpuTm5sqIESMkICBA7OzspG7durJs2TK9Y+bk5Mj48eN17ZgyZYoMHTpUQkJCdNv88MMP0qhRI7GzsxNXV1fp2rVrkTEWpsomM7du3RKVSiULFiwo8T6GTmYGDx5copOvNMrSrvtWr14tNWrUKLL+xx9/FAsLC7ly5Up5QiyRsrYjNTVVJk6cKIGBgZKVlSUiImvWrCn0M1Gr1bJ27VpDhFskQ7ajMO+++660bNmyvGE+UknbcePGDQEgn3zyiQQHB4uHh4d06NBB9u/fX+Q+xjyvRMr+mRw7dkwAyIEDB3RlSji3tm3bJpaWlpKZmakrS09PFwsLC5k1a5auzN/fX7y8vMTV1VWaNm0qc+fOLfbcMxRDtuOff/4RALJ27Vpp1qyZeHl5Sa9eveTMmTNGjTUvL0+efPJJadiwoYSFhUl0dLRs375dduzYISIiV69elUWLFsmJEyckOjpaPvnkE7G0tNRLijt27ChOTk4SGhoq58+fl2+++UYcHBxk1apVIiJy9OhRsbS0lG+//VZiY2Pl+PHj8vHHHxsk/sTEROnVq5f0799fEhIS5O7duyKiTWY8PDxkzZo1Eh0dLbGxsZKdnS0zZ86UI0eOyKVLl3Rxfv/997rjzZ07V1xdXWXLli1y7tw5GTNmjLi4uOiSmfj4eLGyspIlS5ZITEyMnD59Wj777DNJSUkpNs4HVdlk5vDhwwJAtmzZolfu5uYmjo6O4ujoKFOmTNGrM2Qyc/DgQbG2tpawsLCyhF+ksrRLRHuS16pVS959990ij/3000/L008/bdB4i1Ladnz22Wfi6OgoAOTxxx/X682YN2+eBAUFFXiNoKAgmT9/fsU1QgzbjodFRUWJi4uLrF69usLiv6+k7bjfK+Hq6ipr166V48ePy8SJE8XGxkYiIyMLPbYxzyuRsv+MvP7661K/fn29MiWcW4mJieLi4iKhoaGSlpYmqampMnbsWAEgr776qm6/JUuWyN69e+XUqVO6P2xGjhxZoW0wdDu+++47ASC1atWSH3/8UY4dOyYDBw4UNzc3SUpKMlqs93uRLly4UOJjP/PMMzJ58mTd844dO0r9+vX1emKmTp2qOwc3b94sLi4ukpycbPD4RURCQkJ0PTL3AZCJEyc+8nXeeOMNvT/UPT09ZdGiRbrnubm5UqtWLV0yEx4eLgAkNja2xG15WJUfAKxSqfSeHzlyBCdPnkTDhg2RlZVVIa959uxZhISEYObMmejevXuFvEZp2pWcnIzevXujQYMGmDVrVqHHu3r1Knbt2oWRI0dWSLxFKWk7Bg8ejBMnTmDfvn0ICgpC//79kZmZWeRxAO3t5QsrrwiGasd98fHx6NWrF1588UWMGjWqwuO/71HtyM/PB6AdzPzKK6+gefPmWLp0KerVq4e1a9cWOJ6pziugdD8jGRkZ+PbbbwuN09zPLXd3d/zwww/Yvn07nJycoFarodFo0KJFC92YMgB488030bFjRzRp0gSjRo3CihUrsGbNGiQlJSmmHffPv3fffRcvvPACWrZsiXXr1hUYtF3RsZ48eRK+vr6oW7duofvn5eVh3rx5aNKkCdzc3ODk5ISwsDBcuXJFb7snn3xS77WCg4Nx8eJF5OXloXv37vD390ft2rUxZMgQbNiwocSDj8vzvVfYuLYVK1agVatWcHd3h5OTE1avXq1ri0ajwY0bN/DEE0/otre0tETLli11z5s2bYquXbuicePGePHFF7F69WrcuXOnRG25r8oOAK5Tpw5UKlWBWS+1a9cGANjb21fI60ZERKBLly4YPXo0pk+fbvDjl7ZdKSkp6NWrF5ycnLB169YiB3OtW7cObm5uRhvYVtp23J9JEhQUhCeffBLVq1fH1q1bMXDgQHh5eRU64+HmzZvw9PSsuEbAsO24Lz4+Hp07d0ZwcDBWrVpVofHfV9J2eHt7AwAaNGigt139+vUL/KIGjH9eAWX72f/xxx+Rnp6OoUOH6pUr5dzq0aMHoqOjcevWLVhZWaFatWrw8vJCYGBgkcd/8sknAQBRUVFwc3OrgBZoGbIdhZ1/tra2qF27dqHnX0XF+qjvj8WLF2Pp0qVYtmwZGjduDEdHR0ycOLFUMxOdnZ1x/Phx7N27F2FhYZg5cyZmz56No0ePFjmV2hDfe46OjnrPN23ahDfffBOLFy9GcHAwnJ2dsWjRIvzzzz962z2cQMkDd1KytLTE77//joMHDyIsLAyffvop3n33Xfzzzz/FnqMPqrI9M25ubujevTuWL1+OtLQ0o7zm2bNn0blzZwwbNgzz5s2rkNcoTbuSk5PRo0cP2NjYYNu2bbCzsyt0OxHBunXrMHToUKONXC/v5yMiur8wgoODodFocOTIEV39P//8A41Gg7Zt2xos5sIYsh0AcO3aNXTq1AktWrTAunXr9GaiVKSStiMgIAA+Pj64cOGCXnlkZCT8/f31ykxxXgFl+0zWrFmDPn36wN3dXa9caedWjRo1UK1aNfz5559ITEwsNok8ceIEgP8lCBXFkO1o2bIlbG1t9c6/nJwcxMbGFjj/KjLWJk2a4OrVq0VOad6/fz9CQkLw8ssvo2nTpqhduzYuXrxYYLvDhw8XeB4UFKTribKyskK3bt2wcOFCnD59GrGxsbqZXuWJvzT279+Ptm3b4o033kDz5s1Rp04dREdH6+rVajU8PT31fkby8vJ059d9KpUK7dq1w5w5c3DixAnY2Nhg69atJQ+kzBeoKoGoqCjx9PSUxx9/XDZu3CgRERFy/vx5+frrr8XT01MmTZokIiIJCQly4sQJWb16tQCQv/76S06cOKF3Dfby5cty4sQJmTNnjjg5OcmJEyfkxIkTugFMZ86cEXd3dxk8eLAkJCToHomJiSZpV3JysrRp00YaN24sUVFRejHl5ubqHe+PP/4QABIREWHwWMvbjujoaJk/f74cO3ZMLl++LAcPHpSQkBBxdXWVGzdu6I7Vq1cvadKkiRw6dEgOHTokjRs3lmeffVZR7bh27ZrUqVNHunTpIlevXtX7zMylHSIiS5cuFRcXF/nhhx/k4sWLMn36dLGzsysw/sdU51Vp2iIicvHiRVGpVLJz585Cj2Xu55aIyNq1a+XQoUMSFRUlX3/9tbi6uuq18eDBg7JkyRI5ceKEXLp0Sb7//nvx8fGRPn36KKodIiKhoaFSs2ZN2bVrl5w/f15GjhwpHh4ecvv2baPG2qlTJ2nUqJGEhYXJpUuXZMeOHbpzaOLEieLn5ycHDhyQiIgIGTVqlN6AWJH/DQB+88035fz58/Ltt9+Ko6OjrFixQkREtm/fLh9//LGcOHFCYmNj5fPPPxcLC4tHDnYuafxFjZnZunWrXtmyZcvExcVFfvvtN7lw4YJMnz5dXFxcpGnTprpt5s6dK25ubvLTTz/J+fPnZezYseLi4iJ9+/YVEe1Ynnnz5snRo0fl8uXLupm19wdMl0SVTmZEtKOox40bJ4GBgWJtbS1OTk7yxBNPyKJFiyQtLU1ERGbNmqU3Te3+Y926dbrjDBs2rNBt9uzZU+wx/P39TdKu+4OZC3vExMToHWvgwIHStm3bComzvO24du2aPP300+Lh4SHW1tbi6+srgwYNKjAtNikpSQYPHizOzs7i7OwsgwcPLnYgtzm2Y926dUV+ZubSjvsWLFggvr6+4uDgIMHBwYXOZjLleSVS8rZMmzZNfH19JS8vr9DjmPu5JaIdOOrp6SnW1tYSFBQkixcv1htYGh4eLm3atBG1Wi12dnZSr149mTVrlt77oIR2iGin+k+ePFk8PDzE2dlZunXrZrDZTKWJNSkpSV555RVxc3MTOzs7adSokfzyyy+6upCQEHFychIPDw+ZPn16ganKHTt2lDfeeEM386d69eryzjvv6Nq7f/9+6dixo1SvXl3s7e2lSZMmejOIyht/SZOZzMxMGT58uKjVaqlWrZq8/vrr8s477+glMzk5OTJu3DhdO6ZOnSovvviiDBgwQES0Sxz07NlT3N3dxdbWVurWrSuffvppST8OERFR3QuQiIiIzESnTp3QrFkzLFu2zNShGFx+fj7q16+P/v374/333zfIMavsAGAiIiKqeJcvX0ZYWBg6duyIrKwsLF++HDExMRg0aJDBXqPKDgAmIiKiimdhYYH169ejdevWaNeuHf7991/88ccfqF+/vsFeg5eZiIiISNHYM0NERESKxmSGiIiIFI3JDBERESkakxkiIiJSNCYzREREpGhMZoiIiEjRmMwQERGRojGZISIiIkVjMkNERESK9v9M2sjlP34lcgAAAABJRU5ErkJggg==", "text/plain": "
"}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "diference-estimated-found-predicted-2023"}}, "output_type": "display_data"}} \ No newline at end of file +{"data-summ-q3": {"data": {"text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The number of different locations and cities for the data. Note that there are 31 different municipalitites in all.
 before may 2021after may 2021
Number of cities2119
Number of locations4823
Total objects57,62314,703
\n", "text/plain": ""}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "data-summ-q3"}}, "output_type": "display_data"}, "testing_training_chrono_2": {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAGsCAYAAACFCz5gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+UElEQVR4nO29eXxU9b3//5osM9kmE7IHshBZBAQs4kKgClhBqLWgfr3WnVt7i3Vprfa21WrFVsXaVutPb7229aJe22q9dau1ClZBLaCAQfbVhLAkJIRkZhKSmWRyfn+8czJLZiazz5mZ1/PxiDjnnDnzOTPnfD6vz3v76BRFUUAIIYQQEgZp8W4AIYQQQhIfCgpCCCGEhA0FBSGEEELChoKCEEIIIWFDQUEIIYSQsKGgIIQQQkjYUFAQQgghJGwy4t2AaDMwMIBjx47BaDRCp9PFuzmEEEJIwqAoCqxWK0aPHo20NP82iKQXFMeOHUNVVVW8m0EIIYQkLIcPH0ZlZaXfY5JeUBiNRgDyZeTn58e5NYQQQkjiYLFYUFVVNTSW+iPpBYXq5sjPz6egIIQQQkIgkJABBmUSQgghJGziKiiefvppTJ8+fch6UFdXh3/84x9D+5ctWwadTuf2N2vWrDi2mBBCCCHeiKvLo7KyEo888gjGjx8PAHj++eexZMkS1NfX44wzzgAALFq0CKtWrRp6j16vj0tbCSGEEOKbuAqKSy+91O31Qw89hKeffhobN24cEhQGgwHl5eVRb4vD4UBfX1/UP4eQQMnMzER6enq8m0EIIQGhmaBMh8OBV155Bd3d3airqxvavnbtWpSWlqKgoABz587FQw89hNLSUp/nsdlssNlsQ68tFovfz1UUBS0tLejs7Az7GgiJNAUFBSgvL2cNFRIStjZA1wooZkBXACglgKEk3q0iyUrcBcX27dtRV1eH3t5e5OXl4bXXXsOUKVMAAIsXL8aVV16JmpoaNDQ04L777sOFF16ILVu2wGAweD3fypUr8cADDwT8+aqYKC0tRU5ODjtuogkURcGpU6fQ2toKAKioqIhzi0iiYW8EMpcDaaud2xwLAfszgH5svFpFkhmdoihKPBtgt9vR1NSEzs5O/PWvf8Uf/vAHrFu3bkhUuNLc3Iyamhq89NJLuPzyy72ez5uFoqqqCmazeVjaqMPhwL59+1BaWoqioqLIXhghEaC9vR2tra2YOHEi3R9JitUGHLEAVjtg1AOV+YDR+3wpYGxtQOZ17mJCxbEQ6H+RlgoSGBaLBSaTyesY6kncLRR6vX4oKPPss8/Gpk2b8MQTT+CZZ54ZdmxFRQVqamqwf/9+n+czGAw+rReeqDETOTk5IbSckOij3pt9fX0UFElIkxl4dTdwvNu5rSwXuHwyUG0K/by6Vu9iAgDSVwOOVgAUFCTCaK4OhaIobhYGV9rb23H48OGIm3/p5tAujgGgpw/otsu/joF4tyi28N5MXqy24WICkNev7pb9oaKYw9tPSCjE1UJxzz33YPHixaiqqoLVasVLL72EtWvX4p133kFXVxdWrFiBK664AhUVFWhsbMQ999yD4uJiXHbZZfFsNokRtn6gsxfocxERmWlAQRZgiLttjZDwOGIZLiZUjnfL/skhWhF0I1g3RtpPSCjEtVs+fvw4rr/+ejQ3N8NkMmH69Ol45513sGDBAvT09GD79u144YUX0NnZiYqKCsyfPx8vv/xyQDXFkwXHAGB3AAMKkKYD9OlAepztSmvXrsXu3bvxne98J2qf4RgYLiYAed3ZCxTnxP97ICQcrPbw9vtDKZVYiXQfMRSK70Q5QkImroLi2Wef9bkvOzsb7777bgxboz18zdCvvGQezprxJfzmN7+JyueuXbsW8+fPR0dHBwoKCtz2NTQ04LrrrsPrr78elc9WsTuGiwmVvkGRlU1BQRIY4wg1+kba7w9DiWRzYLm7qHAsBBzPMCCTRAcajjWKvxl6/wAQj9wcu92Oq6++Gr///e9x9tlnR/WzBka4vpH2E6J1KvMlANOb26MsV/aHg34sYHtRAjAVs7g5lFKKCRI9KCgiQDTSvvzN0BUAjjAH1FBcKXq9Hhs3bgzvgwMkbYRYxJH2E6J1jAbJ5vCV5RFuHwIMigcKCBIjaDQOkyYz8Gw98MI24LU98u+z9bI9HEaagbtaKF588UWcffbZMBqNKC8vxzXXXDNUEEll586duOSSS5Cfnw+j0Yg5Xz4fW3YeREcv0N4DnDglLhZfrF+/HhdccAGys7NRVVWF7373u+judvaCY8eOxYMPPogbbrgBeXl5qKmpwRtvvIG2tjYsWbIEeXl5mDZtGjZv3jz0nvb2dlx99dWorKxETk4Opk2bhj//+c8AROCo7p2f/vC7eOi+H2JqTSHOmlCO3zyyAnpmUJIkoNoE3DQDuGE6cNkk+femGeGljBISLygowiCaaV8jzcBdswntdjt+/vOf4/PPP8frr7+OhoYGLFu2bGj/0aNHccEFFyArKwtr3nsf7364BVde9004HE4FoQY7ekvL3L59Oy6++GJcfvnl2LZtG15++WV8/PHHuO2229yOe/zxxzFnzhzU19fjkksuwfXXX48bbrgB1113HT777DOMHz8eN9xwA9Raar29vZg5cybeeust7NixA9/+9rdx/fXX45NPPkH6YDaHDsD//fl55OTm4m/vf4L7fv4oHnvkZ3j/n2uC/UoJ0SRGg2RznDtG/o2EZYKQeBD3SpnRxl+Vr97eXjQ0NKC2thZZWVlBn3t3m1gkfHHD9NDTvhwDYjXw5vb4t0vm4ZyzvoQnnviN1/du2rQJ5557LqxWK/Ly8nDPPffgpZdewt69e9GPTLT3+P7comzgk3+5B2XecMMNyM7Odis29vHHH2Pu3Lno7u5GVlYWxo4di/PPPx//+7//C0BKmldUVOC+++7Dz372MwDAxo0bUVdXh+bmZp8Lvl1yySWYPHkyfvWrXwEA5s6bh/5+B1a//9GQa6Zu1rm48MIL8cgjjwTwTSY24d6jhBASDsFUyqSFIgyimfalztAzPX6hzDQgI83dQlFfX48lS5agpqYGRqMR8+bNAwA0NTUBALZu3Yrzzz8fmZmZIQU7btmyBc899xzy8vKG/i6++GIMDAygoaFh6Ljp06cP/X9ZWRkAYNq0acO2qe4Yh8OBhx56CNOnT0dRURHy8vKwevXqoXYDYqH40pnTkasHsjPle6moqBjm0iGEEBJfGJQZBtFM+wKkeFNxzvDgSVd3SHd3NxYuXIiFCxfixRdfRElJCZqamnDxxRfDbhdFk52dPXR8KMGOAwMDWL58Ob773e8O21ddXT30/5mZmUP/r1Z49LZtYEDMLr/+9a/x+OOP4ze/+Q2mTZuG3Nxc3HHHHUPt9nZe9TzqOQghhGgDCoowiHbaFyAzcn/1Fvbs2YMTJ07gkUceQVVVFQC4BT4CYjl4/vnn0dfXB316JjLTvLtSMtPgNdjxrLPOws6dO4fWXIkUH330EZYsWYLrrrsOgAiN/fv3Y/LkyRH9HEIIIdGHLo8wUNO+ynLdt0cy7Wskqqurodfr8eSTT+KLL77Am2++iZ///Odux9x2222wWCz4xje+gfrPNuPE4f14/eX/xcH9e4eOUUtae0sd/dGPfoQNGzbg1ltvxdatW7F//368+eabuP3228Nq+/jx47FmzRqsX78eu3fvxvLly9HS0hLWOQkhhMQHCoowiXfaV0lJCZ577jm88sormDJlCh555JGhgEaVoqIivP/+++jq6sLcuXNRd95MvPy/v0dJXiZGZUkgZnGO7/Uxpk+fjnXr1mH//v04//zzMWPGDNx3331hL9J233334ayzzsLFF1+MefPmoby8HEuXLg3rnIQQQuIDszwYQU80DO9RQkg8YZYHIYQQQmIKBQUhhBBCwoaCghBCCCFhQ0FBCCGEkLChoCCEEEJI2FBQEEIIISRsKCgIIYQQEjYUFIQQQggJGwqKFKOxsRE6nQ5bt24FAKxduxY6nQ6dnZ0+3/Pcc8+hoKAgJu0jhBCSmFBQpDizZ89Gc3MzTKYY1QqPACtWrMCXvvSliJxr2bJlLPdNCCERgKuNpjh6vR7l5eXxbgYhhJAEhxaKSNABYA+ATwDsHXwdZf7v//4P06ZNQ3Z2NoqKinDRRRehu7sbAwMD+NnPfobKykoYDAZ86UtfwjvvvOPzPN5cHs899xyqq6uRk5ODyy67DO3t7X7bsn37dqSlpeHEiRMAgI6ODqSlpeHKK68cOmblypWoq6sDADgcDtx0002ora1FdnY2Tj/9dDzxxBPD2nXuueciNzcXBQUFmDNnDg4dOoTnnnsODzzwAD7//HPodDrodDo899xzAACz2Yxvf/vbKC0tRX5+Pi688EJ8/vnnPtu9YsUKPP/883jjjTeGzrV27VoAwNGjR3HVVVdh1KhRKCoqwpIlS9DY2Dj03k2bNmHBggUoLi6GyWTC3Llz8dlnn7mdX6fT4ZlnnsHXvvY15OTkYPLkydiwYQMOHDiAefPmITc3F3V1dTh48KDf75cQQhIBCopwOQzgGwAmA5gFYNLg68PR+8jm5mZcffXV+OY3v4ndu3dj7dq1uPzyy6EoCp544gn8+te/xq9+9Sts27YNF198Mb7+9a9j//79AZ37k08+wTe/+U3ccsst2Lp1K+bPn48HH3zQ73umTp2KoqIirFu3DgDw4YcfoqioCB9++OHQMWvXrsXcuXMBAAMDA6isrMRf/vIX7Nq1Cz/96U9xzz334C9/+QsAoL+/H0uXLsXcuXOxbds2bNiwAd/+9reh0+lw1VVX4a677sIZZ5yB5uZmNDc346qrroKiKLjkkkvQ0tKCt99+G1u2bMFZZ52Fr3zlKzh58qTXdv/gBz/Av/3bv2HRokVD55o9ezZOnTqF+fPnIy8vDx9++CE+/vhj5OXlYdGiRbDb7QAAq9WKG2+8ER999BE2btyICRMm4Ktf/SqsVqvbZ/z85z/HDTfcgK1bt2LSpEm45pprsHz5ctx9993YvHkzAFlenhBCEh4lyTGbzQoAxWw2D9vX09Oj7Nq1S+np6Qnt5CcVRVmoKAq8/C0c3B8FtmzZogBQGhsbh+0bPXq08tBDD7ltO+ecc5RbbrlFURRFaWhoUAAo9fX1iqIoygcffKAAUDo6OhRFUZSrr75aWbRokdv7r7rqKsVkMvlt0+WXX67cdtttiqIoyh133KHcddddSnFxsbJz506lr69PycvLU/7xj3/4fP8tt9yiXHHFFYqiKEp7e7sCQFm7dq3XY++//37lzDPPdNv2z3/+U8nPz1d6e3vdto8bN0555plnfH7ujTfeqCxZssRt27PPPqucfvrpysDAwNA2m82mZGdnK++++67X8/T39ytGo1H529/+NrQNgHLvvfcOvd6wYYMCQHn22WeHtv35z39WsrKyfLYv7HuUEELCwN8Y6gktFOFwHMBqH/tWD+6PAmeeeSa+8pWvYNq0abjyyivx+9//Hh0dHbBYLDh27BjmzJnjdvycOXOwe/fugM69e/fuIdeEiuvrpqYm5OXlDf09/PDDAIB58+YNuQvWrVuH+fPn44ILLsC6deuwadMm9PT0uLXrv//7v3H22WejpKQEeXl5+P3vf4+mpiYAQGFhIZYtW4aLL74Yl156KZ544gk0Nzf7bfeWLVvQ1dWFoqIit/Y1NDTg4MGDPtvt61wHDhyA0WgcOr6wsBC9vb1D7onW1lbcfPPNmDhxIkwmE0wmE7q6uoauQWX69OlD/19WVgYAmDZtmtu23t5eWCwWv9dHCCFah0GZ4WAOc3+IpKenY82aNVi/fj1Wr16NJ598Ej/5yU+wZs0aAOK7d0VRlGHbfKEoit/9o0ePHko5BWTwB0RQfO9738OBAwewY8cOnH/++Th48CDWrVuHzs5OzJw5E0ajEQDwl7/8Bd///vfx61//GnV1dTAajfjlL3+JTz75ZOi8q1atwne/+1288847ePnll3HvvfdizZo1mDVrltd2DQwMoKKiYkjUuFJQUICCggKv7fZ1rpkzZ+KPf/zjsH0lJSUAJDukra0Nv/nNb1BTUwODwYC6urohl4hKZmbm0P+rv4G3bQMDAz7bQwghiQAFRTiMlGkZxUxMnU6HOXPmYM6cOfjpT3+Kmpoa/POf/8To0aPx8ccf44ILLhg6dv369Tj33HMDOu+UKVOwceNGt22urzMyMjB+/Phh71PjKB588EGceeaZyM/Px9y5c7Fy5Up0dHQMxU8AwEcffYTZs2fjlltuGdrmLTBxxowZmDFjBu6++27U1dXhT3/6E2bNmgW9Xg+Hw+F27FlnnYWWlhZkZGRg7NixXq/NW7t9nevll18eCu70xkcffYTf/va3+OpXvwoAOHz48FBQKiGEpCJ0eYRDGYCFPvYtHNwfBT755BM8/PDD2Lx5M5qamvDqq6+ira0NkydPxn/+53/iF7/4BV5++WXs3bsXP/7xj7F161Z873vfC+jcqlXg0Ucfxb59+/DUU0/5zRJR0el0uOCCC/Diiy9i3rx5AMTcb7fb8c9//nNoGyAD++bNm/Huu+9i3759uO+++7Bp06ah/Q0NDbj77ruxYcMGHDp0CKtXr8a+ffswefJkAMDYsWPR0NCArVu34sSJE7DZbLjoootQV1eHpUuX4t1330VjYyPWr1+Pe++9dyj40Rtjx47Ftm3bsHfvXpw4cQJ9fX249tprUVxcjCVLluCjjz5CQ0MD1q1bh+9973s4cuTI0DX87//+L3bv3o1PPvkE1157LbKzswP6jgkhJCmJekRHnIlqUKaiKEqTMjwwc+Hg9iixa9cu5eKLL1ZKSkoUg8GgTJw4UXnyyScVRVEUh8OhPPDAA8qYMWOUzMxM5cwzz3QLhhwpKFNRJCixsrJSyc7OVi699FLlV7/61YhBmYqiKE8++aQCQHnrrbeGti1ZskRJT093+/57e3uVZcuWKSaTSSkoKFC+853vKD/+8Y+HAi1bWlqUpUuXKhUVFYper1dqamqUn/70p4rD4Rh6/xVXXKEUFBQoAJRVq1YpiqIoFotFuf3225XRo0crmZmZSlVVlXLttdcqTU2+f4zW1lZlwYIFSl5engJA+eCDDxRFUZTm5mblhhtuUIqLixWDwaCcdtppyn/8x38MXcdnn32mnH322YrBYFAmTJigvPLKK0pNTY3y+OOPD50bgPLaa6/5/O59ff+uMCiTEBJPggnK1CnKCE7zBMdiscBkMsFsNg8zX/f29qKhoQG1tbXIysoK/UM6IAGYZoibowzAqNBPR4hKxO5RQggJAX9jqCeMoYgEo0ABQQghJKVhDAUhhBBCwoaCghBCCCFhQ0FBCCGEkLChoCCEEEJI2FBQgFUKiXbhvUkISRRSOstDr9cjLS0Nx44dQ0lJCfR6fcAlqgmJJoqiwG63o62tDWlpadDr9fFuEiGE+CWlBUVaWhpqa2vR3NyMY8eOxbs5hAwjJycH1dXVSEujMZEQom1SWlAAYqWorq5Gf3//sDUdCIkn6enpyMjIoNWMEJIQpLygAGQdiszMTLdVIAkhhBASOLSjEkIIISRs4ioonn76aUyfPh35+fnIz89HXV0d/vGPfwztVxQFK1aswOjRo5GdnY158+Zh586dcWwxIYQQQrwRV0FRWVmJRx55BJs3b8bmzZtx4YUXYsmSJUOi4dFHH8Vjjz2Gp556Cps2bUJ5eTkWLFgAq9Uaz2YTQgghxAPNrTZaWFiIX/7yl/jmN7+J0aNH44477sCPfvQjAIDNZkNZWRl+8YtfYPny5QGdL5iV0gghhBDiJJgxVDMxFA6HAy+99BK6u7tRV1eHhoYGtLS0YOHChUPHGAwGzJ07F+vXr/d5HpvNBovF4vZHCCGEkOgSd0Gxfft25OXlwWAw4Oabb8Zrr72GKVOmoKWlBQBQVlbmdnxZWdnQPm+sXLkSJpNp6K+qqiqq7SeEEEKIBgTF6aefjq1bt2Ljxo34zne+gxtvvBG7du0a2u+Zg68oit+8/Lvvvhtms3no7/Dhw1FrOyGEEEKEuNeh0Ov1GD9+PADg7LPPxqZNm/DEE08MxU20tLSgoqJi6PjW1tZhVgtXDAYDDAZDdBtNCCGEEDfibqHwRFEU2Gw21NbWory8HGvWrBnaZ7fbsW7dOsyePTuOLSSEEEKIJ3G1UNxzzz1YvHgxqqqqYLVa8dJLL2Ht2rV45513oNPpcMcdd+Dhhx/GhAkTMGHCBDz88MPIycnBNddcE89mE0JIVLHagCMWwGoHjHqgMh8w0vBKNE5cBcXx48dx/fXXo7m5GSaTCdOnT8c777yDBQsWAAB++MMfoqenB7fccgs6Ojpw3nnnYfXq1TAajfFsNiGERI0mM/DqbuB4t3NbWS5w+WSg2hS/dhEyEpqrQxFpWIeCEJIoWG3As/XuYkKlLBe4aQYtFSS2JGQdCkIISXWOWLyLCUC2H2FZHaJhKCgIIUQjWO3h7ScknlBQEEKIRjDqw9tPSDyhoCCEEI1QmS+xEt4oy5X9hGgVCgpCCNEIRoNkc3iKCjXLgwGZRMvEvVImIYQQJ9UmyeZgHQqSaFBQEEKIxjAagMkl8W4FIcFBlwchhBBCwoaCghBCCCFhQ0FBCCGEkLChoCCEEEJI2FBQEEIIISRsKCgIIYQQEjYUFIQQQggJGwoKQgghhIQNBQUhhBBCwoaCghBCCCFhQ0FBCCGEkLChoCCEEEJI2HBxMI1htXGVQUIIIYkHBYWGaDIDr+4Gjnc7t5XlApdPliWNCSGEEK1Cl4dGsNqGiwlAXr+6W/YTQgghWoWCQiMcsQwXEyrHu2U/IYQQolUoKDSC1R7efkIIISSeUFBoBKM+vP2EEEJIPKGg0AiV+RKA6Y2yXNlPCCGEaBUKijhjtQG724A9J4C5NUBhtvt+NcuDqaOEEEK0DNNG44hnmmi6DpheKsICYB0KQgghiQMFRZzwlibqUID648CxLuCmGRQShBBCEge6POIE00QJIYQkExQUcYJpooQQQpIJCoo4wTRRQgghyQQFRZxgmighhJBkgoIiThgNkg7qKSqYJkoIISQRYZZHHKk2STYHlysnhBCS6FBQxBmjAZhcEu9WEEIIIeFBlwchhBBCwoaCghBCCCFhQ0FBCCGEkLChoCCEEEJI2FBQEEIIISRs4iooVq5ciXPOOQdGoxGlpaVYunQp9u7d63bMsmXLoNPp3P5mzZoVpxYTQgghxBtxFRTr1q3Drbfeio0bN2LNmjXo7+/HwoUL0d3tvmrWokWL0NzcPPT39ttvx6nFhBBCCPFGXOtQvPPOO26vV61ahdLSUmzZsgUXXHDB0HaDwYDy8vJYN48QQgghAaKpGAqz2QwAKCwsdNu+du1alJaWYuLEifiP//gPtLa2+jyHzWaDxWJx+yOEEEJIdNEpiqLEuxEAoCgKlixZgo6ODnz00UdD219++WXk5eWhpqYGDQ0NuO+++9Df348tW7bAYBheo3rFihV44IEHhm03m83Iz+eKW4QQQkigWCwWmEymgMZQzQiKW2+9FX//+9/x8ccfo7Ky0udxzc3NqKmpwUsvvYTLL7982H6bzQabzTb02mKxoKqqioKCEEIICZJgBIUm1vK4/fbb8eabb+LDDz/0KyYAoKKiAjU1Ndi/f7/X/QaDwavlghBCCCHRI66CQlEU3H777Xjttdewdu1a1NbWjvie9vZ2HD58GBUVFTFoISGEEEICIa5BmbfeeitefPFF/OlPf4LRaERLSwtaWlrQ09MDAOjq6sIPfvADbNiwAY2NjVi7di0uvfRSFBcX47LLLotn0wkhhBDiQlxjKHQ6ndftq1atwrJly9DT04OlS5eivr4enZ2dqKiowPz58/Hzn/8cVVVVAX1GMP4fQgghhDhJmBiKkbRMdnY23n333Ri1hhBCCCGhoqk6FIQQQghJTDSR5ZGqWG3AEQtgtQNGPVCZDxiZoEIIISQBoaCIE01m4NXdwHGXZUvKcoHLJwPVpvi1ixBCCAkFujzigNU2XEwA8vrV3bKfEEIISSQoKOLAEctwMaFyvFv2E0IIIYkEBUUcsNrD208IIYRoDQqKOGDUh7efEEII0RoUFHGgMl8CML1Rliv7CSGEkESCgiIOGA2SzeEpKtQsD6aOEkIISTSYNhonqk3ATTNYh4IQQkhyQEERR4wGYHJJvFtBCCGEhA9dHoQQQggJGwoKQgghhIQNXR6ERAmu1UIISSUoKAiJAlyrhRCSatDlQUiE4VothJBUhIKCkAjDtVoIIakIBQUhEYZrtRBCUhEKCkIiDNdqIYSkIhQUhEQYrtVCCElFKCgIiTBcq4UQkoowbZSQKMC1WgghqQYFBSFRgmu1EEJSCbo8CCGEEBI2FBSEEEIICRsKCkIIIYSEDQUFIYQQQsKGgoIQQgghYUNBQQghhJCwoaAghBBCSNhQUBBCCCEkbCgoCCGEEBI2FBSEEEIICRsKCkIIIYSEDQUFIYQQQsKGgoIQQgghYUNBQQghhJCwoaAghBBCSNhkxLsBhISD1QYcsQBWO2DUA5X5gNEQ71YRQkjqQUFBEpYmM/DqbuB4t3NbWS5w+WSg2hS/dhFCSCpClwdJSKy24WICkNev7pb9hBBCYgcFBUlIjliGiwmV492ynxBCSOyIq6BYuXIlzjnnHBiNRpSWlmLp0qXYu3ev2zGKomDFihUYPXo0srOzMW/ePOzcuTNOLSZawWoPbz8hhJDIEldBsW7dOtx6663YuHEj1qxZg/7+fixcuBDd3c6p56OPPorHHnsMTz31FDZt2oTy8nIsWLAAVqs1ji0n8caoD28/IYSQyKJTFEWJdyNU2traUFpainXr1uGCCy6AoigYPXo07rjjDvzoRz8CANhsNpSVleEXv/gFli9fPuwcNpsNNpvTgW6xWFBVVQWz2Yz8/PyYXQuJLlYb8Gy9d7dHWS5w0wxmexBCSLhYLBaYTKaAxlBNxVCYzWYAQGFhIQCgoaEBLS0tWLhw4dAxBoMBc+fOxfr1672eY+XKlTCZTEN/VVVV0W84iTlGg2RzlOW6b1ezPCgmCCEktmgmbVRRFNx555348pe/jKlTpwIAWlpaAABlZWVux5aVleHQoUNez3P33XfjzjvvHHqtWihI8lFtEksE61AQQkj80YyguO2227Bt2zZ8/PHHw/bpdDq314qiDNumYjAYYDBwREkVjAZgckm8W0EIIUQTguL222/Hm2++iQ8//BCVlZVD28vLywGIpaKiomJoe2tr6zCrBYkOrERJCCEkEOIqKBRFwe23347XXnsNa9euRW1trdv+2tpalJeXY82aNZgxYwYAwG63Y926dfjFL34RjyanFKxESQghJFDiGpR566234sUXX8Sf/vQnGI1GtLS0oKWlBT09PQDE1XHHHXfg4YcfxmuvvYYdO3Zg2bJlyMnJwTXXXBPPpic9rERJCCEkGOJqoXj66acBAPPmzXPbvmrVKixbtgwA8MMf/hA9PT245ZZb0NHRgfPOOw+rV6+G0WiMcWtTi0AqUTJ2gRBCiIqm6lBEg2ByaImTT48Cr+3xvf+yScC5Y2LXHkIIIbEnYetQEO3ASpSEEEKCgYKCeKUyf3jRKJWyXNlPCCGEqFBQEK+wEiUhhJBgCDko89NPP8XatWvR2tqKgYEBt32PPfZY2A0j8YeVKAkhhARKSILi4Ycfxr333ovTTz8dZWVlblUrfVWwJIkJK1ESQggJhJAExRNPPIH/+Z//GUrtJImNrQ3QtQKKGdAVAEoJYKCIIIQQEgQhxVCkpaVhzpw5kW4LiQP2RiDzOkA/FTDMAfRnABnXyXZCCCEkUEISFN///vfxX//1X5FuC4kxtjYgYzmQttp9e/pqIH257CeEEEICISSXxw9+8ANccsklGDduHKZMmYLMzEy3/a+++mpEGkeii651uJhQSV8NOFoB0PVBCCEkAEISFLfffjs++OADzJ8/H0VFRQzETFAUc3j7CSGEEJWQBMULL7yAv/71r7jkkksi3R4SQ3QjrBg60n5CCCFEJaQYisLCQowbNy7SbSExRikFHAu973MslP2EEEJIIIQkKFasWIH7778fp06dinR7SAwxlACOZ4aLCsdC2c7UUUIIIYES0mqjM2bMwMGDB6EoCsaOHTssKPOzzz6LWAPDhauNjoxbHQqTWCYoJgghhAQzhoYUQ7F06dJQ3kY0iqEEzOYghBASFkFZKPbt24eJEydGsz0RhxYKQoiWsdqiv15OLD6DJCdRs1DMmDED1dXV+PrXv46lS5eirq4urIYSQkgq02QGXt0NHO92blNX9K2OUJZVLD6DECDIoMz29nY8+uijaG9vx2WXXYaysjLcdNNNePPNN9Hb2xutNhJCSNJhtQ0f6AF5/epu2Z8In0GISlCCIisrC5deein+8Ic/oLm5Ga+99hpKSkrw4x//GEVFRViyZAn+53/+B62trdFqLyGEJAVHLMMHepXj3bI/ET6DEJWQ0kYBWaZ89uzZeOSRR7Br1y5s3boVF1xwAZ577jlUVVVxrY84YbUBu9uAT4/Kv5yBEKJNrPbw9mvlMwhRCSnLwxsTJkzAXXfdhbvuugvt7e04efJkpE5NAoS+UkISB6M+vP1a+QxCVEKyUDz//PP4+9//PvT6hz/8IQoKCjB79mwcOnQIRUVFmDBhQsQaSUaGvlJCEovKfBH83ijLlf2J8BmEqIQkKB5++GFkZ2cDADZs2ICnnnoKjz76KIqLi/H9738/og0kgaEFXyndLYQEjtEg1kPPAV+1KkYirTMWn0GISkguj8OHD2P8+PEAgNdffx3/7//9P3z729/GnDlzMG/evEi2jwRIvH2ldLcQEjzVJuCmGdGtERGLzyAECNFCkZeXh/b2dgDA6tWrcdFFFwGQLJCenp7ItY4ETDx9pXS3EBI6RgMwuQQ4d4z8G42BPhafQUhIFooFCxbgW9/6FmbMmIF9+/YNLWO+c+dOjB07NpLtSynCqWan+kq9uT2i7SsNxN0ymaW9CSEkqQlJUPzXf/0X7r33Xhw+fBh//etfUVRUBADYsmULrr766og2MFUI12Wg+kp9nSOaM5J4u1sIIYTEn5BWG00kEmEtD6sNeLbet3XhphmBC4J41Ozf3Qa8sM33/hum00JBCCGJSNRXG121ahXy8vJw5ZVXum1/5ZVXcOrUKdx4442hnDZliaTLQPWVxpJ4ulsIIYRog5CCMh955BEUFxcP215aWoqHH3447EalGonuMmBqGiGE+CZVUupDslAcOnQItbW1w7bX1NSgqakp7EalGslQzY6padGHS1ATknikUkp9SIKitLQU27ZtG5bR8fnnnw8FaJLASRaXQTzcLalCKnVKhCQLI6XUBxMflwiE5PL4xje+ge9+97v44IMP4HA44HA48P777+N73/sevvGNb0S6jUkPXQbEH6zzQUhiooUKxrEkJAvFgw8+iEOHDuErX/kKMjLkFA6HAzfeeCNjKEKELgPiC9b5ICQxSfT4uGAJSVDo9Xq8/PLLePDBB1FfX4/s7GxMnz4dNTU1kW5fSkGXAfFGqnVKhCQLyRAfFwwhL1/+7LPP4vHHH8f+/fsByPLld9xxB771rW9FrHGEkNTrlAhJFpIlPi5QQhIU9913Hx5//HHcfvvtqKurAyCrjn7/+99HY2MjHnzwwYg2kpBUJtU6JUKShXhWMI4HIVXKLC4uxpNPPjmszPaf//xn3H777Thx4kTEGhguiVApk5CRYJYHIYlLIqd8R71SpsPhwNlnnz1s+8yZM9Hf3x/KKQkhfmDQLiGJS6rEx4WUNnrdddfh6aefHrb9d7/7Ha699tqwG0UIGQ6XoCaEaJmwgjJXr16NWbNmAQA2btyIw4cP44YbbsCdd945dNxjjz0WfisJIYQQomlCslDs2LEDZ511FkpKSnDw4EEcPHgQJSUlOOuss7Bjxw7U19ejvr4eW7du9XueDz/8EJdeeilGjx4NnU6H119/3W3/smXLoNPp3P5UAUMIIalOqqwRQRKDkCwUH3zwQUQ+vLu7G2eeeSb+/d//HVdccYXXYxYtWoRVq1YNvdbrmSNHCCEM1CVaI2SXRyRYvHgxFi9e7PcYg8GA8vLyGLWIaIVEjoomJBwCufdTbY0IkhjEVVAEwtq1a1FaWoqCggLMnTsXDz30EEpLS30eb7PZYLM57X4WS5IVS08BOPMiqUqg9z7LsRMtElIMRaxYvHgx/vjHP+L999/Hr3/9a2zatAkXXnihm2DwZOXKlTCZTEN/VVVVMWwxCRcuhEVSlWDufZZjJ1pE0xaKq666auj/p06dirPPPhs1NTX4+9//jssvv9zre+6++263LBOLxUJRkUAcsQAnTgG1BYAhA+jtB7IyAFu/zN448yLJSjBWB5ZjJ1pE04LCk4qKCtTU1AytH+INg8EAg4HOw0Slyy6d5ntfiIBQqTYBF50m+wlJRoKxOrAcO9EimnZ5eNLe3o7Dhw+joqIi3k0hUcKoHy4mAHn93heceZHkJRirg7pGRFmu+zHJukYESQziaqHo6urCgQMHhl43NDRg69atKCwsRGFhIVasWIErrrgCFRUVaGxsxD333IPi4mJcdtllcWw1iSY2B9B2yvu+tlOyn5BkJFirA8uxE60RV0GxefNmzJ8/f+i1Gvtw44034umnn8b27dvxwgsvoLOzExUVFZg/fz5efvllGI3GeDWZRBmbQ+InGjqBnj7n9uxM2U5BQZKVUFamTJU1IkhiEFdBMW/ePPhb7PTdd9+NYWuIFjDqgTw9MKkI6OoD+hxAZjqQlyn/0uVBkhlaHUgik1BBmST5cTX7jkp338dgM5IK0OpAEpWECsokyQ+DzQghJDGhhYJoDpp9CYkcLGNPYgUFhUbgQ+8Ozb6EhA/L2JNYQkGhAfjQE0IiDRcQI7GGMRRxhmtXEJI6WG3A7jbg06PybzSf70BKeRMSSWihiDNcNZCQ1CDWlkguIEZiDS0UcYYPPSHJTzwskVxAjMQaCoo4w4eekOQnHu4HtaaLN1jThUQDCoo4w4eekOQnHpZI1nQhsYYxFHEmlPr9hJDEwp+lsc8B9A9IoGakU8ZZ04XEEgoKDRDoQ58qtSpS5TpJ6uBrJdEuu4iJHa2yIB4Q+UBN1nQhsYKCQiOM9NCnSq2KVLlOklp4s0SqlokvV0sKqQrrRJBEhTEUCUCq1KpIleskqYlqibxhOnDZJBEYM8pFTDg8Fl1mnQiSiFBQJACpUqAmVa6TpC6qJfLcMUBGmrg5PMWEClPGSaJBQZEApEqtilS5TkIApoyT5IMxFAlAqnQ8qXKdhAC+AzUBpox7w9YG6FoBxQzoCgClBDAw2FRT0EKRAKRKrYpUuU5CANaJCAZ7I5B5HaCfChjmAPozgIzrZDvRDjpFUXx48JIDi8UCk8kEs9mM/PzEHZFSJfshVa6TEBWmSfvH1iZiIm318H2OhUD/i7RURJNgxlAKigQiVTqeVLlOQsjI2HeKZcLn/h1isSDRIZgxlDEUCUSqFKhJleskhIyMYg5vP4kdjKEghBCiWXQjuDpH2k9iBwUFIYQQzaKUSqyENxwLZT/RBhQUhBBCNIuhBHA8M1xUOBbKdgZkagfGUBBCCNE0+rGA7UXAodahMIllgmJCW1BQEEIICYp4ZGIZSgBQQGgaCgrCCnSERAFvgy6Q+CnRrBVDfEFBoUFiqf7tjUDmcveiMY6FgP0ZMTMSQoLHc9BN1wEzK4BdJ4AulzVpEm0gHmlFYC65ntpQUGiMWKp/W9twMQEA6asBLBefJS0VhASHt0G32gS8uQ9oOwVMKgIy02V7og3EgawIzBoyqQuzPDTESOrfaovs5+lavZezBURU6Foj+3mEpALeBl1DhkwWevqArj73fepAnAhwRWDiDwoKDRGI+o8krEBHSOTxNqj29jv/v88R2Hu0CFcEJv6goNAQsVb/rEBHSOTxNqhmuTiXVXfHSO/RIlwRmPiDgkJDxFr9swIdIZHH26Br65c4iuxMIC/TfV8iDcRccp34g0GZGkLtiLy5PaLR6RhKJJsDywcDMQdhBTpCQkcddF3joZrMwNcn+s7ySKSBuNokQaSJnv4aD5J9JWUuX64x4pHj7VaHghXoCIkIyVqHgoRGotbvCGYMpaDQIJFWscmuirUOv39CUhurDXi23rf1Wctpw8GMoXR5aBCjIXK53ImqipMFfv+EkFSp38GgzATCagN2twGfHpV/R6pLEeu6FsQdfv+EECB16nfQQpEgBDrTdTWvOwaAnEwp++vwcGwlkyrWKqkyKyGE+CdV6ndQUCQAgdbP9xQdrd3AgAJcdJpYNDxFRbKoYq2SKrMSEhrhxNYwLidyxOK7jGQGn5Z/ewqKBCCQmW5l/nDRkZkO7G8H3vsCqKsEGjrd35ssqlirpMqshARPOLE1jMuJHLH6Lr2lErt+VqCCQOu/fVxjKD788ENceumlGD16NHQ6HV5//XW3/YqiYMWKFRg9ejSys7Mxb9487Ny5Mz6NjSOBzHS9iY68TCmk02SWtQRcSaRiOokKqwoSb4QTW8O4nMgR6+9Srd9xw3Tgskny700zAhcCifDbx1VQdHd348wzz8RTTz3ldf+jjz6Kxx57DE899RQ2bdqE8vJyLFiwAFarNcYtDY5Qgif9HR/ITNdqlzUCOnrF1dHRK/tqC0RUuK4lkIjFdBIRVhUk3ghnzZ5Yr/eTzMTju1Qz+M4dI/8G0wckwm8fV5fH4sWLsXjxYq/7FEXBb37zG/zkJz/B5ZdfDgB4/vnnUVZWhj/96U9Yvnx5LJsaMMGapNTjj1hkFcI+B1BjAq6ZCowvkmMC8b/tPgHsaZfVDFWyM0VQTCoCppUCM8q153NLdlhVkHgSTmwN43IiR6J9l4nQXs2mjTY0NKClpQULFzoXmzAYDJg7dy7Wr1/v8302mw0Wi8XtL1YEa5JSjz/YIWJgfzvQ2AmsOwT8eiPQ0CHHjTTTBYDGDqAkx31/T5/ETZTliaAIRRV7u8ZgrC8kvFkJST7Cia1hXE7kSLTvMhHaq9mgzJaWFgBAWVmZ2/aysjIcOnTI5/tWrlyJBx54IKpt80WwaYJHLPLX0OluWQCAfe3ApmNAcY4MQP5murvbgG2tks3x3hdi9VApyQEWnBaZQUzrAUGEJALhRPzHer2fZCbRvstEaK9mBYWKTqdze60oyrBtrtx999248847h15bLBZUVVVFrX2uBGuSstrFzeEpJlQ6et1FiK8Kmla7pITubpNsjnljJWYiK0NWOexzBH0pwz8jwNTVREXLqVgkuQgn4l9979v7gNl5wFg7kGYBUAA4innPBkOkMi9iRSK0V7OCory8HIBYKioqKoa2t7a2DrNauGIwGGAwxOebDdYkZdT7H+yzMgLzi6nndSjDU0MB4Pzqkc8xEslcpImWFxJrwomtqTYB/14MZC4H0tY4tzsWyurB+rFRa3bSkWgxTlpvr2ZjKGpra1FeXo41a5xPjN1ux7p16zB79uw4tsw3waYJVuZLAKY3qk1iXQjELxaL9MRECAgKhURIxSLJSaixNbY2IPNmdzEBAOmrgfTlsp8ETqLFOGm5vXEVFF1dXdi6dSu2bt0KQAIxt27diqamJuh0Otxxxx14+OGH8dprr2HHjh1YtmwZcnJycM0118Sz2T4JNk3QaJBsjolF7turTRIPYesPTAzEIj0xEQKCQiERUrEIcUXXCqSt9r4vfbXsJyQexNXlsXnzZsyfP3/otRr7cOONN+K5557DD3/4Q/T09OCWW25BR0cHzjvvPKxevRpGozFeTR6RYE1S44uAH86WAMyOXmfcw8lTwJJJgYuBaJvCEiEgKBSS1fJCkhfFHN5+QqKFTlEUZeTDEpdg1nKPJ4kQFJiMsQa724AXtvnef8P0xI0NIcmJfSegn+pn/w5Af0bs2kOSm2DGUM0GZaYavjI4tITWA4JCIVktLyT5UCcdhflA8UJxb3jiWAgopbFvGyEABQUJkkQQPsGQCKlYhLhaB7MzgNueBEy3u4sKx0LA8QxgSKLnkyQWdHkQgsRwOZHUxGoDnq13F7zZGcDSUqC2D9B3ATqTWCYoJkikocuDkCBJNssLSTx8iVpvmUg9/cCfj8n/M86HaAUKigQnVWbWqXKdJDXxF/DcxUwkkiBQUCQwyZh14Y1UuU6SmoxUXG3ROP/vT9QaMCR4tD6xoqBIUJJ9bQ2VVLlOkrqMVFzN5mAmkpaI1aBua5MiZYoZ0BUA3QXAn44AR6zOY7Q2sdJs6W3in1Sp8Jgq10lSl5FcFjZH9CvhksBoMkuA7AvbgNf2yL/P1ruv8BwJ7I1A5nVSb8QwR+qK5P87sCQX0Kc7j9PaEgG0UCQoqVLhMVWuk6QugZS1T8YaMIlGrKyltrbBhd886oykrwYq7gQufAR456T752tlcUZaKBKUZF1bw5NUuU6SugS6uJ+WF4VKBWJlLR1prZbJA8O3a2ViRUGRoMRihVEtkCrXSVIDq03KvX96VP612mKzuB8Jn1hZS0daiyXdOnybViZWdHkkKKlS4TFVrpMkPyNlK9GloW1iZS3VjRBg6TAC6HS+1tLEioIigUmVTihVrpMkL4H637XgByfeidW6P0qplFH3tVbLbhe/gtYmVhQUCU6qdEKRuE6t53CT5CUQ/3sqPMeJjGot3XgY6HEAvf1AVgaQnQ7MqopcX2IoAezPAFg+fK2W/mdERFxWqs0+jIKCaJJID/4sjpV6aElAMlspeThkAQ52AH0OIDMdGDcKmBXhz9CPBWwvAg61DoXLWi2TIvxZkYSCgmiOSA/+LI6VemhNQDJbKfFR+5GTPcCoLOf2kz3R6UcMJQASzGrFLI8o4S2am4zMSIN/KN8ji2OlFtG4h8KF2UqJD/uRkaGFIgpobXaUSETD10xzc2qhxXgFZislPuxHRoaCIsLQvO4bz9r0SsmgWc+FaDy0NDenFlrt+JmtlNiwHxkZCooIo8XZUahEMqjN3ji8nKxjoUQz68c6t0XjoY1VuhfRBlru+FMlKysZYT8yMhQUEUars6NgiaTbxl9teiyXaGbVUhGJh9abEKK5OXVgx0+iAd1WI0NBEWG0PDsKlEi7bUaqTe9oxVA0c7gPrT8hRHNzasCOXxtoKW03UoTitkrG78EXFBRh4O1GSYbZUaTdNiPVpvfcH6qvORAhRHNzasB4hfgSjcD0QGKwYkEwbqtUC9CnoAgRfzdKos+OIu22Gak2vbf9ofiakyl+hYRPsscraGWA9SQagekjxWBp0QqQigH6FBQhEMiNEszsSGsPQ6TdNiPVpldKgzufL5IlfoUkJ/EIco4HkRb2I8VgdawCnm/SnhUgFSc4FBQhEOiNEsjNokWTWKTdNv5q0zueidysKhniV0hyEq8g53gQcQvnCDFYA8e1aQVIxQkOK2WGQKRulFAq+sWiAqca1OZZ2S8ct41+LND/ImDfAdj+Jf/2vxjZ2RSrERItEunKnSMNsLrW0NrpjVD6m4hbOEeIwYKP/fGuXpmKExxaKEIgXw/UFgCGDOeKc7Z+mYU4lMBvlGBNYrG0ZkQjqM1fbfpImIMZ3U+0yEjP+VELUIvA4yGCDXIOlVD7m0hbOEeKwXIYAXR63xdPK0AyBOgHCwVFCGSkAfUtwL5257ZqE3DRacDJU4HfKMFYOuIR4BOroLZICiVG9xOt4e8516cDYyxA5i2Bx0OEEuTst31exDwQen8TaWHvLwZrYCGw24+dPd5FzFJtgkNBESRWG/DWfhEV2ZlAT59sbzIDHzcBP5wd+I3i7WZP18mgaMgAzL1iZqzMT94An3CEki+rRrJH95PEwt+gdqEJyL0luHiISAY5+xLzc2uAE6e8vyeQ/iaSwt5fDFb/M8AOHy4eLVgBUm2CQ0ERJOrAnqcHJhUBXX1AnwPITAdyM8UFEiieJrF0nTyk730BtJ2S82emyzFfKvd/rkQN8AlVKGkxmJUQb/gzfU9F4EXfVCIV5OxXzO+R56ih08d7A+hvIins9WNFXDlUt5BJhJOhBLh0lLatAKk0waGgCBLXBykzHRiV7nv/SHiaxKpNTjFRWyDnB2Rfa7dTuHg9V4IG+IQS4JqK+d0kcfFn+s7r8f9eX/EQrgPsgFniCLpHAdklQKBdgT8x33YKGF/o+73x6G98xWClmhVAy1BQBEmkI3ddH4bWbuCzFqdlwpXOXiDfAPR4sYDEy7QXkUDKEL7PZHX/kOTF16CnO+D/ff7iIY7rgVetwPEeAD0AWoGyI4Fb6fyJ+bxMQOdjnxZcCZ4kuhVAa7WIQoWCIkiiEbmrPgxWOzAqy/sxTWbg0tOBDYfjb9qz2oADJ8Us2nZKOh/VNROsyyGU7zMV87tJ4uNt0LOFGA8RCSudPzGfmQ5MKgZO9sS/v0l2ksl9S0ERJNGM3PX3gDsUwKSPv2mvyQxsPAz846D8PyDBqbUF8v/BuhxC+T5TMb+bJCehxkNEwko3kpifXCx/yTBz1irJ5r6loAiBaPnsRnrAx+T7N+1F22ym3vyjsp1iApBMl4ZOcdWE4nII9vtMxfxukrz4Czj0RaSsdHNrfFsa1ecvkV0JWifZ3LcUFCESDZ9dILN1X6IhFmYz9ebPzhy+r6dPMl5GpYfmcgjm+0zF/G6S3HgGHFptwBdtvgV2uFY6tb84cUr6h/GFEjMxadAqwWcoNiSb+5aCIkSiZQ3wN1v3JRq+NgH4x4Hom83UmzvLx13T55B/Y+FyiISVKFkCoUhyEcjkIBwrnaeZ3TU19GSPCAoSG5LNfUtBEQIjPfDhDlTeZuv+fG1/2gGU53k/VyTNZurNbeuX62zySGlTzaWxcjmEYyWKVSAURUvqEc5vHqhPPRwrXbKZ2ROZZHPfUlAEib8H/o09wOLxUkkz0gOVv07gkBmoKfDT5giZzdSbv8ksZcbf+8I9MHPcqMRwOcQqECqZordJYIT7mwcz2IdqpfPVH6hVelu7k1cAa03gJ5v7loIiSPw98IYMsRZ41oqIxEDlTxRkpvuv0Bkps5nrzb+7DairBOaNTTzfayxmaMkWvU1GJhK/eSx86r5K/qtVej9rcaavJ5MA1qrAT6bCXBQUQeLvgTZkiLWg1MsS2uEOVP5EQV6mdACNXvZF2myWyDe/OjtpNIsAcl0h1u24CHTaRyzy51qaXY2ip1k5OYmEUA3Gpx7J1UBdq/ROKnJvdzII4IiIvShaNxK9MJeKpgXFihUr8MADD7htKysrQ0tLS5xa5P+B7+33XRobCG+g8udrq8wHzhkNHLPGxmyWiDe/a+fb0Qvsb3euELu7zV1URMKic7wb2NPuXDwOcNbryNMnXvQ2GZlIWBcC9amHM0B6M7MbMoaX/Hc9Z6IL4HDFXqStG1pzvUQKTQsKADjjjDPw3nvvDb1OT/czYscAfw/8qCyZhfoi2IHK9abL10s2h7/4jGhZDqw24OjgA2l3AGV50vEkygPg2fnmZcrg3mSWWVldpTPSPRIWHatN/NCuYgJwr9eRaNHbZGQiEbHvOdircQ0FWWL5PGKR+/NomAOkZ39h7vVe8l8l0QVwOGIv0u5LrbpeIoHmBUVGRgbKy0dYatMFm80Gm8029NpisUS0Pf6CaLxZCVz3BzNQebvpRucBS04XS4g30RANy0GTGdhyDHhzn3sAZl0lcP302D8AoSh7z9lJZroIooZOuaZ5Y2V7pCw6Ryyy9oq3TJiePlmTJdGit8nIRCpiXx3sj1oAsx147yDgGJDYrL3tQGGW1I3QpwH2Ae/nCHY10N1t/q2riS6AwxF7kYy5SvbYKs0Liv3792P06NEwGAw477zz8PDDD+O0007zefzKlSuHuUkiidUGdNuBc8dIMGJWBpCd4axiGYmIXV833bEu4I29sbvprLbhZbYBGRQ3HAH06cDNM2P3AISq7L11rq7Lz5fmAueOjqBFx+49EwaQdi4an9idBvFOJCP2jQbpU9ZsBcaOGn4f1RYASycBG48MjwECghcAyZa+6ElYdTsiGCjrS5z0OcRF+lmz9EeJ6gLRtKA477zz8MILL2DixIk4fvw4HnzwQcyePRs7d+5EUVGR1/fcfffduPPOO4deWywWVFVVRaQ9/gY09cePhOtBK3niRyxAj2P4LBsQUXGwI3ZtCctn7KNzVZefH2uK7DUY9dLJu2bC9PaL+LT1i/uKJCeRdD0esUhsg6eYAOTZe79BgotdC1MBoQmAZEtf9CSc64tk8Slv4qPLLr9hT5+IincOJq4LRNOCYvHixUP/P23aNNTV1WHcuHF4/vnn3USDKwaDAQZD5O/+YAa0cF0PWinHarX7T0ftc4TelmBdF+GIrFjPvlw/z1tnP8YlsC4ZA7NSnUi5Hq12ERTeBH2aDmjvkdgKV0IRAOp92GUHFo0DbA75S7Z7MlSxF8n+w1N89DmcYgJwViFOVBeIpgWFJ7m5uZg2bRr2798f88+OttXAdXDpH3CmGnojVv5Mo953mW1A2hdKW1RLj2taZY0JuGYqMN674SkskRXr2Vcgn5fMgVkkMhj1/gV9dqYMZtNKQ6/KeeCkLA7W0QucUQzk6MWVO7k4ucSESihiL5L9h6c46epziolqk1gwVRIxuyahBIXNZsPu3btx/vnnx/yzo2k18BxcaguA7j4gwyG+flf8KeJIz3gr84Htx70HF6qVMYOd3auWnoMd7sq8sRNo7gJ+OBuoHTX8feGaHWNdP8Pf5yV7YBaJDJX5zgJTnmRnOuvPhDLgNJmd8VHNVuCiccCaBlksLDNNzj+3BrjqDApcwD1QtqffWbyw2y7Pc6DPq6c4Udc/ck1hdyXRsms0LSh+8IMf4NJLL0V1dTVaW1vx4IMPwmKx4MYbb4x5W6K1iIu3waXJDHy5Gvi4yd1S4W/V0awM4K19EripEu6M12gAZlXJ53vL8rjqjOAHPrXgk6uYUNnXDmw6BhTnDD9vJMyOsa6f4evztBIjQ7SN0SCZYx80yrOhotYzqcwPzV2n9jmjsuWZPrsC+LBRnsmMNHGjqDFSySZwPVPxC7PFdRTIJMNoEAvOOwfDsyy6TjaOWKTPtvUPr4cDJF52jaYFxZEjR3D11VfjxIkTKCkpwaxZs7Bx40bU1NTEvC3R8sN7G1zUgL4Z5cDUUnnI/a062ucQi8aXq2WbelNGYsZbbRqcBRU761CU5gKnjQrtnFa7u5nPk45e7wNqMgWNaSVGhmif2lHAXbOkpP8hs7PiamV+6Pe92udkD9bMKc4FGg7I//cPAH0DgCFd+pVkEriu/aZaavzjJulfVUuwP3EQScuiOtmozAeerU+e7BpNC4qXXnop3k0YIloDmjp4qAVsDBnOjIA+B5CTIdusg5HA+jTgjzukqp1ayrmrTyo/9va7F2kCItMhGA3ApBL5Cxej3mnm80ZWhu8BNZHLfruSbEsWE/+E64ocXwR8f1bk7nv1+VLjozyfx4HBCYlqGU0GgespBtRS401mEVZqUS9/4sB18uetvz5qCb6PDGRcSaTgbU0LCq0RjQHNqHdfmEd1K+h0Yp0wGoDPjgEne0UoXHY6sKsNMNvkJq4tcHYIrkWaXNFSh1CZLwGYjZ3D96lBSf4G1EQs++1Jsuf8EyeRCr6N5H2vPl+2fmmDZ/B3ms4Zo+F6fCLjaQl2zZ7p6ZNJ2ajB78HXJMx18ufZXwMS4PofZwXvYvY3riRa8HZavBuQaKgP9rlj5N9wlWJlPjC9dPjNmaeXCpV/2yv/v6MVON4lN1ajWYppqaWc03XO93mLCtdSh2A0SDbHRI9sDjUoydaf/AOqOisp81hEzp+1y2oTN9inR+Vfq234MQSwtQH2nYBtPWDfJa/jxUgm8nj9hqqgVYuvKYpMTNJ0Ula/Ig8oypZBtjA7OZ5Hz0mVZz/paaXxNglT+1FX64YrbadC/129jStavX/8QQtFCETSBGU0SCW8tlNilcgbtFhkpElwYks3MKtScsQBmU2Ye4HyPDFN9vQB6YNR2T19w9M8tTjjHV8k2RybjknMhFrw6eQpYMmk6JjztGY2DMbalWizlHhhbwQylwNpq53bHAsB+zOAfmzs2xNM8G0s709XM/vuNmBsAXDLORL8uaVZMj3SBk36E0bJM6pVE3ugeE6qPPtJTyuNt0mYKsQy04H9J6X/TdNJVkyuXiw6kYw5ScTgbQqKIHHt3NVgyFFZwOLxEh09tiC0h29SkbgxGjpFPTsG5LUhHcjPkpu2b0D8dONGyX7X4KnaAgmocs1j1nLAYu0oEUzhdqKBdMRaHZADMWMzxTQwbG3DxQQApK8GsBywvQgYYtz5Bhp8G4/701PQmvTAiVLpW9SYAMcAsLlZLKLxXt47XDzdjKq7R42hcF3U0dckzGgAFpwmwsvc69xuygIqjZGPOUnE4G0KiiBw7dy77GJVONQJnOqTGgqLxsmse1qplMT19zB5FrLqH5BzKIqIBBvESnFWOZCdDvz7DLmJW7qAudVAkwXY1ipWjcx0oCQH+OoEERdTS0XkaOmB9ka4fuFAOuJEH5ATcZYSD3Stw8WESvpqwNEKIMbfUyDBt+Hcn7Y2uW7FDOgKgA4jsLMPyEgHSnOc6wv5/HyX5+/To8BLO92zr9T0VIfivM98iQatinYVz+BH1d2jZnl4S833xGqTcudj8sVl268AGTr5fo5axbocarE/r21OwOBtCoogUDv3PofEMxy2iJgYkw9sbZFUyld3AxVGYP5Y30VhvBWyStMBFptYIgDJ7rh4nMRR/H+fikntwEmZQZxeBMysAM4eLcKhb0De+/oeubm1bJmIFIF2xKEMyFqaaSXiLCUeKF7KUwezPxoEEnwbqmD05t4pXghUPQrcsVNSu78+EZg5euQB3WoD9pwYnsqtxmhNKpIJlC/R8LUJwD8OaF+0e1pl8vXAgtrA61CoNSMMGbJi8GGL00WtpAEne5ypoJEgEYO3KSiCQO28u/pk4O6yi2Wg2Sr7+hxiabDYfBeF8TYQHrUAF48HDluBI2aJiZhdKYGYNofEUUwwiJJu7QZ2ngDKc0Ul72l3xleoaO1BjhSeVp0jFu/lyV07YtcBNzsDWFoKjLUDaRZgwAT09Lq/V2szrUScpcQD3Qi/zUj7o4HRACw5fXiskK3fGSsUimD0596pVYAbfwo884UUo+tzyKRjpHVyvCxYCsCZAWHUAy/vlH5NLbanxgz8aYfEdHlDa1Y0b1bRUh9t98TVRbXwNOCTY8AnR5z9b05pZGNOVKuK5/c+bpR2J4wUFEGgdt59DjF3AUBWJmC1yP+rg9uA4rsojOeMJF0HTCwW10lRllStcwwA4wuBnW1AZ698bm4mMKVETGyt3cDVZ0jMxvZW723V2oMcLp4D/dgCEVO1BcPLkwPOh1/9zbIzgNtHA6bb3DviPJegvWi4R8K1diTiLCUeKKUSgJnuxe3hWCj7Y02TGXhjr/z+FpuUa67KB/5tCpCVDuxpEzfmpGIRGU3mwCol+nPvZKwBZj8IPDP4+T2OkfsBq909psCTkhyJ51p3yLtLpLUbqCnwf36tEM7zqP4WDkVi50bnycCuDvQZacHFnARKTb5YnNTYlmwfazxpAQqKIFA7945eGdgBZxGYcaPE0gAMRv76CNDxfK2mIJXmAMesEheRnSEzhoZO+X+1gJW9TxbuyRg8v81PgShvn5WoeBvoszLcTbK+orTV3+yiUUDBbYDOoyNOWy2zPduLwBFENl4hEtaOZKoQGk0MJSIMsdxdVDgWAo5n4hCQ6XLP2hxiKu/pk2f8sEVcliW5wLYWsTiW5DjXclBFhS/BOJL7JtOl/H5v/8j9gFHvjCnwTIesNgFLTwd2+XGJjM7zv4iZVqxonpUyq00yKSvNdX7X/p4nV3GfmQ68e9C5z7M4ViQmc74mOIDcT96s3/F21VJQBIGrCerkKZkZp+lETHy5Cnhtj6jUfIPvojCer9UCK+oCPfXNEniZkSZlrktypONp7ZaATX/nGtbeOD7Ikby5vfmZXWdUrkVpAPeOWP3NypuGiwkV3Wog/Thg9bIomds1BSHQImntSJYKodFGP1aEoUMNVDSJZSLWYgJwj7dyXbdmQBFX5vQyGbzrKoFT/XKM+rqh079gHMl90+diws/KGLkfqMyXjKvdbfL588a6z4bzMp0TJ0/UtPVRWUCjl/1asaK5Po+ehalUMaCWM/cl9tW+ZONhCXz9Si2gTxfrTZfdfVLjr68ItG8MJr5GK65aCoogqTYBN8+UlfgOmyUgclebiAkF4o8bN0puLm8Pk6cJW1X2fQMScXzxabIATXYGcFEt0GmTvHBXMVFtkv1aNYdH+ub29nC6zqhci9J464irTcDACLO6tE7AWOb/mGAEWqSzM5KhQmgsMJQg5tkc3nCNt3Kd2fcNZnT1OaRabF2lBHaPNspAN6kIOL/a+ezubhs+8Phz7/QvANYPfna1SQTBSP2AqxXMtWx/WS4wf7IEoPtziRTnyCJmx6zataK5Po+ehanUOJFAxf4hi/wue9qdE8qF49ytS776imD6xkDja7SUyUZBEQJGw2BFs2LgmEX8onaHRPnmG5xiwtvD5GnCVgusZGfKeZoG3SZWuxSAOmwG2lxuFLWiZHaGNs3h0bi5vT2c6gJqdZXeF1AbxkiBV3mRFWjMzkhtXOOtXFFn+hlpEh914pSzDH12JjAAEY5+Bx4/7p2GR4Hnd0o/sWQicNZo2edNmLjizwrWbffvErlistSV0bIVTX3e1N9jb7uzKFWazrndn9hX+7aTPVJBtDBbxMgRy3Drkre+Iti+cawCfL8AyLAC/fnAbh3wvlnGGsB5j2kptZyCIkRczVaF2cCds+RGswTwMLk+vL39Yu2wDK7NoS4409MnwuSscvG39vS7V5Qcky9t6LaLuNFh0ESZMXL+eSjXGGgHEY2b29dA71BkdjetdOR2DeQCaV8B8E8vO78i+8MVaJ5ZKK5Lz3uiFb8yiQ6u8VaupOkkkPGQWe4R1/ujp09cm61dw+/BdB2QkwlsPCL3WGEuUPUCkHnC6d7pyAcO90kV2rJc6Qc6eoevZulrRuzLCjaSS2TcKP/v1wJGvbglGjqlv1bLVmekSbsDcVe49m2Z6fI7qu4sdR0lf31FMH2jvREo9sjkKVoIjHsM+H2bs86Qv/aOdD3RgIIiBPzNHgJdbU59+Kw24NKJEg1eZQI+PCQ3VnamVF/bcgyYUy2WCtcaEx290bVMhOq2iMbNHQlLjKMASL9XhJebqPgKoNwr+zMQeryCt9oi3X1AhmN4FopW/MokerjGWx2xON0e40YBZ5YBL26Te+SEh/Wxsxc40DFcTLj6/CcUyYAy9DyeIceVDf6pRMpaOJJLRCtWCH8UZYuAUydqKv0DYjXKctnmS+x79l15+sEaHX0yeRidB1zuZ+mAQPtGf2nBFXcCX/s1UFbl/BwtxdJRUASJ60Pa53DeTB290nncPDPwB0wdhE6ckiJVHzSKih5bIB1G5mBZ7YMnxayYleEciDxnHUDkfGbhdETRurnDDUw0lAD2WiDjKiDtDgC9ALKAgWagv9Y9cC/YmZa376vJLLVE1h2S2Vx6mgS3qYFfidAJk/Bwjbfac0JirGz9sl7G6cXyzK856DxWzfKoMg0/j6urwdU87+95dJ0Ru/ZVar8SjLUw0QODT/YAX66WZ/FEt9O6kKeXGho2h0zi/Il9b31XZrozIHyk7yPQvnGkqq9n6gC9yz2ipVg6CoogUR9S1XzmGnB1xCKdx7ljRj6PZ9TxwGB52/7BglnGwTKumelOd4f68O9ui67PLBy3RTRv7mAGeq/umhrAttSlXLEJUM4LPwvA2/dltgF/3QOcXgjMrpLiZKOyJHhNC6WISWxwjbf6okNcGuMLgfZTzjoOdoeU22/vkfeYPAYl16W2AfcZtl+fvxoY6qWvys6U96ZKYLDFDuw7IYXG0nXAhYPxIEcsMqEzGUa2eIbbtwX6/pHSgh2dUirdVdRpJZaOgiJI1IqYng8oIK/3nJDOI9BYA9WcedgC7GuXfWk6iQYflSWvM9PdfbHeTGeuM5AjlvBmD+G4LbRwc48U0BbpLADP78P1/tjcDJxWKIF3jZBI+GSrYEpGpqNXLJDHu8XtMaAAf94pg5labr/aJOWyx4/yngkGDF/ICvD9PBr1/vuq1m4R3iH3ExqoexAo+XopIPjGXukfMtPE9TS3RmIqqvIluHuktU/C6dsCfX8gacGv7XF/r1YsSBQUQWLUD08Fc0VBYBaC3n6pkJeRJg+mySBCApBgquNdQEUeMNYk4qKjB2jokGhqT9OZ5wzkWJe4REJN0wzXbRHPmzsYd02kOsRhv4fH/eG6VHKyVTAlI+Ptntx1QmrP9PZLcaU0nSw2uOuEuD58ZYLVFgS21DYg93O+wXtfpcZrhHovaqXuQaAUZkta/pDbaHAl1c3NsoTBA3MDe/bD7dsCef9IVV+bc2RsyM4E+h3AG3uAZV/ShgWJgiJIKvOl2NT+dlnpU10cpl+Rwd80mGblb7BqMgN/2yf+9YIssUxcNgmoq5LznugGLpkIrD8ssxqTAfj0mNxEd81yN515zkCqTeKnDSeeIhJui3jd3P7cNUcsUqo8M02E3HsN4ltVCbVD9Py+XFMF1d/DFaaMphae92RmuhS3KstzZm/k6sXy0GV3DvLeMsE8xYRfn79B1ghq6Bye6qnGa4RyL2qp7kGgtPfIM5+dOdz1k5Em+wNd0yPcvm2k9/ur+nrsMeDGdRLwDUiA7tcnSpXmQBMCogkFRZAYDRLJe8wCmO3yQ3bZZeZQbZJyrDd9yXeq1qgseegsNulIdDpAnyHL4t5+noiPDJ2sXnrMKq/H5MtsYl+7LMTz/VnOGcyedncxoXYUQOizYS24LULFVwepWnG2t0qmx4YjMiN0XQskmA7RVTDm62XFxbf2O8vyAsN/DxWmjKYG6j3SaBaXh1pCv7dfCtWpqYsFWU73JuCyDo3LwFOUE9rzaNIPT/W09TuLMPm7F31NirRU9yBQrPbhWRnqAmeZ6aGL/Gi5fTyrvir5wLoe4P4NTjEByAT0zX3irtECFBQhML4Q+MYZwMFOmeFmpotVYc1B4JwxwB/q5eb1DJ56dTewaJxz0BljlGC9HjvwtTOA5+qBWVXiY93cLAvu5Otl4FMrZR4yu89gPmsWUeHZUaiE+qBoxScXLN46SFcrjmo+VmdsnmuBeHaI3jqM410i7A6ZnZ1SjUkCvnr7ZfA4YhER6Pl7MGU0NXB1CUwqlo5fdVlkefS6gbgwgn0e1fu2t19K+Qdr3fDn0tBS3YNAUb9T16wMb/uDIdpuH9eqrx80Aj/4yPtx+9u1851TUISA0QCYsoG3Nrmbz4wGqdH/0g5RkaoZ03WwcjWLH7GKyXPBOJkxH+wA8gzOATBNJ76/8jznbMZVTRsNsrDNOy6L1Axraxiz4Vi4LSKt8L25a9SYBtX94LosgVp217WTcV2m2LXDSNcB88cCL+2UiH2V7ExJO3tjr3T6rpUOPcWE1i08JHw8XQKuZasbOoEpxc7XnkGWI7kwAnkePRfBmlwi8QOuNVG83YuuIuRv+5wiRA34bu2WbV+b4P/ztWiBi3T2WaxXJrb3y2/X5UU45OllvxagoAiDM4qBcqNUp3QowGkFMmttNItfLnNwobBxo5wPslo2VR3kdIO14FcfHCy6BDmfDvIwd9ulUwCcnY/rA6ulHORgiYbC9+au6XO4ux8mFLm/x7M8slHvvcOoNgH7TwKbjzkD6TLTnPdBVob4xqeWJq6Fh4SPp0vAtWx1YydQ3yKpxOk6SQlVJxzqvQ844xuyMgB9mgzypwYHDbVKord7yfO+VUvUzyiXe7Yy3/v7PS0q6w45i+sdtUpFWsC5/oivwU2rfY5nv6CKpJIccQcFS6TdPiP1hfkGcX2rLnaVvEGXeL5G+hUKihDJ1wPTy50FZ84bI/756nz5wdN18mfvl/SkiUUiJrIzgRllwD8b5TzKYN2J7EygVC9CJE0HTClxzoL7Fae5tDLf/YFN1HiHaAZ2eQ7m/QMy0KvuB8+FjlxNwWqH6K3DMGTIA90/IFHieZmyQuyHjcDbBwBTFrDpmJQCVzsCrfmSSfTxND8PDeoVYsEszZW00a9NlIGtJNd537mWyu6yywA+rlCsGq/ullUuawtkEuJNeHu7bx2Ks8LltNLh7jxPi4SaptptB3a0SdltVxrN0p4DHd6DmrXa56j9ws42+etzSI2fP28HKoyBT2SsNrHW1JikYJ25V76TrHRnXxLplYnHjQJKc6TvGT2YBJChk9+2NMdZ/jzeUFCEiGca0sQi4IlPAGU0cHaFPGgZabLE7QeNUlJ7VLb4u0ZlAxfWAoc6ZWDKTJfCNiW5Ei/xYRNw5RTgnw3SERRlyef5qrKYiLPhaAd2uZqHrTYpBKO6H1xnjG2nnCZn1w7RW4fQ2+/sMAYUEYofNjo76wFF9ms52p1EH28m/95+sUL29AE3nCn1alTKcuVeAdxn0A2d0od8cgT44qTcb5ubZbsh3f0ecw0AtdrFapajdw/EbDJ7d+e5WiSq88U62qMGjtqlfa7o06Xa53XTxH2YKH0OIHU/nv/cWfMHkOs+1R/YM9tkluXLT/YCzV1iobQ7ZEBfd0jqWeTpg3P7jNQXftEhYuXGLwG/3yKucbXEwMQi4NZzAs9QiTYUFCHiLQ3J1i8PVa5e4hpG5wBv7ZMVRKvygfJcZ4RuQwdwVx3wRacEZ55dIcGVeXp5YDcekdK8l04UweDPzAnELk0zUjEPkQzsGqlNnlYcdca4eBwwdlDZ5+tFtLX3DIqPAZkJNpmdQiQrQzr22gLpUIpzgYYDzs/J0zvFiVaj3Un0CSSOxxX1XgHk364+sQ4YBme8XX1AVydwfo0c47rc9hGL9DfqvT2lREr3r2kYXjTrotPkPvecEasWCYsN2NYqFpTibInxsjtk0qNSbXK6EI93S/+XKGLCahMLoquYAOT7VEWav2dWff+b+4DdJ6Qv7x8QMXHJBGBKEbCtTVJ8I7UycZcd+Py4fJ4+TaxaGWki5IqypQiaVsQEQEERMp5pSLmZ8sB/dFgW8vpytdxYz30u2RrZGTJYWWyD7guHWCl6+kQ8zK4C0tPFP5+mk9K8fQNArUluTi0Ui4lkzEOk1vwItE0jWXGazJK54Rp30d0nv6Orq+RkL/CV0yS7xjX2wpQFTCgMbNXCeGNrcyk/XgAoJeGXHydOjAYJXHTNBLL3+04jBmTg6O5zpoH39MsAVlMgA50ae1WQJebu/gGxJrR0A4ePidUzJ1MEw9v7xRKakeaM9WkySz8zrxr4vEVM9WNNMjPPyhDrmtUm5919ArhgrBy/tUXu/QFFhMrC0wDoxNryWYsz3VXLRa1UjliGr/6qooo0f8/sgZPAH7fLb2qxiZDr6RfXz9/3AzeeCTR3AwtOC05cqRVNPdNZARE6Z4+W/3co4moxDMbY1ZhkLNESFBQh4pmGpE8HTi+SBw0Qt0VZrpinMgcf7KpB1aoq4v4B5yBn65dMgTPLpPNQzZSbm4H9HcClEwJbGj1aRDrmIRLBpMG2yZcVx9t5MtMlKv7jJgloU4sDfXU8sLcdmFMl7TytUDr80pzh16/FaHd74/CVDB0LpZCOfmy8WpVcNJmBfxyQ7KyaArEAjDGKNdIzjVjFqHcvUKeatAcUsVbkG6S/2Ncu/cmcSrFCbGkRa0JRjvRBhgyJbzg6OHj2Dcj9aTQAMyuA//4M2NXmnKXXFgBXTxUhYLEDmTr5zI1HgKklwLwa+TzdYHu6+4B/HRZX4SSX4OZEcPOpQa6+6HP4fmatNvld97dL36BAfpesDJkstp2S36iucniQ90hkZcj3ut/DDVORB5TlyDjgueIsAKw/Ir+BloQcBUWIeFarrG+RwSXfILMNZdCfnpEmlgzHgMwsVNSOQx3kdrfJQOVJlx3YelzMkKrfNR6zgUjHPLi6IU6ckmtRlffkYvl+jlr8i6hItcnXefIGZw5TS4EvlTvbcdFpzmC2meXB5/jHC3/LImO5FNKhpSI8fIlcHeQZz830fq/YHFK3RA0WVqu59vZJLERlvsRcAVJR9+MmOX5+DbD2kMyQAadF48opwMeHB2e7euDMUudqxq40mIHX9kq1xdZuyWLq7pNS/1X5Yjl9ZZeIjNJcibdQC8J5XofW3XxG/fCAbFdqTL6f2SMWsUYATnGlwLlNn+4snnd+deBtstrELa6uhKq2q6cPGBiQPnLDkeErzgLSN2lNyFFQhIg6IG48DHTaJAizKFuKXql+x/4BmS00d8msJDvDGZlblCWvVXwt+KXOWlwXCIrHTRSNYjaqG+LASeDVPc4AyU3H5LtzdTd4E1GRapO/49QZSFaGHKcuvBZuBcN4MNKyyI5WRHzhtFTDlzhtGnSDHjzpHIQA573S0uUeLNxklvun0wbMqhTh+l+bRGTUmMTltng8sPoLWbtHZUCRwMw1X4gwN9vFLZGjF2tpWa48T2raZ2YasP24ZH+MLwQuHif3u9Uug+SAAnx1gpxDP5jG7loIzhOtuvkAeW4Ls4B/myICTO2Xu+zirrx2mp9CYYPfR55exF9mmntsiRr7FuxE4ohFfr/j3cMrmp7sERerQxm+4izguxhfPKGgCJNDFmBnK9BhkxstzwA4Bv1hhzqBheMGb14r0Nolg+bUUuDfpgI5Lt++N1Ob6yJTnqa6WN9EkYp58Ma6QyIgRmUNF1F1lfLam4jy9ZnpOhEe/QPDl/kNpu2qmfFv+7wPAtWmxMqwGWlZ5JH2k5HxNaCqgcBXTHaKU9d7pdvuPMZ1YNGnA23dkrp589kywBdkyTogOZmDwYQufUNvn/QrDZ3A/FrAMRjsqQ5S6gCq1jSwD6ZA2x0ywI4tAF7fK/EBRy1yn687JCKictBi4UtMANp086l09AJ7T8qE5fRCEWr6dBETk4tl4UVfGPUywJ9XCXx6RFxS3Xb57ox6KRvgGAh+IqHeLw5F3FCucRRZ6TJJBdwnlMDwgmhaEXIUFEHiLXc7KxPosgAbDouA+LwVMKXJw//6HuCCauD0Ykn/SU+TMt1v7QPuO995Xm8xBaovzltkOBDbmyhaBbQ8Z3SuIqrJ7F50xlNEeWuTa2XAfe3DiwZ5cxP5urZqk5zH00ztKW5CybCJx9LPIy2LPNJ+MjL+BlSHIoO6t3vF9R5U05BVsjPct2dnyv1jd4grxZAu5vF+RVyEU0pkMqMWxANErJ9WIHEciiLukrI8aU9nL3BGiSxC+FGTs96KrR8YnQcsPd3ZdnOPZEO51p9wLRKlQ3hLokcL1RXVZZfMCLMdONEzGDDrGNlNUZkv/dJ5o2XCeKxLXB+ZaeIa+sYZUjAvkOt2ffb7B+T7s3lZZj4nE7jyDPmuXSeU3lad1YqQo6AIgiazLBVryJCHf0uLqMjiHPnxe/sl7arAAJw7Guh1yI1zogc4eEAe0gGXIlWuK9ypLpSXd4ppss8hD77qs/cWGR7LmyhaBbQ8RZFnQJOnMnc9Xm2T+psYMsQkfKpPOu3WLmcAnD83ka9rK8garHjqZUYWjoUoXks/j7QssqKRBYYSmUCEty8x6ev5unSiZG6oqHEAaoyWId2ZCaJAMsRyM53Ll08pkYyOQ2YZCHv6nIuTpeskHXFnm2wfP0oGsI4eWQH5k6OyT+W0UcDysyQ+Qy2+1dApYmJSMfDidukPtRQoCLhPXDzX8zjZM/KzbDQASyZJXzOtDDh7jHxfeXoRYzkBjqSez35tgfRxFXniyrI7nFapk72yCOU1U6WNB0463cLeivFpAQqKALHa5GYqzBEf54RCqUkAyMAzuVhujF1t8uObDKJg/2+3qPZ8g/gpdTr/K9zV5EvwU2+/PKRNZkkl9XR5xOMmioZ531MUeQ7entfteXy1SXzJaoqeMlgVcGyBU4i5igpfHYe3a+vodZZM90aiLf3sb1lkxzMMyIwEIwnvjl7/YtLX87VkkvN9aqxFW7e4T49ZZaICiPXgsFkGp83HxCKqTxdz/IJacYl8csxpri/JkbTE7a0yKQKkj5o1RgLNezwE/RcdsqruLWeLi+Tz4/J+14UJtRYoCEQm3qraBCz7kkwMj3YNFi/USZGvxs6RhZS3Z/+oBVg8QYptHTjpnFBNLZXPWt8k/z+5BPiPs3zfO4CzXHs83a4UFAFyxCIzYDVgaopL59s5WHpVLbudmS4+yDTIHyA3U59DzIwqroOjt5vtsFlupL3tMpPwNN/H44aJdAEtzxldXqazWJinq8ebiLLapIPr6Rch1trtzLt/7wtnDIZKlz1wd0PuCDneoViI4r30s+eyyDqTWCYoJiKHL2HQ0ycZGdmZMptXq1d6DsCBCF61ENvcGuCvu4HDqgndIff8onFSY+IvO8W9es5ocXucUSpuxOYusW6ogv2zZqBLca6SXDtKVlP2tl5HS7dYV/XpUrPCG1oKFAQiFwPW0Qv8bb/ElajuCdf6Iv6ElLdnf0w+8Kft4gY/vUh+swyd9Gd/2SExG6rY8XVfuZZrV4lXXRAKigCx2t0jbU90i7lKHay67OIHS9cNVlI8Jdtdj7G7RAV7Do6+avCrC/tMLZUOQKtBf6HGBHjO6DIH1ypwzfIAfIsoz+/N1cLRbAVGG+V36+2XGVhm2vCHb3SeFBlb84X79hllgS+CFOj1a2HpZ9dlkUl08BQGTWbgua0yEKm4DkSBDMDexEbvYO2aOYMFq3r65b5f1ySfaR8Q68WpfuDYCQlKzMkQIdLTL89DVqbEECgKUGUSa+q+dpkoKS6p7plpwDljxO3RaJaBTw0g9IZWAgUB3zFqwcR+qJO+gx3usQ6ekxdfv6O378OQIZZVq03c3xk65zod7b0i+FzFjuc9EE+LpzcoKALEqHf3539+XBaGQqNzqfEBRQbDuWOBNYMFrlyP0Q+aK7wuHewnOryhU+ognDsmopcUMcKNCfCmvIsGA78mFHofoF3XLujodbqRVAtHv0O++3cOOGdRs6uAfzU5c/NVDBnAU5uGB19ua5ViQCMtghTM9UczW4ZoE7XTP+SRReM5EAU7AKvnzcmUYlNWG1BpkoJasyrFjdHTB+SNFWuIGnDZaRMx8eJ2iTdK00nA5gVjAX2G1LKoKZDBTB04M9PENL/5GLD+sAQg1lVKZc/aAu+uQS3dy0YDsOR0yfAw9wIF2QCUQRe0Xtw7O9rkefeV7aFOXrwVrnINIPf1O/pa40WfJkKu2erez+TpnbEwvoi3xdMTCooAUZf9BeQmzMoENh2VFQQXjpOHclqp+NPeOeDMUX7voMwgvjZR4iyKc7zPXhN1oImUQvY2+/JVo95zYaP97c5A1zy9/FuQJQt3qQIhO1P8yusPD5qcB3Pp1c7h8+OyrTDb+R6HMvIiSMFefyIvN09CQ+30vc3kXQeiYJ9x9bxTSmQQ/OcXgC4N+MpY4B/7gX0dIqw7bbLexEWnSZG8L06K9UGNo9CnD1pRG4FxM+S+vWaqWDHUAPGppeIWOWZ1pizaBuO8GjqH16bQ2r3cZAbe2CvfWacNaOwALpssKf//OiJWmzH5wPsNwJ2zgPFFw8+hCgVfFhl1wunrd/T27GdlAPlZEg9j9xKQbhuh6qYWLJ6uUFAEiNEgfsi1jUDrKee69PvaZd8ZJRIcWJgtMQ9qadu+AUnlmlMl/ktfJOpAE2uF7DmAu1a+Uzu2PL2YZT85KjErJbnSAarBmWrd/ox++S3L8uTBtdglinpsgXPG5RhMxfNlHQr2+hN1uXkSOmqn7hof5Epvf2jP+NB59cBru+Ue7bIDf6iX+9hsE2E91gTsPSHPzperpKx2Zrpz0qN6NRrMki0yKhvYdhy4qFa2H++SmfL+k/JZNYMZJgdPilvyvS9kZq2Kca3dy659Rv+ABFBOKpbYq9ZusYa2dUuf3j8gAd7fn+V70ufrd8zK8P87ej776ToJ3v/6RBFqmeny7+ZjYu2eUCi/5xcdIvrU0uH6NOdaUgY/NUFc2xwrKCiCoHYU8N1zgV9tAI7pZEGozDQZgL5cLcFPy74EPDBXzORmm9wwgawIl6gDTawVsucA7lldsKtPUsLSdRLk5GqKdc0YOWWXnHxzr1iWzL0yEzNkSIdzepEc761AltoOq10GA89VSUe6/kQqhkXCx3XdHzWmynUwGpUlk5Fgf3+jXu7znMHaFpubZdXiQ4PCQJ8ulohjaTJoNnfJbHhysTxDOoiY0EH+U5gtZfB3DbpKDpkl2+Nkj5TjrsiTe/ywWWKTjljFsndmmQQPdtlloJ5crK17We0zuuzy71Gr1Ab6rFm+F6NBan309ElWzCGz94mQ66SvtkD6ifQ0+Q0q8iQW64Jq/9euPvtHLVIL490Dcj/saJXvubZA+rP6ZrF+bzsu4mVXm/Q1eXpZF6YwWyZT5bkyxphtwz8rHhNRCooQOHeMrCyqVp9zTZlSb8RQlpRNxIEm1q4azwHas7pgaa7MyOyO4RHoqjWjsVOC1MyDKw8etUin2NEjvuWyPAl2m1HhXiArXSc+1l0nnIGaHb2DFfImyaywx+WeaDL7vv5YLTdP4o/rQOS6QnGfQ2b782pC6y8q8wdjfE6KePi8RUr9OxSxPuRkDgYb2qVEvHkwyPLCWpm45OqdMRSjDOK+MOrlufnXEXHPHq8HKozAsukyaCmK3Ls72mQylaYTITOlVNYaOtkjgkJLWO3OCrzpaTLDH22U7Ue7ZEDu7RcrTLnRaQ3wxHXS1+eQWBWrXQb1r00EGjrkO1gyyX/smNEg7pV36qUwot0hv1VhtlgmjlqB+WOBV3YCaWnyew0MyMR1XaNYU2oKnDV35lZLlk+PwzkmZacDs6piP3akjXxI/Pntb3+L2tpaZGVlYebMmfjoo4/i1hbLYCGXPSdkYNpzQl6rs9NwZ+TqQHPuGPlXy2ICcHaW3oiGQvY2QKuBq3tOiJiYXCIuD892qdaMcaPkQVRp7ZY6/urCbuk6Oc/HTe6FrapNwJv7ZLEeNfbCpBf/8gvbZD2Sv+wEXvhcjplZoV1XFYkd6kCk3o+Z6WKVmDZYayAUMaGy64SIBwUyuGcMVujtH5AZd3am3NdGAzBztJjRLb3yHFXnS5Gm04skmHNqidzfhy0iFtJ18jzsb5fiVpMH4wrSdYMWvUGXiWt6t+rm0xJGvbMCb4ZOJh+dvdKXAyK6dDrpu49ZB1dn9TERqDZJcOeFtfK9nVEig/jP1gE7T4gIe2OPuFn8MWQ16ZPfzmKTeJWGTnGrd/UBtgFxWenTReisa3SufPxsPfDSTuC3m8VFo+gk4PTTo9L3HIrTb6B5C8XLL7+MO+64A7/97W8xZ84cPPPMM1i8eDF27dqF6uoR6qVGgUQNnowWsXbVBBpr4q1dDkXSeW89R4ItWwcD5U50A6vqJbhtTrXMXkYbZcEm1wAs17Rh1bUyrlCi5/ecEBGj0nZKOvuLTovs9ZPEJBrWxyODcVyFWUBJttyfLV2yTsWBDhkkBwaAXkVERJpOllUfUICvny7itzhTakpMLhYh/uY+aVOazn115HcOAj+eI/f9yUHL3oDinvqqoqV0UUC+55IcEUYORWb3u9rEFd1kHhRkirMAWGG274mA1SbB+G/sE3eEK58ckbLc08pGjh1Tv6M+h0xuKowArO7bx5pkYtncJS6Z0lypUHqwQ45RFHHZfDy4nPyFtc4SBSd7mDbqlcceeww33XQTvvWtbwEAfvOb3+Ddd9/F008/jZUrV8a8PYkaPBlNYumqCUbA+GrXUYsIgD3t7r7szc3y7/KZMkvxjOZ2TRtWLRSGDJnVFGSJ2bIgy5m+2mXXVnEfEl8i7eZSB5+jVgn6PrNMAvoumwQMQAYifboIg+IccbX8bZ+4XXQA7qwT4VCQJTP3Tc1i/k/TyXkzdM7PcigSM1FXKc/azjY5J+BejRbQ3qTKaBCX5BGL0/qy+Rjwb2fIxGLbYJXQAoOsuLrITzzLkUHXgud6K4A878e6pCz3SKLKNa4mXSd9UlG2CIsBRSY36WmSMbjsS4ClX9wk7zU4z6FmG1otgwG1cV5AEtC4oLDb7diyZQt+/OMfu21fuHAh1q9f7/U9NpsNNpvT3mSxRNb2k6jBk9EmljEBwQgYb+0aky/He1uQZ2KRZPN4riECuAd1qmJDPS5NJz5pNbVYRWuzNZI8qIOSQ5HMjWunSXG2ra2SzVGWNxhMmStm8L/tkwFIpxPr2dljZM2hySUy8240O8WEet68wfo7mYMlvPcMxiUdtsgs2FN0a3VSNb4QWDxOxEC+XmI+9p0UEXZhrQzquXpx3eSPUG6/t9/9e3KlX5H9I4kqdWLa5wBO6kTQtLkUQ6xvlr7p9CJpU55eAmZVMtPEQjGgDLq6dN77LKaNunDixAk4HA6UlZW5bS8rK0NLS4vX96xcuRIPPPBAVNuViMGTyUY4AsZVFBrS3QPkrp0m2TxW23BLlBrUqS7QAzhFhudywkOfpbHZGkkeXK2l9gERFWeUAGdViAVibIFkMry4XfqpXL37QKiDu4vwnNHAB43OlPcuu7gHOnolg0GNk7D1A7edM7yyrJYnVUaDBCm+ulvanz3ovlQzK9RssLJcmXD4PI9envnMNIlX6R9w35+hk0nFSKLKtQ+yOST48lCnuGbmjhU36jmjZaXX9xucbUvTuYgfh1gxsjNF7Hmue6S2N5ZoWlCo6HTuclBRlGHbVO6++27ceeedQ68tFguqqqoi3iZG6Sc2I4lCb5aoJrPkjLtmedj6xarhbVVSrc7WSHLgeY+qwcnqwH5qME1yfOFwS5y6nojr4F87CrhrlnOhPdV1N7MCWHCaiO7zq53PSbUpsSZVrimbZ5ZLyqbFFtwaSZX5wPbjItYOdsjEQxUVao2Oc0YH9j249kEdvSLw0nXSpotqJSZL/Z6PWiSDbEuz1DkaUERA5GRItomr4FNh2qgHxcXFSE9PH2aNaG1tHWa1UDEYDDAYNHxXE80wkij0JTouOs19kaYLx0qRnESZrZHkwZ8wVq1sgHuqama6ZDp5S+8cXyRFnUJ1J2odowGYNNjmKcXBCyLV0pGZLgGsjZ0S1JmVIXEsN0z3Xbrb1/lG+g5d23z3nOGCb1Q2cEaxMwYMiF//o1MU1+VftMd5552HmTNn4re//e3QtilTpmDJkiUBBWVaLBaYTCaYzWbk53O6SKJDqIujERJNwl1nh3jHahOrwfHBktmluU6LQiw+27OvAaLX/wQzhmraQgEAd955J66//nqcffbZqKurw+9+9zs0NTXh5ptvjnfTCBkiEWdrJPlhvFd0UK0Gk+LwzPvqa7TQ/2heUFx11VVob2/Hz372MzQ3N2Pq1Kl4++23UVNTE++mEUKI5qHYJbFC8y6PcKHLgxBCCAmNYMbQhCi9TQghhBBtQ0FBCCGEkLDRfAxFuKgenUhXzCSEEEKSHXXsDCQ6IukFhdVqBYCoFLcihBBCUgGr1QqTyX+ucdIHZQ4MDODYsWMwGo0+q2tGErUy5+HDh5M+CDSVrhXg9SY7vN7kJpWuN5LXqigKrFYrRo8ejbQ0/1ESSW+hSEtLQ2VlZcw/Nz8/P+lvWpVUulaA15vs8HqTm1S63khd60iWCRUGZRJCCCEkbCgoCCGEEBI2FBQRxmAw4P7770+JBcpS6VoBXm+yw+tNblLpeuN1rUkflEkIIYSQ6EMLBSGEEELChoKCEEIIIWFDQUEIIYSQsKGgIIQQQkjYUFAQQgghJGwoKDxYuXIlzjnnHBiNRpSWlmLp0qXYu3ev2zGKomDFihUYPXo0srOzMW/ePOzcudPtmN/97neYN28e8vPzodPp0NnZ6fXz/v73v+O8885DdnY2iouLcfnll0fr0rwSq+tdu3YtdDqd179NmzZF+zKHiOXvu2/fPixZsgTFxcXIz8/HnDlz8MEHH0Tz8tyI5bV+9tlnWLBgAQoKClBUVIRvf/vb6OrqiublDSMS13vy5EncfvvtOP3005GTk4Pq6mp897vfhdlsdjtPR0cHrr/+ephMJphMJlx//fU+n/FoEcvrfeihhzB79mzk5OSgoKAgFpc3jFhdb2NjI2666SbU1tYiOzsb48aNw/333w+73R6zawVi+/t+/etfR3V1NbKyslBRUYHrr78ex44dC77RCnHj4osvVlatWqXs2LFD2bp1q3LJJZco1dXVSldX19AxjzzyiGI0GpW//vWvyvbt25WrrrpKqaioUCwWy9Axjz/+uLJy5Upl5cqVCgClo6Nj2Gf93//9nzJq1Cjl6aefVvbu3avs2bNHeeWVV2JxmUPE6nptNpvS3Nzs9vetb31LGTt2rDIwMBCry43p7zt+/Hjlq1/9qvL5558r+/btU2655RYlJydHaW5ujsWlxuxajx49qowaNUq5+eablT179iiffvqpMnv2bOWKK66IyXWqROJ6t2/frlx++eXKm2++qRw4cED55z//qUyYMGHYtSxatEiZOnWqsn79emX9+vXK1KlTla997WtJe70//elPlccee0y58847FZPJFMvLHCJW1/uPf/xDWbZsmfLuu+8qBw8eVN544w2ltLRUueuuu5LyehVFUR577DFlw4YNSmNjo/Kvf/1LqaurU+rq6oJuMwXFCLS2tioAlHXr1imKoigDAwNKeXm58sgjjwwd09vbq5hMJuW///u/h73/gw8+8NoJ9/X1KWPGjFH+8Ic/RLX9wRKt6/XEbrcrpaWlys9+9rOItj9YonW9bW1tCgDlww8/HNpmsVgUAMp7770XnYsZgWhd6zPPPKOUlpYqDodjaFt9fb0CQNm/f390LiYAwr1elb/85S+KXq9X+vr6FEVRlF27dikAlI0bNw4ds2HDBgWAsmfPnihdzchE63pdWbVqVdwEhSexuF6VRx99VKmtrY1c40Mgltf7xhtvKDqdTrHb7UG1kS6PEVBNQ4WFhQCAhoYGtLS0YOHChUPHGAwGzJ07F+vXrw/4vJ999hmOHj2KtLQ0zJgxAxUVFVi8ePEwc3Osidb1evLmm2/ixIkTWLZsWVjtDZdoXW9RUREmT56MF154Ad3d3ejv78czzzyDsrIyzJw5M7IXESDRulabzQa9Xu+2EmF2djYA4OOPP45E00MiUtdrNpuRn5+PjAxZS3HDhg0wmUw477zzho6ZNWsWTCZTWM9EuETrerVKLK/XbDYPfU68iNX1njx5En/84x8xe/ZsZGZmBtVGCgo/KIqCO++8E1/+8pcxdepUAEBLSwsAoKyszO3YsrKyoX2B8MUXXwAAVqxYgXvvvRdvvfUWRo0ahblz5+LkyZMRuoLgiOb1evLss8/i4osvRlVVVegNDpNoXq9Op8OaNWtQX18Po9GIrKwsPP7443jnnXfi4oOO5rVeeOGFaGlpwS9/+UvY7XZ0dHTgnnvuAQA0NzdH6AqCI1LX297ejp///OdYvnz50LaWlhaUlpYOO7a0tDSsZyIconm9WiSW13vw4EE8+eSTuPnmmyPU+uCJxfX+6Ec/Qm5uLoqKitDU1IQ33ngj6HZSUPjhtttuw7Zt2/DnP/952D6dTuf2WlGUYdv8MTAwAAD4yU9+giuuuAIzZ87EqlWroNPp8Morr4TX8BCJ5vW6cuTIEbz77ru46aabQnp/pIjm9SqKgltuuQWlpaX46KOP8Omnn2LJkiX42te+FpdBNprXesYZZ+D555/Hr3/9a+Tk5KC8vBynnXYaysrKkJ6eHnbbQyES12uxWHDJJZdgypQpuP/++/2ew995YkG0r1drxOp6jx07hkWLFuHKK6/Et771rcg0PgRicb3/+Z//ifr6eqxevRrp6em44YYboAS5MgcFhQ9uv/12vPnmm/jggw9QWVk5tL28vBwAhinA1tbWYUrRHxUVFQCAKVOmDG0zGAw47bTT0NTUFE7TQyLa1+vKqlWrUFRUhK9//euhNzhMon2977//Pt566y289NJLmDNnDs466yz89re/RXZ2Np5//vnIXESAxOK3veaaa9DS0oKjR4+ivb0dK1asQFtbG2pra8O/gCCJxPVarVYsWrQIeXl5eO2119xMv+Xl5Th+/Piwz21rawv5mQiHaF+v1ojV9R47dgzz589HXV0dfve730XhSgIjVtdbXFyMiRMnYsGCBXjppZfw9ttvY+PGjUG1lYLCA0VRcNttt+HVV1/F+++/P6xDrK2tRXl5OdasWTO0zW63Y926dZg9e3bAnzNz5kwYDAa3NKC+vj40NjaipqYm/AsJkFhdr+vnrVq1CjfccENcOq1YXe+pU6cAwC2uQH2tWqeiTax/W0DMrXl5eXj55ZeRlZWFBQsWhHUNwRCp67VYLFi4cCH0ej3efPNNZGVluZ2nrq4OZrMZn3766dC2Tz75BGazOeTvLRRidb1aIZbXe/ToUcybNw9nnXUWVq1aNew5jgXx/H1Vy4TNZgu60cSF73znO4rJZFLWrl3rluJ46tSpoWMeeeQRxWQyKa+++qqyfft25eqrrx6Watfc3KzU19crv//974ei/evr65X29vahY773ve8pY8aMUd59911lz549yk033aSUlpYqJ0+eTMrrVRRFee+99xQAyq5du2J2ja7E6nrb2tqUoqIi5fLLL1e2bt2q7N27V/nBD36gZGZmKlu3bk2qa1UURXnyySeVLVu2KHv37lWeeuopJTs7W3niiSdicp2RvF6LxaKcd955yrRp05QDBw64nae/v3/oPIsWLVKmT5+ubNiwQdmwYYMybdq0mKeNxvJ6Dx06pNTX1ysPPPCAkpeXp9TX1yv19fWK1WpNuus9evSoMn78eOXCCy9Ujhw54nZMLInV9X7yySfKk08+qdTX1yuNjY3K+++/r3z5y19Wxo0bp/T29gbVZgoKDwB4/Vu1atXQMQMDA8r999+vlJeXKwaDQbnggguU7du3u53n/vvvH/E8drtdueuuu5TS0lLFaDQqF110kbJjx44YXakQy+tVFEW5+uqrldmzZ8fgyrwTy+vdtGmTsnDhQqWwsFAxGo3KrFmzlLfffjtGVxrba73++uuVwsJCRa/XK9OnT1deeOGFGF2lk0hcr5oa6+2voaFh6Lj29nbl2muvVYxGo2I0GpVrr712xFTpSBPL673xxhu9HvPBBx8k3fWuWrXK5zGxJFbXu23bNmX+/PlKYWGhYjAYlLFjxyo333yzcuTIkaDbrBtsOCGEEEJIyDCGghBCCCFhQ0FBCCGEkLChoCCEEEJI2FBQEEIIISRsKCgIIYQQEjYUFIQQQggJGwoKQgghhIQNBQUhhBBCwoaCghBCCCFhQ0FBCCGEkLChoCCEEEJI2Pz/olUnvXYgZ20AAAAASUVORK5CYII=", "text/plain": "
"}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "testing_training_chrono_2"}}, "output_type": "display_data"}, "testing_training_doy_2": {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAHACAYAAAD6PfFBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACB60lEQVR4nO2deXxU1d3/P5NkZrKvZCULYVN2AUUDyqKCUqUo/nysKzwupS4oah+rtrbYWlDbujxarbUWtGrBPoraVhFcQC2igCCLiCyBsCQkQMhknSST8/vj5M6+r/dOPu/Xi1eYe+/cOffec8/5nO/5fr9HJ4QQIIQQQggJgYRYF4AQQggh2oeCghBCCCEhQ0FBCCGEkJChoCCEEEJIyFBQEEIIISRkKCgIIYQQEjIUFIQQQggJGQoKQgghhIRMUqwLEGl6enpw9OhRZGRkQKfTxbo4hBBCiGYQQqC5uRklJSVISPBug4h7QXH06FGUlZXFuhiEEEKIZjl06BBKS0u9HhP3giIjIwOAvBmZmZkxLg0hhBCiHUwmE8rKyqx9qTfiXlAo0xyZmZkUFIQQQkgQ+OMyEFOnzOeffx6jR4+2dvZVVVV4//33rfvnzZsHnU7n8O+cc86JYYkJIYQQ4o6YWihKS0vx6KOPYvDgwQCAl19+GbNnz8aWLVswYsQIAMDFF1+MpUuXWr9jMBhiUlZCCCGEeCamgmLWrFkOn3/729/i+eefx4YNG6yCwmg0oqioKBbFI4QQQoifqMaHwmKx4B//+AdaW1tRVVVl3b527VoUFBQgOzsbU6ZMwW9/+1sUFBSE9beFEOju7obFYgnreQkJhcTERCQlJTHcmZAYY24AdPWAaAJ02YDIB4z5sS6V+oi5oNi+fTuqqqrQ0dGB9PR0rFy5EsOHDwcAzJw5E1deeSUqKipQXV2Nhx56COeffz42b94Mo9Ho9nxmsxlms9n62WQyef39zs5O1NbWoq2tLXwXRUiYSE1NRXFxMaf6CIkRnQcA/XwgYbVtm2UG0PkCYBgQq1KpE50QQsSyAJ2dnaipqcGpU6fw5ptv4i9/+QvWrVtnFRX21NbWoqKiAsuXL8ecOXPcnm/RokV4+OGHXbY3NTW5RHn09PRgz549SExMRH5+PgwGA0eDRBUIIdDZ2YmGhgZYLBYMGTLEZ1IZQkh4MTcA+uscxYSCZQbQ/Wr8WypMJhOysrLc9qHOxFxQOHPhhRdi0KBBeOGFF9zuHzJkCG6++Wb87Gc/c7vfnYWirKzM7c3o6OhAdXU1KioqkJqaGr6LICRMtLW14eDBg6isrERycnKsixMVms3AYRPQ3AlkGIDSTCDDvUGSkIjSuRMwjPSyfwdgGBG98sSCQARFzKc8nBFCOAgCe06cOIFDhw6huLjY4/eNRqPH6RBPcORH1Epfq5s1TcBbu4BjrbZthWnAnGFAeVbsykX6JqIptP19jZgKigcffBAzZ85EWVkZmpubsXz5cqxduxarVq1CS0sLFi1ahCuuuALFxcU4cOAAHnzwQfTr1w+XX355LItNSNyhBqtAs9lVTADy81u7gJvG0lJBoovOh4j1tb+vEVNBcezYMVx//fWora1FVlYWRo8ejVWrVmH69Olob2/H9u3b8corr+DUqVMoLi7GtGnTsGLFCr9SgJLIsXbtWuzatQu33nprrIsSF1h6gE4L0COABB1gSAQSo2iYUItV4LDJVUwoHGuV+4fF+Xw1UReiQPpKJHrwoRDhDTjUPDEVFC+99JLHfSkpKfjggw+iWBrtMHXqVJxxxhl46qmnInL+tWvXYtq0aWhsbER2drbDvurqalx33XV4++23I/LbfQ1zN3CqA+jqsW3TJwDZyYAxCm+nmqwCzZ2h7Sck3BjzZTQH5juKCssMwPJC/DtkBorqfCiIeuns7MTVV1+NF198EWeeeWasi6N5LD2uYgKQn091AP2i4CesJqtAho/IWF/7CYkEhgGA+VXAouShyJKWCYoJVygoiN8YDAZs2LAh1sWIGzotrmJCoat3GiTSQcxqsgqUZsqpFncCpzBN7ickFhjzAVBA+KRvuZBHiGYzsKsB+OqI/NvsPkglYrz66qs488wzkZGRgaKiIlxzzTWor693OGbnzp245JJLkJmZiYyMDJx33nnYt2+f37+xfv16TJ48GSkpKSgrK8Odd96J1lZbyz9gwAA88sgjuOGGG5Ceno6Kigq88847aGhowOzZs5Geno5Ro0Zh06ZN1u+cOHECV199NUpLS5GamopRo0bh73//u8PvTp06FXfeeSfuu+8+5ObmoqioCIsWLQruRqmMHh8B2772hwM1WQUyjNJvozDNcbviz0GHzPAR6zaLxCcUFCFS0wS8tAV4ZRuw8jv596Utcnu06OzsxG9+8xt88803ePvtt1FdXY158+ZZ9x85cgSTJ09GcnIyPv74Y2zevBk33ngjuru7/Tr/9u3bcdFFF2HOnDnYtm0bVqxYgc8//xx33HGHw3FPPvkkJk2ahC1btuCSSy7B9ddfjxtuuAHXXXcdvv76awwePBg33HADlNQnHR0dGD9+PP71r39hx44d+PGPf4zrr78eX375pcN5X375ZaSlpeHLL7/E448/jl//+tdYs2ZNaDdNBST4MD/42h8OFKuAO2JhFSjPkn4bN4wGLj9d/r1pLENGw4ka2iwSn6gusVW48ZaUQ0lsFWzSoGazfBE9mWgj5dDmyylz48aNmDBhApqbm5Geno4HH3wQy5cvx+7du6HX632e39kp84YbbkBKSopDsrHPP/8cU6ZMQWtrK5KTkzFgwACcd955+Nvf/gYAqKurQ3FxMR566CH8+te/BgBs2LABVVVVqK2t9bjg2yWXXIJhw4bh97//vfVaLRYLPvvsM+sxEyZMwPnnn49HH33Ur/ulViw9wPE299Me+gTpQ9HVGVod9Qe1RHmQyBOrNotoF00nttISanFo27JlCxYtWoStW7fi5MmT6OmRPVRNTQ2GDx+OrVu34rzzzvNLTLhj8+bN2Lt3L1577TXrNiEEenp6UF1djWHDhgEARo8ebd1fWFgIABg1apTLtvr6ehQVFcFiseDRRx/FihUrcOTIEWuW07Q0xyGz/XkBoLi42GVKR4sk9kZzeIrySEwAuqJQDsUqEOs8FCTyqKXNIvEJBUUIqMGhrbW1FTNmzMCMGTPw6quvIj8/HzU1NbjooovQ2SkLkJKSEtJv9PT0YP78+bjzzjtd9pWXl1v/by9YlDVR3G1TBM8f/vAHPPnkk3jqqacwatQopKWlYeHChdZyuzuvch7lHFrHmCQtEbHMQwFI8cCOJP5RQ5tF4hcKihBQg0Pbd999h+PHj+PRRx9FWVkZADg4PgJyhP/yyy+jq6srKCvFuHHjsHPnTgwePDgsZVb47LPPMHv2bFx33XUAbIu1KRaPvkJiApBCbyYSBdTQZpH4hc1YCKjBoa28vBwGgwHPPPMM9u/fj3fffRe/+c1vHI654447YDKZ8KMf/QibNm3Cnj178Le//Q27d+/26zd+9rOf4YsvvsDtt9+OrVu3Ys+ePXj33XexYMGCkMo+ePBgrFmzBuvXr8euXbswf/581NXVhXROQohn1NBmkfiFgiIE1BDmlp+fj2XLluEf//gHhg8fjkcffdTq0KiQl5eHjz/+GC0tLZgyZQrGjx+PF1980W9rxejRo7Fu3Trs2bMH5513HsaOHYuHHnrI6yJt/vDQQw9h3LhxuOiiizB16lQUFRXhsssuC+mchBDPqKHNIvELozzC4EGvhoWVSHwSrjpKiD1ss4i/MMojytChjRCiJdhmkUjAKQ9CCCGEhAwFBSGEEEJChoKCEEIIISFDQUEIIYSQkKGgIIQQQkjIUFAQQgghJGQoKAghhBASMhQUfYwDBw5Ap9Nh69atAORS5TqdDqdOnfL4nWXLliE7Ozsq5SOEEKJNKCj6OBMnTkRtbS2ysrJiXRS/WbRoEc4444ywnGvevHlM900IIWGAmTL7OAaDAUVFRbEuBiGEEI1DC4VG+b//+z+MGjUKKSkpyMvLw4UXXojW1lb09PTg17/+NUpLS2E0GnHGGWdg1apVHs/jbspj2bJlKC8vR2pqKi6//HKcOHHCa1m2b9+OhIQEHD9+HADQ2NiIhIQEXHnlldZjlixZgqqqKgCAxWLBTTfdhMrKSqSkpOC0007D008/7VKuCRMmIC0tDdnZ2Zg0aRIOHjyIZcuW4eGHH8Y333wDnU4HnU6HZcuWAQCamprw4x//GAUFBcjMzMT555+Pb775xmO5Fy1ahJdffhnvvPOO9Vxr164FABw5cgRXXXUVcnJykJeXh9mzZ+PAgQPW727cuBHTp09Hv379kJWVhSlTpuDrr792OL9Op8MLL7yASy+9FKmpqRg2bBi++OIL7N27F1OnTkVaWhqqqqqwb98+r/eXEEK0AAVFOGgE8B2ALwHs7v0cQWpra3H11VfjxhtvxK5du7B27VrMmTMHQgg8/fTT+MMf/oDf//732LZtGy666CL88Ic/xJ49e/w695dffokbb7wRt912G7Zu3Ypp06bhkUce8fqdkSNHIi8vD+vWrQMAfPrpp8jLy8Onn35qPWbt2rWYMmUKAKCnpwelpaV444038O233+KXv/wlHnzwQbzxxhsAgO7ublx22WWYMmUKtm3bhi+++AI//vGPodPpcNVVV+Hee+/FiBEjUFtbi9raWlx11VUQQuCSSy5BXV0d3nvvPWzevBnjxo3DBRdcgJMnT7ot909/+lP813/9Fy6++GLruSZOnIi2tjZMmzYN6enp+PTTT/H5558jPT0dF198MTo7OwEAzc3NmDt3Lj777DNs2LABQ4YMwQ9+8AM0Nzc7/MZvfvMb3HDDDdi6dStOP/10XHPNNZg/fz4eeOABbNq0CYBcXp4QQjSPiHOampoEANHU1OSyr729XXz77beivb09+B+oEULMEELA7t+M3u0RYvPmzQKAOHDggMu+kpIS8dvf/tZh21lnnSVuu+02IYQQ1dXVAoDYsmWLEEKITz75RAAQjY2NQgghrr76anHxxRc7fP+qq64SWVlZXss0Z84ccccddwghhFi4cKG49957Rb9+/cTOnTtFV1eXSE9PF++//77H7992223iiiuuEEIIceLECQFArF271u2xv/rVr8SYMWMctn300UciMzNTdHR0OGwfNGiQeOGFFzz+7ty5c8Xs2bMdtr300kvitNNOEz09PdZtZrNZpKSkiA8++MDtebq7u0VGRob45z//ad0GQPziF7+wfv7iiy8EAPHSSy9Zt/39738XycnJHssXljpKCCFB4q0PdYYWilBoBHAzgNVO21f3bo+QpWLMmDG44IILMGrUKFx55ZV48cUX0djYCJPJhKNHj2LSpEkOx0+aNAm7du3y69y7du2yTk0o2H+uqalBenq69d/ixYsBAFOnTrVOF6xbtw7Tpk3D5MmTsW7dOmzcuBHt7e0O5frTn/6EM888E/n5+UhPT8eLL76ImpoaAEBubi7mzZuHiy66CLNmzcLTTz+N2tpar+XevHkzWlpakJeX51C+6upq7Nu3z2O5PZ1r7969yMjIsB6fm5uLjo4O6/REfX09fvKTn2Do0KHIyspCVlYWWlparNegMHr0aOv/CwsLAQCjRo1y2NbR0QGTyeT1+gghRO3QKTMUjsFVTCis7t2fE/6fTUxMxJo1a7B+/XqsXr0azzzzDH7+859jzZo1AOTcvT1CCJdtnhBCeN1fUlJiDTkFZOcPSEFx1113Ye/evdixYwfOO+887Nu3D+vWrcOpU6cwfvx4ZGRkAADeeOMN3H333fjDH/6AqqoqZGRk4He/+x2+/PJL63mXLl2KO++8E6tWrcKKFSvwi1/8AmvWrME555zjtlw9PT0oLi62ihp7srOzkZ2d7bbcns41fvx4vPbaay778vPlms/z5s1DQ0MDnnrqKVRUVMBoNKKqqso6JaKg1+ut/1eegbttPT09HstDCCFagIIiFJpC3B8COp0OkyZNwqRJk/DLX/4SFRUV+Oijj1BSUoLPP/8ckydPth67fv16TJgwwa/zDh8+HBs2bHDYZv85KSkJgwcPdvme4kfxyCOPYMyYMcjMzMSUKVOwZMkSNDY2Wv0nAOCzzz7DxIkTcdttt1m3uXNMHDt2LMaOHYsHHngAVVVVeP3113HOOefAYDDAYrE4HDtu3DjU1dUhKSkJAwYMcHtt7srt6VwrVqywOne647PPPsNzzz2HH/zgBwCAQ4cOWZ1SCSGkL8Ipj1DwlbohQqkdvvzySyxevBibNm1CTU0N3nrrLTQ0NGDYsGH4n//5Hzz22GNYsWIFdu/ejfvvvx9bt27FXXfd5de5FavA448/ju+//x7PPvus1ygRBZ1Oh8mTJ+PVV1/F1KlTAUhzf2dnJz766CPrNkB27Js2bcIHH3yA77//Hg899BA2btxo3V9dXY0HHngAX3zxBQ4ePIjVq1fj+++/x7BhwwAAAwYMQHV1NbZu3Yrjx4/DbDbjwgsvRFVVFS677DJ88MEHOHDgANavX49f/OIXVudHdwwYMADbtm3D7t27cfz4cXR1deHaa69Fv379MHv2bHz22Weorq7GunXrcNddd+Hw4cPWa/jb3/6GXbt24csvv8S1116LlJQUv+4xIYTEJRH36IgxEXXKPClcHTLtHTNPBlloH3z77bfioosuEvn5+cJoNIqhQ4eKZ555RgghhMViEQ8//LDo37+/0Ov1YsyYMQ7OkL6cMoWQTomlpaUiJSVFzJo1S/z+97/36ZQphBDPPPOMACD+9a9/WbfNnj1bJCYmOtz/jo4OMW/ePJGVlSWys7PFrbfeKu6//36ro2VdXZ247LLLRHFxsTAYDKKiokL88pe/FBaLxfr9K664QmRnZwsAYunSpUIIIUwmk1iwYIEoKSkRer1elJWViWuvvVbU1Hj2kK2vrxfTp08X6enpAoD45JNPhBBC1NbWihtuuEH069dPGI1GMXDgQHHLLbdYr+Prr78WZ555pjAajWLIkCHiH//4h6ioqBBPPvmk9dwAxMqVKz3ee0/33x46ZRJCYkkgTpk6IXxMmmsck8mErKwsNDU1uZivOzo6UF1djcrKSiQnJwf3A4fg6pg5A8BfAJQFd0pCFMJSRwkhJEi89aHO0IciVMoALId0wGyCnOYoREScMQkhhBC1QkERDnJAAUEIIaRPQ6dMQgghhIQMBQUhhBBCQoaCghBCCCEhQ0EB39khCYkVrJuEEK3QpwWFkgK5ra0txiUhxD1K3bRP100IIWqkT0d5JCYmIjs7G/X19QCA1NRUv9e8ICSSCCHQ1taG+vp6ZGdnIzExMdZFIoQQr/RpQQEARUVFAGAVFYSoiezsbGsdJYQQNdPnBYVOp0NxcTEKCgrQ1dUV6+IQYkWv19MyQQjRDH1eUCgkJiay8SaEEEKCJKZOmc8//zxGjx6NzMxMZGZmoqqqCu+//751vxACixYtQklJCVJSUjB16lTs3LkzhiUmhBBCiDtiKihKS0vx6KOPYtOmTdi0aRPOP/98zJ492yoaHn/8cTzxxBN49tlnsXHjRhQVFWH69Olobm6OZbEJIYQQ4oTqVhvNzc3F7373O9x4440oKSnBwoUL8bOf/QwAYDabUVhYiMceewzz58/363yBrJRGCCGEEBuB9KGqyUNhsViwfPlytLa2oqqqCtXV1airq8OMGTOsxxiNRkyZMgXr16/3eB6z2QyTyeTwjxBCCCGRJeaCYvv27UhPT4fRaMRPfvITrFy5EsOHD0ddXR0AoLCw0OH4wsJC6z53LFmyBFlZWdZ/ZWVlES0/IYQQQlQgKE477TRs3boVGzZswK233oq5c+fi22+/te53TjQlhPCafOqBBx5AU1OT9d+hQ4ciVnZCCCGESGIeNmowGDB48GAAwJlnnomNGzfi6aeftvpN1NXVobi42Hp8fX29i9XCHqPRCKPRGNlCE0IIIcSBmFsonBFCwGw2o7KyEkVFRVizZo11X2dnJ9atW4eJEyfGsISEEEIIcSamFooHH3wQM2fORFlZGZqbm7F8+XKsXbsWq1atgk6nw8KFC7F48WIMGTIEQ4YMweLFi5GamoprrrkmlsUmhPQRms3AYRPQ3AlkGIDSTCCDBlBC3BJTQXHs2DFcf/31qK2tRVZWFkaPHo1Vq1Zh+vTpAID77rsP7e3tuO2229DY2Iizzz4bq1evRkZGRiyLTQjpA9Q0AW/tAo612rYVpgFzhgHlWbErFyFqRXV5KMIN81AQQgKl2Qy8tMVRTCgUpgE3jaWlgvQNNJmHghBC1MJhk3sxAcjth5nehhAXKCgIIcSJ5s7Q9hPSF6GgIIQQJzIMoe0npC9CQUEIIU6UZkpfCXcUpsn9hBBHKCgIIcSJDKOM5nAWFUqUBx0yCXEl5pkyCSFEjZRnyWgO5qEgxD8oKAghxAMZRmBYfqxLQYg24JQHIYQQQkKGgoIQQgghIUNBQQghhJCQoaAghBBCSMhQUBBCCCEkZCgoCCGEEBIyFBSEEEIICRkKCkIIIYSEDAUFIYQQQkKGgoIQQgghIUNBQQghhJCQoaAghBBCSMhwcTBCvNBs5mqThBDiDxQUhHigpgl4axdwrNW2rTANmDNMLm1NCCHEBqc8CHFDs9lVTADy81u75H5CCCE2KCgIccNhk6uYUDjWKvcTQgixQUFBiBuaO0PbTwghfQ0KCkLckGEIbT8hhPQ1KCgIcUNppnTAdEdhmtxPCCHEBgUF0RTNZmBXA/DVEfk3Us6RGUYZzeEsKpQoD4aOEkKIIwwbJZoh2mGc5VnATWOZh4IQQvyBgoJoAl9hnDeNjUxHn2EEhuWH/7yEEBJvcMqDaAKGcRJCiLqhoCCagGGchBCibigoiCZgGCchhKgbCgqiCRjGSQgh6oaCgmgChnESQoi6YZQH0QwM4ySEEPVCQUE0BcM4CSFEnXDKgxBCCCEhQ0FBCCGEkJChoCCEEEJIyFBQEEIIISRkKCgIIYQQEjIxFRRLlizBWWedhYyMDBQUFOCyyy7D7t27HY6ZN28edDqdw79zzjknRiUmhBBCiDtiKijWrVuH22+/HRs2bMCaNWvQ3d2NGTNmoLXVcRWoiy++GLW1tdZ/7733XoxKTAghhBB3xDQPxapVqxw+L126FAUFBdi8eTMmT55s3W40GlFUVBTt4hFCCCHET1TlQ9HU1AQAyM3Nddi+du1aFBQUYOjQobjllltQX1/v8Rxmsxkmk8nhHyGEEEIii04IIWJdCAAQQmD27NlobGzEZ599Zt2+YsUKpKeno6KiAtXV1XjooYfQ3d2NzZs3w2h0zbm8aNEiPPzwwy7bm5qakJnJFaQIIYQQfzGZTMjKyvKrD1WNoLj99tvx73//G59//jlKS0s9HldbW4uKigosX74cc+bMcdlvNpthNputn00mE8rKyigoCCGEkAAJRFCoYi2PBQsW4N1338Wnn37qVUwAQHFxMSoqKrBnzx63+41Go1vLBSGEEEIiR0wFhRACCxYswMqVK7F27VpUVlb6/M6JEydw6NAhFBcXR6GEhBBCCPGHmDpl3n777Xj11Vfx+uuvIyMjA3V1dairq0N7ezsAoKWlBT/96U/xxRdf4MCBA1i7di1mzZqFfv364fLLL49l0QkhhBBiR0x9KHQ6ndvtS5cuxbx589De3o7LLrsMW7ZswalTp1BcXIxp06bhN7/5DcrKyvz6jUDmfwghhBBiQzM+FL60TEpKCj744IMolYYQQgghwaKqPBSEEEII0SYUFIQQQggJGVWEjZK+RbMZOGwCmjuBDANQmglkMNKXEEI0DQUFiSo1TcBbu4Bjduu/FaYBc4YB5VmxKxchhJDQ4JQHiRrNZlcxAcjPb+2S+wkhhGgTCgoSNQ6bXMWEwrFWuZ8QQog2oaAgUaO5M7T9hBBC1AsFBYkaGYbQ9hNCCFEvFBQkapRmSgdMdxSmyf2EEEK0CQUFiRoZRhnN4SwqlCgPho4SQoh2YdgoiSrlWcBNY5mHghBC4g0KChJ1MozAsPxYl4IQQkg44ZQHIYQQQkKGFgoSc5iKmxBCtA8FBYkpTMVNCCHxAac8SMxgKm5CCIkfKChIzGAqbkIIiR8oKEjMYCpuQgiJHygoSMxgKm5CCIkfKChIzGAqbkIIiR8oKEjMYCpuQgiJHxg2SmIKU3ETQkh8QEFBYg5TcRNCiPbhlAchhBBCQoaCghBCCCEhQ0FBCCGEkJChoCCEEEJIyFBQEEIIISRkKCgIIYQQEjIUFIQQQggJGQoKQgghhIQMBQUhhBBCQoaCghBCCCEhQ0FBCCGEkJChoCCEEEJIyFBQEEIIISRkKCgIIYQQEjIUFIQQQggJmaRYF4AQQiJNsxk4bAKaO4EMA1CaCWQYY10qQuILCgpCSFxT0wS8tQs41mrbVpgGzBkGlGfFrlyExBuc8iCExC3NZlcxAcjPb+2S+wkh4YGCghAStxw2uYoJhWOtcj8hJDzEVFAsWbIEZ511FjIyMlBQUIDLLrsMu3fvdjhGCIFFixahpKQEKSkpmDp1Knbu3BmjEhNCtERzZ2j7CSH+E1NBsW7dOtx+++3YsGED1qxZg+7ubsyYMQOtrbYhxeOPP44nnngCzz77LDZu3IiioiJMnz4dzc3NMSw5IUQLZBhC208I8R+dEELEuhAKDQ0NKCgowLp16zB58mQIIVBSUoKFCxfiZz/7GQDAbDajsLAQjz32GObPn+/znCaTCVlZWWhqakJmZmakL4EQoiKazcBLW9xPexSmATeNZbQHId4IpA9VlQ9FU1MTACA3NxcAUF1djbq6OsyYMcN6jNFoxJQpU7B+/Xq35zCbzTCZTA7/CCF9kwyjjOYoTHPcrkR5UEwQEj5UEzYqhMA999yDc889FyNHjgQA1NXVAQAKCwsdji0sLMTBgwfdnmfJkiV4+OGHI1tYQohmKM+SlgjmoSAksqhGUNxxxx3Ytm0bPv/8c5d9Op3O4bMQwmWbwgMPPIB77rnH+tlkMqGsrCy8hSWEaIoMIzAsP9alICS+UYWgWLBgAd599118+umnKC0ttW4vKioCIC0VxcXF1u319fUuVgsFo9EIo5FDD0IIIcHBzKrBEVNBIYTAggULsHLlSqxduxaVlZUO+ysrK1FUVIQ1a9Zg7NixAIDOzk6sW7cOjz32WCyKTAghJI5hZtXgialT5u23345XX30Vr7/+OjIyMlBXV4e6ujq0t7cDkFMdCxcuxOLFi7Fy5Urs2LED8+bNQ2pqKq655ppYFp0QQkicwcyqoRFTC8Xzzz8PAJg6darD9qVLl2LevHkAgPvuuw/t7e247bbb0NjYiLPPPhurV69GRkZGlEtLCCEknvEnsyp9cTyjqjwUkYB5KAghhPjDV0eAld953n/56cCE/tErjxrQbB4KQgghJFYws2poUFAQQgghkNEczknQFArT5H7iGQoKQgghBMysGipBO2V+9dVXWLt2Lerr69HT0+Ow74knngi5YIQQQki0YWbV4AlKUCxevBi/+MUvcNppp6GwsNAha6WnDJaEEEKIFmBm1eAISlA8/fTT+Otf/2oN7SSEEEKcMTcAunpANAG6bEDkA0Z21HFLUD4UCQkJmDRpUrjLQgghJE7oPADorwMMIwHjJMAwAki6Tm4n8UlQguLuu+/GH//4x3CXhRBCSBxgbgCS5gMJqx23J64GEufL/ST+CGrK46c//SkuueQSDBo0CMOHD4der3fY/9Zbb4WlcIQQQrSHrt5VTCgkrgYs9QA49RF3BCUoFixYgE8++QTTpk1DXl4eHTEJIYRYEU2h7SfaJChB8corr+DNN9/EJZdcEu7yEEII0Tg6H6ty+tpPtElQPhS5ubkYNGhQuMtCCCEkDhAFgGWG+32WGXI/iT+CEhSLFi3Cr371K7S1tYW7PIQQQjSOMR+wvOAqKiwz5HaGjsYnQa02OnbsWOzbtw9CCAwYMMDFKfPrr78OWwFDhauNEkJIbHDIQ5ElLRMUE9oikD40KB+Kyy67LJivEUII6UMY88Fojj5EQBaK77//HkOHDo1kecIOLRSEEEJiSbNZu2uDRMxCMXbsWJSXl+OHP/whLrvsMlRVVYVUUEII8YSWG2FCFGqagLd2AcdabduU1UvL4yzaJSBBceLECaxZswbvvPMOLr/8cgghcOmll2L27NmYMWMGkpOTI1VOQkgfoi81wiR+aTa71mNAfn5rl1zVNJ5EckBRHsnJyZg1axb+8pe/oLa2FitXrkR+fj7uv/9+5OXlYfbs2fjrX/+K+vr6SJWXEBLn+GqEm82xKRchgXLY5FqPFY61yv3xRFBho4BcpnzixIl49NFH8e2332Lr1q2YPHkyli1bhrKyMq71QQgJir7WCJP4pbkztP1aI6goD3cMGTIE9957L+69916cOHECJ0+eDNepCSF9iHA0wvS/IGogwxDafq0RlIXi5Zdfxr///W/r5/vuuw/Z2dmYOHEiDh48iLy8PAwZMiRshSSE9B1CbYRrmoCXtgCvbANWfif/vrRFbickmpRmSt8fdxSmyf3xRFCCYvHixUhJSQEAfPHFF3j22Wfx+OOPo1+/frj77rvDWkBio9kM7GoAvjoi/3IumcQjoTTC9L8gaiLDKB2Jneuz4mAcb1azoKY8Dh06hMGDBwMA3n77bfy///f/8OMf/xiTJk3C1KlTw1k+0gu93klfQWmEPdV3b42wP/4Xw5hoiUSR8iwZzdEXpuCCEhTp6ek4ceIEysvLsXr1aqtVIjk5Ge3t7WEtIOl7oUeEBNsI9zUnOKINMox9Q8gGJSimT5+Om2++GWPHjsX3339vXcZ8586dGDBgQDjLR8BRV7ihw542CKYR7mtOcISoiaAExR//+Ef84he/wKFDh/Dmm28iLy8PALB582ZcffXVYS0g4agrnHDqKL5R/C/cCfB4dIIjRE0EtdqoloiHtTx2NUhPdU/cMJoWCn9oNktvf0+dDaeO4gOKRkLCR8RXG126dCnS09Nx5ZVXOmz/xz/+gba2NsydOzeY0xIPcNQVHjh11DfoS05whKiJoMJGH330UfTr189le0FBARYvXhxyoYgjfS30KFJw6ig+cRdOrfhfTOgv//IdISTyBGWhOHjwICorK122V1RUoKamJuRCEVc46godOuzFH5zeIEQ9BGWhKCgowLZtrpP633zzjdVBk4QfjrpCo69lrYt3PIVTHzYBy7YCW2qZAI6QaBKUheJHP/oR7rzzTmRkZGDy5MkAgHXr1uGuu+7Cj370o7AWkJBwEUrCJKI+3PnEtHQC1aeA9i6gIhv47jgtFoREi6AExSOPPIKDBw/iggsuQFKSPIXFYsHcuXPpQ0FUDaeO4gdnn5cui01MAEBHt/zLBHCERIegBIXBYMCKFSvwyCOPYMuWLUhJScHo0aNRUVER7vIREnb6Sta6eMfZ56WlyyYmACDZrnVjFA8hkSfo5ctfeuklPPnkk9izZw8AuXz5woULcfPNN4etcIQQ4gnncOoui21feRZg7nY8nlE8hESWoATFQw89hCeffBILFixAVVUVALnq6N13340DBw7gkUceCWshCSHEGWefGH2i3F6eBVw4UDpkOhzPKB5CIkpQmTL79euHZ555xiXN9t///ncsWLAAx48fD1sBQyUeMmUSQjyjrM3S2CH/nuqQ4aQWu5aNmVAJCY6IZ8q0WCw488wzXbaPHz8e3d3dbr5BCCGRwd4nRslL4SwmGMVDSOQJSlBcd911eP755/HEE084bP/zn/+Ma6+9NiwFI4SQQGEUDyGxIySnzNWrV+Occ84BAGzYsAGHDh3CDTfcgHvuucd6nLPoIISQSMIoHkJiQ1CZMnfs2IFx48YhPz8f+/btw759+5Cfn49x48Zhx44d2LJlC7Zs2YKtW7d6Pc+nn36KWbNmoaSkBDqdDm+//bbD/nnz5kGn0zn8UwQMIYSQ2OJuHRXSdwnKQvHJJ5+E5cdbW1sxZswY/Pd//zeuuOIKt8dcfPHFWLp0qfWzwUBXbUIIiTVcR4U4E/SURziYOXMmZs6c6fUYo9GIoqKiKJWIENIXUSJF6HfhH57WUWFW0r5NTAWFP6xduxYFBQXIzs7GlClT8Nvf/hYFBQUejzebzTCbbXY3k8kUjWISEnXYCYYHjrQDx906KgrMStp3UbWgmDlzJq688kpUVFSguroaDz30EM4//3xs3rwZRqP7lnPJkiV4+OGHo1xSQqILO8HwwJF2cPjKOsqspH2ToJwyo8VVV12FSy65BCNHjsSsWbPw/vvv4/vvv8e///1vj9954IEH0NTUZP136NChKJaYkMjjqxOkY5z/+DPSJq74yjrKrKR9E1VbKJwpLi5GRUWFdf0QdxiNRo/WC0LiAftOMFEnLRLGJLm6ZnIScMQEnE5zs19wpB0czuuo2FOYJveTvoemBMWJEydw6NAhFBcXx7oohMQMpZNL1Ml56g/3yykQhb0ngVvGcerDHzjSDg7ndVQUmJW0bxNTQdHS0oK9e/daP1dXV2Pr1q3Izc1Fbm4uFi1ahCuuuALFxcU4cOAAHnzwQfTr1w+XX355DEtNSGxROrnyLFcxAQANbZz/9xeOtIOHWUmJMzEVFJs2bcK0adOsn5UMm3PnzsXzzz+P7du345VXXsGpU6dQXFyMadOmYcWKFcjIyIhVkQmJOUonaExyFRMpeiBdT097f+FIOzSYlZTYE1NBMXXqVHhb7PSDDz6IYmkI0QZKJ7j2gOP2FD1QmW1bxpvz//7BkTYh4UFTPhSEEEl5FjCmEBiSB3RZpIhI19vEBMD5/0DgSJuQ0KGgIESjDMwBTs/j/D8hRB2oOg8FIcQzytRHYZrjds7/E0JiAS0UJK7oa+moOf9PSOzpa+2OJygoSNzQV9NRc/6fkNjRV9sdd3DKg8QFTEcdGs1mYFcD8NUR+Zf3ixDfsN1xhBYKEhdw9cPg4QiLkOBgu+MILRQkLuCaDMHBERYhwcN2xxEKChIXcE2G4OBqm4QED9sdRygoSFygpKN2B3MyeIYjLEKCh+2OIxQUJC5gTobg4AiLkOBhu+MInTJJ3BDPORmCjXP39T01rrbJmH6iJeK53QkUCgoSV8RjToZgozD8+Z7aVttkxAnRIvHY7gSDTnhb7jMOMJlMyMrKQlNTEzIz+9iEFtE8zWbgpS2eLQg3jXXf6Qf6PTVYBYK9VkJI5AikD6UPBSEqJtgojEC/p4ywJvSXf2PRcTPihBBtQ0FBiIoJNgpDi9EbWiwzIcQGBQUhKibYKAwtRm9oscyEEBsUFISomGDj3LUYH6/FMvd1zA1A507AvB7o/FZ+Jn0XCgpCVEywce5ajI/XYpn7Mp0HAP11gGEkYJwEGEYASdfJ7aRvwigPQjRApPJQqBEtlrmvYW6QYiJhtes+ywyg+1XAyDDKuCCQPpR5KAjRAMHGuWsxPl6LZe5r6OrdiwkASFwNWOoB8Bn2OTjlQQghJCBEU2j7SXxCQUEIISQgdD6ylvraT+ITCgpCCCEBIQqkr4Q7LDPkftL3oKAghBASEMZ8wPKCq6iwzJDb6ZDZN6FTJiGEkIAxDADMr0oHTNEkpzlEAcVEX4aCgvQp1BCSqIYyEBIOjPnwGs1hbpARIaIJ0GUDIp+CI56hoCB9BjUsja2GMniDYoeEi84DgH6+Y3ipZQbQ+YK0bpD4g4KC9Amaza4dOSA/v7Ur8KWxg+l4w12GcKN2sUO0g7nBVUwAMkcF5supEloq4g8KCtIn8GdpbH+TKQXb8YazDOFG7WKHaAsmvuqbMMqD9AnCtTS2r4632Rz5MkQCf8QOIf7CxFd9EwoK0icI19LYoXS8al6eW81ih2gPJr7qm1BQkD5BuJbGDqXjVfPy3GoWO0R7MPFV34SCgvQJwrU0digdr5qX51az2CHag4mv+iZ0yiR9hvIs6VwYSlik0vG6m/bwp+MNRxkigSJ2PDmbxrp8kYAhspGFia/6HjohhIh1ISJJIGu5E+IP8Rxe2Vc62Xh+hoSEk0D6UAoKEjdEszPsKx1vPNJsBl7a4tnKFK0QWdYhogUC6UM55UHigmiPODOMscsZQUJDDflAaCEh8QidMonmCSU3RF+g2QzsagC+OiL/xvv98HW9sQ6RZX0l8QotFH2EeDavqmHEqVbUMhKOVv3z53pjHSLL+kriFQqKPoBaOpVIEesRp1pRSzrtaNU/f6831EidkMup8voaD4OPeLgGLRLTKY9PP/0Us2bNQklJCXQ6Hd5++22H/UIILFq0CCUlJUhJScHUqVOxc+fO2BRWo/QF82qsR5xqRQ3ptKNZ//y93ljnA1Fzfa1pkg6rr2wDVn4n/760RW7XCvFwDVolpoKitbUVY8aMwbPPPut2/+OPP44nnngCzz77LDZu3IiioiJMnz4dzc3NUS6pdlFDpxJp8lKAsUXAgGzg9H5AZTaQqJP7+nJSJjWMhCNZ/5x9JRo7fBxvd71KPpAbRgOXny7/3jQ2OhY7tSYRi4fBRzxcg5aJ6ZTHzJkzMXPmTLf7hBB46qmn8POf/xxz5swBALz88ssoLCzE66+/jvnz50ezqAGjFpObGjqVSKKY0/c1AgdOAYkJQEUWcOFAoLMbGFfcd02dahgJR6r+uZtGGVsEtHQC6R6uy/l6YxWpo9YkYvHg2xEP16BlVOtDUV1djbq6OsyYYcvdajQaMWXKFKxfv96joDCbzTCbbTLUZIr+EFxNPgtq6FQihf1oJN0AlGUCexuBjUeB423AuWXAO7vjx1ckUGLtKwBEpv55GoWe6gC6e4AuC6BPdNynNkuVGjOmxsPgQ+vXoJaBaLCoNmy0rq4OAFBYWOiwvbCw0LrPHUuWLEFWVpb1X1lZWUTL6YzaTG5qNa+GA/vRSJcFqDEBlh4gJQmoawFSDX3b1BlrXwEgMvXP0yi0pgk4txzIdLquWI/8PaFYSCb0l39jXb54GHxo+RriwfdDtRYKBZ1O5/BZCOGyzZ4HHngA99xzj/WzyWSKqqhQm8lNrebVcGA/2mjpAtq7HPd3dMu/fdnUGeuRcCTqn6dRpkVIX4orhgHJSdod5cUKTxatlCTgqmJgQD1g3gPosgGRr841OZyvIVEn3wFjEqAD0NUjBxdqqw9qicgKFdUKiqKiIgDSUlFcXGzdXl9f72K1sMdoNMJojN2dV6PJLdadSqSwH210WVz3J9vVbrWbOiNJrLN6hrv+eRtlWoR87n1RPIaKO/GXkgTcWQJk3gEkrLYda5kBdL4gFwBTE/bXcLxN1oMP9wMNbdJZe9dxdYbMq20gGiyqFRSVlZUoKirCmjVrMHbsWABAZ2cn1q1bh8ceeyzGpfOMWk1use5UIoH9aMR5zrw8CzB32z6r2dTZFwhn/VODb0i84iz+BgHIvNFRTABA4moA8+VqomqzVCjXcMQEvLZDWidOz7O1EWoc9atxIBoMMfWhaGlpwdatW7F161YA0hFz69atqKmpgU6nw8KFC7F48WKsXLkSO3bswLx585CamoprrrkmlsX2Sjz7LKgNex+BdD2Qopfby3ujPJS5R973+EINviHxjL1vR8YpVzGhkLga0NVHtWh+k2EEBKSTbk6y64BDbSHzah2IBkpMLRSbNm3CtGnTrJ8V34e5c+di2bJluO+++9De3o7bbrsNjY2NOPvss7F69WpkZGTEqsg+iWefBTViP6I61grUt0pv/10N0vzN+x6fxOs0ntoQPhwCfe2PJVoa9ceL1Y3Ll0cIrYf/aBXed0LCR+dOwDDSy/4dgGFE9MoTCLsaZKSEJ24Yra5pYDWlG7CHy5ergHj0WdACvO+EhA9RIB0wE91Me1hmyP1qRWuj/niwulFQEEKIBomGNc6YL6M5MN9RVFhmAJYX1OeQaY8Wp5+1PiCioCCEEI0RTfO4YYCM5rDUS58JXZa0TKhZTCjEw6hfS1BQEEKIhohFEiRjPgANCAh3aH3UryUoKAghESeazrLx7pgbL0mQSPxBQUEI8YtgO+pomufV6ikfTrQUDhkt4l1EagUKCkKIT4LtqKNpno+X9RB8oZYkSOYGmdhKNMV2fY++ICK1gmpXGyVEizSbZfz7V0fk33hY5TSUFXT9Mc+Hi2j+VixRQzbezgOA/jqZo8I4SeaiSLpObo8malvdua9DCwUhYSJeR0qhzNlH0zzfV6YCYh0OaW4A9PPVsb4H/UnUBQUFIWEgns3toXTU0TTPq2UqIBrEMhxSV+99fQ9LPaIWEdJXRKRWoKAgJAzE20jJ3smtu0cuD++8wJKCt446mtkKtZYZMVRiFQ6ppvU9+pKI1AL0oSAkDMTTSKmmCXhpi1wHYeV3wI56oLULaHFzDb466miuDMpVSKODzsf0na/94UQN/iTEBi0UhISBeBkpuZu6qWkCzi0HPq9xtFT421FH0zzPzIiRR03re8Tan4Q4QkFBSBiwN7cn6mTHZkwCOrqB3GQgLyXWJfQPd1M3FiEjVsYWASMLgKSEwDvqaJrnmRkxsqhtfQ+KSPVAQUFIGFBGSu98B+SmAh/ulyP7FD1QmQ0cadZGtIenqRmLAKpPAWcUARP6R7VIJIZ4ShiltvU9KCLVAQUFIWGiPAu4agTwp81Agg4Ykgek6+UUQSSjPcKZJTBepm5I6PgKg47E+h7MeKltKCgICSMn2oH2bqDAjaNYJKI9wp37oq9FShD3xCIMOl7zuPQlGOWhAuIxu2JfJaqJnCKQJZCREgSIftZRZryMD2ihiDFU5TbUsjZAKERzyiBSuS/o5EaiHQYdb3lc+iq0UMQQqnIbalkbIFSiGRcfyUZfcXKb0F/+pZjoW0Tblyae8rj0ZSgoYkhfWczIF+YGIMnD2gCJ8+V+rRDVRE50oNQkWpjijHbCqFjWZS08D63AKY8YQlUuUdPaAOEgWlMGgThQat17XuvlV9DKFGe0E0bFyhlYK89DK1BQxBCOMCVqWhsgXEQjLt7fRl/rjabWy6+gtQXk/BHG4fJ7ikXGy2g/j3gRxd6goIghDNGTqGltAK3hq9HXWifmjNbLb48WHQ+9CePOA67LmFtmyCyahgGB/1a0LHtKx37YBOSkAKl6KVotwnZMuJ9HvIhiX1BQxBDmoZeEujZAX1D+3vDW6Nt3Ys4pwZOTgCMm4HSVdWL2aLET9oSWpzidLRHI9Oz3hPkyi2awlopIPk/7jr2+FThwSr4TFw6U/hP2oiJczyOeRLEvKChiDEP0QlsboK8o/2BRGsVEnWyolZTgCntPAreMU++90nIn7IxWpzjdWSLER4BOY35Pzh27sshdTZN8L6pKZXp5hXA9j3gSxb6goFABWs5DHy7rQDBrA/Ql5R8sSqNYnuUqJgCgoU3d90qrnbA7tDjFaW5wFRMAoDvp/Xtq9Hty7tjT9XKtnfYu+V5MHWDbF87nEU+i2BcUFCRowm0dCHRtgL6k/INF6cSMSY5iQp8AnNUfGJgDdFqAHfVyJVG1iQotdsKe0OIUp8cIrGQf31Ohxcu549YnyoX7qk9JUdHRLbeH8jzcDbAy40gU+4KCIsZodf5fDdYBNSp/tT1PpRNbe8C2TZ8AzBwCbDoKrD8kt311BBhVoL6pIudO2JAInJ8FjASQ3g7o9gFmDWVU1doUp0dLwwYAFwD4yHWXP35PscBdx51uAE7PA1q65N/J5cE/D08DrEuHACXpwNEW1+9oTRT7goIihmh5/l8N1oGoZ/PzIRbU+jzLs4AxhXL10y6LtER8XQscbbYdE+kVUUNB6YSPmID+JiDttvBFFsQCLU1xerQ0PAXg74BIdPSl8MfvKVZ4snbpE4HTM4FxxcHXe28DrH/tAWafBryzWzuWqWChoIgRahjhh4IarAPRNIf7Egtqf54Dc+QI7FgrkJvimIU1RS/nkwH1ThVlGIFKAPrbvEcWdGZqZ/SvBTxGYLUClr8AlpcANPnv9xRLIjnl5GuA1dGtLctUsFBQxAg1jPBDQQ3OctGak/ZHLKj9edrfK2WuGJBiojLb5vEOqNdJzFdG1a5jwEv71Gch0jJeI7CeBgylAEqdrHcN6u0sIzXl5M8AS0uWqWChoIgRahjhh4JanOWiMSftj1jQwvNU7tX2eukzoU+Ulgl7MQGo10nMV+SA5RRwzGkdBrVYiIJFDT45viKw1DrV54lIdOxqGGCpAQqKAAnXC671Cqgmj/VIK3+/Rh8aeZ4ZRul8Oaog9mIwUHxFDlgyALhZ2EkNFqJgUFNH7SkCS+1TfdEiUgMsNQjKQKCgCIBwvuBqGeGHgtY81oPFH7GgpeepJjEYCL4yqh7w8pzUYCEKBK101Gqf6osWkXin1CQo/YWCwk/sX/Auiwwz6rIAjR3Aip3AT8YHVmm02qg70xfmBf0RC1p7nloUg97m881/At6u8fxdtViI/EUrHbUWpvqiRTjfKa0ISmcoKPxEecFbOm2JUOz3TakAJvQP7JxabNT7Iv6KBa09Ty2KQU/z+ZZMIKVWxvp3WRz9QyJhIYq0KVorHbVWpvqiRbjeKa0ISmcoKPykuVM2VM5iApCfvzsODOsXeKOixUa9L+KvWNDq89TSXK27+fxjTcDgHODbBltG0BS9XJ8h3BaiaJiitdJRa2mqT0toRVA6Q0HhJxkGOc3hLCYUBBxVo5YaaOIfWhULvtDiXK09inn4eJsUEFMH2FZTTUkEcnykiQ7mtyJtitZKRx2uqb54aS/7utM+BYWflGYC+anAnhOu+8qzAHO3TTUqDfTxNtty0RuPSgvG6UFYMYj6Gxy1l88TWp2rtcfePGy/WqTCqMLwCcFomaK15JMT6lSf1gWtAp32KSj8JsMIzDldvjT2iyyVZwEXDgR2NQDnlTuOlpyXi07RS1+Lq0aE/0XRaofmD2pvcNRePm9oda7Wnmiah6P5W1ryyQnWehcPghYI/3VoSVDaQ0ERAINzgZmDgHaLzaRq7pZiol+qfNmVBroy23W56PYuYF9j+F8ULXdogHcxFM0GJxhRpvUGUatztfZE0zwcbVO02qfZQh3IxIOgBSJzHVoSlAqqFhSLFi3Cww8/7LCtsLAQdXV1MSlPhhE4p8y7alQaYOflohW6LOF9UbTeofkSQ9FqcIIVZVpvELU6V2tPNM3DWjVFB4K/IiEcA5l4ELRA5K5D7YLSGVULCgAYMWIEPvzwQ+vnxMREL0dHHl+qUWmA7ddLsEdJcxyuF0XLHZo/YigaDU4ooszX7zd2SAuWWkcY8dBBRtM8rPzWO9/JQYMxSb7rucnAmSWh/1aspy79FQnhGsjEg6AF4uc6QkX1giIpKQlFRUWxLoYD3lSj0kAnu7mz9qs6hquCaVnh+yOGovGihiLKvP1+S6f87j+/t21T21SUVudqnYmmebg8C5g5GHh9B3CwyZbz4khzaM/WuTNP1AGjC4ABOfJzpAVGICIhXAMZrQpaZ+GXlwKUpMs8KIB8dopDvg5AV4/8jlbep2BRvaDYs2cPSkpKYDQacfbZZ2Px4sUYOHCgx+PNZjPMZltCf5PJ5PHYSKA00BsOyQpl75CprOoYzhdFy8rYHzE0rF/kG5xQRJmnBrHLAnT3AKc6HLercSoq0p1xtEbd0TIPN5uBf+0B2ruBgjTb9lCerXNnnqgDTssD3vlebhuSC6Tp5b2LlCANRCSEayCjRUHryYozfSDwcbXcrjjkN7TJdn/XcfUNJiKBqgXF2WefjVdeeQVDhw7FsWPH8Mgjj2DixInYuXMn8vLy3H5nyZIlLn4X0aY8S8a+D8kD3vpOVir7rH3hfFG0qvAB/8RQNBqcUESZp/JlGoGxxXK6wxk1TkVFqjPWusOwOyIxzeh8zoJ0YOVuW5h6lhEwW+S/SAnSQERCOAcyanU+dCeEAc9WnDX7gWtGAifbgdd2SOvE6Xm2aW41DibCjaoFxcyZM63/HzVqFKqqqjBo0CC8/PLLuOeee9x+54EHHnDYZzKZUFZWFvGyOpPR26EMzo3si6JFha/grxiKdIMTqihzV76ObuDNXYBFuB7fZVFf4xkJtO4w7IlITDPaf6fLAlh6HHPedAsZJVZ9CjAmRkaQBiISwj2QUZvzoSchPLHMu5g80S7/393jPqGaGgcT4UTVgsKZtLQ0jBo1Cnv27PF4jNFohNGonlbK14sSiDnY07FqVfi+CEQM+dvg+ApBdbcvHKLMuXy7GtyLCWUtmFGFwMcHHH9HqyN2T2jZYdgbkZhmtP+Ou4y8STr5t71L7o+Eb1QgIkHLAxlfeBPC3x23rRXj9rt+PBc1+7WFiqYEhdlsxq5du3DeeefFuigAQp8bDsQc7OtYtSl8fwmnGPJ2jzq7XZ3o7Oejw1UOpU40dgDjiuTfmiYpLpS1YPJTZf4SBa2P2D0RSYfhWEZDRGKa0f6czh1WusFRnHZZIuMbFahI0OpAxhfehLCAFHQ5HgSFP89FzX5toaJqQfHTn/4Us2bNQnl5Oerr6/HII4/AZDJh7ty5sS5ayHPDgZiDQzUdxzoUzRfhEEPe7tEr38hGed1B2/YUvet8dKjlcK4TLZ3S9HluubRYNHZJMaFkVnUup1ZH7J6IlMNwrP0yIjE6tz9nYwdwvFU68zW0Af0zHZ17K7Ii5xsVqEjQ6kDGG96ErrlbvsPdPa777MWkVv3aQkXVguLw4cO4+uqrcfz4ceTn5+Occ87Bhg0bUFFREdNyBSoG3L2cgZiDQzEdx7rxjRae7lGXBdjWCJxV4rg93PPR7upEukH+/r6TwBXDAJMZ2H3C83SIVkyh/grUSIzk1eKXEYnRuXLO/Y3A9nq5yNl7e4BdJwDRW1+G5gHXjorsNcajSAgEb0K3pkm+y+sOeheT8Tod5AtVC4rly5fHughu8beD99aZtwRgDg7WdKyWxjcaeLoHLV3SEtFlkZ/1CcCYQqBfmtyWn+Y5CVkgeKoT+kQZXpicJP+t2idDAiuzbUmRkpNkWTIN4UuCFSmrVCACNRIjeTX5ZUSi480wAmOKgJwUmTxrVCFwZn9ZT3KSpTCuzAnvb0YbtVtMvQnhfqnS0d6Xs328Tgf5QtWCQq3408H76swvHuT9HPYqOVjTsZoa30jj6R50WaRDmz5RiokLBwGfHgCq9/Z+zwjUNgN5qaFZbPzNqVGSDuSmOq7zok8A/msE8I9vgTY7caN0vDnJwBGTFCbtvftzkiObEtntNQQhUMPdsGo5kVsglGcB886Ivw5JCxZTf4Wwr7azL1p6KCiCwJ8O3ldnbrb4bw7213TsrPwbO1yPtydeGl/A8z3SJ8pOXAhpmfj0gOMS1+kGORURqsXG35walw4FHl/vuM7LWf2BTw7I5+Uct/63bcDQXKCzxyZClCRpg3IilxLZHcEK1HA2rFpO5BYoWuyQzA2Arh4QTYAuGxD5gLH3GrRkMe2rFoZQoaAIAn86+F3HvZ/DbAksZNLXse6U/9giObWS7qGRjbfG1909GpQjO+S2bpls6r29tn1ZyTIDoT4xdItNXgqQkuQYRaIIA3vR19EtMx4OybN58w/MAdYfkvvtPci7LMAXh6Vl48O9NhFi7/8RqZTI7oiFdcBdiuPxRUBrt+OKvzVNthV/SXCEOhXReQDQzwcSVtu2WWYAnS8AhgHas5hqUdDFGgqKIPCng/dnJBWICvZ2rCflf6pDeiO7i5uOR29jT/eosUPOR+emSqe2biE744JUx3vtrkP0p5GtaZLnH5QrO/o9J1ytCFYn3U75LOzDzjottv932f1fyUfQaXFduVbJRxCplMjuiLZ1wJ1ITjdIgbjyO/lsAPncfzgUGB+Gxbn6KqFORZgbXMUEACSuBjAfML8aH9NVoYguf76rdv8SX1BQBIkvMeDvNEUgKtj52GazdOKrbwW+O+E4KgZkI3FuuYwyaHczN6+liuqMtyRVzvczwyjno7fXA9nJrhYE63FOHaI/jay9mDvWClSVSu98xYluaoVMo2z/G/YLB3V0A8XpwHnl0qrVaZECKF0PdPeKC4OHmHdFfEQqJbIzkUzz7s4S4XzvFYvN3pPARQOBb+ptYnlvowzH9efcWmukI40/UxEGk+epDEDucxYTComrAUs9kFHgvRxqt5iGIrr8+W44UhHEup5TUISANzEQ6Uxy9pVvQLbjqFiZ4rAIKTiuGCZNw7GsaOGs7MG8eBlGYFSB/OdPh+jvfK+9GdciHP0zDkD+nr2gKM0ExhcD734vr0OnA4rSpI/E6ALg04PyPCl6KTQGZMl1HLKTpWUlSSf3t3TaBFEkUyLbE6k67Wm6bl+j43SdYrGpaZKizT618cl29yZzLTgBxhpvUxEmM5B4BNDf6nkqA5BCwxuiCSgd7Fg3va3IqYbO0R779qDLIutiV6/4X7ET+Ml4z+Xzpy0BQvMvUUs9p6CIIJFy7HGuoMpS6crcur1jn0XI/bGcCwylsvszcgX8e/EC6RD9ne8Nxoz77XGZsAiQHWb1KRkmuKMeGFcsrU2JOumT8V8jgENN0ql0/0nbdyqypRUj2imRA63TvjoGT41tY4drXbafDnIX6ut8r7XkBBhLvNXhywoA40+AhDWO2+2nMoz5gM7He9yTKdNWT6kAPqwGmjo8r8iprNqpLAUOxF4EKu2BkjrfPjX6YZO8rgn9vX/XHUpbovzf2zGe2nA11XMKiggTCcce5wpq7rYtla7Mree4cQiMBaFUdn9HrgrH22R4pUDo8eH+CoVApxgOm2SjdHqefE4dXUBDqxwJCgFMrgCK0uVoraEV+ONGOQ1y3Wjg1W3AnpOyM23skJYOTymRrxkppwGazEC2Ufpy2FtKQsHfOu2PkPTU2CYnudZl+ymqZDctl7t7rSUnwFjhrQ4P6AQS17jfl7gaSDgM9NQBCZmA5YdA4ruux1lmAF91Aau+k0J5dAEwpFKuxOy8IudhE/DsRvme2xNrEdjcaUud77zOSnuXFEvD+rkvWzh8R7wdo6Z6TkERYSJhunOuXDVNcv5YCStURnJq8JUItrIrQuR4m2MSqB4BHGsBjFmOHUyiTp7ntR2OaXHdjWz86RD9FQqBTjEoz05xzDzaBbR1yTIn6aSV4u87ZBl7hMyPYeqQTohXDpff7+mdEjm7xP2ILZbmT/u1TI6YgFS9fDZKZlDnjsFTQ6mIZHurRLpeXrfzWiiA93vtsawacAKMBt7qcGKz9+/q9gG6KwHdhQCeByxwFBWWGUDtk8DH9b2fBbDlGACd7IidV+Rs6ZLTt+eUuv5WLEVghsH9om0KAl7CpsPg1+TtGDXVcwqKCBKpht2dY19PDzD7NFl5inob11BM0eEi2Mp+2CTFhGIWVaIcLh4MHDLJkM9+qbbjy7PkccYkx0Yq2JFNIE61gUwx2DcMXRbpLKsIoGS9DCfu7p1LTk6SIiNBBxxtln4W9j4aw/q5li2W5k/7+t7YITuG8izb2iX2okJpfD01lIpItnco1idKp9cR/YBNtbZj/bnX7lC7E2C08FaHE31ZtXrfNd2HgLgVEH8BOhdLn4meTGmZ+LjeMZIJkPXD3SJbioD0lL02ViKwNFMKWfsl5RXKs6TA9VQ2f9uSknTZftln0DV3y3/erMxqqucUFBEikg27s2OfghI+d06pehx4gq3szZ02kWB/jcdb5YtdfUo6KypWCmOSnIs9Pc/1XMGMbAIRCso0inM2y9ZOm5OZgn3j0tIbEppukNMgpRnyHIAUFWlOq0w6N7Lu7l2szJ/O9V3pGGqa5DOsKnUUQ0rj66mxtQjgZJt0djvR7ih8AeC0fpFfS0RtjoGRxNNUoM4krQyJ7iI4LgCwwfZR9yGQ0AQkjZafvzoipzncoaSbd0Z5n91NaQGxE4EZRmDO6fL+OLe5imA+r9zLd/1oS86vlNM939uJlqF5wB1nea93kXTEDhQKiggR6Ybd3rFPoaFNbvcUPgdEfwQbbGXPMEiR4Jx/4ZtjMn32llrHEY4OcmrEORRUIZiRTSAOiBlGINUg1+rwJtTsG5f6Xiev/pky/fbFg4FHPpXHpRtk9M4xO8c0+0bW072LlfnTub4bEuW1JuqAkx2yvIBtKXelY/DW2M4+Xfp9uPP98OfdCcVB1V/RHU+iw+1UYL6M5sB8J1FxAYC7AFztdPwpu/N56fzN3XLV1HYnkZyul52o85QWEHt/sMG5wMxBQLvF0YKwq8F3UjVfbUmzGViz3zXpXZpebi/PCo+zeaShoIgQ9g23fZiRkgMhlIbd2bHP/rwtnd7FSrRHsMFW9tJMYONR1+1dPcDnNTIPwfB8OaeeYZAjfW/ZSf0d2bjrIPy5H4EINaVx2V4v/6UkySyehkRgYhlQ2yI7XX2CFBXVpxz9Brzdu1iZPxWntZYumT9Dp5OJ1U60AxDAzgbpUHrhQGl5sG98I5nmOJhz+/ssYx2qFy0xYxggozks9YC+EdCdAvB177/lADoApAD4AkCu7XveBhPmbuk4/K89jvtLM21RHvaEu3MM5t5lGIFzyhyfueJkOiBHtj++Bh2+2mXnpHeAf+2yWlKFU1BECKXhdhdmlKIP7dzOjn2e9nv7biD7Q224gqnsGUbg9H69Tn0J8sXtFkByouxca0wyF4E1Q6Q5dLNfKB1EoEJNyYvx1RHgwCm5LVEHVJXZQunS9PIZT6mQjWyXRZpVvd27WJo/vzsh63mGUVpW2npHcR3d8jpqmqQYvG+iG3+HCERDBXtuf55laWZsQ/WiLWaM+ZDWisMyJ4XuxwCeBrDIdoy4EMB/2z77sj6VZwE3pbtvF8qzItc5hnLv7Nuylk4gKUGGwW455v5c/rad4bAsqiFVOAVFhCjNBHJT5AjU2TM4PxU40Og5zMgXoYxCA/1uuBoub5Xd00s3rB8woQT47JB8eRN0ctTe2iXn5MOZfyHUqaBgGgTnMiuJyGYOkiMeIPDGNBbmz2azrM/5qbK+JOrk8wKALgBjCuSU1JA8KZLCsVx8JPHnWcYyVC+WjreGUqDnfwH8GNB95LhP9yEgbrPlpgB8DyY8tQuR6hzDce+UsjWbgZe2yKRqzud65ztg5mBpgTlsslmSK3pDugc7+XqpybEyFCgoIkSGEbiwUjrY5CYD/dJkhcpNkZVqw2FgVGFwL00oo9BAvhuNhsubYMlJBkYWAPtPOfpS5KdKT39nQjH7hdpBBNsgRMJU6Wvdl3CP/A6bgG31ttDlk3ar3JZnAtMqgepGW/SN2sM1/XmWsQzVi3Xege42wPCh+30Jq2UabjhZ4yIlDgKty+G8d97OZUwCXt8hLY32FuqDTXIq8PrRcvpWKbeaHCtDgYIiglh6QznX7Ac+P2RLm5yXDJw/0DaKC5RQRqGRyBYZLL4Ey8WDgM21jutjKI5Qm2qlp7+7dTs85bXwmrExxA7C39VG3RGJBtfdOSNlJm/utFlXqkrlOXc2yOs/3gp8XSuXjlfC4Sx2KZZ9njsGTo/+NO5KdkNPBDqiDOQ6Y513wJ8025Em2Locznvn7VhjkpzKrG+ziQmdTqbQ/+IwUJYlI7r0ibZyq8WxMhQoKCJIugF4c5NrpEKzWY7kxhe5/54/hDKyDXe2yGDxJViUaQD7cMNgft+fxseYKGPj7R1c7SNGvHUQ7lYbzTDKMLCiNKAgzTbvHquGIZLWJuXe2D+rPSflfdEnAFeOkL4TNU3Sf2jPCeDLI74b/1g5PfojusM5ogz0OmNtHveVZtvXfm/4uyKn8/3q6ZHJpdYdkGvgFKTLqK9I5ibxdqwyrWc/3Z1ukCKipdMxC6z9O6gGx8pQoKCIIGaLa2inQmPv0uK7GoKvPKGMbMOZLdIXnhoJX4LAORlOML/vT0fa2AHsPi4tH4r4s19ozVsH4W610fMr5Ujkk2q5/obihBvL9QgiaW1y7lztM7eWZsoFzw6bbPdUn+hbyMR6fQJ/5v7DMaIM5jpjbR4XBZ5zU1hmyP3B4K+wcq7LHd0yGuqj/VLQDs2TbW9VqZxasP9uOO+dt3PlJEtncnvsfYv0iY55OA6bpL9dUoKsa8H618UaCooIYrbIBtQ5yiPDCFx2GrDiW99pomOJ8wvjbXVAT3hrJHwJgoK04LPHKXjrSJW1P974FjjSLJd6Vzo/ZaG1KRXeOwh3q41WZsuwt5om6YioCIpQOsNQTf+RtDZ5cy4tTAde2Sbvg7PVx5uQibWfAOBbdIfD/yWY64ym463bepfvPjeFZQZgecFxWfNAfsdfYeUckp9usIkJQEaDtXfJqQVDouNKoOG8d97OdVaJXN9jf6Nte3dvkrrKbDkVqLwLSiTg9npbxJfa+gJ/oaCIIBkGWdnt80UYEoER+dKvQp8gOxtjItBhkYmOTGb5AoRrIaeQym/3wtinwXZeHdBTxffVSFwz0vtoYWCOVOzBZI+zlsFDR6ms/bHxKLDuoNx28BRwVn8Zmqms0uppvQxv57dPyOWcDfBYq2xkDIn+d0LhMP1H2kzuqXPddVwKQ094ej6x9hPwl1D9X4K9zmjkHfBa7wbYclOIJjnNIQqCExNAYMLKvq62dEnRaj8tmqSTf9u75EKCzqLM+d4ZE+W/Yy0yu20g99Hbc7hmpMwpo7RdSTrZbk4ZAHxWAwzOcVxwzD5xXbQsceGGgiKC2I/wc+zUaFeP7FSK0uULUddiC4k8cErmXzinNPClvSMx32afVvq1Ha6rA7odQfSW67BJLsudqrdlSFQ41irDrbyNFoDgs8cpeIuu+HC/XC5coasHWH8I2FJnu0Z362X4Or99WKRz5s6WTpnt0z4JVyiizN8GJxpmcneda7BCJtZ+AtEi6NT0EX73/ap3+XCI5gjp9wIQVvZ1ucvitICcwbGd6bJ4Dtkelh8mse5BVA7OkzlXNh6V06r5qcDek1JMlGXKtqGxQ7YXw/tJx+4B2TYrbE2T9lbEpaAIgWaz7GiPtcr5/kInRyBnk5iiRgfnynTLlh6bk05Sgpx3T9DJShbM0t6RSg2cYZQOT909rqsDAo4jCPty1bdKgeRugSgAMHUCp+d7Vvi7GkLLHgd47kiVtT+cl0HvETKs63ibXKzL6CGVt7fzKyONFL008ysoz//MEtdr8fS8w2X699fUG+6OKlghE2s/gZCnmPz8vrvrVKYWs5NlW7CrwfH70XBWjXpG3QCElX1dbuywifZ0g2xXT9mFLesTvYuySPvpVObItNxKIqzKbBntoeSu6LbI0Pjh/YBnv5KDGsDWZgYbCRgrKCiCpKYJ2HzUcYGuFL2rI5C9SeywSeaeyDDISp9ltFWY7h5ZmYyJskM6cEqKjf6Zrg0T4PlFeOc74KoRMuXxsVagoVW+dIqFINiGx58RhPMLqrzonhaIsl/PwW2oZ5iyx7nrSJW1P7os8l7UNNl8Qrp7gEYzkKuTzpo5KZ7vl7vzm7vltExSgqOFoqXL/dLbgOdGOpymf19m8kh0VMHOWcciQZdCqPchkO87X6cyFfd5jaw/iuC1z80SDWfVaE85BSoglbq8v3dK4/xKW44H0TtoSdEDg3I8i89oiSbn9m1wru0dtPRIi8Vbu6SPRYbRtv7NV0dCiwSMBRQUQdBsBr48LB34TGYg3WjLMbHBgyPQsHxZgT4+IDuyskxZaQTkqFhAdmiDcmSHk6gDmjqBVVtcG6aJZe5fhEQdkJsK/HGTtA7sOSnNaYNygBmDbCP+YBoef0YQzi9oul6+1O1dspGdOsDxOnyNMsNl9nbXkSprfygRCav3AduO2ZxkB2QBE/rLhE1HW7zfL/vzt/aef1QB8PZuOS+baZT3IT9VTmftanB/npZO15GtLwtJoKZ/b3k6ItVRBTvfH4v1CULOmBrE9+2vs6Mb+Of3trTrzt+/eFCUOsEoTTkp9b2lUzpAf1jtmHnS67o1RmBMkRT8nRY5uGs2y33K4O6qEY7ftX+/OrplW+w8HWs9NkLWAft38Js64NMaKSayk20WawCoOSWvIdWgHedMCoogOGKSVoRNtY4mKcXkpqhmJT2rvRqtzJbfv3AgsOGQ7Fx6eitzWaac0991XM7df7DXdTW+Y63Se1jxJ7CnPAtYtRdo640oUVaq3HZM/sZ55dJCEEzD488IwnlxLn2iY5SL4lvg7ygzkmbv4nTbuXc1AGOL5JLwZovMbFqZI2PaLUIe48la5Cwad9YDT30lM0OOKZTbUpKAscVAv2Tgb9vdN16JOjkifclJQI4ttC1vHu57YE+kR2vBOi9GKssi4H5aItT7EOz3levc1SDfeXer5iqhyV6vKUydYDjfPU/TP86WHGWhrSkV8nMgwjMnWbaZyvRzQa9Tt/13nX+vsUMO3txNxyq/H2mUSMBjLTLSLCVJCiTR6xRuEdLqPO8MbThnUlAEQUuXdK45ZZam8wSd/NvSKTuenGT5f+cK3GWR61CcWw7sPAacUSyTIZ1sl4ra3A28vwdISgTO7i+9g901LAKOS3cr6BOBHfXyReoWNutHt0U6Ak6tsB0baMPjjwna3QtoH+Vyeh4wudz/UWa4zN7uTNAl6XLBrTX7pSf4hiPypVa8sP++Q1pUFGuCJ2uRvRm7vsUxImVTre3YnQ3AL86V86nuGunRBa6jM0BaSMYXA3sb/R+5BYNWoirChVInnNdZmFTm/Xuh3qdQ9ivtR32vX1FyouyQOu2SsYWrE1TevXe+cwzbzk2WPkChvHuFaTKD8Du7HbdbhFxky5dF0FN5KwEMbO2NOskGRCKsTqPuLEfpelm+9/bIAcXeRltoc7TSXSuRgOZkaaE+0gzUtdr6lGaztDofMUl/M2++ObHIKusMBUWA1DTJqAylEQJ6IzQSgQRIIWHpkQ/UuQLrE4Eki5wfHZoH/GMncOEgOTXR1WOb/yvOkKLEnZgApPDIT3XMYYHe31ZUbQJkQ6NYP7osUgC1dMoKHEzD48sE7WlUo08ETu+1vgRawUM1e3syQR9tkbkirhwG/OewfB4d3TI+fM0++Ty6e6TJEfBsLbI3Y+9tdAxvtef7E7a8Fm991+sQatd4DchxXLFQwSJk+vHrRkmBGKnGoq9EVQC2OrGv0TFHzIFTMvLKW26VUO9TsPuVXAUTy+Q7/W2vZbMo3dZuDM1zDD0MlfIsucDV6zscU8ofafbPn6TZLK2wOSlywGQfvbDxqHynPVliArWIdR4A9PPlWiIKPTNkvgzDAPeWI7NFTkfubwTOKJIZXJWpkmilu1bazONtsl9p75KWGqDXutso03eP6OfdNweITVZZZygoAkBpiPLTgBNt0jdhX6N8sZUcE/oEoCRDVlZ3I9F0gzx2TKEMp0zVy3k+k1l2WMpLl5LkmEjKPqnTERMw53SZP8H+N7KN0ix/sg1ISJDzsPYjnsQEW6cWrPr2ZoKOlCNdKGZvbybooy3AQZMME+2y2JbfVlD8PlKSPFuL7Bu/JrPncnT1AIebpQWpPEs6ZukgfSqG9XOdLrKnoxs4ZAKykiM38oh1VEU0URyknRPOAcC+k/I9djel6M99CPU+uvu+Eh2UnyqtVOcPkHVtzwk5eClMlwOQc8uBf30fPvN4s1multne7ZhLxF9/kr0ngff3OS49oEQvNJndW1mtvx2ARczc4ComAPk5ab7Ml+F8PuWednTL+1eWCfzXCNnGpiS6j2aLBEqbebwN2GBXRsVSah3cCM++OSt2AhWZkXfU9QcKigBQOqfcFGmWmjZAbldERYJOhgD9v+FSUCh0WWwWDUXl9/TYsqK5Y0q5NHXbR5EA8oX84VDZIdl7C2cYZAe19oBUus3tUlygWe4flAM09cZCTx8YuQoWC0c6b/hqmBQR4OzvoaCDbEw9WYvsfyPL6Rp7hGwMLL3Wjsze/faRLifbe9Ps+hiZjiqUDr2A68gjXKHB8bA4kT80d8r30VlMAHJq8PYJwJZaR4uUv/ch1Pvo7vtKdJAy13/KDAzJkSPpLotMlKf4AllE+BwzQ/EnaTZLS5zzOkZKxNcVw1yTvtkTiEVMV+8qJhSU1U8znNKB2z//ZrNsr+3b42BXgg6UZrN05D63HBhd2GslbZPTr4qYSOkdGHp6FvsaPSePi0SIrzcoKAJA6Tg6uoG0XqfMiWXAzCHSTyHDCOQYZeetrEaodAj2jVeKXoqOknQ5SnamME2aCb897roWSEOb3H7hQNeRe7MZuHQo0PatHAkfaQYKUmXDc/FgOec6plCW1a/rDbKjiqQjXaD4apjsRYBzVlN97/0y+BlpMThHmp2/P+EYgmoRUjQ0ttsc7xQHMOWF9zUytQ81tR95KDlLwmHqVJsYjBQZBs+dmTL1OGuoHK0Gcx9CvY/O32/vAnafsNWb9i7HSKG8VMfOMFz+LqH4exw2eV7HqKZJTsdWZLlOIwKBW8R6TvnY3wSUDnZ8v+yff3mWayh3NHyG7KcwGjvkNFa/VNmnfHPMJiYqs13bbPtBaqfFvThWiKb/EwVFACgdR02TXH78w/0ydFRhSoWcc8wwyhciN0XmZ3d+2LnJssMfVSjFR2ePHBF19tg6gxPtUow4d3DperndU47/8SVy1D2+NwNkV4/8/f2NMgKkOAO4c4Lva/UVS68GByB/8GWCHpzjuN8+iZaS/lv5vy8zdkG6TAn+zFdyNc1uIc93Rj4wdwzwbb1MsT4gW44qFJo7/RuZ2nOsVT7TTw6E19SpJjEYKUozZWfmzkJYnmVLgxytqBZP75Ly/V0NwKp9tuPtrWU9QlrRFEfNsDpmhuAP0tzpGDbuTGuXTE39rz2hW8QsPsSHJcP1/VLuoX3SPXvsry0SbZ2zb1e6XlowG9tlX3DhQJuTaGmmowXCeZCanSyFmeIf50w0/Z8oKALAvnPa1SBH/lMHSItFTrKMolDW4MgwAhdWStVpb/YrSpfTIs9tBK4eJT2MB+UAt4wHsg1ASW9l/eqIPN5dlkjAe47/HwwGvjoqOy0Bqb5X7ZXioqFNRhMMzvX8UniLpX/nOymaPDUEaouX9mWCLkj3z0Ttrxl7RIEUbLt7rRQJOhn98fOPZThvZTZw65myM1OsFMoL72tk6ky9lzDCaJs6tYS7dRYAW+dyss0mEutbZMPeZJY+SoNywrvOjj/CvdMiLVzKu9xzUnbUJrMc0e47aRNH4XTMDMUfJMPgeRoxRQ+clidTU9+UHprD9WETkJEJJM/wvPppaw6QBsf3q7FD/j3V4fp+2V9bpLKSOk8n2d+rupZeP712x4RmhWnufX9K0m3WTPtlEZyvJRpQUARAhlGGOym52Y29TpKd3XLtDeeGRokSUERHkk6GDy7fITubLovscKpPAcu2Ag9PsctrEMLooCBdKto/bXZ9kSuz5by9t87G29ypMUl6ffuKeFATvkzQ5Vmyg1E6jiyjtFzYP09/zdg1TfJ5Npllh99pkdNaiQkAep/1v/fI+dLqU95feH2iZ2dQwPdUTLhNnVqxSvmD8zoLisPzyTZg9unyunbWe16YbkSB53P7SyDCXRmVKhar9m75Ho8tlnPtgKyj4XTMDMUfRBEjgKuVdVCObY2cYC1iSkd/vK03b8UTQPHdQOIa2zGWGUDD00Ca3fntf085h7OYUK7N3yRl/r4X9sc1dbg6/tpPuRakARNKHM81Z5jsJ+zb9PIsOUUCnawb9o6usfB/oqAIgJomGTvtHLt+zUj3ajXd4OiAd6xFNmAK9pXp+xOyQ1M6sXB43bubLlF+01tn422fMUmGkLlzAlLzqNhbw+XvKMRX49dslunY1x6UocBKRzQoR1qN3tsj721ti1zV1PmFdy5HZbY0DSdZXE2ZhWm2BtvjNRts5QpVCERj/YhoY7/OgvO9cc4povD9Cbn94SmhWyoCEe72nc13x+UU2qHecl8+zCaIwu2YGag/iKfMl6F0cs71Ny9FCq5jrfIdeeNbYEwBMPi3wOjfAvoWoDsD2J0IlBcARR5+y9e1uXs+9pF3Xx6W/iuesnvavxfO78/p/WRUWWW2+2mKVDc9c3mW9O2pyHaM+tvZO11TVSotPyl65qFQPfZq1X4aor1bjiJuSnd9eIooUARIe3dvjggdMDBb5jywxz7sMNDRgbuUzZ6mSwDvc4Te0j13eMjiZz2XxhIghTPl9BGTjMpp7JDPWEHxlzi7P7DzuPStKUmXob/2SWmcy1HTJEecn9c4jmaczaDeRGc4hEA0FlGKFZ5Eoq+cIvbiP1gCFe7K+9zdIzvsL4+4fi9RJzup+tbwWZL8tSL4ynwZzDLh7upvSpJMCHisVd6n/Y3AoSbpQL09DUhOAzL1srMt8tMB3R3Oz0dZZ+XD/bJcMwfLzryhzVEYuLNgOF+DkkvIfprC3gq1+4T0m3F+V5OTpKB0R/UpmQ05lgM6Cgo/OWyS5rXKbNe8EDVNslIbEl1f4ukD5YhmzwnZOHRa5MpyPxohQ08vqJTfa2iVc7T2BGJmd85oV5ohzYrfn3Cdf/c1R+gt3XNOsuMKms5E0wEoHCPvcKacPtYq76dOJ6Nr9Am21QP3Ncq60C3kvXUuq7tyWIQtLfjIApma2/k6fS3/Hg4hEO2VJ9WAt5wi/uz3B2/vii/h3unUUSbqpLNv/ww5pbbhsBSuSuK0SFuS3HWa9pkv3WXG9FUuT0L2YO+0YlWpLZ1/V48tM+2AbJsQO8PL4lq+xLbz8ynPsokJQDpRKv939l+wfy/cvT/KGkIf7peDzXQ4TmkpTqLO76ra88VQUPhJS6ejOlUoz5IKfHu9zfQEyId76RCZF2JskfSxyDBIBWlMAl7d0dv59B4/ptCWTCWQjrLZLMVEbqpj2XQ6ec6JZdJrWBEV/swRekv3fFYJcLQ59hU6XCb4cKacVhp5IaQ1Kj8VaO2Wn3U6KUDTDe7vk6ffsQjZ0JxRJBcrc8ab6FQWg3NHIEIglmm5Y+W34ZxTJND9/uCtc/Al3AvSbN9VRs5HTMC7u+VUSHayzLBYmS2Pj7QlyZvoPGySU72BClv7cypTDfpE6dje1S0dy5vNjoOyb445CjFnUaDUp8YOeb9S9fLcFmFLbvfi18C1I+XUiv3zMSY5rizdYzdQa+9yTdSlvBfu3g9lsKBMU3RaZNSf/bSV/X1S3lW154uhoPCTDIOrmACkd3WTGbjxDMftx1rlHGhRus2PwpAATB8E/O9X0nJgSJSVOStZdjSr9slKG4iSP2yS33FXtv2N8oX54VBZRucFczw1Ar7SPce6QofTBK/kJPDkaxKIxaUgzRYm19wpTeLK6oFJCUCawfN9CsUJ15NJOlxCIFZpuWPpt2GfU8SZoXlyf6h4e5d8CfeBOTJXzTvfAWVZMny4Mkf656Qb5JRbe5dt5BxpS5K3utTSJTtwd3gql9Lx17fKd+rsEmD1fhlub0gEfjAEeOlrGWqvCM4B2bJ9PXBKvsulmY7C3Tnvw54TtsieTUel31N7l9w+OBcwddjW+znWarOGKM7tKXaCr0fIaRz7NkR5Lzy9H8pg4bxyWFei9oT9/VVzvhgKCj8xW9wnaunqAWqbXU2QgDTNDch2nCY52S5HqhNKZGedkmRb3joQJa+8cAeaZAPT2CFHwcpoWFkK91irfDn2nJDzmUoGzwyDLI+izp2xCMDUGfio2JlIjDDDaYJPTpKOj3vsOg6lwRiUE5jFZWBv9sIvDsuG6VRHb1rfXs/2qv4ye6m76/c0WlXmoTstMpQ4oARjYRICsTCzxtpvQ8kp4inKIxD/CW/vgLd3yVlsdPWuPTGxzLb67czBcmG7jUelg2l7t/SxyDDKKTf7kXMkLUne6lKXRb5nnpYScJ5aVTr+nBQpDs4sllk3DzfLKcOzi22L+ekg27d9jfI+7zsprcFmi1zozZOPkpLYqqYJWL3Pln9EoaPbtt7PNSNlCGd9KzAkzzbgMHfL7ym/nZsiRSDgGL7rz/tzxCQdNZ2n0p1Dy633O8jomEhDQeEnyjKzzjHAyUmy8z7hRmwYEuX+Tw7YrAfTB0rTXE6yfOENSXL0Cviv5J2VdnmmfLn6Z8pOLN1gGxlnJcuw1mH5Mq9+Q5ttri8lyTVzoz3BjIrtidQIM1wj72azDLE7t1y+yMozau+SjfKsoYF1WhlG4PrR8rnva5SNVqJONhgzB3svx2GTnNZo6H2mSlnGF8vMqPYLh/l7D8MlBGJhlVKD38aIAhnN4S2c2Bf+vAOe3iV7sXGsVXZopzrktIZFSF+nPY1SSKQkybZGB1l3m82yXUrQ2TrPSPo3eatrFVky/fykMjnIOmKS78j+k8DJDmmNUbDv+FP18h70SwP+uUcOllL00k9k3QF535Rma3hvu7jhiOyYPz4gp3rvOUeGCO9vlNMZigXBkGgbgO1rlD5K9ihi4GiLFBPD8uU1bqmzXWNNk21dlS6LrQ11F7576RDXRdZKM2U9aOyQ17fuoK1vsU+41S819r4R/qIJQfHcc8/hd7/7HWprazFixAg89dRTOO+886JaBmWZWedQTB2kqczg5k4aE2UDoHQO+gS5quSKnbJi5adKMWGfXtVbUprmTvcZ1lL0tqXTC9NlJ6aY2fUJMrTpn9/byqGMWExm4D81wIxB8qWwV8fm7tAqcSRHmOEaeR82yQbjWKtjvhDlHnhba8AT5VnAT8a7dgLv9HYCzp2JuyXuM43ArNNkorN397iO4Py9h+EUAtE2s6plOfWC9OCjOcLxDiiOeB/scz1Pu0Vaw67odcA93mob9HT3SOupEu0Vaf8mb3Vt1lC5auZLW+WUhUJlNnDBQDngUhLt2QtJxXHxeJsUDl09QGqvCEgzSGuMIVG+s/YDvZbednK3Wba1V42QvhX2Vkhjkuyoj7fZFndUcE7FrdQ152u0CODLo8DE/tL/4ZS5d5CYKJNTKcI3zQC8v1dOfyshn3kp0reusV2WrSBNtsMfV8uyK2uezBwEnFMWufcs3KheUKxYsQILFy7Ec889h0mTJuGFF17AzJkz8e2336K8vDxq5bBX4PaON10WYEiuay54QJrAOiy2efUxhTL9clE6UGOSFTIJtrnOCSXuz6OQYXCfYS0xQZri9pwASnTSLJiUICvhgGxZwe39K5SXR58I9HTKTm/FTtt+xawbSiWO5AgzXCNvpaFQ5jKd8eYh7g1vnYB9ZwK4X+K+vRv44hBw8SBHp1jn8/hzD8MpBKJpZo2H5dTD9Q54Ok9Ht21qrTxLdkwXDgJwQNbnnt4R/aCc6Pg3eaprALDsG9dwx0Mm6btwXrntXtgLRcVxcVyxdFzs6JZWl6zk3qlbIcWFoTfkUln2294pU8nnUZHt+NvmbqBRyGUQ7CNq3KXitq9rztfY0SWnTP9vl7SC2B934UD5bJzbgUSdHJz+/gtpuVHCysuzgCtOlyKlvUuW6bR+2srzkhDrAvjiiSeewE033YSbb74Zw4YNw1NPPYWysjI8//zzUS2Hok6dkwmVZsrO11kIFKbJBbnqW6RVY0iedJr6rEZ6JQ/KdvQSzk8FLhniWVAoHaW7kVl9C3D5aTL7YooeyEuWL96gHFmpa50WIFNeni6LnJfsEbJ8A7Ll3zS9dERqDiE0LpIjTE/PItCRdyQ7LX86E1/HeNqn4LdTZa8QmNDf5imuduwzLTqjhvA4fwjb1JyH4xRr5ne9iwUWZwAf7pPh4jeMkR3fLydLi1m0OiV3de2wSfoWKGIgwyj/ZifL7cYkOyuA0ztnEdKKkGWU07pdFuCoCajMsh0vYMv7UpntmN8n0yitwYq/gz3dFlmGCyplKP8NY6Sl0n4K2F1ds7/GgjSZWMteTAA2C4M+0fU9VsJPvz/hmHG4pklO1YwukOfNSXZctVoLqNpC0dnZic2bN+P+++932D5jxgysX7/e7XfMZjPMZltPaDKZwlYeb6O98izX7Ud6rRBKQhqdTlb8D/dLa8WgXPkyKCb2HiHT/nozUbvr5CxCJkKZUmGbC7TPUz8kz3Zsit4WjqYs4Zuit4WsKoRqRYj0CDMcI+9IOhuGozNx5+hrjxZG6cGihmiiUAnXO+DpOKWT1OlsIYiKw6Pz2kKxpLlTtoEJOvdJ8zq6bdfo7p2saZLTAYZEmbJascSkHe11PO2WU8+V2cCUAbZU5Epopz7RMe+DvbW2MN2ztdCfuubJWR+Q290tjGYffqpYVeyvdeoA22etveOqFhTHjx+HxWJBYWGhw/bCwkLU1dW5/c6SJUvw8MMPR6xMnsy+7rb3d3o5lBFFV4/MmKiIDYXzyn13lJ46QYuQi0+NKpDH2uepVxoeJaObvYXC3dK9CqFYEaIRGRCqCT6SnVY4OhP7XAPOaGWUHgpqDo/zh3C9A57OU9MkQ8KVfDHKtF1hmnQCVoOYAHr9z/SeVx7NSbbdC3fvpEXINVYePFf6fdW3SmFy6WDZoZ9oB/aelBEea/Y5LvudmyJ/2z7vg72v1NklNstFMHXNk7O+8vvu2taObsfjnO+Lsl+L77iqBYWCTuco44QQLtsUHnjgAdxzzz3WzyaTCWVlZREtnyecXw5PHTvgWHm8dZT+doL2jXFLp/Skds45X5ElrSTOS/dafysEdayVEWakOi1/OxNvxyi5BtR+DyOJWsPj/CFc74Cn8/RLBcaXyJG3mkWXkg/CbHHteIfmybbJvrzBvJPlmdIRsn+mYxSFfT4PZ1+pwjR5vEIwdc2Ts74SWprvZlCgDCxT9HJ62VmQJCdp9x3XCSHcBAyqg87OTqSmpuIf//gHLr/8cuv2u+66C1u3bsW6det8nsNkMiErKwtNTU3IzIyN3LNfMCcpwb/FZPw9ZyCNiLtFdlbslJEOzhSmhSfWP55WqAwUf0IG/TmmL9/DeCBcz0/L9UCp584LK147Sg5qwoGn+xPJBGnNZuClLZ4HBTeNlWGhzov+bamTfYGy/oeSXC8/VWbp9JSvJhYE0oeqWlAAwNlnn43x48fjueees24bPnw4Zs+ejSVLlvj8vhoEhTNqahjicRVJNeHPs1ZTfSAkUsSynkfytwMdFGQapJhQlqb39B21EFeCYsWKFbj++uvxpz/9CVVVVfjzn/+MF198ETt37kRFRYXP76tRUKgNdmiEEBI84bAYq7XdDaQPVb0PxVVXXYUTJ07g17/+NWprazFy5Ei89957fokJ4h9anqcmhJBYE5T/RRy2u6q3UIQKLRSEEEJIcATSh6o+sRUhhBBC1A8FBSGEEEJChoKCEEIIISGjeqfMUFFcRMKZgpsQQgjpCyh9pz/ulnEvKJqbmwEgZtkyCSGEEK3T3NyMrCzvSTLiPsqjp6cHR48eRUZGhsd03Z5Q0nYfOnQo7iNEeK3xCa81PuG1xh9qvU4hBJqbm1FSUoKEBO9eEnFvoUhISEBpaWlI58jMzFTVA44kvNb4hNcan/Ba4w81Xqcvy4QCnTIJIYQQEjIUFIQQQggJGQoKLxiNRvzqV7+C0ajCBOthhtcan/Ba4xNea/wRD9cZ906ZhBBCCIk8tFAQQgghJGQoKAghhBASMhQUhBBCCAkZCgpCCCGEhAwFhReee+45VFZWIjk5GePHj8dnn30W6yKFxKJFi6DT6Rz+FRUVWfcLIbBo0SKUlJQgJSUFU6dOxc6dO2NYYv/59NNPMWvWLJSUlECn0+Htt9922O/PtZnNZixYsAD9+vVDWloafvjDH+Lw4cNRvAr/8HWt8+bNc3nO55xzjsMxWrjWJUuW4KyzzkJGRgYKCgpw2WWXYffu3Q7HxMtz9eda4+W5Pv/88xg9erQ1gVNVVRXef/996/54eaaA72uNl2eqQEHhgRUrVmDhwoX4+c9/ji1btuC8887DzJkzUVNTE+uihcSIESNQW1tr/bd9+3brvscffxxPPPEEnn32WWzcuBFFRUWYPn26dT0UNdPa2ooxY8bg2Wefdbvfn2tbuHAhVq5cieXLl+Pzzz9HS0sLLr30Ulgslmhdhl/4ulYAuPjiix2e83vvveewXwvXum7dOtx+++3YsGED1qxZg+7ubsyYMQOtra3WY+LlufpzrUB8PNfS0lI8+uij2LRpEzZt2oTzzz8fs2fPtoqGeHmmgO9rBeLjmVoRxC0TJkwQP/nJTxy2nX766eL++++PUYlC51e/+pUYM2aM2309PT2iqKhIPProo9ZtHR0dIisrS/zpT3+KUgnDAwCxcuVK62d/ru3UqVNCr9eL5cuXW485cuSISEhIEKtWrYpa2QPF+VqFEGLu3Lli9uzZHr+j1Wutr68XAMS6deuEEPH9XJ2vVYj4fa5CCJGTkyP+8pe/xPUzVVCuVYj4e6a0ULihs7MTmzdvxowZMxy2z5gxA+vXr49RqcLDnj17UFJSgsrKSvzoRz/C/v37AQDV1dWoq6tzuGaj0YgpU6Zo/pr9ubbNmzejq6vL4ZiSkhKMHDlSk9e/du1aFBQUYOjQobjllltQX19v3afVa21qagIA5ObmAojv5+p8rQrx9lwtFguWL1+O1tZWVFVVxfUzdb5WhXh6pnG/OFgwHD9+HBaLBYWFhQ7bCwsLUVdXF6NShc7ZZ5+NV155BUOHDsWxY8fwyCOPYOLEidi5c6f1utxd88GDB2NR3LDhz7XV1dXBYDAgJyfH5RitPfOZM2fiyiuvREVFBaqrq/HQQw/h/PPPx+bNm2E0GjV5rUII3HPPPTj33HMxcuRIAPH7XN1dKxBfz3X79u2oqqpCR0cH0tPTsXLlSgwfPtzaScbTM/V0rUB8PVOAgsIrzsudCyECXgJdTcycOdP6/1GjRqGqqgqDBg3Cyy+/bHUEirdrtieYa9Pi9V911VXW/48cORJnnnkmKioq8O9//xtz5szx+D01X+sdd9yBbdu24fPPP3fZF2/P1dO1xtNzPe2007B161acOnUKb775JubOnYt169ZZ98fTM/V0rcOHD4+rZwrQKdMt/fr1Q2JioosCrK+vd1HOWiYtLQ2jRo3Cnj17rNEe8XjN/lxbUVEROjs70djY6PEYrVJcXIyKigrs2bMHgPaudcGCBXj33XfxySefoLS01Lo9Hp+rp2t1h5afq8FgwODBg3HmmWdiyZIlGDNmDJ5++um4fKaertUdWn6mAAWFWwwGA8aPH481a9Y4bF+zZg0mTpwYo1KFH7PZjF27dqG4uBiVlZUoKipyuObOzk6sW7dO89fsz7WNHz8eer3e4Zja2lrs2LFD89d/4sQJHDp0CMXFxQC0c61CCNxxxx1466238PHHH6OystJhfzw9V1/X6g6tPld3CCFgNpvj6pl6QrlWd2j+mUbdDVQjLF++XOj1evHSSy+Jb7/9VixcuFCkpaWJAwcOxLpoQXPvvfeKtWvXiv3794sNGzaISy+9VGRkZFiv6dFHHxVZWVnirbfeEtu3bxdXX321KC4uFiaTKcYl901zc7PYsmWL2LJliwAgnnjiCbFlyxZx8OBBIYR/1/aTn/xElJaWig8//FB8/fXX4vzzzxdjxowR3d3dsbost3i71ubmZnHvvfeK9evXi+rqavHJJ5+Iqqoq0b9/f81d66233iqysrLE2rVrRW1trfVfW1ub9Zh4ea6+rjWenusDDzwgPv30U1FdXS22bdsmHnzwQZGQkCBWr14thIifZyqE92uNp2eqQEHhhT/+8Y+ioqJCGAwGMW7cOIcQLi1y1VVXieLiYqHX60VJSYmYM2eO2Llzp3V/T0+P+NWvfiWKioqE0WgUkydPFtu3b49hif3nk08+EQBc/s2dO1cI4d+1tbe3izvuuEPk5uaKlJQUcemll4qampoYXI13vF1rW1ubmDFjhsjPzxd6vV6Ul5eLuXPnulyHFq7V3TUCEEuXLrUeEy/P1de1xtNzvfHGG63tan5+vrjgggusYkKI+HmmQni/1nh6pgpcvpwQQgghIUMfCkIIIYSEDAUFIYQQQkKGgoIQQgghIUNBQQghhJCQoaAghBBCSMhQUBBCCCEkZCgoCCGEEBIyFBSEkLDyn//8B6NGjYJer8dll13m9/eWLVuG7OzsiJWLEBJZKCgI0RDz5s2DTqeDTqeDXq9HYWEhpk+fjr/+9a/o6emJdfEAAPfccw/OOOMMVFdXY9myZW6PGTBgAJ566qmolosQElkoKAjRGBdffDFqa2tx4MABvP/++5g2bRruuusuXHrppeju7o518bBv3z6cf/75KC0t7bMWB4vFohqBR0i0oKAgRGMYjUYUFRWhf//+GDduHB588EG88847eP/99x0sAk888QRGjRqFtLQ0lJWV4bbbbkNLSwsAoLW1FZmZmfi///s/h3P/85//RFpaGpqbm93+ttlsxp133omCggIkJyfj3HPPxcaNGwEABw4cgE6nw4kTJ3DjjTdCp9O5tVBMnToVBw8exN133221ttjzwQcfYNiwYUhPT7eKJ3uWLl2KYcOGITk5Gaeffjqee+45j/fqlVdeQV5ensvqjldccQVuuOEGh+seP348kpOTMXDgQDz88MMO4szbvQRs0zX/+te/MHz4cBiNRhw8eNBjuQiJS2K9mAghxH/mzp0rZs+e7XbfmDFjxMyZM62fn3zySfHxxx+L/fv3i48++kicdtpp4tZbb7Xuv+WWW8QPfvADh3Ncfvnl4oYbbvD4+3feeacoKSkR7733nti5c6eYO3euyMnJESdOnBDd3d2itrZWZGZmiqeeesplZVCFEydOiNLSUvHrX//auqqmEEIsXbpU6PV6ceGFF4qNGzeKzZs3i2HDholrrrnG+t0///nPori4WLz55pti//794s033xS5ubli2bJlbsvb1tYmsrKyxBtvvGHd1tDQIAwGg/j444+FEEKsWrVKZGZmimXLlol9+/aJ1atXiwEDBohFixb5fS+Vsk+cOFH85z//Ed99951oaWnxeB8JiUcoKAjREN4ExVVXXSWGDRvm8btvvPGGyMvLs37+8ssvRWJiojhy5IgQQna0er1erF271u33W1pahF6vF6+99pp1W2dnpygpKRGPP/64dVtWVpbDiqDuqKioEE8++aTDtqVLlwoAYu/evdZtf/zjH0VhYaH1c1lZmXj99dcdvveb3/xGVFVVefytW2+91UFoPfXUU2LgwIGip6dHCCHEeeedJxYvXuzwnb/97W+iuLjY4zmd76VS9q1bt3r8DiHxTlKsLSSEkPAghHCYPvjkk0+wePFifPvttzCZTOju7kZHRwdaW1uRlpaGCRMmYMSIEXjllVdw//33429/+xvKy8sxefJkt+fft28furq6MGnSJOs2vV6PCRMmYNeuXWG5htTUVAwaNMj6ubi4GPX19QCAhoYGHDp0CDfddBNuueUW6zHd3d3IysryeM5bbrkFZ511Fo4cOYL+/ftj6dKlVudWANi8eTM2btyI3/72t9bvWCwWdHR0oK2tDampqT7vJQAYDAaMHj06LPeBEC1CHwpC4oRdu3ahsrISAHDw4EH84Ac/wMiRI/Hmm29i8+bN+OMf/wgA6Orqsn7n5ptvxtKlSwFI34T//u//dvFpUBBCAIDLfmchEwp6vd7hs06ns/6u4uT44osvYuvWrdZ/O3bswIYNGzyec+zYsRgzZgxeeeUVfP3119i+fTvmzZtn3d/T04OHH37Y4Zzbt2/Hnj17kJyc7Pe9TElJCdt9IESL0EJBSBzw8ccfY/v27bj77rsBAJs2bUJ3dzf+8Ic/ICFBjhveeOMNl+9dd911uO+++/C///u/2LlzJ+bOnevxNwYPHgyDwYDPP/8c11xzDQDZoW7atAkLFy4MqLwGgwEWiyWg7xQWFqJ///7Yv38/rr322oC+e/PNN+PJJ5/EkSNHcOGFF6KsrMy6b9y4cdi9ezcGDx7s9rv+3ktC+joUFIRoDLPZjLq6OlgsFhw7dgyrVq3CkiVLcOmll1ojFwYNGoTu7m4888wzmDVrFv7zn//gT3/6k8u5cnJyMGfOHPzP//wPZsyYgdLSUo+/m5aWhltvvRX/8z//g9zcXJSXl+Pxxx9HW1sbbrrppoCuYcCAAfj000/xox/9CEajEf369fPre4sWLcKdd96JzMxMzJw5E2azGZs2bUJjYyPuuecej9+79tpr8dOf/hQvvvgiXnnlFYd9v/zlL3HppZeirKwMV155JRISErBt2zZs374djzzyiN/3kpA+T2xdOAghgTB37lwBQAAQSUlJIj8/X1x44YXir3/9q7BYLA7HPvHEE6K4uFikpKSIiy66SLzyyisCgGhsbHQ47qOPPhIAHCIhPNHe3i4WLFgg+vXrJ4xGo5g0aZL46quvHI7xxynziy++EKNHjxZGo1EozdDSpUtFVlaWw3ErV64Uzs3Ua6+9Js444wxhMBhETk6OmDx5snjrrbd8lv36668Xubm5oqOjw2XfqlWrxMSJE0VKSorIzMwUEyZMEH/+85+t+33dS3dlJ6SvoROid4KSENInee2113DXXXfh6NGjMBgMsS5OxJg+fTqGDRuG//3f/411UQiJSzjlQUgfpa2tDdXV1ViyZAnmz58ft2Li5MmTWL16NT7++GM8++yzsS4OIXELozwI6aM8/vjjOOOMM1BYWIgHHngg1sWJGOPGjcP8+fPx2GOP4bTTTot1cQiJWzjlQQghhJCQoYWCEEIIISFDQUEIIYSQkKGgIIQQQkjIUFAQQgghJGQoKAghhBASMhQUhBBCCAkZCgpCCCGEhAwFBSGEEEJChoKCEEIIISHz/wGS2qNTEX7megAAAABJRU5ErkJggg==", "text/plain": "
"}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "testing_training_doy_2"}}, "output_type": "display_data"}, "data-summary_2": {"data": {"text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The observed values from the training and testing data. Remark that the testing data is only 22% of all the data. This is because we are only in the first year of a six year sampling period
 before may 2021after may 2021
weight all samples0.780.22
Number of samples26373
Median3.472.28
Average6.133.25
25th percentile1.520.78
75th percentile6.694.31
\n", "text/plain": ""}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "data-summary_2"}}, "output_type": "display_data"}, "estimated-found-predicted-2023": {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOSElEQVR4nO3deXgUReLG8e8QIAdkJuFIABMgCEqQG5ZTBQUirqu4KArLoijHqsjlKuhPFHUFFBUQb0AOdRUEhcVdj4iKotynyk0IGAWCQJgBQgIk9ftjkoExCeSe6eT9PE+e0NU9PVVMT+ad6upqmzHGICIiImJRFXxdAREREZGiUJgRERERS1OYEREREUtTmBERERFLU5gRERERS1OYEREREUtTmBERERFLU5gRERERS6vo6wqUtMzMTA4cOEBoaCg2m83X1REREZF8MMZw4sQJ6tSpQ4UKF+97KfNh5sCBA0RHR/u6GiIiIlIISUlJREVFXXSbMh9mQkNDAfd/ht1u93FtREREJD9cLhfR0dGez/GLKfNhJvvUkt1uV5gRERGxmPwMEdEAYBEREbE0hRkRERGxNIUZERERsbQyP2YmP4wxnDt3joyMDF9XRYpJQEAAFStW1OX4IiLlQLkPM2fOnOHgwYOkpqb6uipSzEJCQqhduzaVK1f2dVVERKQEleswk5mZSWJiIgEBAdSpU4fKlSvrm3wZYIzhzJkz/P777yQmJtKoUaNLTrgkIiLWVa7DzJkzZ8jMzCQ6OpqQkBBfV0eKUXBwMJUqVWL//v2cOXOGoKAgX1dJRERKiL6ugr61l1F6XUVEygf9tRcREZECcaaBK927zJXuLvcFhRkRERHJtyOp0GsBvLL2fKBxpcP0Ne7yIz64nkZhRgAYOHAgt956q6+rUSBWrLOIiJU50+D2hZB4HGZsdAeasxnuIDNzk7v89oWl30NTrgcAl0f79u0jJiaGTZs20bJlS0/5yy+/jDGmxJ9/4MCBHD9+nCVLlpT4c4mISPGy2aB7jDu4gDvQfLobfj1xfpseDdzblSaFGQHA4XD4ugoiIuLn7IEwor3739mB5sIgM7Q1DG/n3q406TRTcUgBdgBrgJ1ZyyXMGMPkyZNp0KABwcHBtGjRgkWLFrmrk5JC//79qVmzJsHBwTRq1Ig5c+YAEBMTA0CrVq2w2Wx07doVyHnKpmvXrgwfPpxRo0YRHh5OZGQkM2bM4NSpU9xzzz2EhoZy+eWX89lnn3kek5GRwaBBg4iJiSE4OJgrr7ySl19+2bP+qaeeYt68efznP//BZrNhs9lYvnw5AL/99ht33nkn4eHhVK9enV69erFv3z6vfT/00EOEhYVRvXp1xowZUyo9SSIi4s0eCGM7Q1Sod3lUKIzpVPpBBhRmii4J6AvEAh2AxlnLSSX7tOPGjWPOnDm88cYbbN26ldGjR/P3v/+db7/9lieeeIJt27bx2WefsX37dt544w1q1KgBwNq1awFYtmwZBw8e5OOPP87zOebNm0eNGjVYu3Ytw4cP5/7776dPnz506tSJjRs3csMNNzBgwADP7MmZmZlERUXx4Ycfsm3bNp588kn+7//+jw8//BCAhx9+mDvuuIOePXty8OBBDh48SKdOnUhNTeW6666jatWqfPfdd3z//fdUrVqVnj17cubMGQBeeuklZs+ezdtvv83333/PsWPHWLx4cUn+F4uISC5c6fD8D949MuBenrwy51VOpcFmyvjXW5fLhcPhwOl0YrfbvdalpaWRmJhITExM4SZVS8EdXOJzWRcHzAfCC77bSzl16hQ1atTg66+/pmPHjp7ywYMHk5qaysmTJ6lRowazZ8/O8di8xsz8cSxL165dycjIYMWKFYC7Z8ThcNC7d2/eeecdAA4dOkTt2rVZtWoVHTp0yLWuw4YNIzk52dNrlNuYmdmzZzN58mS2b9/umYH5zJkzhIWFsWTJEuLi4qhTpw4jR45k7NixAJw7d46YmBjatGmT5/ibIr++IiLiJfuqpexTTODukSmJU00X+/z+I/XMFEUyuQcZssqTS+Zpt23bRlpaGj169KBq1aqen3feeYeEhATuv/9+5s+fT8uWLRkzZgwrV64s1PM0b97c8++AgACqV69Os2bNPGWRkZEAHD582FP25ptv0rZtW2rWrEnVqlWZOXMmv/zyy0WfZ8OGDezZs4fQ0FBPW6pVq0ZaWhoJCQk4nU4OHjzoFdwqVqxI27ZtC9UuEREpHGNgWeL55aGtYfndMKTV+bIv97q3K00aAFwUziKuL6TMzEwA/ve//3HZZZd5rQsMDCQ6Opr9+/fzv//9j2XLltGtWzeGDRvGiy++WKDnqVSpkteyzWbzKsvuRcmuz4cffsjo0aN56aWX6NixI6GhobzwwgusWbPmku1p06YN//73v3Osq1mzZoHqLCIiJccRBIv6uC+/7tHA3QNTKeD8oOBlie71jlLuDFeYKYpLXQBUQhcINWnShMDAQH755Re6dOmS6zY1a9Zk4MCBDBw4kGuuuYZHHnmEF1980XMH6YyMjGKv14oVK+jUqRMPPPCApywhIcFrm8qVK+d47tatW7NgwQIiIiLy7EqsXbs2q1ev5tprrwXcp5k2bNhA69ati7kVIiJyMTVC4D93ui+/zj6VlH2V0/B2pR9kQGGmaCJxj43Ja8xMZMk8bWhoKA8//DCjR48mMzOTq6++GpfLxcqVK6latSoJCQm0adOGq666ivT0dP773/8SGxsLQEREBMHBwXz++edERUURFBRUbJdlN2zYkHfeeYcvvviCmJgY3n33XdatW+e5ggqgfv36fPHFF+zcuZPq1avjcDjo378/L7zwAr169eKZZ54hKiqKX375hY8//phHHnmEqKgoRo4cyXPPPUejRo2IjY1lypQpHD9+vFjqLSIiBZNbYPHFVUzZNGamKMKBWbiDy4XisspLYPBvtn/96188+eSTTJo0idjYWG644QY++eQTYmJiqFy5Mo899hjNmzfn2muvJSAggPnz5wPusSbTp0/nrbfeok6dOvTq1avY6nTffffRu3dv7rzzTtq3b8/Ro0e9emkAhgwZwpVXXukZV/PDDz8QEhLCd999R926denduzexsbHce++9nD592tNT889//pO77rqLgQMHek5h/fWvfy22uouIiHXpaqbiuNolBfdgXyfuU0uRlGiQkfzR1UwiItZVkKuZdJqpOISj8CIiIuIjOs0kIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwY1HGGIYOHUq1atWw2Wxs3rzZZ3Xp2rUro0aN8tnzi4hI+aZJ8yzq888/Z+7cuSxfvpwGDRpQo0YNX1dJRETEJxRmisiZ5n3nUABXOhhTsncOTUhIoHbt2nTq1KnknkRERMQCdJqpCI6kQq8F8Mpad4AB9+/pa9zlR1JL5nkHDhzI8OHD+eWXX7DZbNSvX5/09HRGjBhBREQEQUFBXH311axbt87zmLlz5xIWFua1nyVLlmCz2TzLTz31FC1btuTdd9+lfv36OBwO+vbty4kTJzzbnDp1irvuuouqVatSu3ZtXnrppZJppIiISD4pzBSSMw1uXwiJx2HGRnegOZvhDjIzN7nLb1/o3q64vfzyyzzzzDNERUVx8OBB1q1bx5gxY/joo4+YN28eGzdupGHDhtxwww0cO3asQPtOSEhgyZIl/Pe//+W///0v3377Lc8995xn/SOPPMI333zD4sWLiY+PZ/ny5WzYsKG4mygiIpJvCjOFZLNB95jzyzM2Qtd57iCTrUcD93bFzeFwEBoaSkBAALVq1SIkJIQ33niDF154gRtvvJEmTZowc+ZMgoODefvttwu078zMTObOnUvTpk255pprGDBgAF999RUAJ0+e5O233+bFF1+kR48eNGvWjHnz5pGRkVH8jRQREcknn4aZ7777jptvvpk6depgs9lYsmSJ13pjDE899RR16tQhODiYrl27snXrVt9U9g/sgTCiPQxpdb7s1/NnYxjaGoa38x5LU1ISEhI4e/YsnTt39pRVqlSJdu3asX379gLtq379+oSGhnqWa9euzeHDhz3Pc+bMGTp27OhZX61aNa688soitkBERKTwfBpmTp06RYsWLXj11VdzXT958mSmTJnCq6++yrp166hVqxY9evTwGsPhS/ZAGNsZokK9y6NCYUyn0gky4A59gNf4l+zy7LIKFSp4tst29uzZHPuqVKmS17LNZiMzM9PreURERPyJT8PMjTfeyLPPPkvv3r1zrDPGMG3aNB5//HF69+5N06ZNmTdvHqmpqbz//vs+qG1OrnR4/gfvHhlwL09eeX5QcElr2LAhlStX5vvvv/eUnT17lvXr1xMbGwtAzZo1OXHiBKdOnfJsU9C5aRo2bEilSpVYvXq1pywlJYVdu3YVrQEiIiJF4LdjZhITEzl06BBxcXGessDAQLp06cLKlSvzfFx6ejoul8vrpyRkX7V04RiZC3tosgcFl0agqVKlCvfffz+PPPIIn3/+Odu2bWPIkCGkpqYyaNAgANq3b09ISAj/93//x549e3j//feZO3dugZ6natWqDBo0iEceeYSvvvqKn3/+mYEDB1Khgt8eRiIiUg747afQoUOHAIiMjPQqj4yM9KzLzaRJk3A4HJ6f6OjoEqmfMbAs8fzy0Naw/G7vMTRf7nVvVxqee+45brvtNgYMGEDr1q3Zs2cPX3zxBeHh4YB7bMt7773Hp59+SrNmzfjggw946qmnCvw8L7zwAtdeey233HIL3bt35+qrr6ZNmzbF3BoREZH8sxk/GQhhs9lYvHgxt956KwArV66kc+fOHDhwgNq1a3u2GzJkCElJSXz++ee57ic9PZ309PPdIS6Xi+joaJxOJ3a73WvbtLQ0EhMTiYmJISio4DPcHUl1X37do8H5wb7ZPTbLEmFRH6gRUuDdSjEp6usrIiK+43K5cDgcuX5+/5HfzgBcq1YtwN1Dc2GYOXz4cI7emgsFBgYSGFg6I29rhMB/7vSeATj7Kqfh7Up2BmARERFx89vTTDExMdSqVYsvv/zSU3bmzBm+/fZbv5rC3xGU86ole6CCjIiISGnxac/MyZMn2bNnj2c5MTGRzZs3U61aNerWrcuoUaOYOHEijRo1olGjRkycOJGQkBD+9re/+bDWIiIi4k98GmbWr1/Pdddd51l+6KGHALj77ruZO3cuY8aM4fTp0zzwwAOkpKTQvn174uPjvSZ1ExERkfLNbwYAl5SLDSDSANGyTa+viIh1FWQAsN+OmRERERHJD4UZERERsTSFGREREbE0hRkRERGxNIUZuaT69eszbdo0z7LNZmPJkiWlXo+nnnqKli1blvrzioiIf1OYkQI7ePAgN954Y762VQAREZGS5re3M5DidebMGSpXrlws+8q+1YSIiIg/UM9MMUhJSWHHjh2sWbOGnTt3kpKSUuLP2bVrVx588EEefPBBwsLCqF69OuPGjSN72qD69evz7LPPMnDgQBwOB0OGDAHcN/C89tprCQ4OJjo6mhEjRnDq1CnPfg8fPszNN99McHAwMTEx/Pvf/87x3H88zfTrr7/St29fqlWrRpUqVWjbti1r1qxh7ty5PP3002zZsgWbzYbNZmPu3LkAOJ1Ohg4dSkREBHa7neuvv54tW7Z4Pc9zzz1HZGQkoaGhDBo0iLS0tGL+XxQRkbJAYaaIkpKS6Nu3L7GxsXTo0IHGjRvTt29fkpKSSvy5582bR8WKFVmzZg3Tp09n6tSpzJo1y7P+hRdeoGnTpmzYsIEnnniCn376iRtuuIHevXvz448/smDBAr7//nsefPBBz2MGDhzIvn37+Prrr1m0aBGvv/46hw8fzrMOJ0+epEuXLhw4cIClS5eyZcsWxowZQ2ZmJnfeeSf//Oc/ueqqqzh48CAHDx7kzjvvxBjDTTfdxKFDh/j000/ZsGEDrVu3plu3bhw7dgyADz/8kPHjxzNhwgTWr19P7dq1ef3110vuP1NERKzLlHFOp9MAxul05lh3+vRps23bNnP69OlC7fvYsWMmLi7OADl+4uLizLFjx4pa/Tx16dLFxMbGmszMTE/Z2LFjTWxsrDHGmHr16plbb73V6zEDBgwwQ4cO9SpbsWKFqVChgjl9+rTZuXOnAczq1as967dv324AM3XqVE8ZYBYvXmyMMeatt94yoaGh5ujRo7nWc/z48aZFixZeZV999ZWx2+0mLS3Nq/zyyy83b731ljHGmI4dO5r77rvPa3379u1z7Otiivr6ioiI71zs8/uP1DNTBMnJycTHx+e6Lj4+nuTk5BJ9/g4dOmCz2TzLHTt2ZPfu3WRkZADQtm1br+03bNjA3LlzqVq1qufnhhtuIDMzk8TERLZv307FihW9Hte4cWPCwsLyrMPmzZtp1aoV1apVy3e9N2zYwMmTJ6levbpXXRITE0lISABg+/btdOzY0etxf1wWEREBDQAuEqfTWaT1Ja1KlSpey5mZmfzjH/9gxIgRObatW7cuO3fuBPAKSJcSHBxc4HplZmZSu3Ztli9fnmPdxYKTiIhIbhRmisDhcBRpfVGtXr06x3KjRo0ICAjIdfvWrVuzdetWGjZsmOv62NhYzp07x/r162nXrh0AO3fu5Pjx43nWoXnz5syaNYtjx47l2jtTuXJlT0/RhfU4dOgQFStWpH79+nnWZfXq1dx1111e7RMREfkjnWYqgsjISOLi4nJdFxcXR2RkZIk+f1JSEg899BA7d+7kgw8+4JVXXmHkyJF5bj927FhWrVrFsGHD2Lx5M7t372bp0qUMHz4cgCuvvJKePXsyZMgQ1qxZw4YNGxg8ePBFe1/69etHrVq1uPXWW/nhhx/Yu3cvH330EatWrQLcV1UlJiayefNmjhw5Qnp6Ot27d6djx47ceuutfPHFF+zbt4+VK1cybtw41q9fD8DIkSOZPXs2s2fPZteuXYwfP56tW7cW4/+eiIiUFQozRRAeHs6sWbNyBJq4uDhmzZpFeHh4iT7/XXfdxenTp2nXrh3Dhg1j+PDhDB06NM/tmzdvzrfffsvu3bu55ppraNWqFU888QS1a9f2bDNnzhyio6Pp0qULvXv39lw+nZfKlSsTHx9PREQEf/7zn2nWrBnPPfecp3fotttuo2fPnlx33XXUrFmTDz74AJvNxqeffsq1117LvffeyxVXXEHfvn3Zt2+fJwDeeeedPPnkk4wdO5Y2bdqwf/9+7r///mL6nxMRkbLEZkzWxCRllMvlwuFw4HQ6sdvtXuvS0tJITEwkJiaGoKCgQj9HSkoKycnJOJ1OHA4HkZGRJR5kunbtSsuWLb1uMyDeiuv1FRGR0nexz+8/0piZYhAeHl7i4UVERERyp9NMIiIiYmnqmbGo3C5rFhERKY/UMyMiIiKWpjAjIiIilqYwA5TxC7rKLb2uIiLlQ7kOM5UqVQIgNTXVxzWRkpD9uma/ziIiUjaV6wHAAQEBhIWFcfjwYQBCQkIKdF8i8U/GGFJTUzl8+DBhYWF53t5BRETKhnIdZgBq1aoF4Ak0UnaEhYV5Xl8RESm7yn2Ysdls1K5dm4iICM6ePevr6kgxqVSpknpkRETKiXIfZrIFBATow09ERMSCyvUAYBEREbE+hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTS/DjPnzp1j3LhxxMTEEBwcTIMGDXjmmWfIzMz0ddVERETET1T0dQUu5vnnn+fNN99k3rx5XHXVVaxfv5577rkHh8PByJEjfV09ERER8QN+HWZWrVpFr169uOmmmwCoX78+H3zwAevXr/dxzURERMRf+PVppquvvpqvvvqKXbt2AbBlyxa+//57/vznP+f5mPT0dFwul9ePiIiIlF1+3TMzduxYnE4njRs3JiAggIyMDCZMmEC/fv3yfMykSZN4+umnS7GWIiIi4kt+3TOzYMEC3nvvPd5//302btzIvHnzePHFF5k3b16ej3nsscdwOp2en6SkpFKssYiIiJQ2mzHG+LoSeYmOjubRRx9l2LBhnrJnn32W9957jx07duRrHy6XC4fDgdPpxG63l1RVRUREpBgV5PPbr3tmUlNTqVDBu4oBAQG6NFtEREQ8/HrMzM0338yECROoW7cuV111FZs2bWLKlCnce++9vq6aiIiI+Am/Ps104sQJnnjiCRYvXszhw4epU6cO/fr148knn6Ry5cr52odOM4mIiFhPQT6//TrMFAeFGREREespM2NmRERERC5FYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsze/DzG+//cbf//53qlevTkhICC1btmTDhg2+rpaIiIj4iYq+rsDFpKSk0LlzZ6677jo+++wzIiIiSEhIICwszNdVgxQgGXACYUAEEO7LComIiJRPfh1mnn/+eaKjo5kzZ46nrH79+r6rULYkYDAQf0FZHDALiPZJjURERMotvz7NtHTpUtq2bUufPn2IiIigVatWzJw507eVSiFnkCFreXDWehERESk1fh1m9u7dyxtvvEGjRo344osvuO+++xgxYgTvvPNOno9JT0/H5XJ5/RSrZHIGmWzxWetFRESk1Pj1aabMzEzatm3LxIkTAWjVqhVbt27ljTfe4K677sr1MZMmTeLpp58uuUo5i7heREREilWhw8zatWtZvnw5hw8fJjMz02vdlClTilwxgNq1a9OkSROvstjYWD766KM8H/PYY4/x0EMPeZZdLhfR0cU4kMVRxPUiIiJSrAoVZiZOnMi4ceO48soriYyMxGazedZd+O+i6ty5Mzt37vQq27VrF/Xq1cvzMYGBgQQGBhZbHXKIxD3YN7dTTXFZ60VERKTUFCrMvPzyy8yePZuBAwcWc3W8jR49mk6dOjFx4kTuuOMO1q5dy4wZM5gxY0aJPu9FheO+aimvq5l0ebaIiEipKlSYqVChAp07dy7uuuTwpz/9icWLF/PYY4/xzDPPEBMTw7Rp0+jfv3+JP/dFRQPzOT/PjAN3j4yCjIiISKmzGWNMQR80efJkDhw4wLRp00qgSsXL5XLhcDhwOp3Y7XZfV0dERETyoSCf34XqmXn44Ye56aabuPzyy2nSpAmVKlXyWv/xxx8XZrciIiIiBVaoMDN8+HC++eYbrrvuOqpXr16sg35FRERECqJQYeadd97ho48+4qabbiru+oiIiIgUSKFmAK5WrRqXX355cddFREREpMAKFWaeeuopxo8fT2pqanHXR0RERKRACnWaafr06SQkJBAZGUn9+vVzDADeuHFjsVRORERE5FIKFWZuvfXWYq6GiIiISOEUaJ6ZXbt2ccUVV5RkfYqd5pkREREpXs40sNnAfsHdg1zpYAw4gornOQry+V2gMTOtWrUiNjaWsWPHsmrVqiJVUkRERKznSCr0WgCvrHUHGHD/nr7GXX7EB8NpCxRmjh49yuTJkzl69Ch//etfiYyMZNCgQSxdupS0tLSSqqOIiIj4AWca3L4QEo/DjI3uQHM2wx1kZm5yl9++0L1daSrU7QwAjDGsWrWKpUuXsnTpUvbv30/37t3p1asXf/nLX4iIiCjuuhaKTjOJiIgUj+wemJmbzpdFhcKvJ84vD20Nw9t5n4Iq1HOV1GmmC9lsNjp16sRzzz3Htm3b2Lx5M9deey1z584lOjqa1157rbC7FhERET9kD4QR7WFIq/NlJRFkCqrQPTMXc/ToUY4dO0ajRo2Ke9cFpp4ZERGR4nU2A7rO8w4yUaGw/G6oFFA8z1HiPTPz5s3jf//7n2d5zJgxhIWF0alTJ/bv30/16tX9IsiIiIhI8XKlw/M/eAcZcC9PXnl+UHBpKlSYmThxIsHBwQCsWrWKV199lcmTJ1OjRg1Gjx5drBUUERER/5DXmJls2YOCSzvQFCrMJCUl0bBhQwCWLFnC7bffztChQ5k0aRIrVqwo1gqKiIiIfzAGliWeXx7a2n1q6cIxNF/udW9XmgoVZqpWrcrRo0cBiI+Pp3v37gAEBQVx+vTp4qudiIiI+A1HECzqAzFh5wf7Vgo4Pyg4Jsy9vrgmzsuvQt3OoEePHgwePJhWrVqxa9cubrrpJgC2bt1K/fr1i7N+IiIi4kdqhMB/7vSeATj7Kqfh7Uo/yEAhe2Zee+01OnbsyO+//85HH31E9erVAdiwYQP9+vUr1gqKiIiIf3EE5bz82h7omyADJXRptj/RpdkiIiLWU+KXZs+ZM4eFCxfmKF+4cCHz5s0rzC5FRERECqVQYea5556jRo0aOcojIiKYOHFikSslIiIikl+FCjP79+8nJiYmR3m9evX45ZdfilwpERERkfwqVJiJiIjgxx9/zFG+ZcsWz2BgERERkdJQqDDTt29fRowYwTfffENGRgYZGRl8/fXXjBw5kr59+xZ3HUVERETyVKh5Zp599ln2799Pt27dqFjRvYuMjAzuvvtujZkRERGRUlWkS7N3797Npk2bCA4Opnnz5tSrV68461YsdGm2iIiI9RTk87tQPTMAb7/9NlOnTmX37t0ANGrUiFGjRjF48ODC7lJERESkwAoVZp544gmmTp3K8OHD6dixI+C+e/bo0aPZt28fzz77bLFWUkRERCQvhTrNVKNGDV555ZUcty744IMPGD58OEeOHCm2ChaVTjOJiIhYT4nPAJyRkUHbtm1zlLdp04Zz584VZpciIiIihVKoMPP3v/+dN954I0f5jBkz6N+/f5ErJSIiIpJfRRoAHB8fT4cOHQBYvXo1SUlJ3HXXXTz00EOe7aZMmVL0WoqIiIjkoVBh5ueff6Z169YAJCQkAFCzZk1q1qzJzz//7NnOZrMVQxVFRERE8laoMPPNN98Udz1ERERECqVQY2ZERERE/IXCjIiIiFiawoyIiIhYmsKMiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIWJqlwsykSZOw2WyMGjXK11URERERP2GZMLNu3TpmzJhB8+bNfV0VERER8SOWCDMnT56kf//+zJw5k/DwcF9XR0RERPyIJcLMsGHDuOmmm+jevbuvqyIiIiJ+pqKvK3Ap8+fPZ+PGjaxbty5f26enp5Oenu5ZdrlcJVU1ERER8QN+3TOTlJTEyJEjee+99wgKCsrXYyZNmoTD4fD8REdHl3AtRURExJdsxhjj60rkZcmSJfz1r38lICDAU5aRkYHNZqNChQqkp6d7rYPce2aio6NxOp3Y7fZSq7uIiIgUnsvlwuFw5Ovz269PM3Xr1o2ffvrJq+yee+6hcePGjB07NkeQAQgMDCQwMLC0qigiIiI+5tdhJjQ0lKZNm3qVValSherVq+coFxERkfLJr8fMiIiIiFyKX/fM5Gb58uW+roKIiIj4EfXMlGPONHCle5e50t3lIiIiVqEwU04dSYVeC+CVtecDjSsdpq9xlx9J9W39RERE8kthphxypsHtCyHxOMzY6A40ZzPcQWbmJnf57QvVQyMiItZguTEzUnQ2G3SPcQcXcAeaT3fDryfOb9OjgXs7ERERf6eemXLIHggj2sOQVufLLgwyQ1vD8Hbu7URERPydwkw5ZQ+EsZ0hKtS7PCoUxnRSkBEREetQmCmnXOnw/A/ePTLgXp68MudVTiIiIv5KYaYcyr5qKXvMDHj30GQPClagERERK1CYKYeMgWWJ55eHtobld3uPoflyr3s7ERERf6ermcohRxAs6uO+/LpHA/dg30oB7kHB4A46i/q4txMREfF3NmPK9vfvgtxCvLxxprkvv75wsK8r3d0joyAjIiK+VJDPb/XMlGO5BRZdxSQiIlajMTMiIiJiaQozIiIiYmkKMyIiImJpCjMiIiJiaQozIiIiYmkKMyIiImJpCjMiIiJiaQozIiIiYmkKMyIiImJpmgG4vEsBkgEnEAZEAOG+rJCIiEjBqGemPEsC+gKxQAegcdZyki8rJSIiUjAKM+VVCjAYiP9DeXxWeUqp10hERKRQFGbKq2RyBpls8VnrRURELEBhprxyFnG9iIiIn1CYKa8cRVwvIiLiJxRmyqtIIC6PdXFZ60VERCxAYaa8CgdmkTPQxGWV6/JsERGxCM0zU55FA/M5P8+MA3ePjIKMiIhYiMJMeReOwouIiFiaTjOJiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKX5dZiZNGkSf/rTnwgNDSUiIoJbb72VnTt3+rpaIiIi4kf8Osx8++23DBs2jNWrV/Pll19y7tw54uLiOHXqlK+rJiIiUjgpwA5gDbAza9mK/KgdNmOM8d3TF8zvv/9OREQE3377Lddee22+HuNyuXA4HDidTux2ewnXUERE5CKSgMFA/AVlccAsINonNSqcUmhHQT6//bpn5o+cTicA1apV83FNRERECiiFnAGArOXBWKeHxg/bUbH0n7JwjDE89NBDXH311TRt2jTP7dLT00lPT/csu1yu0qieiIjIxSWTMwBki89aH1561Sk0P2yHZXpmHnzwQX788Uc++OCDi243adIkHA6H5yc62kr9diIiUmY5i7jeX/hhOywRZoYPH87SpUv55ptviIqKuui2jz32GE6n0/OTlJRUSrUUERG5CEcR1/sLP2yHX59mMsYwfPhwFi9ezPLly4mJibnkYwIDAwkMDCyF2omIiBRAJO5BsrmdoonLWm8FftgOv+6ZGTZsGO+99x7vv/8+oaGhHDp0iEOHDnH69GlfV01ERKRgwnFf7RP3h/Lsq4CsMF4G/LIdfn1pts1my7V8zpw5DBw4MF/70KXZIiLiV1JwD5J14j4lE4l1gsyFSrgdBfn89vvTTCIiImVKONYML3/kR+3w69NMIiIiIpeiMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKW5tdXM0kpuPDSujAgAr8ZnS4iIpIf6pkpz5KAvkAs0AFonLWsO0CIiIiFKMyUV354C3cREZHCUJgpr/JzC3cRERELUJgpr/zwFu4iIiKFoQHA5ZUf3sJdREQsJAn3kITjuC8gCQeifVMV9cyUV9m3cM+NlW5FLyIipW8PcC/QAuiS9fverHIfUJgpr/zwFu4iImIBScD9wLI/lC/LKvfBFbE6zVSeRQPzKRu3ohcRkdKRQs4gk21Z1vpSPt2kMFPe+dEt3EVExAKOF3F9CdBpJhEREcm/sCKuLwEKMyIiIpJ/DqB7Huu645OrYXWaqbw7BBzm/L2ZagK1fFkhKRN0zy+RsisdmAqMxnvsTHdgWtb6UqYwU445U8F2FOydgFNAFXCtAWMHR4ivayeWlUTOW2VkXyXnozkoRKQYpQC34H5PPwe4ADtwALgeWFr6VdJppnLqyEnotRBeOQCuZUCE+/f0A+7yIyd9XUOxJN3zS6Tsc+Du0b8FaIs7wLTNWj6MT04zKcyUQ840uP0jSDwOM7bBKyfg7D6YfgJmbnOX3/6RezuRAtE9v0TKPj+cdFVhphyy2aB7/fPLM7ZB1w/cQSZbj/ru7UQKRPf8kpKUAuwA1gA7UU+fr/jhpKsaM1MO2QNhRAvgzPkA8+uJ8+uHNoHhLdzbiRSI7vklJUVjsfyLn026qp6ZcsqeDmOvgahQ7/KoUBhzjXu9SIH5YfezlAEai+WfwoHGQPus3z68YlFhppxyhcHza7x7ZMC9PHmte71Igflh97OUARqLJZeg00zlkCsdpq+BmZvPl0WFng82MzYBNhjeTqeapBD8rPtZygCNxZJLUM9MOWQMLEs8vzy0NSy/G4a0Ol/25V73diKF4kfdz+WdM839BeZCrnSLXa2osVhyCQoz5ZAjCBb1gZgwGNoKhjeHSpvdg4KHtHKXL+rj3k5ErOtIKvRaAK+sAZcT2OD+PX2Nu/xIqq9rmE8aiyWXYDOmbH//drlcOBwOnE4ndrvd19XxK87TYEsEezvOzwC8FkwMOIJ9XTsRKQpnmjuwJB53Lw9tAmOuhue/P38VY0wY/OdOi3xx0dVM5U5BPr81Zqa8SgHHQ8CHQPa3s1Ng/xNwBzAFnRoQsTCbDbrHwMxN7uUZ2+DTJO9B/z1iLDSflMZi+Z2UlBSSk5NxOp2EhYURERFBeLhvXhCdZiqEMnEOOhmYy/kgky01q1xXB4hYWvZ8UkOanC+z/HxSGovlN5KSkujbty+xsbF06NCBxo0b07dvX5KSknxSH4WZAvKcg157PtBkXx1kqXPQujpApMyz74GxV+cxn9TV7vUiBZWSksLgwYOJj/e+Xj4+Pp7BgweTklL6E/8ozBSAMw1uX5h1T6ON7kBzNiPrMudNWfc0WmiRHhpdHSBS5rkausfI5Dqf1Pfu9SIFlZycnCPIZIuPjyc5ufS79hVmCiD7HHS2GRuh67zz56QBejSwyDnosnZ1gO7ZIuLFlQ7Tt3jfc+3CHpoZ2+CVLTlPmYtcitN58a77S60vCQozBWAPhBHtvedj8ToH3dpCE82VoZlanafBdRD3Leg7AG3cy87TPq6YiA/lmE+qCSzv5z2G5stEzSclBedwXLzr/lLrS4LCTAHZA2Fs5zzOQXeySJDJZgNuBz4BFmb9vj2r3CKOnIReH8Irv4FrGRDh/j39N3f5kZO+rqGIb+SYT6odVNoGI9ppPikpmsjISOLicu/aj4uLIzKy9Lv2FWYKyJUOz/+QxznolRbqsk0BhgH7LyizZS0PwxKnaZxpcPtHWWOYtsErJ+DsPph+wt21nnjcvd4SY5hESkCNEPc8MsPbgv0QcA7syTCirbu8RoivayhWFB4ezqxZs3IEmri4OGbNmuWTy7M1z0wBeO5pdMEYGa97Gm10/7bEqabDwD8g5dcUkknGiZMwwoioG0F4p3D3ej8/1WSzQff65+8xles8GvUtMoZJpIQ4UoB/4O55zWK/GXgLqO2bOon1RduimX/7fJKHJ+NMc+IIchB5MJJwm28+OBRmCiC3exqN6eTuqckOOF/uhQf/5Jv6FUgmJIUkMfjDwcR/dX5Uely3OGaNm0V0pv9PqZk9jwZnzg9ytPw8GiLFKQUYSM47Tn8CpOOehM7Pv7SIH0oBBkF4fDjhfzyA4vDJcaUwUwDZ56BvX+ieOfPCexqBO+hY5Rx0SoUUBj/rHWQA4r+KZzCDmf/a/JwHqR+yH4Sx10C1wBQaVE7m9EknIaFhJKRHMKRdOJUSgTBf17IcSuH8TK1hQAT60PSFZHIGmWzxWev1upQ+q78//PC4UpgpoBoh8J87su5pdBnuWwBUgRFrYfifrHNPo+TTyTmCTLb4r+JJPp1siTDjqg27EpP4+NnBfPXl+fZ06xFHu5dncUWdaHRHrlKme+j4D02O6X/KwvvDD48rDQAuqBRwPJB1D6NTWWVZ9zRyPIAlBs4COE9eYp6AU/7/V86VDj8kpfDoSO8gA/DVl/E8OnIwP/ySYp1B2WVBCjn/UJO1PBjLvD/KjKpFXC/Fq6y8P/xw0lX1zBRU9j2N/ij7nkZjsUR3oaPaJeYJCPf/KYCNgcppyTmCTLavvoznsbRkjLHAC1JW+GH3c7lWERgCKXVSSG7rHqgZFhxGxLoIwg+E6xOgtCUDe4EQvO+LF5JVbpX3R/akq7m913006ap6ZgrKD7vXCiMy/BLzBIT7/xTAjiAIybj4f3hIhtMSY5jKjDLy/igzzsK+x5Pou6ovsTfH0qFPBxr/pTF9V/Vl3+NJcNbXFSxnMsD5A7i+AqpklVVxLzt/cK+3BD+cdFVhpqD8sHutMMJd4cwaMYu4Hn+YJ6BHHLNGzCLcZYWvBxAeevH/8Eutl2Km0xp+5bcaKQwekvsNAYcMHcxvNaxyXqNsOFIXen0Gr5z8wySfJ9zlR+r6uoYFEI37qqXtwOqs3/Px2bgfhZmCKiv3NDoO0XdGM7/dfLZ/sp3VC1ez/ZPtzG83n+g7o+G4ryuYP5EVI4nrnkcPU/c4Iita5QVxT+73x/E9rnSLTfpXEeiWx7pu6LRGKXKmwY6kvE/DLouPZ0dSsrWOLwvfg82ZBrd/nDXJ51Z3oMkxyefHFnu/pwFnsn7OZi37iMJMQflh91qhOIBTED4hnMY3N6Z9n/Y0vrkx4RPC3QObLdKhEZ4ezlszcp+J8q0Zswg/Y40X5Egq9FrgvhN7dqDJnqSx1wL3eks4AowkZ6DpllV+pNRrVG7ZbJB5+uLn9TJPO60zqWQS0BeIxX0PtsZZy0m+rFT+2WzQ7cIbFW+Frh943wi0e4yFJvlMAO4CWgDXAs2zlhN8Ux19TyqMaGAm7t6L47jnCQjDOpfVgbsH6RagGe4/DGlAMLAK+AnL9DAdiYH7l0Yz6rn5TH0+mRN7nYQ2cLDfRHL/ynDevQVq+LqSl+BMc89dlHj8/CzSYzp5zzZ9+0L39PN+P/4nFOgNKbNSSH4+GafLSZgjjIjfIggfHA5f+rqC5Yc9EC6rcfFvJZfVcFhjUslLXQVkgcn/jIGbGsHZDJj3o7vswkk+B7aAPzeyyI0/DwL3Acv+UL4sq/wdSn12aYWZQnCmwun0FI4nJeM87STsZBiO4AiCU8NxWOVeJ+HAFNwH3oQLyrsDb+L3fxjAu9v2vu/CGdoknDE3wvPfn/+2c/vH/h8CbDb3N7IvEyH5pDvQfLrb/YcuuCJEVoUeDSzyjS0CkhYk5ZiQMa5bHLMWzCI6wkqJ3/pqZw30/+OYGXD3Xta2wEB/oExcBWSzwbeJ7hsV1wrIOcnn3R3CmbkBGlbzdU3z4XdyBplsy7LWl3KYsRljiRxYaC6XC4fDgdPpxG4v+vRpR07CTwlJTHpkMF9ecC66R1wcj02eRbPLo6lhhUGOKbi7aPO6tM4C33Rc6TB99fl7M4H3vbIg627B7f3/lganzsCps5CQAvcuhdSzEFIJZt8Cl4dDlUpQpbKva3lpKQdT6Duwb54fnvPnzie8tp8fWBdKJudMrRb5/AdwpcKu/Uk55mLq1iOO516exRX1orFb4QvYVjhRC0wC2K/HfSq8Cri+BtvlEHoIuMrHdcyHlFOw55ckHsvl9Zj08iwa1YsmzAqvxwrcp5by8h1wTdGfpiCf3wozBeBMgw/Wp7Domb65Dqrr1iOO25+cT7+24X7dEwC4B9HFXmT9dtznpP2c6zhMXw8zt+ZcN/SqrLsFh5V2rQruyEkY8B8Y1iyFqArJ/JLspG6tMH49F8FrP4fzbi8sEZJ3bN1BbNO8D6ztP2+n8VUWOLCA42lAOoRdgfvGqxGQsgtsgRDm7+9vzof9f2+Fe65MoXmVZM6mOqkU4uDHU5HM2RnO35taI+wfT4XTGXDalULa7+7TyfbLw6hcI4IQezjBAfh9CHClww87U3jp4bw/P/750nw6XxHu968HP+EeI5OXH3EPYSiignx+W2IA8Ouvv05MTAxBQUG0adOGFStW+KQeNhs0r3LxSdpaVEm2xumAMjIfiD0BxnZx98hcKCoUxnRxr/d3zjR3kBkZm8S0h/vSqlksvbp3oFXTxkx7pC8jY5MY8B9rXOVw7MTFD5yUS6z3F4dPQb+P4If9KWxbvoM1361h2/KdrNyfQr+P3Ov9nTGwbJ+7l++1n8PZcKIxPTu2Z/2Jxrz2czipZ92nNv396+zJdDieDjv2JvGPe/pyVatYOtzWgSYtG3P/vX3ZsTeJ4+nu7fyZMVA5/eKfH5XTkv3+9QAgiItfteiDsO/3YWbBggWMGjWKxx9/nE2bNnHNNddw44038ssvv5R6XeyBYEu7+B9jW5rT/1M1lJn5clyN4PnvvE8tgXt58gr3en+XCTzYLIUXH839tgwvPjqYB5ul4O9/446nwemAix84qQEOd4+HHzueBncvcYfLqQ/35aomsXS4tgNXNWnM1Ifd4fLuJfh9OxxBsOg2iAnLuoN8KFSqDyNCYUgTd/mi2/x7PBnAOQOfb01hwiODWfaH98eX8fFMeGQwn29N4Zyfv0EqVoDgcxf//AjOcFLR7z+VcV/4crGrFo+Xcn2wQJiZMmUKgwYNYvDgwcTGxjJt2jSio6N54403fFKf8KoX/2Mddon1fqMMzJfjSofpm2Dmz+fLLuyhmfETvLI559wt/qYCEBVw8W9sUQHJ+HuHnwHSAiPp1iP3A6tbjzjSAv3/wDLkL1xaQY1D8J8b3UHG3h047P49ItRdXuOQr2t4aRXy0SPevEoyFfz8DXIuEzIqX/zzIaOSg3OZpVShoggF+uG+EvYTYGHW7w5Z5aF5P7Sk+HWYOXPmDBs2bMh1DpGVK1fm+pj09HRcLpfXT3EKqxFJjzxuA9AjLo6wGv7/xxooE/PlZHejZxvaBJb3c3/rzGaFbnRHEKRe4vRL6gn/vy1DeBB0ahjOpJdn5Qg02QMcOzcM9/vxJuFBEFPp4h+eMZWS/b4dABwAR2ewd8P7xrjd3OUc8GHd8ik/PeIVLNAj7giCBpdF0j2Pz4/ucXE0uCzS79/ngPvLbmfcV8LeDPTJ+j0hq1z3ZvJ25MgRMjIyiIz0/p+JjIzk0KHcv1JMmjQJh8Ph+YmOLr5LQV3pMG9POA9Nyv2P9UOTZvFOQrjf9wR4+Nl01AXlCIJFvS/Rjd7b/7vRARz2S9z48xLr/UX4Nmh5RTS9x83ns1Xb+fjL1Xy2aju9x82n5RXRhG279D78wYkjF//wvNR6vxEG7MH7cmaylvdkrbcAh+Pix7/9Euv9xWUh4cx8M/dJPme+NYvLQizwLRL88suwJeaZsf1hRK0xJkdZtscee4yHHnrIs+xyuYot0BgDn+2FuaeiuWfsfP71XDIVzjjJqOzg+5RIRq8OJ7IK/KNtsTxd6QjHEr0wealh4D83g21XVjf6qaxu9GUw/GZw+HmvDLhD8v5z7tMzeV3lsD8jkqh0/7/qJKUJTP8eZm/OeWD9bmDkn6zx+Rl6icnmLrXeb4TjnjsqtzlBumOJ974rHQLD3D3iX+ZyyX+PuDiCwiJxWeD9gR3qp0Yzv+98koe772LuCHIQ+Xsk4UHhUPTZQ0pP9pfh7KkLHLh7ZHx0TPl1z0yNGjUICAjI0Qtz+PDhHL012QIDA7Hb7V4/xcURBIv6QGQVOBsQzlVRjWn/e3uaRjXmTAV3kFnUxxo9AWWGHRzpYJ+Idzf6RHe5Ff44GAPTfwrn4edy7/F7+LlZTP8x3O9Pl6WkwfR1MHvz+bILxzDN3gwvr/P/gbMpaZB49uJjfxLPRvp9OwD3B84buIPLhbInx7RAL2xGJnxwiR7xDxLCybDCWBOAWhB+aziNGzamfXR7GjdsTPit4VDL1xUrhHDcU3i0z/rtw3Ds9/PMtG/fnjZt2vD66697ypo0aUKvXr2YNGnSJR9f3JPmgfsSWVsm2JPw3M7AFQ2mgoKMz6TgN98QCuNIKgxYDCOapVAvIJkTvzsJrelg/7lIpv8czrt/hRp+Po/G8TS4dYF7RmaAe1vC/10NE78/H3BiwmDJnf49T8vxNPdl2SNjk3IMAs4Oly9vj+aD2/y7HV6ScL9HjuPuGgvHEkEG3H9vey2A5FPu+XKurpZMQHaP+DH3fDmRVfx/pm8puDI1ad6CBQsYMGAAb775Jh07dmTGjBnMnDmTrVu3Uq9evUs+viTCjEhJcKaB7SzY9wPHgGrgqgemknX+SB8+BXcsguvqZ51S2g4pse4em2/2wYe3Q0QVX9fy0g6fcl+e/WCzFGIqJXPiiJPQGg4Sz0by6k/hzLvVGu0oK46kuu9P1r0BjGgO9u3gagwv/whfJbp7xP097EvBlakwA+5J8yZPnszBgwdp2rQpU6dO5dprLzaX8nkKMyKlK/v0y4W9FrmV+buy0o6ywpnmnrj0wnExrnT3aVqrhH0pmDIXZopCYUZERMR6ytztDERERETyojAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpZW0dcVKGnZExy7XC4f10RERETyK/tzOz83KijzYebEiRMAREdb5BaxIiIi4nHixAkcDsdFtynz92bKzMzkwIEDhIaGYrPZinXfLpeL6OhokpKSLH3fJ7XDv6gd/kXt8C9qh38pyXYYYzhx4gR16tShQoWLj4op8z0zFSpUICoqqkSfw263W/pgzKZ2+Be1w7+oHf5F7fAvJdWOS/XIZNMAYBEREbE0hRkRERGxNIWZIggMDGT8+PEEBgb6uipFonb4F7XDv6gd/kXt8C/+0o4yPwBYREREyjb1zIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIiXQ4cO0aNHD6pUqUJYWJivq3NJ5T7MHDp0iJEjR9KwYUOCgoKIjIzk6quv5s033yQ1NRWAGTNm0LVrV+x2OzabjePHj+fYz4QJE+jUqRMhISG5vvBbtmyhX79+REdHExwcTGxsLC+//LLP2nXs2DGGDx/OlVdeSUhICHXr1mXEiBE4nU7PPpYvX47NZsv1Z926dSVW94K0A+Af//gHl19+OcHBwdSsWZNevXqxY8cOr/2kpKQwYMAAHA4HDoeDAQMG5Po6+nM79u3bx6BBg4iJiSE4OJjLL7+c8ePHc+bMGb9qB8CqVau4/vrrPX8Iu3btyunTpwH/OK7y05Z9+/blWc+FCxd69mOFYyshIYG//vWv1KxZE7vdzh133EFycrLXfurXr5+jnY8++qjl2gHwv//9j/bt2xMcHEyNGjXo3bt3qdfVn+Wn/lOnTuXgwYNs3ryZXbt2+bjGl1bmZwC+mL1799K5c2fCwsKYOHEizZo149y5c+zatYvZs2dTp04dbrnlFlJTU+nZsyc9e/bksccey3VfZ86coU+fPnTs2JG33347x/oNGzZQs2ZN3nvvPaKjo1m5ciVDhw4lICCABx98sNTb1aBBAw4cOMCLL75IkyZN2L9/P/fddx8HDhxg0aJFAHTq1ImDBw967fuJJ55g2bJltG3btljrXNh23HLLLbRp04b+/ftTt25djh07xlNPPUVcXByJiYkEBAQA8Le//Y1ff/2Vzz//HIChQ4cyYMAAPvnkE8u0Y8eOHWRmZvLWW2/RsGFDfv75Z4YMGcKpU6d48cUX/aYdq1at8rxXXnnlFSpXrsyWLVs805H7+rjKb1tuuummHPWcMWMGkydP5sYbb/SU+fux1a1bN+Li4mjRogVff/014P7/vvnmm1m9erXXNPHPPPMMQ4YM8SxXrVq1xNtQ3O346KOPGDJkCBMnTuT666/HGMNPP/1UqnW95ZZbiu35ilt+65+QkECbNm1o1KhRnvs6e/YslSpVKsXaX4Qpx2644QYTFRVlTp48mev6zMxMr+VvvvnGACYlJSXPfc6ZM8c4HI58Pf8DDzxgrrvuuvxWN98K2q5sH374oalcubI5e/ZsruvPnDljIiIizDPPPFNsdb2YwrZjy5YtBjB79uwxxhizbds2A5jVq1d7tlm1apUBzI4dO4q/4n9QXO3IzeTJk01MTEyx1PNS8tuO9u3bm3HjxuV7v6V9XBlT+NekZcuW5t577/UsW+HY+uKLL0yFChWM0+n0lB87dswA5ssvv/SU1atXz0ydOrWkq5yr4mrH2bNnzWWXXWZmzZrl07oaY0xKSooZMmSIiYiIMIGBgeaqq64yn3zyiTHGmCNHjpi+ffuayy67zAQHB5umTZua999/32s/Xbp0McOGDTPDhg0zDofDVKtWzTz++ONex+Zrr71mGjZsaAIDA01ERIS57bbbiqX+9erVM4Dn5+677zbGGAOYN954w9xyyy0mJCTEPPnkk+bcuXPm3nvvNfXr1zdBQUHmiiuuMNOmTfPa59mzZ83w4cM97RgzZoy56667TK9evTzbLFy40DRt2tQEBQWZatWqmW7duuVZx9yU2zBz5MgRY7PZzKRJk/L9mOIOM/3798/XwVcQhWlXtpkzZ5oaNWrkuX7RokWmQoUK5pdffilKFfOlsO04efKkGTVqlImJiTHp6enGGGPefvvtXF8Th8NhZs+eXRzVzVNxtiM3jz/+uGnTpk1Rq3lJ+W1HcnKyAcz06dNNx44dTUREhLn22mvNihUr8nxMaR5XxhT+NVm/fr0BzA8//OAps8KxtXTpUhMQEGDS0tI8ZampqaZChQpm/PjxnrJ69eqZWrVqmWrVqpkWLVqYZ5999qLHXnEpznasWbPGAGb27NmmZcuWplatWqZnz57m559/LtW6ZmRkmA4dOpirrrrKxMfHm4SEBPPJJ5+YTz/91BhjzK+//mpeeOEFs2nTJpOQkGCmT59uAgICvEJxly5dTNWqVc3IkSPNjh07zHvvvWdCQkLMjBkzjDHGrFu3zgQEBJj333/f7Nu3z2zcuNG8/PLLxVL/w4cPm549e5o77rjDHDx40Bw/ftwY4w4zERER5u233zYJCQlm37595syZM+bJJ580a9euNXv37vXUc8GCBZ79Pfvss6ZatWrm448/Ntu3bzf33XefsdvtnjBz4MABU7FiRTNlyhSTmJhofvzxR/Paa6+ZEydOXLSeFyq3YWb16tUGMB9//LFXefXq1U2VKlVMlSpVzJgxY7zWFWeYWblypalUqZKJj48vTPXzVJh2GeM+yOvWrWsef/zxPPd94403mhtvvLFY65uXgrbjtddeM1WqVDGAady4sVdvxoQJE0yjRo1yPEejRo3MxIkTS64Rpnjb8Ud79uwxdrvdzJw5s8Tqny2/7cjulahWrZqZPXu22bhxoxk1apSpXLmy2bVrV677Ls3jypjCv0fuv/9+Exsb61VmhWPr8OHDxm63m5EjR5pTp06ZkydPmmHDhhnADB061PO4KVOmmOXLl5stW7Z4vtgMGjSoRNtQ3O344IMPDGDq1q1rFi1aZNavX2/69etnqlevbo4ePVpqdc3uRdq5c2e+9/3nP//Z/POf//Qsd+nSxcTGxnr1xIwdO9ZzDH700UfGbrcbl8tV7PU3xphevXp5emSyAWbUqFGXfJ4HHnjA64t6ZGSkeeGFFzzL586dM3Xr1vWEmQ0bNhjA7Nu3L99t+aNyPwDYZrN5La9du5bNmzdz1VVXkZ6eXiLPuXXrVnr16sWTTz5Jjx49SuQ5CtIul8vFTTfdRJMmTRg/fnyu+/v111/54osvGDRoUInUNy/5bUf//v3ZtGkT3377LY0aNeKOO+4gLS0tz/2A+/byuZWXhOJqR7YDBw7Qs2dP+vTpw+DBg0u8/tku1Y7MzEzAPZj5nnvuoVWrVkydOpUrr7yS2bNn59ifr44rKNh75PTp07z//vu51tPfj62aNWuycOFCPvnkE6pWrYrD4cDpdNK6dWvPmDKA0aNH06VLF5o3b87gwYN58803efvttzl69Khl2pF9/D3++OPcdttttGnThjlz5uQYtF3Sdd28eTNRUVFcccUVuT4+IyODCRMm0Lx5c6pXr07VqlWJj4/nl19+8dquQ4cOXs/VsWNHdu/eTUZGBj169KBevXo0aNCAAQMG8O9//zvfg4+L8rmX27i2N998k7Zt21KzZk2qVq3KzJkzPW1xOp0kJyfTrl07z/YBAQG0adPGs9yiRQu6detGs2bN6NOnDzNnziQlJSVfbclWbgcAN2zYEJvNluOqlwYNGgAQHBxcIs+7bds2rr/+eoYMGcK4ceOKff8FbdeJEyfo2bMnVatWZfHixXkO5pozZw7Vq1cvtYFtBW1H9pUkjRo1okOHDoSHh7N48WL69etHrVq1cr3i4ffffycyMrLkGkHxtiPbgQMHuO666+jYsSMzZswo0fpny287ateuDUCTJk28touNjc3xhxpK/7iCwr33Fy1aRGpqKnfddZdXuVWOrbi4OBISEjhy5AgVK1YkLCyMWrVqERMTk+f+O3ToAMCePXuoXr16CbTArTjbkdvxFxgYSIMGDXI9/kqqrpf6/HjppZeYOnUq06ZNo1mzZlSpUoVRo0YV6MrE0NBQNm7cyPLly4mPj+fJJ5/kqaeeYt26dXleSl0cn3tVqlTxWv7www8ZPXo0L730Eh07diQ0NJQXXniBNWvWeG33xwBlLriTUkBAAF9++SUrV64kPj6eV155hccff5w1a9Zc9Bi9ULntmalevTo9evTg1Vdf5dSpU6XynFu3buW6667j7rvvZsKECSXyHAVpl8vlIi4ujsqVK7N06VKCgoJy3c4Yw5w5c7jrrrtKbeR6UV8fY4znG0bHjh1xOp2sXbvWs37NmjU4nU46depUbHXOTXG2A+C3336ja9eutG7dmjlz5nhdiVKS8tuO+vXrU6dOHXbu3OlVvmvXLurVq+dV5ovjCgr3mrz99tvccsst1KxZ06vcasdWjRo1CAsL4+uvv+bw4cMXDZGbNm0CzgeEklKc7WjTpg2BgYFex9/Zs2fZt29fjuOvJOvavHlzfv311zwvaV6xYgW9evXi73//Oy1atKBBgwbs3r07x3arV6/OsdyoUSNPT1TFihXp3r07kydP5scff2Tfvn2eK72KUv+CWLFiBZ06deKBBx6gVatWNGzYkISEBM96h8NBZGSk13skIyPDc3xls9lsdO7cmaeffppNmzZRuXJlFi9enP+KFPoEVRmwZ88eExkZaRo3bmzmz59vtm3bZnbs2GHeffddExkZaR566CFjjDEHDx40mzZtMjNnzjSA+e6778ymTZu8zsHu37/fbNq0yTz99NOmatWqZtOmTWbTpk2eAUw///yzqVmzpunfv785ePCg5+fw4cM+aZfL5TLt27c3zZo1M3v27PGq07lz57z2t2zZMgOYbdu2FXtdi9qOhIQEM3HiRLN+/Xqzf/9+s3LlStOrVy9TrVo1k5yc7NlXz549TfPmzc2qVavMqlWrTLNmzcxf/vIXS7Xjt99+Mw0bNjTXX3+9+fXXX71eM39phzHGTJ061djtdrNw4UKze/duM27cOBMUFJRj/I+vjquCtMUYY3bv3m1sNpv57LPPct2Xvx9bxhgze/Zss2rVKrNnzx7z7rvvmmrVqnm1ceXKlWbKlClm06ZNZu/evWbBggWmTp065pZbbrFUO4wxZuTIkeayyy4zX3zxhdmxY4cZNGiQiYiIMMeOHSvVunbt2tU0bdrUxMfHm71795pPP/3UcwyNGjXKREdHmx9++MFs27bNDB482GtArDHnBwCPHj3a7Nixw7z//vumSpUq5s033zTGGPPJJ5+Yl19+2WzatMns27fPvP7666ZChQqXHOyc3/rnNWZm8eLFXmXTpk0zdrvdfP7552bnzp1m3Lhxxm63mxYtWni2efbZZ0316tXNkiVLzI4dO8ywYcOM3W43t956qzHGPZZnwoQJZt26dWb//v2eK2uzB0znR7kOM8a4R1E/+OCDJiYmxlSqVMlUrVrVtGvXzrzwwgvm1KlTxhhjxo8f73WZWvbPnDlzPPu5++67c93mm2++ueg+6tWr55N2ZQ9mzu0nMTHRa1/9+vUznTp1KpF6FrUdv/32m7nxxhtNRESEqVSpkomKijJ/+9vfclwWe/ToUdO/f38TGhpqQkNDTf/+/S86kNsf2zFnzpw8XzN/aUe2SZMmmaioKBMSEmI6duyY69VMvjyujMl/Wx577DETFRVlMjIyct2Pvx9bxrgHjkZGRppKlSqZRo0amZdeeslrYOmGDRtM+/btjcPhMEFBQebKK68048eP9/p/sEI7jHFf6v/Pf/7TREREmNDQUNO9e/diu5qpIHU9evSoueeee0z16tVNUFCQadq0qfnvf//rWderVy9TtWpVExERYcaNG5fjUuUuXbqYBx54wHPlT3h4uHn00Uc97V2xYoXp0qWLCQ8PN8HBwaZ58+ZeVxAVtf75DTNpaWlm4MCBxuFwmLCwMHP//febRx991CvMnD171jz44IOedowdO9b06dPH9O3b1xjjnuLghhtuMDVr1jSBgYHmiiuuMK+88kp+Xw5jjDG2rAqKiIiIn+jatSstW7Zk2rRpvq5KscvMzCQ2NpY77riDf/3rX8Wyz3I7AFhERERK3v79+4mPj6dLly6kp6fz6quvkpiYyN/+9rdie45yOwBYRERESl6FChWYO3cuf/rTn+jcuTM//fQTy5YtIzY2ttieQ6eZRERExNLUMyMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpb2/ztZJMvr05n6AAAAAElFTkSuQmCC", "text/plain": "
"}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "estimated-found-predicted-2023"}}, "output_type": "display_data"}, "diference-estimated-found-predicted-2023": {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZ00lEQVR4nO3dd3hUxf7H8fcmpDcgJCEhIaFLFUFFRJqIoChYrg2kSPGqKCBcQa6IoAiKBaxX5YfYO+JVrwpYQBSQFkA6xIQaDERIAoGEJPP7Y2ElpJCy2c1JPq/n2Qd2Zs/Z7+yezX53zswcmzHGICIiImJRHu4OQERERKQ8lMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmk13B1ARcvLy+PAgQMEBQVhs9ncHY6IiIiUgDGGjIwMoqKi8PAovu+lyiczBw4cICYmxt1hiIiISBns3buX6OjoYh9T5ZOZoKAgwP5iBAcHuzkaERERKYn09HRiYmIc3+PFqfLJzJlTS8HBwUpmRERELKYkQ0Q0AFhEREQsTcmMiIiIWJqSGREREbG0Kj9mpiSMMeTk5JCbm+vuUESqFE9PT2rUqKFlEUSkQlX7ZCY7O5vk5GQyMzPdHYpIleTv709kZCTe3t7uDkVEqqhqnczk5eWRmJiIp6cnUVFReHt76xekiJMYY8jOzubQoUMkJibSpEmT8y58JSJSFtU6mcnOziYvL4+YmBj8/f3dHY5IlePn54eXlxe7d+8mOzsbX19fd4ckIlWQfiaBfi2KVCB9vkSkoumvjIiIiFhatT7NJCIiImV0GEgBjgC1gXAg1D2hqGdGRERESmcPcBPQErgCaAHcBux1TzjqmREREZGSSwUGAhuA4UA09uTmE+Bu4AOglmtDUs+MkJ2d7e4QRETEKv4EGgBvYz/N9An2U00fADVPl7mYkplzGGPIzM5x+c0YU+IYk5KSsNlsBW7dunUDYPny5XTp0gU/Pz9iYmIYNWoUx48fd2wfFxfHtGnTGDJkCCEhIYwYMQKA+fPn07JlS3x8fIiLi+O5555z6msrIiJVQDZwCXAj8CWwBVgA9AN6nK53MZ1mOseJU7m0mLzQ5c+75fFe+HuX7O2IiYkhOTnZcf/gwYNcddVVdOnShd9//51evXrxxBNPMHfuXA4dOsT999/P/fffz7x58xzbPPPMMzz66KNMmjQJgLVr13LrrbcyZcoUbrvtNpYvX859991HaGgoQ4YMcWpbRUTEwnyBiYWUG+Bh4FfXhgNgM6XpErCg9PR0QkJCSEtLIzg4OF/dyZMnSUxMpEGDBo7FvDKzcyp9MnO2kydP0q1bN8LCwvjvf//LkCFD8PPz4/XXX3c85pdffqFr164cP34cX19f4uLiuOiii1iwYIHjMQMGDODQoUMsWrTIUTZ+/Hj+97//sXnz5vI1Tqq1wj5nImJhy4FOxdSvBDqU/2mK+/4+l3pmzuHn5cmWx3u55XnLYtiwYWRkZLB48WI8PDxYu3Ytu3bt4v3333c8xhjjuHRD8+bNAbj44ovz7Wfr1q3069cvX1mnTp2YPXs2ubm5eHqWLT4REali8spZXwGUzJzDZrOVqYfEHaZNm8Z3333HqlWrCAoKAuzXm/rnP//JqFGjCjy+fv36jv8HBATkqzPGFLguVRXvtBMRkbKoA4QAaYXUhWFfc8bFrPGtLQXMnz+fxx9/nG+//ZZGjRo5ytu1a8fmzZtp3LhxqfbXokULfvnll3xly5cvp2nTpuqVERGRv4UCs4Bh2MfJnOEBzMae0LiYkhkL2rRpE4MGDWLChAm0bNmSgwcPAuDt7c2ECRO47LLLGDlyJCNGjCAgIICtW7eyePFiXnrppSL3OW7cOC655BKeeOIJbrvtNlasWMHLL7/Mq6++6qpmiYiIFYQB3YBvsE/P3glcAAwGmqKeGSmZNWvWkJmZybRp05g2bZqjvGvXrixZsoSlS5fyyCOP0LlzZ4wxNGrUiNtuu63YfbZr145PPvmEyZMn88QTTxAZGcnjjz+umUwiIlJQA8APaAikA0HYTz3VdU84ms2kWRYiFUqfM5Eq6gD2yxfsBuKAGCDSebvXbCYRERGpOLuAa7GfYjqjOfA/7L02LqYVgEVERKTkUoCbyZ/IAGwF7sB+NW0XUzIjIiIiJZcCbCyi7jd0bSYRERGp5DLOU3/MJVHko2RGRERESi4UsBVR54FbpmYrmREREZGSiwCKWu3jrtP1LqbZTCIiIlJyIcDzQAP4y+svTkSewH+fP7U8asF92NeccTH1zIiIiEipHPE9wvfdv6fPoj60fbQtfZf2ZcmVSzjqe9Qt8SiZqSK6devGmDFjHPfj4uKYPXu24/7Bgwfp2bMnAQEB1KxZs8gysfv1119p3bo1Xl5e3HDDDS573nPfRyuwYswiUnZZWVl88MEH9Ly6JytXruTw4cP88ssvdO/enQULFnDq1CmXx6TTTFXU6tWr810Ze9asWSQnJ7N+/XpCQkKKLLOqxMRE7rnnHo4dO8bRo0d59tlnueaaa8q8v7Fjx9K2bVu+/fZbAgMDnRip3ZIlS+jevTtHjhzJl0h+/vnneHl5Of35ztWtWzfatm2bL+EVESmJ5ORkHnrooULrxowZQ48ePahfv75LY3Jrz8zPP//M9ddfT1RUFDabjS+++CJfvTGGKVOmEBUVhZ+fH926dWPz5s3uCbY4ucAS4MPT/+a6Mxi7sLAw/P39HfcTEhJo3749TZo0ITw8vMiy0nJHBl6Y6Ohovv32W3799VcmTpzIW2+9Va79JSQkcOWVVxIdHe3SXqvatWsTFOSGE84iIiV08OBBTpw4UWhdeno6KSmuX2jGrcnM8ePHufDCC3n55ZcLrZ85cybPP/88L7/8MqtXr6Zu3br07NmTjIzzTXJ3oc+xX5OiO9D/9L9xp8sryPHjxxk0aBCBgYFERkby3HPPFXjM2aeZ4uLimD9/Pu+88w42m40hQ4YUWgaQlpbG3XffTXh4OMHBwVx55ZVs2LDBsd8pU6bQtm1b3nzzTRo2bIiPjw/GmBJv9+677xIXF0dISAi33357vvcyLy+Pp59+msaNG+Pj40P9+vV58sknHfX79+/ntttuo1atWoSGhtKvXz+SkpIA8PLywsPDg4SEBF5//fV8F+A8V1ZWFqNGjSI8PBxfX1+uuOIKVq9eDUBSUhI2m43U1FSGDh2KzWYrMjHKzs5m/Pjx1KtXj4CAADp06MCSJUsc9bt37+b666+nVq1aBAQE0LJlS7755huSkpLo3r07ALVq1cr3+hd2unDatGmO9zs2Npb//ve/HDp0iH79+hEYGEjr1q1Zs2aNY5vU1FTuuOMOoqOj8ff3p3Xr1nz44YeO+iFDhrB06VJeeOEFbDYbNpvN8Tpu2bKFa6+9lsDAQCIiIhg4cCCHD/+9nGdJjj0RqdrO13tco4YbTvqYSgIwCxYscNzPy8szdevWNU899ZSj7OTJkyYkJMS89tprJd5vWlqaAUxaWlqBuhMnTpgtW7aYEydOlC3o+cYYmzGGc26207f5Zdvt+dx7770mOjraLFq0yGzcuNFcd911JjAw0IwePdrxmNjYWDNr1ixjjDEpKSmmd+/e5tZbbzXJycnm6NGjhZbl5eWZTp06meuvv96sXr3a7Nixw4wbN86Ehoaa1NRUY4wxjz32mAkICDC9evUy69atMxs2bCjxdoGBgeamm24yv//+u/n5559N3bp1zb///W9HzOPHjze1atUyb731ltm1a5dZtmyZmTNnjjHGmOPHj5smTZqYoUOHmo0bN5otW7aY/v37m2bNmpmsrCxjjDFfffWV6dWrl9m9e3exr9+oUaNMVFSU+eabb8zmzZvN4MGDTa1atUxqaqrJyckxycnJJjg42MyePdskJyebzMzMQvfTv39/c/nll5uff/7Z7Nq1yzzzzDPGx8fH7NixwxhjTJ8+fUzPnj3Nxo0bTUJCgvnqq6/M0qVLTU5Ojpk/f74BzPbt2x2vvzHGdO3atcD7WLt2bfPaa6+ZHTt2mHvvvdcEBQWZ3r17m08++cRs377d3HDDDaZ58+YmLy/PGGPMvn37zDPPPGPi4+NNQkKCefHFF42np6dZuXKlMcaYo0ePmo4dO5oRI0aY5ORkk5ycbHJycsyBAwdMnTp1zMSJE83WrVvNunXrTM+ePU337t1Ldeydq9yfMxGpVPbs2WPCwsIMUOBWr149s2/fPqc8T3Hf3+eqtMlMQkKCAcy6devyPa5v375m0KBBRe7n5MmTJi0tzXHbu3dvxSQzOcaYaFMwkTk7oYk5/TgnysjIMN7e3uajjz5ylKWmpho/P78ikxljjOnXr58ZPHhwvn2dW/bDDz+Y4OBgc/LkyXyPa9SokXn99deNMfakxMvLy6SkpJR6O39/f5Oenu6of+ihh0yHDh2MMcakp6cbHx8fR/Jyrrlz55pmzZo5vrCNMSYrK8v4+fmZhQsXmrVr1xqbzWbatWtnOnToYIYMGVLofo4dO2a8vLzM+++/7yjLzs42UVFRZubMmY6ykJAQM2/evEL3YYwxu3btMjabzezfvz9feY8ePczEiRONMca0bt3aTJkypdDtf/rpJwOYI0eO5CsvLJm58847HfeTk5MNYB599FFH2YoVKwxgkpOTi4z32muvNePGjSvyeYwx5tFHHzVXX311vrIzn5/t27eX+Ng7l5IZkaolJyfH/PDDD8bLyytfIuPj42OWLVuW7+90eZQmmam0A4APHjwIQERE/tV3IiIi2L17d5HbzZgxg6lTp1ZobAAsA/YVU2+wXxp9GdDNeU+bkJBAdnY2HTt2dJTVrl2bZs2alXvfa9eu5dixY4SGhuYrP3HiBAkJCY77sbGxhIWFlXq7uLi4fONBIiMjHedWt27dSlZWFj169Cgytl27dhUYT3Ly5EkSEhK4+uqrycvLO28bExISOHXqFJ06dXKUeXl5cemll7J169bzbn/GunXrMMbQtGnTfOVZWVmO12HUqFHce++9LFq0iKuuuoqbb76ZNm3alPg5zjh7mzOfh9atWxcoS0lJoW7duuTm5vLUU0/x8ccfs3//frKyssjKyso3ILwwa9eu5aeffip0wHNCQgInTpyosGNPRKzD09OTK664gk2bNvHOO+8QHx/PJZdcwoABA4iLi8NmK2p54IpTaZOZM859UYwxxb5QEydOZOzYsY776enpxMTEOD+wZCc/roSMMc7d4Vny8vKIjIzMN+7jjLMHwZ77pVjS7c49z2qz2RwJiJ+f33lja9++Pe+//36BurMTq/M58/qV9rgqLB5PT0/Wrl2Lp6dnvrozycDw4cPp1asX//vf/1i0aBEzZszgueee44EHHijx80D+1+1MjIWVnXktn3vuOWbNmsXs2bNp3bo1AQEBjBkzhuzs7PO26frrr+fpp58uUBcZGcnOnedeIldEqitvb2+aNm3KE088QXZ2Nt7e3m5JYs6otMlM3bp1AXsPTWRkpKM8JSWlQG/N2Xx8fPDx8anw+Ig8/0NK9bgSaty4MV5eXqxcudIx9e3IkSPs2LGDrl27lmvf7dq14+DBg9SoUYO4uLgK3+5sTZo0wc/Pjx9++IHhw4cX+hwff/yxY4BxWTVu3Bhvb29++eUX+vfvD9hnZK1Zs6ZUa6VcdNFF5ObmkpKSQufOnYt8XExMDPfccw/33HMPEydOZM6cOTzwwAN4e3sDkJvr/Klvy5Yto1+/ftx5552APUnZuXMnzZs3dzzG29u7wHO3a9eO+fPnExcXV+gAvoo89kTEmmw2m2u+c8+j0i6a16BBA+rWrcvixYsdZdnZ2SxdupTLL7/cjZGd1hmIpuiLbdmAmNOPc6LAwECGDRvGQw89xA8//MCmTZsYMmQIHh7lfyuvuuoqOnbsyA033MDChQtJSkpi+fLlTJo0Kd9sGWdtdzZfX18mTJjA+PHjeeedd0hISGDlypXMnTsXgAEDBlCnTh369evHsmXLSExMZOnSpYwePZp9+4o735dfQEAA9957Lw899BDfffcdW7ZsYcSIEWRmZjJs2LAS76dp06YMGDCAQYMG8fnnn5OYmMjq1at5+umn+eabbwD7egsLFy4kMTGRdevW8eOPPzoSitjYWGw2G19//TWHDh3i2DHnXWa2cePGLF68mOXLl7N161b++c9/Ok7bnhEXF8dvv/1GUlIShw8fJi8vj5EjR/LXX39xxx13sGrVKv744w8WLVrE0KFDyc3NrdBjT0SkPNzaM3Ps2DF27drluJ+YmMj69eupXbs29evXZ8yYMUyfPp0mTZrQpEkTpk+fjr+/v+MXtVt5Ai8A/8CeuJx99udMgjP79OOc7JlnnuHYsWP07duXoKAgxo0bR1paWrn3a7PZ+Oabb3jkkUcYOnQohw4dom7dunTp0qXY3rCybneuRx99lBo1ajB58mQOHDhAZGQk99xzDwD+/v78/PPPTJgwgZtuuomMjAzq1atHjx49St1T89RTT5GXl8fAgQPJyMjg4osvZuHChdSqVatU+5k3bx7Tpk1j3Lhx7N+/n9DQUDp27Mi1114L2HtdRo4cyb59+wgODqZ3797MmjULgHr16jF16lQefvhh7rrrLgYNGlTutXHOePTRR0lMTKRXr174+/tz9913c8MNN+Q7Rv71r38xePBgWrRowYkTJ0hMTCQuLo5ff/2VCRMm0KtXL7KysoiNjaV3796OhKWijj0RkfKwmYochHEeZ1ZBPdfgwYN56623MMYwdepUXn/9dY4cOUKHDh145ZVXaNWqVYmfIz09nZCQENLS0gp86Z08eZLExEQaNGiAr69v2RrxOTCa/IOBY7AnMjeVbZciVYlTPmciUu0U9/19LrcmM65Q4ckM2Ff8XYZ9sG8k9lNLFdAjI2JFSmZEpCxKk8xU2gHAluKJU6dfi4iIVHp7gS3ANqAF0Bz7WFI3UDIjIiIipbMFuBL486yyesCPQNNCt6hQmoYgIiIiJZcM3Ej+RAZgP3AL4PrrTCqZERERkVI4BOwoom7j6XoXUzIjIiIiJXf8PPWZLokiHyUzIiIiUnJhFJ09eAGhRdRVICUzIiIiUnIhwJAi6u4BSrf+qFNoNpOIiIiUXBpwBVAbmHP6fi3siUwscASXJzTqmakiunXrlu9CiXFxccyePdtx/+DBg/Ts2ZOAgADHlawLKxO7X3/9ldatW+Pl5cUNN9zg7nAA+2UjvvjiCwCSkpKw2WysX7/e5XEMGTKk0rwmIuIGh4Bh2KdnvwJ8CrwIrMWe0KS6PiT1zFRRq1evJiAgwHF/1qxZJCcns379ekJCQooss6rExETuuecejh07xtGjR3n22We55ppryry/sWPH0rZtW7799lsCAwOdGKlzxMTEkJycTJ06dUr0+CFDhnD06FFHMiQiUmYB2K9H+M3p27n8XRsOKJlxitzcXJYtW0ZycjKRkZF07twZT0/3Xs8gLCws3/2EhATat29PkyZNii0rrVOnTuHl5VXm7Z0lOjqab7/9Fg8PD9577z3eeuutciUzCQkJ3HPPPURHO3c5S2e9Xp6entStW9cJEYmIlFI40AzYXkjdhafrXUynmcrp888/Jy4uju7du9O/f3+6d+9OXFwcn3/+eYU95/Hjxxk0aBCBgYFERkby3HPPFXjM2aeZ4uLimD9/Pu+88w42m40hQ4YUWgaQlpbG3XffTXh4OMHBwVx55ZVs2LDBsd8pU6bQtm1b3nzzTRo2bIiPjw/GmBJv9+677xIXF0dISAi33347GRkZjsfk5eXx9NNP07hxY3x8fKhfvz5PPvmko37//v3cdttt1KpVi9DQUPr160dSUhIAXl5eeHh4kJCQwOuvv860adOKfP2ysrIYNWoU4eHh+Pr6csUVV7B69Wrg79M3qampDB06FJvNVuTVrOPi4njiiSfo378/gYGBREVF8dJLL+V7jM1m47XXXqNfv34EBAQ44vrqq69o3749vr6+NGzYkKlTp5KTk+PYbufOnXTp0gVfX19atGjB4sWL8+23sNNMmzdvpk+fPgQHBxMUFETnzp1JSEhgypQpvP322/z3v//FZrNhs9lYsmTJeV9TsCfqY8eOpWbNmoSGhjJ+/Hiq+OXcROR86gILsF+L8GwxwCfYZzu5mqni0tLSDGDS0tIK1J04ccJs2bLFnDhxokz7nj9/vrHZbAZ7h5vjZrPZjM1mM/Pnzy9v+IW69957TXR0tFm0aJHZuHGjue6660xgYKAZPXq04zGxsbFm1qxZxhhjUlJSTO/evc2tt95qkpOTzdGjRwsty8vLM506dTLXX3+9Wb16tdmxY4cZN26cCQ0NNampqcYYYx577DETEBBgevXqZdatW2c2bNhQ4u0CAwPNTTfdZH7//Xfz888/m7p165p///vfjpjHjx9vatWqZd566y2za9cus2zZMjNnzhxjjDHHjx83TZo0MUOHDjUbN240W7ZsMf379zfNmjUzWVlZxhhjvvrqK9OrVy+ze/fuYl+/UaNGmaioKPPNN9+YzZs3m8GDB5tatWqZ1NRUk5OTY5KTk01wcLCZPXu2SU5ONpmZmYXuJzY21gQFBZkZM2aY7du3mxdffNF4enqaRYsWOR4DmPDwcDN37lyTkJBgkpKSzHfffWeCg4PNW2+9ZRISEsyiRYtMXFycmTJlijHGmNzcXNOqVSvTrVs3Ex8fb5YuXWouuugiA5gFCxYYY4xJTEw0gImPjzfGGLNv3z5Tu3Ztc9NNN5nVq1eb7du3mzfffNNs27bNZGRkmFtvvdX07t3bJCcnm+TkZJOVlVWi1/Tpp582ISEh5rPPPjNbtmwxw4YNM0FBQaZfv37nOUr/Vt7PmYhUUnuMMYuNMS8bY34wxux17u6L+/4+l5KZMv6RzcnJMdHR0QUSmbMTmpiYGJOTk+OMZjhkZGQYb29v89FHHznKUlNTjZ+fX5HJjDHG9OvXzwwePDjfvs4t++GHH0xwcLA5efJkvsc1atTIvP7668YYe1Li5eVlUlJSSr2dv7+/SU9Pd9Q/9NBDpkOHDsYYY9LT042Pj48jeTnX3LlzTbNmzUxeXp6jLCsry/j5+ZmFCxeatWvXGpvNZtq1a2c6dOhghgwZUuh+jh07Zry8vMz777/vKMvOzjZRUVFm5syZjrKQkBAzb968QvdxRmxsrOndu3e+sttuu81cc801jvuAGTNmTL7HdO7c2UyfPj1f2bvvvmsiIyONMcYsXLjQeHp6mr17//7L8O233xabzEycONE0aNDAZGdnFxrr4MGDCyQg53tNjTEmMjLSPPXUU476U6dOmejoaCUzIlLhSpPMaMxMGS1btox9+/YVWW+MYe/evSxbtoxu3bo57XkTEhLIzs6mY8eOjrLatWvTrFmzcu977dq1HDt2jNDQ/CsenThxgoSEBMf92NjYfGNySrpdXFwcQUFBjvuRkZGkpNgv4rF161aysrLo0aNHkbHt2rUr3/YAJ0+eJCEhgauvvpq8vLzztjEhIYFTp07RqVMnR5mXlxeXXnopW7duPe/25zr7fThz/+xZZAAXX3xxvvtr165l9erV+U6h5ebmcvLkSTIzM9m6dSv169fPN17n3Oc51/r16+ncuXOpxuOc7zVNS0sjOTk533PXqFGDiy++WKeaRKRSUTJTRsnJyU59XElV5JdIXl4ekZGRjvEUZzt76vbZs6RKs925X7Q2m82RgPj5+Z03tvbt2/P+++8XqDt3sHNxzrx+NputQPm5ZWV17n4Ke72mTp3KTTfdVGBbX1/fQt/j88V2vtevMM56TUVE3E3JTBlFRp478ql8jyupxo0b4+XlxcqVK6lfvz4AR44cYceOHXTt2rVc+27Xrh0HDx6kRo0axMXFVfh2Z2vSpAl+fn788MMPDB8+vNDn+Pjjjx0DjMuqcePGeHt788svv9C/f3/APsNozZo1+dbpKamVK1cWuH/BBRcUu027du3Yvn07jRs3LrS+RYsW7NmzhwMHDhAVFQXAihUrit1nmzZtePvtt4ucLeXt7U1ubm6BOM73mkZGRrJy5Uq6dOkCQE5ODmvXrqVdu3bFxiMi4kqazVRGnTt3Jjo6ushfzDabjZiYGDp37uzU5w0MDGTYsGE89NBD/PDDD2zatIkhQ4bg4VH+t/Kqq66iY8eO3HDDDSxcuJCkpCSWL1/OpEmTWLNmjdO3O5uvry8TJkxg/PjxvPPOOyQkJLBy5Urmzp0LwIABA6hTpw79+vVj2bJlJCYmsnTpUkaPHl3s6b5zBQQEcO+99/LQQw/x3XffsWXLFkaMGEFmZibDhg0r8X7O+PXXX5k5cyY7duzglVde4dNPP2X06NHFbjN58mTeeecdpkyZwubNm9m6dSsff/wxkyZNAuyvZ7NmzRg0aBAbNmxg2bJlPPLII8Xu8/777yc9PZ3bb7+dNWvWsHPnTt599122b7fPnYyLi2Pjxo1s376dw4cPc+rUqRK9pqNHj+app55iwYIFbNu2jfvuu4+jR4+W+nUSEalISmbKyNPTkxdeeAEoeArgzP3Zs2dXyHozzzzzDF26dKFv375cddVVXHHFFbRv377c+7XZbHzzzTd06dKFoUOH0rRpU26//XaSkpKIiIhw+nbnevTRRxk3bhyTJ0+mefPm3HbbbY4xNf7+/vz888/Ur1+fm266iebNmzN06FBOnDhR6p6ap556iptvvpmBAwfSrl07du3axcKFC6lVq/Trb48bN461a9dy0UUX8cQTT/Dcc8/Rq1evYrfp1asXX3/9NYsXL+aSSy7hsssu4/nnnyc2NhYADw8PFixYQFZWFpdeeinDhw/PN76mMKGhofz4448cO3aMrl270r59e+bMmePopRkxYgTNmjXj4osvJiwsjF9//bVEr+m4ceMYNGgQQ4YMoWPHjgQFBXHjjTeW+nUSEalINlPFR/Klp6cTEhJCWlpagS+9kydPkpiYSIMGDfD19S3T/j///PMCvQMxMTHMnj270DERUnXExcUxZsyYMp2eqk6c8TkTkeqnuO/vc2nMTDnddNNNjm76yrQCsIiISHWhZMYJPD09nTr9WkREREpOyYxIGZ297L+IiLiPBgCLiIiIpSmZEREREUtTMkPFrqorUt3p8yUiFa1aJzNn1uDIzMx0cyQiVdeZz1dprhslIlIa1XoAsKenJzVr1sy3MJuzrs8jUt0ZY8jMzCQlJYWaNWtquQIRqTDVOpkBqFu3LoAjoRER56pZs6bjcyYiUhGqfTJjs9mIjIwkPDycU6dOuTsckSrFy8tLPTIiUuGqfTJzhqenp/7oioiIWFC1HgAsIiIi1qdkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJpSmZERETE0pTMiIiIiKUpmRERERFLUzIjIiIilqZkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJpSmZERETE0pTMiIiIiKUpmRERERFLUzIjIiIilqZkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJplTqZycnJYdKkSTRo0AA/Pz8aNmzI448/Tl5enrtDExERkUqihrsDKM7TTz/Na6+9xttvv03Lli1Zs2YNd911FyEhIYwePdrd4YmIiEglUKmTmRUrVtCvXz/69OkDQFxcHB9++CFr1qxxc2QiIiJSWVTq00xXXHEFP/zwAzt27ABgw4YN/PLLL1x77bVFbpOVlUV6enq+m4iIiFRdlbpnZsKECaSlpXHBBRfg6elJbm4uTz75JHfccUeR28yYMYOpU6e6MEoRERFxp0rdM/Pxxx/z3nvv8cEHH7Bu3Trefvttnn32Wd5+++0it5k4cSJpaWmO2969e10YsYiIiLiazRhj3B1EUWJiYnj44YcZOXKko2zatGm89957bNu2rUT7SE9PJyQkhLS0NIKDgysqVBEREXGi0nx/V+qemczMTDw88ofo6empqdkiIiLiUKnHzFx//fU8+eST1K9fn5YtWxIfH8/zzz/P0KFD3R2aiIiIVBKV+jRTRkYGjz76KAsWLCAlJYWoqCjuuOMOJk+ejLe3d4n2odNMIiIi1lOa7+9Kncw4g5IZERER66kyY2ZEREREzkfJjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxtEqfzOzfv58777yT0NBQ/P39adu2LWvXrnV3WCIiIlJJ1HB3AMU5cuQInTp1onv37nz77beEh4eTkJBAzZo13R2aiIiIVBKVOpl5+umniYmJYd68eY6yuLg49wV0rizAG7C5OxAREZHqq1KfZvryyy+5+OKLueWWWwgPD+eiiy5izpw57g0qB/gDmA7cBEwAtgEn3BmUiIhI9VWpk5k//viD//znPzRp0oSFCxdyzz33MGrUKN55550it8nKyiI9PT3fzanWA22AR4BvgGeAVsAPwCnnPpWIiIicn80YY9wdRFG8vb25+OKLWb58uaNs1KhRrF69mhUrVhS6zZQpU5g6dWqB8rS0NIKDg8sX0EGgK7CjkLogYBNQv3xPISIiIpCenk5ISEiJvr8rdc9MZGQkLVq0yFfWvHlz9uzZU+Q2EydOJC0tzXHbu3ev8wI6TOGJDEAGsNt5TyUiIiIlU6kHAHfq1Int27fnK9uxYwexsbFFbuPj44OPj0/FBJRznvqsinlaERERKVqZk5lVq1axZMkSUlJSyMvLy1f3/PPPlzswgAcffJDLL7+c6dOnc+utt7Jq1SreeOMN3njjDafsv9RCgTDgUCF1NYCGrg1HREREypjMTJ8+nUmTJtGsWTMiIiKw2f6em3z2/8vrkksuYcGCBUycOJHHH3+cBg0aMHv2bAYMGOC05yiVesCrwC2F1E0BIlwajYiIiFDGAcARERE8/fTTDBkypAJCcq7SDCAqkQzsA30nARuABtgTmcuw99yIiIhIuZXm+7tMPTMeHh506tSpTMFZXhDQEZgPHAd8URIjIiLiRmWazfTggw/yyiuvODsWa6mJ/bSTEhkRERG3KlPPzL/+9S/69OlDo0aNaNGiBV5eXvnqP//8c6cEJyIiInI+ZUpmHnjgAX766Se6d+9OaGioUwf9ioiIiJRGmZKZd955h/nz59OnTx9nxyMiIiJSKmUaM1O7dm0aNWrk7FhERERESq1MycyUKVN47LHHyMzMdHY8IiIiIqVSptNML774IgkJCURERBAXF1dgAPC6deucEpyIiIjI+ZQpmbnhhhucHIaIiIhI2ZRqBeAdO3bQtGnTiozH6Zy+ArCIiIhUuNJ8f5dqzMxFF11E8+bNmTBhAitWrChXkCIiIiLOUKpkJjU1lZkzZ5KamsqNN95IREQEw4YN48svv+TkyZMVFaOIiIhIkcp0oUkAYwwrVqzgyy+/5Msvv2T37t1cddVV9OvXj+uuu47w8HBnx1omOs0kIiJiPRV2mulsNpuNyy+/nKeeeootW7awfv16unTpwltvvUVMTIyu3SQiIiIuUeaemeKkpqby119/0aRJE2fvutTUMyMiImI9Fd4z8/bbb/O///3PcX/8+PHUrFmTyy+/nN27dxMaGlopEhkRERGp+sqUzEyfPh0/Pz8AVqxYwcsvv8zMmTOpU6cODz74oFMDFBERESlOmRbN27t3L40bNwbgiy++4B//+Ad33303nTp1olu3bs6MT0RERKRYZeqZCQwMJDU1FYBFixZx1VVXAeDr68uJEyecF52IiIjIeZSpZ6Znz54MHz6ciy66iB07dtCnTx8ANm/eTFxcnDPjExERESlWmXpmXnnlFTp27MihQ4eYP38+oaGhAKxdu5Y77rjDqQGKiIiIFKdCpmZXJpqaLSIiYj0VPjV73rx5fPrppwXKP/30U95+++2y7FJERESkTMqUzDz11FPUqVOnQHl4eDjTp08vd1AiIiIiJVWmZGb37t00aNCgQHlsbCx79uwpd1AiIiIiJVWmZCY8PJyNGzcWKN+wYYNjMLCIiIiIK5Qpmbn99tsZNWoUP/30E7m5ueTm5vLjjz8yevRobr/9dmfHKCIiIlKkMq0zM23aNHbv3k2PHj2oUcO+i9zcXAYPHqwxMyIiIuJS5ZqavXPnTuLj4/Hz86NNmzbExsY6Mzan0NRsERER6ynN93eZemYA5s6dy6xZs9i5cycATZo0YcyYMQwfPrysuxQREREptTIlM48++iizZs3igQceoGPHjoD96tkPPvggSUlJTJs2zalBioiIiBSlTKeZ6tSpw0svvVTg0gUffvghDzzwAIcPH3ZagOWl00wiIiLOl52dTXJyMpmZmfj7+xMVFYWXl5fT9l/hKwDn5uZy8cUXFyhv3749OTk5ZdmliIiIWMTBgweZOnUqLVu2pEWLFrRu3Zrp06fz559/uiWeMiUzd955J//5z38KlL/xxhsMGDCg3EGJiIhI5ZSens6kSZOYPn06x48fByAjI4MpU6bkK3OlMp1meuCBB3jnnXeIiYnhsssuA2DlypXs3buXQYMG5etmev75550XbRnoNJOIiIjz7Nq1i2bNmpGXl1egrkaNGmzbto1GjRqV+3kqfDbTpk2baNeuHQAJCQkAhIWFERYWxqZNmxyPs9lsZdm9iIiIVFKHDh0qNJEByMnJ4a+//nJKMlMaZUpmfvrpJ2fHISIiIhYQEBBQbL2/v7+LIvlbmcbMiIiISPUUHh7OBRdcUGjdRRddRHh4uIsjUjIjIiIipVC3bl2++OILoqOj85XHxcXxySefEBYW5vKYyrwCsIiIiFRPzZo1Y8WKFezcuZMdO3ZwwQUX0LhxY+rVq+eWeMp1bSYr0GwmERER66nwRfNEREREKgslMyIiImJpSmZERETE0pTMiIiIiKUpmRERERFLUzIjIiIilqZkRkRERCxNyYyIiIhYmpIZERERsTRdzkBERERKby+QChwCwoFQILrYLSqMkhkREREpnV3AQGDlWWWdgbeAhq4Px1KnmWbMmIHNZmPMmDHuDkVERKR62gcMJn8iA7AM+CeQ7PKIrJPMrF69mjfeeIM2bdq4OxQREZHq6zCwvIi670/Xu5glkpljx44xYMAA5syZQ61atdwdjoiISPV19Dz1aa4IIj9LJDMjR46kT58+XHXVVed9bFZWFunp6fluIiIi4iShxdTZADf0OVT6ZOajjz5i3bp1zJgxo0SPnzFjBiEhIY5bTExMBUcoIiJSjYQCPYuo6wvUcWEsp1XqZGbv3r2MHj2a9957D19f3xJtM3HiRNLS0hy3vXv3VnCUIiIi1UgU8BrQB3tPDKf/vRGYBUS4PiSbMca4/mlL5osvvuDGG2/E09PTUZabm4vNZsPDw4OsrKx8dYVJT08nJCSEtLQ0goODKzpkERGR6uEg9sG+6UAIEIZ9vRknKc33d6VeZ6ZHjx78/vvv+cruuusuLrjgAiZMmHDeREZEREQqSN3Tt0qgUiczQUFBtGrVKl9ZQEAAoaGhBcpFRESkeqrUY2ZEREREzqdS98wUZsmSJe4OQURERCoR9cyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFia5WYziRMlAwnAb0B94GIgBh0VIiJiKfraqq72ANcBZy+w7Ad8B1yOjgwREbEMnWaqjo4DD5M/kQE4AVwL7Hd5RCIiYlV57g5Av7+rpxTgkyLqjgMbgVjXhSMiIhaTjb2H/2NgLdAB+Af27w43ZBZKZqqjk0BuMfXJrgpEREQsJw/7WMueQNbpsgXAVOBH4DLXh6TTTNVRMBBVTH17VwUiIiKWcwC4hb8TmTNOALedrncxJTPVURQws4i6LthnNImIiBTmz9O3wuwBDrkwltOUzFRHNqArMJe/ExdfYBgwDwh3U1wiIlL5nTpPfbZLoshHY2aqoxzgXeAz4BGgNmCwn/O8Dvie4k9DiYhI9RWB/QfwyULqAnHLD2IlM9XRAeBpIA14CPuCeUf4+zxnAkpmRESkcHWB6cDYQuqeBSJdGw4omamejgMGDr5ykKTwJNZuX0t0eDRt67Sl3lP1qLGlBnR2d5AiIlIp+QGDgabAo8BO4ALgSeASwNv1ISmZqY4CYO+ne7lx4o2sXbfWURwYGMjCDxZyadil1NChISIiRakN9MG+vsxJ7AlOqPvC0QDgauh4zeP8+51/50tkAI4dO0bvAb3ZH6olgEVEpATqANG4NZEBJTPVUkpKCh99/FGhdRkZGfy+5dzrHIiIiFReSmaqoZPHT5KTk1Nk/YG9bljxSEREpIyUzFRDQb5B1K1bt8j6i1pe5MJoREREykfJTDUU5RfFUxOeKrSu46UdiY3QVSZFRMQ6lMxUQx45Hlzf5nrefv5tIiPtCwJ4e3sz/M7hfDLjE8KPaglgERGxDs2/rY5qQO3/1WZg14H0eK4Hx7yO4ePpQ8SRCPzS/OwrO4qIiFiEkpnqKAoIA9tEG/Xurme/nwn8F9gG/OTW6EREREpFyUx1VAMYin19AP/TZf5AJ2A2upSBiIhYipKZ6soD+5VNJwB/AZ7AzcDt7gxKRESk9DQAuDrKA+YDI7EnMgC5wCfADcBB94QlIiJSFkpmqqP92C8OVph4YLcLYxERESknJTPV0THgUDH1G1wViIiISPkpmamOfCn+Eu0xrgpERESk/JTMVEd1gYFF1NUEWrouFBERkfJSMlMd+QFTgC7nlNcCFmO/nLuIiIhFaGp2dRUNfIp9MPAm7L01zU6XK8UVERELUTJTnYWfvuki2SIiYmFKZqqzPOAA9tlNPkAEf68ILCIiYhE6oVBdpQLzgPZAc6ApcA+w151BiYiIlJ6SmeooD/tFJYcDKafLcoB3gX8Af7opLhERkTJQMlMdHQAmFlG3Cq0ALCIilqJkpjrK4O8emcKsd1EcIiIiTqBkpjryBbyKqa/nqkBERETKT8lMdRQBDCiiLhho5cJYREREyknJTHXkDzwBXHZOeTCwCK0ALCIilqJ1ZqqraOALYA/2q2RHYb8mUzTg6b6wRERESkvJTHUWcfp2ibsDERERKTudZhIRERFLUzIjIiIilqZkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJpSmZERETE0ip1MjNjxgwuueQSgoKCCA8P54YbbmD79u3uDqtqOY79Ktqp7g5ERESkbCp1MrN06VJGjhzJypUrWbx4MTk5OVx99dUcP37c3aFZ30ngd+Au4FKgFzAfOOTOoERERErPZowx7g6ipA4dOkR4eDhLly6lS5cuJdomPT2dkJAQ0tLSCA4OruAILWQ50BXIOaf8fuBxoJbLIxIREXEozfe3pS5nkJaWBkDt2rWLfExWVhZZWVmO++np6RUel+WkAHdTMJEBeBkYiZIZERGxjEp9mulsxhjGjh3LFVdcQatWrYp83IwZMwgJCXHcYmJiXBilRRwBNhdTv9xVgYiIiJSfZZKZ+++/n40bN/Lhhx8W+7iJEyeSlpbmuO3du9dFEVrI+a6K7euSKERERJzCEqeZHnjgAb788kt+/vlnoqOji32sj48PPj4+LorMomoDVwC/FFLnAXRwbTgiIiLlUamTGWMMDzzwAAsWLGDJkiU0aNDA3SFVDbWB17AnNEfPqXsZiHB1QCIi1cifp29Hsf+9DUfjFMupUiczI0eO5IMPPuC///0vQUFBHDx4EICQkBD8/PzcHJ3FtQDWAZ8Ci4H62GcyNQQC3RiXiEhVtgvoB2w5q+xG7D8ko9wSUZVQqadm22y2QsvnzZvHkCFDSrQPTc0+DwOcALyp5KmtiIjFHQC6AAmF1A0HXgD8XRpRpVZlpmZX4jyr6rChD4+IiCvspfBEBuBtYCL23nEpNcvMZhIREbG0PcXUncJ+eRkpEyUzIiIirlDcHBZfNF6xHJTMiIiIuEI0UNSar/cBkS6MpYpRMiMiIuIKdYGvgM5nldUA/gk8hBYsLYdKPQBYRESkSokDFgCHgGPY15epCwS4MaYqQMmMiIiIK4WevonT6DSTiIiIWJqSGREREbE0JTMiIiJiaUpmRERExNKUzIiIiIilKZkRERERS1MyIyIiIpamZEZEREQsTcmMiIiIWJqSGREREbE0JTMiUjHSTt9ERCqYrs0kIs61H/ge+D/sP5fuAboCUe4MSkSqMiUzIuI8+4DrgA1nlf0MdAQ+QwmNiFQInWYSEef5mvyJzBkrgKUujkVEqg0lMyLiHKnAG8XU/wdId1EsUjXlYD+NuQc47OZYpFJRMiMizmGAvGLq804/RqQsDgDTgFZALHAt8CtwzJ1BSWWhZEZEnCMUGFJM/XAgxDWhSBXzJzAQmAocPV22GugMrHJTTFKpKJkREeewATcDTQupawP0dG04UoXsBn4spNwAD2BPdqRa02wmEXGeGOzTsj8H3sT+c+lu4HqgnhvjEmsrbvD4FiADiHBRLFIpKZkREeeKAUYB/bH31tRxbzhSBYQWU+eFvslEh4CIVAAbEObuIKTK6AJ4ArmF1N0GhLs2HKl8NGZGRKQ6OIl1Z/7UAz6g4DdWE+wznPxdHpFUMuqZERGpyg4BB4GN2K+V1R77+JI4N8ZUWn5AH2Ab8AWwF+gNXIjGYgmgZEZEpOpKAX4C7gJOnFV+O/Ak0NAdQZVRAPaemIfcHYhURjrNJCJSVf0J3En+RAbgI2A+9lNPIlWAkhkRkapqPvZLABTmJewXBhWpAnSaqbQM9mW1k4As7NMC47Cfg/Z2W1QiIgUlFVO3H11eQqoMJTOltR37FYBnYV+oyRv7Mu3XABdguVf08OHDZGZmUqNGDSIiIvD09HR3SCLiLF2Bt4G62Bcu9MO+/P9K4CL0A0yqDIt99brZIWApHMw7yJ4pe9i+Zzv169an0alGRH8cbU9qYt0dZMmkp6ezbt06xo4dS3x8PHXq1OFf//oXgwYNIjIy0t3hiYgzdMJ+OikI+AT7Vct7AROBmhS/GJ2IhSiZKY002N1kN9eNvo5NmzY5iuvVq8eitxfRIquFG4MrnWXLlnHdddc57h8+fJiHH36YlStXMmfOHOrUsdiyrVnYL0DnBdR2bygilcZhYB0w76yyX7BPZ14MHAEC3RCXiJNpAHApHMk5wvAZw/MlMgD79++nz/A+HDh5wE2RlU5ycjL3339/oXVffPEFycnJLo6oHPKABOA54GlgBrAAXXhOBOyL5L0Np/qcYv+b+9n74V7Sx6TDceyfF/2clSpCyUwpHDp1iO+//77QuqSkJJKPWyMJSEtLIykpqcj63377zXXBlNcuYD32NSh2Y/+laQO+xv6rVKQ6+x72LdjHlIZTaD2uNQ0HNuT2Lbfz+/u/k70/G065O0AR51BeXgrHM48XW3/4sDW+Pb28vLDZbBhT+FSGWiG1XBxRGaVjXxTsISDxrPK5wMPYe2csdrasysgFUk//Pwx7gikud+DqA/T9V1/iN8Q7yr5d9C0/LPmBNV+sobVHazdGJ+I86pkphZqBNfH19S2yvn5UfRdGU3ZhfmFc1/u6Quu8vb1p17qdiyMqo3TgdfInMmc8hX0MjbjeXuAZ7DNpugOz0XombrLx+MZ8icwZ2dnZPPziw6SZNDdEJeJ8SmZKIdI/ktHDRxdad12v6wgPssalW4OPBzN79GxiY/NPvfL09OSz/3xG5E6LzGY6AXxaTP2PrgpEHPZiT2AmYr+OzhZgLPYZNEpoXO6zLz8rsm7R94tIz053YTQiFUenmUrBN8SXsbeMxS/Ij2dfepZjx47h7e3NkDuHMHnwZEJ9LTLP0QYNhzbkl+d/Yc1fa/hh7Q80qNuAvp36Uu+VevgOKLr3qVKxYZ/FVJQMVwUigH0w9qfYB2SfawuwCBjq0oiqvdBaRf9NCgoKwsNDv2elarCZogZOVBHp6emEhISQlpZGcHBw+Xf4B5z68BQHGh/gmMcx/D38qbuxLn4D/KBp+XfvEkeAm4Al2NfFueB02WrsfXXbgUbuCq4U/sD+5bi0iPpvsV9ZV1zjMNAD+9WZC3M58D/s65uIS/y+6nfadGhTaN3EhyYyddxUvCK8XByVSMmU5vtbPTOlkQFMBq/3vYg9d3W8L4HvsF/WoLKrBbwKdMY+A2j3WXWvYV8t1AoM9sG/R+DgsINkRGXghRdh34URsDdAJ1FdzUbxf1FqoIHALlY/sT4znpjBxEcn5itv27Yt9/W5D69TSmSkalAyUxopwIdF1K0HDmKNZAbsvTFrsCdhC7FfX+qfQAPs05ytoAZkHMlgxbQVPPCvB9ixYwc1atTg9ltuZ9qz04g9aZHlmKuKUGAI9kXaCjMUCHFZNAKENAvhnnr30OfrPrz/3fscTj/MP7r+gzaxbYg6FqUFJqXK0Gmm0ogHipvo8x32gY5Wk4U9rbXaZZn2w0+bf+LKXlcWqGratCk/ff0TUU2i3BBYNbUfe1I/GXtCUwP7OJo87KeYJgAdsU/VFtfYAbTB3ovZBfu1mdZhf6/mYU8+rcRg/9GYi33l4ppujUYqmE4zVZQg7F/4uUXUW2QSUAE+7g6gbFKyU3hw/IOF1u3YsYNNWzdZK5n5CzgGaZlpeHp6EugbaO/t8Hd3YCWUB0yD468cZ3/wfpL/TMZmsxEZEUn04Wj8HvODS9wdZDXzDX8Pkj93vc8nsI8ps8pp5WTsA8yfxX6dvC7YV/xujj1Js5Kj2D/v2dhjD8d6bahklMyURl2gP/BuIXXtsc4fhSoiMzuTDRs2FFn//U/fc3Xfq10YUTkcgL1H9vL1l1/z/v/ex8/Pj9EDR3NJh0uIiIqwJ9KVXRSkzEzhy9+/ZMyDYzh+3L7IZFBQEK+9+hq9nuhFaKRFZvxVFUUNxgZIwjorAB/Cfhr8q7PKFgE/YJ8A0MkdQZVN7v5c9m3dx/pd60ncl0i75u1oHNmYqFZR9qRGykTJTGkEYl+MLRv7FWjPnKC7AngPax6Ih7Cv11ID+3gfC51qquFdg+DgYNLTC18ro15sPRdHVHZ70vfQ7fpuJCb+vQLg999/z03X3cSrz79KRJAFBmN5wg7bDkbcPSJfcUZGBncOupPffvuNUCtepnkf9l6nSOwXMrWSjthPJ9WG7D7Z5Pjl4P+bP2wAWmCdXtm95E9kzsgFRmK/aKYFTl/mHcojfmM8PW7vke/vVrNmzfju3e+IC4mzzntSyWi+R2nVBqYBK4CfT//7OvYZQlaSjn1qdi/s07MvxN59a43LSwHg4+XDXXfdVWidp6cnXbt0dXFEZXPqwCle/c+r+RKZMz7/+nO2bt/qhqhK76/Uv5g5c2ahdcYYZs+eTUaGhRb/ScQ+u68f0Af7D5ldbo2o9DrC4ZmH+fmln7nz+J3ckHgDc2+fy575e2AK1jmF+VMxdRsAiyxkvP/QfnoP7F3gB9j27dsZ+ehI0pIt0pBKSD0zpbUO9u7Zy8aMjazdupYL4i7g0vqXUn9nfTx6eYBF1ptjGXD2FQ0OY7+e0UpgDpa4ptHx48fp3Lkza9eu5ZdffnGU16hRg1dffZVVK1bRtl1b9wVYQikZKbz18VuO+zVq1CAvL4+8vDwA3vjgDbpc1QUP38r92+NY2jF27Sr6237nzp1kHMkgKMgC58wSgUlAX+CL02XbsH9GnsYa6zABqbtTmfrHVF4e/7KjbPHixcTGxrLkkyXEHYmz9zhXdqcPmdx/5rLnzj3k+uYStCeIiH9H2BNMi3yTJexNIDU1tdC6bxd9y6FjhwjRlL8yscQh8Oqrr/LMM8+QnJxMy5YtmT17Np07d3Z9IAdh54mddP9Xd/bv3+8oDg4O5of3fqD94fbYoi2wkEYycH8RdV8Aj2OJZMbLy4sxY8YwduxYRo8eTXx8PLVq1eKCCy7glVde4eY+N7s7xJLxgLy8PG699VYGDBhAZmYmXl5eZGVlMWvWLHJycixx+i84KJiWLVuydWvhPUmtWrWiZnBN1wZVVgmwb/I+klKSeHfau2RlZXHbrbfRfHpz4n6Pg2gscTogySeJl197uUD57t27ee7153h22rP4WKEhXWB3/G4++/4zXh74MocOHaJTp048Me8Jmv3RjJA61kgADqYeLLLOGMOxrGMujKaKMZXcRx99ZLy8vMycOXPMli1bzOjRo01AQIDZvXt3ibZPS0szgElLSyt3LIe2HTKXXnqpwT5aJt8tIiLC7N24t9zP4RJbjTEUc5vjvtBKIycnx8ycNtMAJiAgwLRt29Y0btzYAMbX19ckbEtwd4glcvLASTP/k/nm3//+t/H29nYcU7Vr1zbvv/++WfHjCmNOuTvKEsgx5rfffjM2m63A58PT09PEr4t3d4Qlk2bM7h27zeDBgwu0o0uXLiZxV6IxJfvz43ZjRo0p9O8VYAIDA83ePdb4m7V7127Tp0+fQo+rn376yZhD7o6wZFb9tqrI96NmzZpm29Zt7g6xUinN93el75l5/vnnGTZsGMOHDwdg9uzZLFy4kP/85z/MmDHDpbEcOnGIVatWOe7bvP7+RZPy11ESUvZRO9siU5q8+XsA87mCsQ9yruxy4B99+rN+yxY+/PRDNmy29wiEhIbz6XufEOoVSWZ2jpuDLIFjnuQYT2Y88xxgcxxXRzKOc9fwf7Jy6UoyT+RU/p6AQxB9qiHvvv8JY8aOdnSnR0RE8MqLr1I3K5bMAzmVv9cvBzbs3Mo7H3yU7zMOsGzFb8z/8ivuHXCvJT4jx7JPFWjDGafybGSeyrXEZyQx+QDfLPq+QFvygAcfmsBH735MTHC0e4IrhRMn8+jR6xp+/LHgVXBHjX2IrCws8X4Uxs/LE5vNfWcmKvWiednZ2fj7+/Ppp59y4403OspHjx7N+vXrWbq04EV5srKyyMr6++qD6enpxMTEOGXRvPjV8bS71L5qns3Lh/pj55drfyIiIlXBlsd74e/t3P6R0iyaV6lHFB4+fJjc3FwiIvJPS42IiODgwcLPPc6YMYOQkBDHLSYmxmnx1A6vTWCgFUbLiYiIVB+V/jQTUKDryhhTZHfWxIkTGTt2rOP+mZ4ZZ4iKimLKlCn861//wpzKYs/zfw8wvXPAnTw9cyYhIU64Mrer7Me+tPkS7Ndmugaoh3VWojyEfUbW5iLqFwA9XRdOWR1JOcLNt/+DVat+K7T+8cmPM3b82ELrKpUs7MsWzCqi/jHgQSr/X51TMGfe//Hg2DGFVg+9axjTJ08nMMwaFzE7ePAg3377Ha+88jIZ6Rlc26cP999/Pw0axOHhUal/zzps27KNSzpcQmEnEq677npenfUKtSMtcKGpBPgz60/en/8+s+fM5q+//qJRo8ZM//d0OkVfTs1GNS27+Kqfl5tnKVTw+J1yycrKMp6enubzzz/PVz5q1CjTpUuXEu3DmQOAjTHm8OHDZt68eaZevXoGMLVq1TLTp083ycnJTtm/lNJiU/gg5ibGmH1ujKuUflz0Y6GDAv39/c2ubbvcHV7JbTfGhJmC70eUMWanG+MqpV07dpkGDRoUeD9CQkLM1i1b3R1emfz555/mwIED5sSJE+4OpdQO7z5sXnzxxQLvR3R0tLUGzZ4wxnxoTM4LOWbv2r0mcW2iSV6VbMx4Y8wadwdX+ZTm+7tSj5kB6NChA+3bt+fVV191lLVo0YJ+/fqVaACwUy80eZoxhuTkZE6cOIGPjw+RkZF4elpg7mxVlA78AowCErBPYf4H9gXO4twXVmkd/eso//3iv4weO5q0NPvCWQ0aNODD9z6k/aXtqVGjsndnnGUbMB34HPuJ7FuB8UBTdwZVSpmwa/8uZs2exfvvv092djbXX389j01+jKaRTalR20LvRxVxaPch9h7ey7y35nHw4EF69+pNt67daBTTyDrrewEcx/636nXsa+R0xf4ZaUglH/jheqX5/q70yczHH3/MwIEDee211+jYsSNvvPEGc+bMYfPmzcTGxp53+4pIZqQSSsae2HhjX9bcgkObcnJyOLD3AIcPHaaGVw3CwsKIjLbo1UvTsZ8GBPtlPiywTl4BeXA85TjJ6clgoE5gHWrWqVn5Z5VVZQY4AXkmDw+bh3VWMC5MLvYZcb6ABZYnc4cqddXs2267jdTUVB5//HGSk5Np1aoV33zzTYkSGalGIrHuVctPq1GjBvUb1Kd+g/ruDqX8gk/frMwDAuoG0LhuY3dHImfYAH/wqApdGJ5YZ3yiBVT6npnyUs+MiIiI9VSZqdkiIiIi56NkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJpSmZERETE0pTMiIiIiKUpmRERERFLUzIjIiIillbpL2dQXmcWOE5PT3dzJCIiIlJSZ763S3KhgiqfzGRkZAAQExPj5khERESktDIyMggJCSn2MVX+2kx5eXkcOHCAoKAgbDbnXpo0PT2dmJgY9u7da+nrPqkdlYvaUbmoHZWL2lG5VGQ7jDFkZGQQFRWFh0fxo2KqfM+Mh4cH0dHRFfocwcHBlj4Yz1A7Khe1o3JROyoXtaNyqah2nK9H5gwNABYRERFLUzIjIiIilqZkphx8fHx47LHH8PHxcXco5aJ2VC5qR+WidlQuakflUlnaUeUHAIuIiEjVpp4ZERERsTQlMyIiImJpSmZERETE0pTMiIiISD4HDx6kZ8+eBAQEULNmTXeHc17VPpk5ePAgo0ePpnHjxvj6+hIREcEVV1zBa6+9RmZmJgBvvPEG3bp1Izg4GJvNxtGjRwvs58knn+Tyyy/H39+/0Dd+w4YN3HHHHcTExODn50fz5s154YUX3Nauv/76iwceeIBmzZrh7+9P/fr1GTVqFGlpaY59LFmyBJvNVuht9erVFRZ7adoB8M9//pNGjRrh5+dHWFgY/fr1Y9u2bfn2c+TIEQYOHEhISAghISEMHDiw0PexMrcjKSmJYcOG0aBBA/z8/GjUqBGPPfYY2dnZlaodACtWrODKK690/CHs1q0bJ06cACrHcVWStiQlJRUZ56effurYjxWOrYSEBG688UbCwsIIDg7m1ltv5c8//8y3n7i4uALtfPjhhy3XDoD//e9/dOjQAT8/P+rUqcNNN93k8lgrs5LEP2vWLJKTk1m/fj07duxwc8TnV+VXAC7OH3/8QadOnahZsybTp0+ndevW5OTksGPHDt58802ioqLo27cvmZmZ9O7dm969ezNx4sRC95Wdnc0tt9xCx44dmTt3boH6tWvXEhYWxnvvvUdMTAzLly/n7rvvxtPTk/vvv9/l7WrYsCEHDhzg2WefpUWLFuzevZt77rmHAwcO8NlnnwFw+eWXk5ycnG/fjz76KN9//z0XX3yxU2Muazv69u1L+/btGTBgAPXr1+evv/5iypQpXH311SQmJuLp6QlA//792bdvH9999x0Ad999NwMHDuSrr76yTDu2bdtGXl4er7/+Oo0bN2bTpk2MGDGC48eP8+yzz1aadqxYscLxWXnppZfw9vZmw4YNjuXI3X1clbQtffr0KRDnG2+8wcyZM7nmmmscZZX92OrRowdXX301F154IT/++CNgf72vv/56Vq5cmW+Z+Mcff5wRI0Y47gcGBlZ4G5zdjvnz5zNixAimT5/OlVdeiTGG33//3aWx9u3b12nP52wljT8hIYH27dvTpEmTIvd16tQpvLy8XBh9MUw11qtXLxMdHW2OHTtWaH1eXl6++z/99JMBzJEjR4rc57x580xISEiJnv++++4z3bt3L2m4JVbadp3xySefGG9vb3Pq1KlC67Ozs014eLh5/PHHnRZrccrajg0bNhjA7Nq1yxhjzJYtWwxgVq5c6XjMihUrDGC2bdvm/MDP4ax2FGbmzJmmQYMGTonzfErajg4dOphJkyaVeL+uPq6MKft70rZtWzN06FDHfSscWwsXLjQeHh4mLS3NUf7XX38ZwCxevNhRFhsba2bNmlXRIRfKWe04deqUqVevnvm///s/t8ZqjDFHjhwxI0aMMOHh4cbHx8e0bNnSfPXVV8YYYw4fPmxuv/12U69ePePn52datWplPvjgg3z76dq1qxk5cqQZOXKkCQkJMbVr1zaPPPJIvmPzlVdeMY0bNzY+Pj4mPDzc3HzzzU6JPzY21gCO2+DBg40xxgDmP//5j+nbt6/x9/c3kydPNjk5OWbo0KEmLi7O+Pr6mqZNm5rZs2fn2+epU6fMAw884GjH+PHjzaBBg0y/fv0cj/n0009Nq1atjK+vr6ldu7bp0aNHkTEWptomM4cPHzY2m83MmDGjxNs4O5kZMGBAiQ6+0ihLu86YM2eOqVOnTpH1n332mfHw8DB79uwpT4glUtZ2HDt2zIwZM8Y0aNDAZGVlGWOMmTt3bqHvSUhIiHnzzTedEW6RnNmOwjzyyCOmffv25Q3zvErajj///NMA5sUXXzQdO3Y04eHhpkuXLmbZsmVFbuPK48qYsr8na9asMYD59ddfHWVWOLa+/PJL4+npaU6ePOkoy8zMNB4eHuaxxx5zlMXGxpq6deua2rVrmwsvvNBMmzat2GPPWZzZjt9++80A5s033zRt27Y1devWNb179zabNm1yaay5ubnmsssuMy1btjSLFi0yCQkJ5quvvjLffPONMcaYffv2mWeeecbEx8ebhIQE8+KLLxpPT898SXHXrl1NYGCgGT16tNm2bZt57733jL+/v3njjTeMMcasXr3aeHp6mg8++MAkJSWZdevWmRdeeMEp8aekpJjevXubW2+91SQnJ5ujR48aY+zJTHh4uJk7d65JSEgwSUlJJjs720yePNmsWrXK/PHHH444P/74Y8f+pk2bZmrXrm0+//xzs3XrVnPPPfeY4OBgRzJz4MABU6NGDfP888+bxMREs3HjRvPKK6+YjIyMYuM8W7VNZlauXGkA8/nnn+crDw0NNQEBASYgIMCMHz8+X50zk5nly5cbLy8vs2jRorKEX6SytMsY+0Fev35988gjjxS572uuucZcc801To23KKVtxyuvvGICAgIMYC644IJ8vRlPPvmkadKkSYHnaNKkiZk+fXrFNcI4tx3n2rVrlwkODjZz5sypsPjPKGk7zvRK1K5d27z55ptm3bp1ZsyYMcbb29vs2LGj0H278rgypuyfkXvvvdc0b948X5kVjq2UlBQTHBxsRo8ebY4fP26OHTtmRo4caQBz9913O7Z7/vnnzZIlS8yGDRscP2yGDRtWoW1wdjs+/PBDA5j69eubzz77zKxZs8bccccdJjQ01KSmpros1jO9SNu3by/xvq+99lozbtw4x/2uXbua5s2b5+uJmTBhguMYnD9/vgkODjbp6elOj98YY/r16+fokTkDMGPGjDnv89x33335fqhHRESYZ555xnE/JyfH1K9f35HMrF271gAmKSmpxG05V7UfAGyz2fLdX7VqFevXr6dly5ZkZWVVyHNu3ryZfv36MXnyZHr27Fkhz1GadqWnp9OnTx9atGjBY489Vuj+9u3bx8KFCxk2bFiFxFuUkrZjwIABxMfHs3TpUpo0acKtt97KyZMni9wP2C8vX1h5RXBWO844cOAAvXv35pZbbmH48OEVHv8Z52tHXl4eYB/MfNddd3HRRRcxa9YsmjVrxptvvllgf+46rqB0n5ETJ07wwQcfFBpnZT+2wsLC+PTTT/nqq68IDAwkJCSEtLQ02rVr5xhTBvDggw/StWtX2rRpw/Dhw3nttdeYO3cuqamplmnHmePvkUce4eabb6Z9+/bMmzevwKDtio51/fr1REdH07Rp00K3z83N5cknn6RNmzaEhoYSGBjIokWL2LNnT77HXXbZZfmeq2PHjuzcuZPc3Fx69uxJbGwsDRs2ZODAgbz//vslHnxcnu+9wsa1vfbaa1x88cWEhYURGBjInDlzHG1JS0vjzz//5NJLL3U83tPTk/bt2zvuX3jhhfTo0YPWrVtzyy23MGfOHI4cOVKitpxRbQcAN27cGJvNVmDWS8OGDQHw8/OrkOfdsmULV155JSNGjGDSpElO339p25WRkUHv3r0JDAxkwYIFRQ7mmjdvHqGhoS4b2FbadpyZSdKkSRMuu+wyatWqxYIFC7jjjjuoW7duoTMeDh06RERERMU1Aue244wDBw7QvXt3OnbsyBtvvFGh8Z9R0nZERkYC0KJFi3yPa968eYE/1OD64wrK9tn/7LPPyMzMZNCgQfnKrXJsXX311SQkJHD48GFq1KhBzZo1qVu3Lg0aNChy/5dddhkAu3btIjQ0tAJaYOfMdhR2/Pn4+NCwYcNCj7+KivV83x/PPfccs2bNYvbs2bRu3ZqAgADGjBlTqpmJQUFBrFu3jiVLlrBo0SImT57MlClTWL16dZFTqZ3xvRcQEJDv/ieffMKDDz7Ic889R8eOHQkKCuKZZ57ht99+y/e4cxMoc9aVlDw9PVm8eDHLly9n0aJFvPTSSzzyyCP89ttvxR6jZ6u2PTOhoaH07NmTl19+mePHj7vkOTdv3kz37t0ZPHgwTz75ZIU8R2nalZ6eztVXX423tzdffvklvr6+hT7OGMO8efMYNGiQy0aul/f9McY4fmF07NiRtLQ0Vq1a5aj/7bffSEtL4/LLL3dazIVxZjsA9u/fT7du3WjXrh3z5s3LNxOlIpW0HXFxcURFRbF9+/Z85Tt27CA2NjZfmTuOKyjbezJ37lz69u1LWFhYvnKrHVt16tShZs2a/Pjjj6SkpBSbRMbHxwN/JwgVxZntaN++PT4+PvmOv1OnTpGUlFTg+KvIWNu0acO+ffuKnNK8bNky+vXrx5133smFF15Iw4YN2blzZ4HHrVy5ssD9Jk2aOHqiatSowVVXXcXMmTPZuHEjSUlJjple5Ym/NJYtW8bll1/Offfdx0UXXUTjxo1JSEhw1IeEhBAREZHvM5Kbm+s4vs6w2Wx06tSJqVOnEh8fj7e3NwsWLCh5IGU+QVUF7Nq1y0RERJgLLrjAfPTRR2bLli1m27Zt5t133zURERFm7NixxhhjkpOTTXx8vJkzZ44BzM8//2zi4+PznYPdvXu3iY+PN1OnTjWBgYEmPj7exMfHOwYwbdq0yYSFhZkBAwaY5ORkxy0lJcUt7UpPTzcdOnQwrVu3Nrt27coXU05OTr79ff/99wYwW7ZscXqs5W1HQkKCmT59ulmzZo3ZvXu3Wb58uenXr5+pXbu2+fPPPx376t27t2nTpo1ZsWKFWbFihWndurW57rrrLNWO/fv3m8aNG5srr7zS7Nu3L997VlnaYYwxs2bNMsHBwebTTz81O3fuNJMmTTK+vr4Fxv+467gqTVuMMWbnzp3GZrOZb7/9ttB9VfZjyxhj3nzzTbNixQqza9cu8+6775ratWvna+Py5cvN888/b+Lj480ff/xhPv74YxMVFWX69u1rqXYYY8zo0aNNvXr1zMKFC822bdvMsGHDTHh4uPnrr79cGmu3bt1Mq1atzKJFi8wff/xhvvnmG8cxNGbMGBMTE2N+/fVXs2XLFjN8+PB8A2KN+XsA8IMPPmi2bdtmPvjgAxMQEGBee+01Y4wxX331lXnhhRdMfHy8SUpKMq+++qrx8PA472DnksZf1JiZBQsW5CubPXu2CQ4ONt99953Zvn27mTRpkgkODjYXXnih4zHTpk0zoaGh5osvvjDbtm0zI0eONMHBweaGG24wxtjH8jz55JNm9erVZvfu3Y6ZtWcGTJdEtU5mjLGPor7//vtNgwYNjJeXlwkMDDSXXnqpeeaZZ8zx48eNMcY89thj+aapnbnNmzfPsZ/BgwcX+piffvqp2H3Exsa6pV1nBjMXdktMTMy3rzvuuMNcfvnlFRJneduxf/9+c80115jw8HDj5eVloqOjTf/+/QtMi01NTTUDBgwwQUFBJigoyAwYMKDYgdyVsR3z5s0r8j2rLO04Y8aMGSY6Otr4+/ubjh07FjqbyZ3HlTElb8vEiRNNdHS0yc3NLXQ/lf3YMsY+cDQiIsJ4eXmZJk2amOeeey7fwNK1a9eaDh06mJCQEOPr62uaNWtmHnvssXyvgxXaYYx9qv+4ceNMeHi4CQoKMldddZXTZjOVJtbU1FRz1113mdDQUOPr62tatWplvv76a0ddv379TGBgoAkPDzeTJk0qMFW5a9eu5r777nPM/KlVq5Z5+OGHHe1dtmyZ6dq1q6lVq5bx8/Mzbdq0yTeDqLzxlzSZOXnypBkyZIgJCQkxNWvWNPfee695+OGH8yUzp06dMvfff7+jHRMmTDC33HKLuf32240x9iUOevXqZcLCwoyPj49p2rSpeemll0r6dhhjjLGdDlBEREQqiW7dutG2bVtmz57t7lCcLi8vj+bNm3PrrbfyxBNPOGWf1XYAsIiIiFS83bt3s2jRIrp27UpWVhYvv/wyiYmJ9O/f32nPUW0HAIuIiEjF8/Dw4K233uKSSy6hU6dO/P7773z//fc0b97cac+h00wiIiJiaeqZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUv7f9rDV16R+2NWAAAAAElFTkSuQmCC", "text/plain": "
"}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "diference-estimated-found-predicted-2023"}}, "output_type": "display_data"}} \ No newline at end of file diff --git a/_build/jupyter_execute/grids_2023.ipynb b/_build/jupyter_execute/grids_2023.ipynb index 1b584e9..63a9341 100644 --- a/_build/jupyter_execute/grids_2023.ipynb +++ b/_build/jupyter_execute/grids_2023.ipynb @@ -496,21 +496,21 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -540,106 +540,106 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 1: The objects of interest. The average pcs/m per sample for each object. The fail rate is the % of all samples that the object appeared in.
  pcs/mquantityfail rate% of totalpcs/mquantityfail rate% of total
code
G112Industrial pellets (nurdles)0.1626860.220.02G112Industrial pellets (nurdles)0.1626860.220.02
G27Cigarette filters1.12164580.850.15G27Cigarette filters1.12164580.850.15
G30Food wrappers; candy, snacks0.5467670.860.06G30Food wrappers; candy, snacks0.5467670.860.06
G32Toys and party favors0.056060.480.01G32Toys and party favors0.056060.480.01
G67Industrial sheeting0.3033560.570.03G67Industrial sheeting0.3033560.570.03
G70Shotgun cartridges0.0810300.480.01G70Shotgun cartridges0.0810300.480.01
G89Plastic construction waste0.1419700.510.02G89Plastic construction waste0.1419700.510.02
G95Cotton bud/swab sticks0.3947770.740.04G95Cotton bud/swab sticks0.3947770.740.04
G96Sanitary pads /panty liners/tampons and applicators0.043730.290.00G96Sanitary pads /panty liners/tampons and applicators0.043730.290.00
GcapsPlastic bottle lids0.3139530.840.04GcapsPlastic bottle lids0.3139530.840.04
GfoamExpanded polystyrene1.02128710.810.12GfoamExpanded polystyrene1.02128710.810.12
GfragsFragmented plastics1.34174790.930.16GfragsFragmented plastics1.34174790.930.16
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -759,12 +759,19 @@ "execution_count": 7, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -818,7 +825,9 @@ "slideshow": { "slide_type": "" }, - "tags": [] + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -842,12 +851,19 @@ "execution_count": 9, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -867,12 +883,19 @@ "execution_count": 10, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -918,12 +941,19 @@ "execution_count": 11, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1023,12 +1053,19 @@ "execution_count": 12, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1040,12 +1077,19 @@ "execution_count": 13, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1116,12 +1160,19 @@ "execution_count": 14, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1216,33 +1267,40 @@ "execution_count": 15, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 4: The 94% probability interval of the objects of interest for Saint Sulpice. The median value is used for the predictions
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
3%0.000.000.000.000.000.000.000.000.000.00
25%0.000.000.000.010.010.000.000.010.030.00
48%0.030.420.130.040.140.000.300.080.120.35
50%0.080.450.130.040.160.000.320.090.140.41
52%0.100.460.130.040.170.000.340.090.140.50
75%0.540.660.480.060.310.040.520.120.230.82
97%1.391.290.910.112.830.091.000.220.412.753%0.000.000.000.000.000.000.000.000.000.00
25%0.000.050.030.000.050.000.010.000.040.00
48%0.080.460.350.030.160.000.320.040.110.68
50%0.120.470.390.040.160.010.320.040.110.74
52%0.220.480.430.040.220.020.340.050.120.74
75%0.680.930.570.080.330.050.520.080.231.24
97%1.461.471.210.110.645.581.110.200.505.05
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 15, @@ -1415,12 +1473,19 @@ "execution_count": 16, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1451,12 +1516,19 @@ "execution_count": 17, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1469,33 +1541,40 @@ "execution_count": 18, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 5: The estimated amount in pcs/meter for each object that the participants expected to find.
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
00.161.120.540.050.300.080.390.040.311.34
10.150.570.240.080.050.050.160.100.140.22
20.050.800.200.020.150.040.300.010.251.20
30.100.350.150.030.050.010.060.100.150.50
40.070.150.050.020.010.000.040.010.080.12
50.150.500.300.030.010.000.050.050.200.20
60.161.120.540.050.300.080.390.040.311.34
76.003.000.600.100.400.030.801.002.001.34
80.401.500.300.101.100.010.500.200.402.0000.161.120.540.050.300.080.390.040.311.34
10.150.570.240.080.050.050.160.100.140.22
20.050.800.200.020.150.040.300.010.251.20
30.100.350.150.030.050.010.060.100.150.50
40.070.150.050.020.010.000.040.010.080.12
50.150.500.300.030.010.000.050.050.200.20
60.161.120.540.050.300.080.390.040.311.34
76.003.000.600.100.400.030.801.002.001.34
80.401.500.300.101.100.010.500.200.402.00
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 18, @@ -1700,33 +1779,40 @@ "execution_count": 19, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 6: The survey results of the objects of interest on October 5, 2023 in pieces per meter
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 19, @@ -1838,21 +1924,21 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 6: The survey results of the objects of interest on October 5, 2023 in pieces per meter
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 20, @@ -2095,20 +2181,6 @@ "p_diff_predicted[\"source\"] = \"difference² of predicted\"" ] }, - { - "cell_type": "markdown", - "metadata": { - "editable": true, - "pycharm": { - "name": "#%% md\n" - }, - "slideshow": { - "slide_type": "" - }, - "tags": [] - }, - "source": [] - }, { "cell_type": "code", "execution_count": 24, @@ -2178,21 +2250,21 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 7: The average difference between what was found and the estimates of the participants and what was predicted using the empirical Bayes method
 averageaverage
sourcedifference² of estimateddifference² of predicteddifference² of estimateddifference² of predicted
G1121.070.29G1121.070.29
G272.321.89G272.321.87
G300.310.21G300.310.20
G320.110.07G320.110.07
G670.260.16G670.260.16
G700.030.00G700.030.01
G950.520.27G950.520.27
G960.150.05G960.150.02
Gcaps0.260.07Gcaps0.260.10
Gfrags8.117.71Gfrags8.117.38
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 25, @@ -2411,21 +2483,21 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 8: Whether the observed value fell within the predicted interval
 objectwithin 96% HDIwithin 50% HDIobjectwithin 96% HDIwithin 50% HDI
0G112TrueFalse0G112TrueTrue
1G27FalseFalse1G27FalseFalse
2G30TrueFalse2G30TrueTrue
3G32FalseFalse3G32FalseFalse
4G67TrueFalse4G67TrueFalse
5G70TrueFalse5G70TrueFalse
6G95TrueFalse6G95TrueFalse
7G96TrueTrue7G96TrueTrue
8GcapsTrueTrue8GcapsTrueTrue
9GfragsFalseFalse9GfragsFalseFalse
0G112TrueTrue0G112TrueTrue
1G27TrueFalse1G27TrueFalse
2G30TrueTrue2G30TrueTrue
3G32TrueTrue3G32TrueTrue
4G67TrueFalse4G67TrueFalse
5G70TrueFalse5G70TrueFalse
6G95TrueTrue6G95TrueTrue
7G96TrueTrue7G96TrueTrue
8GcapsTrueFalse8GcapsTrueFalse
9GfragsFalseFalse9GfragsFalseFalse
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 27, @@ -2601,7 +2673,7 @@ "data": { "text/plain": [ "within 96% HDI 0.80\n", - "within 50% HDI 0.35\n", + "within 50% HDI 0.45\n", "dtype: float64" ] }, @@ -2635,7 +2707,7 @@ "data": { "text/plain": [ "within 96% HDI 16\n", - "within 50% HDI 7\n", + "within 50% HDI 9\n", "dtype: int64" ] }, @@ -2718,12 +2790,12 @@ "text": [ "Git repo: https://github.com/hammerdirt-analyst/solid-waste-team.git\n", "\n", - "Git branch: review\n", + "Git branch: main\n", "\n", "pandas : 2.0.3\n", + "numpy : 1.25.2\n", "matplotlib: 3.7.1\n", "seaborn : 0.12.2\n", - "numpy : 1.25.2\n", "\n" ] } diff --git a/_build/jupyter_execute/plastic_shotgun_wadding.glue.json b/_build/jupyter_execute/plastic_shotgun_wadding.glue.json index ee6006f..f7a750a 100644 --- a/_build/jupyter_execute/plastic_shotgun_wadding.glue.json +++ b/_build/jupyter_execute/plastic_shotgun_wadding.glue.json @@ -1 +1 @@ -{"percent_samps_feature": {"data": {"text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Percent of samples collected with the designated land-use feature and category.
 orchardsvineyardsbuildingsforestundefinedpublic_services
191%92%11%72%63%68%
26%7%6%14%25%7%
30%0%1%0%1%7%
41%0%20%9%2%8%
51%1%62%5%9%10%
\n", "text/plain": ""}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "percent_samps_feature"}}, "output_type": "display_data"}, "average_per_feature": {"data": {"text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The average number of shotgun shells per linear meter of shoreline by feature and category.
 buildingsforestorchardspublic_servicesundefinedvineyards
10.030.080.110.130.090.10
20.590.060.010.120.180.08
30.00-0.000.010.08-
40.040.000.010.030.090.00
50.090.680.140.030.000.12
\n", "text/plain": ""}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "average_per_feature"}}, "output_type": "display_data"}, "region_scatter": {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHWCAYAAAD+VRS3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACU9ElEQVR4nOzdd3iTVfvA8W+Spm2694JCy957owgyFBUZKoiKooLiFvSn8r64X8UtTnAjDkREEMUBKkvZS2Svslu6m86kGb8/DrSEJqUtbdOU+3NduTTnPHly0pKn93PGfTR2u92OEEIIIYTwWFp3N0AIIYQQQlwYCeiEEEIIITycBHRCCCGEEB5OAjohhBBCCA8nAZ0QQgghhIeTgE4IIYQQwsNJQCeEEEII4eEkoBNCCCGE8HBe7m5AXWSz2Th58iSBgYFoNBp3N0cIIYQQFwm73U5ubi5xcXFotRXvd5OAzomTJ08SHx/v7mYIIYQQ4iJ17NgxGjZsWOHjJaBzIjAwEFA/zKCgIDe3RgghhBAXC6PRSHx8fEksUlES0DlxZpg1KChIAjohhBBC1LrKTvmSRRFCCCGEEB5OAjohhBBCCA8nAZ0QQgghhIeTOXRCCCGEB7DZbJjNZnc3Q1wgvV6PTqer9vNKQCeEEELUcWazmaSkJGw2m7ubIqpBSEgIMTEx1ZrrVgI6IYQQog6z2+0kJyej0+mIj4+vVLJZUbfY7XYKCgpITU0FIDY2ttrOLQGdEEIIUYdZLBYKCgqIi4vDz8/P3c0RF8hgMACQmppKVFRUtQ2/SpgvhBBC1GFWqxUAb29vN7dEVJczgXlxcXG1nVMCOiGEEMIDyN7i9UdN/C4loBNCCCFEnZKQkMCMGTPc3QyPInPohBBCCFGnbNy4EX9/f3c3w6NIQCfcz5QH+WmQnw56X/CPhMAYd7dKCCFEJZnN5mqZ6xcZGVkNrbm4yJCrcK/8NFj5MrzbDT4ZBLMugU+vgJSdYLe7u3VCCCHK0b9/f+6//36mTJlCREQEgwcPZteuXVx11VUEBAQQHR3NuHHjSE9PL3lNbm4uN998M/7+/sTGxvLmm2/Sv39/Hn744ZJjzh1yPXr0KMOHDycgIICgoCBGjx7NqVOnSuqfeeYZOnXqxBdffEFCQgLBwcHceOON5Obm1saPoU6QgE64j80GOxbCmrfBZiktzzoMn18NOcfd1jQhhBAV8/nnn+Pl5cXff//NSy+9xGWXXUanTp3YtGkTv/76K6dOnWL06NElx0+ZMoW///6bxYsXs2zZMlavXs2WLVtcnt9utzNixAgyMzNZuXIly5Yt4+DBg4wZM8bhuIMHD7Jo0SJ++uknfvrpJ1auXMlLL71UY5+7rpEhV+E+eSmw+lXndYVZcGILhMTXbpuEEEJUSrNmzXjllVcAeOqpp+jSpQsvvvhiSf2nn35KfHw8+/btIzY2ls8//5yvv/6agQMHAvDZZ58RFxfn8vy///4727dvJykpifh49Tfhiy++oG3btmzcuJHu3bsDamu02bNnExgYCMC4ceP4448/eOGFF2rkc9c10kMn3MdigrxU1/WndtZeW4QQQlRJt27dSv5/8+bNLF++nICAgJJHq1atANWDdujQIYqLi+nRo0fJa4KDg2nZsqXL8+/evZv4+PiSYA6gTZs2hISEsHv37pKyhISEkmAO1C4MZ3ZkuBhID51wHy8ftfghN8V5fUy72m2PEEKISjt7NarNZmPYsGG8/PLLZY6LjY1l//79QNk8bPZy5kzb7XanedvOLdfr9Q71Go3motr7VnrohPsExsJljzuv8wuHuC612x4hhBAXpEuXLuzcuZOEhASaNWvm8PD396dp06bo9Xo2bNhQ8hqj0VgS6DnTpk0bjh49yrFjx0rKdu3aRU5ODq1bt67Rz+NJJKAT7qPRQOtrod9joDtrmXt4Mxi/BEIauq9tQgghKu2+++4jMzOTsWPHsmHDBg4dOsTSpUu54447sFqtBAYGctttt/F///d/LF++nJ07d3LHHXeg1Wpd7p4waNAgOnTowM0338yWLVvYsGEDt956K5dddpnDcO/FTgI64V7+EXDJZLh/I0xcDveshfG/QJTcdQkhhKeJi4vj77//xmq1csUVV9CuXTseeughgoOD0WpVyPHGG2/Qu3dvrrnmGgYNGkTfvn1p3bo1vr6+Ts+p0WhYtGgRoaGh9OvXj0GDBtGkSRPmzZtXmx+tztPYyxu4vkgZjUaCg4PJyckhKCjI3c0RQghxESsqKiIpKYnExESXQY8ny8/Pp0GDBrz++uvceeed7m5OrSjvd1rVGEQWRQghhBCi1mzdupU9e/bQo0cPcnJyeO655wAYPny4m1vm2SSgE0IIIUSteu2119i7dy/e3t507dqV1atXExER4e5meTQJ6IQQQghRazp37szmzZvd3Yx6RxZFCCGEEEJ4OAnohBBCCCE8nAR0QgghhBAeTgI6IYQQQggPJwGdEEIIIYSHk1WuolR+BhSkgzkfDKEQEAXe/ud/nRBCCCHcSnrohJJ1GL6+Ad7rAR8NgHe7wm/TIO+Uu1smhBBCVKuEhARmzJjhsn78+PGMGDGi1tpTHSSgE5CbAl9eByfOygtks8LmT2Hte2Axua9tQgghPFZKSgoPPfQQzZo1w9fXl+joaC655BJmzZpFQUGBu5tXr8iQq4DsY5BxwHndhg+h+wQIaVS7bRJCCOHRDh06RN++fQkJCeHFF1+kffv2WCwW9u3bx6effkpcXBzXXnut09cWFxej1+trucWeTXroBGQecl1XXKjm1AkhhLgwdjsU5bjtmmq12Vl7MIMftp1g7cEMrDZ7jb7fvffei5eXF5s2bWL06NG0bt2a9u3bc91117FkyRKGDRtWcqxGo2HWrFkMHz4cf39//ve//2G1WrnzzjtJTEzEYDDQsmVL3nrrLYf3ODM0+tprrxEbG0t4eDj33XcfxcXFJcekpqYybNgwDAYDiYmJfPXVV5X+LL/++iuXXHIJISEhhIeHc80113Dw4EGHY44fP86NN95IWFgY/v7+dOvWjfXr11f6vapKeugEhDZ2XeflA3q/2muLEELURznHYe/P8O936pra6x6I66wWn9WCX3ck8+yPu0jOKSopiw325elhbbiyXWy1v19GRgZLly7lxRdfxN/f+eI6jUbj8Pzpp59m+vTpvPnmm+h0Omw2Gw0bNuTbb78lIiKCNWvWcNdddxEbG8vo0aNLXrd8+XJiY2NZvnw5Bw4cYMyYMXTq1ImJEycCKug7duwYf/75J97e3jz44IOkpqZW6vPk5+czZcoU2rdvT35+Pk899RQjR45k27ZtaLVa8vLyuOyyy2jQoAGLFy8mJiaGLVu2YLPZKvmTqzoJ6ASENIbQBLUw4lxdboeA6NpukRBC1B/Zx2D2VZB9tLTs0HJoMwKueg0CImv07X/dkcw9X27h3P64lJwi7vlyCzNv6VLtQd2BAwew2+20bNnSoTwiIoKiIhVU3nfffbz88ssldTfddBN33HGHw/HPPvtsyf8nJiayZs0avv32W4eALjQ0lHfffRedTkerVq24+uqr+eOPP5g4cSL79u3jl19+Yd26dfTs2ROATz75hNatW1fq81x33XUOzz/55BOioqLYtWsX7dq14+uvvyYtLY2NGzcSFhYGQLNmzSr1HhdKhlwFBMXCLd9D1Fn/wDUaaH8DXDoZ9L7ua5sQQngyixnWzXQM5s7Ytcj1/OVqYrXZefbHXWWCOaCk7Nkfd9XY8Ou5vXAbNmxg27ZttG3bFpPJccFdt27dyrx+1qxZdOvWjcjISAICAvjoo484etTxZ9m2bVt0Ol3J89jY2JIeuN27d+Pl5eVw7latWhESElKpz3Hw4EFuuukmmjRpQlBQEImJiQAlbdm2bRudO3cuCebcQXrohBLeFG5dDPnpYDKCfwT4R4JvsLtbJoQQnqsgHbbPdV2/ZQ406qVuomvAhqRMh2HWc9mB5JwiNiRl0rtpeLW9b7NmzdBoNOzZs8ehvEmTJgAYDIYyrzl3aPbbb79l8uTJvP766/Tu3ZvAwEBeffXVMvPSzl08odFoSoY67XZ7SdmFGDZsGPHx8Xz00UfExcVhs9lo164dZrPZ5eepbdJDJ0oFREF0G3VxCW8mwZwQQlQHezm9X7Zi13XVIDXXdTBXleMqKjw8nMGDB/Puu++Sn1+1RSCrV6+mT58+3HvvvXTu3JlmzZqVWYhwPq1bt8ZisbBp06aSsr1795KdnV3hc2RkZLB7926mTZvGwIEDad26NVlZWQ7HdOjQgW3btpGZmVmp9lUnCeiEEEKImuIXBm1Hua7vPK7GeucAogIrNmWmosdVxvvvv4/FYqFbt27MmzeP3bt3s3fvXr788kv27NnjMEzqTLNmzdi0aRO//fYb+/bt48knn2Tjxo2VakPLli258sormThxIuvXr2fz5s1MmDChUj1qoaGhhIeH8+GHH3LgwAH+/PNPpkyZ4nDM2LFjiYmJYcSIEfz9998cOnSIBQsWsHbt2kq190JIQCeEEELUFC9f6Pug89WsTQZAZKsaffseiWHEBvviKmTUoFa79kis/rlfTZs2ZevWrQwaNIipU6fSsWNHunXrxjvvvMOjjz7K888/X+7rJ02axKhRoxgzZgw9e/YkIyODe++9t9Lt+Oyzz4iPj+eyyy5j1KhR3HXXXURFVXx1sVar5ZtvvmHz5s20a9eOyZMn8+qrrzoc4+3tzdKlS4mKiuKqq66iffv2vPTSS+cNWquTxm4vry/44mQ0GgkODiYnJ4egoCB3N0cIIYSnyz4KW79UCyH0/tBzEjS5DAJjzvvSoqIikpKSSExMxNe38j1pZ1a5Ag6LI84EeTWxylWUr7zfaVVjEFkUIYQQQtS0kEbQ7zHoPhG0OjUUW0uubBfLzFu6lMlDF1ODeehE7XPrkOuqVasYNmwYcXFxaDQaFi1aVO7xK1asQKPRlHmcu4pmwYIFtGnTBh8fH9q0acPChQtr8FMIIYQQFaDzUjnnajGYO+PKdrH89fjlzJ3Yi7du7MTcib346/HLJZirR9wa0OXn59OxY0fefffdSr1u7969JCcnlzyaN29eUrd27VrGjBnDuHHj+Oeffxg3bhyjR4+u1e03hBBCiLpGp9XQu2k4wzs1oHfTcHTamluMIWqfW4dchw4dytChQyv9uqioKJdJAWfMmMHgwYOZOnUqAFOnTmXlypXMmDGDuXPLyQUkhBBCCOGhPHKVa+fOnYmNjWXgwIEsX77coW7t2rUMGTLEoeyKK65gzZo1Ls9nMpkwGo0ODyGEEEIIT+FRAV1sbCwffvghCxYs4Pvvv6dly5YMHDiQVatWlRyTkpJCdLTj3qPR0dGkpKS4PO/06dMJDg4uecTHx9fYZxBCCCGEqG4etcq1ZcuWDhv99u7dm2PHjvHaa6/Rr1+/kvJzt/iw2+3lbvsxdepUhySBRqNRgjohhBBCeAyP6qFzplevXuzfv7/keUxMTJneuNTU1DK9dmfz8fEhKCjI4SGEEEII4Sk8PqDbunUrsbGly6579+7NsmXLHI5ZunQpffr0qe2mCSGEEELUCrcOuebl5XHgwIGS50lJSWzbto2wsDAaNWrE1KlTOXHiBHPmzAHUCtaEhATatm2L2Wzmyy+/ZMGCBSxYsKDkHA899BD9+vXj5ZdfZvjw4fzwww/8/vvv/PXXX7X++YQQQghRdxw+fJjExES2bt1Kp06d3N2cauXWHrpNmzbRuXNnOnfuDMCUKVPo3LkzTz31FADJyckcPXq05Hiz2cyjjz5Khw4duPTSS/nrr79YsmQJo0aVbnzcp08fvvnmGz777DM6dOjA7NmzmTdvHj179qzdDyeEEEJcxMaPH8+IESPKlJ/ZJCA7O7ta368iGxTUZ27toevfvz/lbSU7e/Zsh+ePPfYYjz322HnPe/3113P99ddfaPOEEEIIITyCx8+hE0IIIUQF2KyQtBr+/U7912Z1d4sAyMjIYOzYsTRs2BA/Pz/at29fZiOAhIQEZsyY4VDWqVMnnnnmmZJ6gJEjR6LRaEqen4/VauXOO+8kMTERg8FAy5Yteeutt8oc9+mnn9K2bVt8fHyIjY3l/vvvr+zHrHEelbZECCGEEFWwazH8+jgYT5aWBcXBlS9Dm2vd1y6gqKiIrl278vjjjxMUFMSSJUsYN24cTZo0qfB0qY0bNxIVFcVnn33GlVdeiU6nq9DrbDYbDRs25NtvvyUiIoI1a9Zw1113ERsby+jRowGYOXMmU6ZM4aWXXmLo0KHk5OTw999/V/nz1hQJ6IQQQoj6bNdi+PZW4JwpTsZkVT56To0FdT/99BMBAQEOZVarY89ggwYNePTRR0ueP/DAA/z666/Mnz+/wgFdZGQkACEhIcTExFS4fXq9nmeffbbkeWJiImvWrOHbb78tCej+97//8cgjj/DQQw+VHNe9e/cKv0dtkYBOCCGEqK9sVtUzd24wB6fLNPDrE9DqatBWrFerMgYMGMDMmTMdytavX88tt9xS8txqtfLSSy8xb948Tpw4gclkwmQy4e/vX+3tcWbWrFl8/PHHHDlyhMLCQsxmc8kK2NTUVE6ePMnAgQNrpS0XQgI6IYQQor46ssZxmLUMOxhPqOMSL632t/f396dZs2YOZcePH3d4/vrrr/Pmm28yY8YM2rdvj7+/Pw8//DBms7nkGK1WW2YRZXFx8QW379tvv2Xy5Mm8/vrr9O7dm8DAQF599VXWr18PgMFguOD3qC0S0AkhhBD1Vd6p6j2uBqxevZrhw4eX9NrZbDb2799P69atS46JjIwkOTm55LnRaCQpKcnhPHq9vsxwbkXeu0+fPtx7770lZQcPHiz5/8DAQBISEvjjjz8YMGBApc5d22SVqxBCCFFfBbje9rJKx9WAZs2asWzZMtasWcPu3bu5++67y2zhefnll/PFF1+wevVqduzYwW233VZm4cOZwCslJYWsrKwKv/emTZv47bff2LdvH08++SQbN250OOaZZ57h9ddf5+2332b//v1s2bKFd95558I+dA2QgE4IIYSorxr3UatZ0bg4QANBDdRxbvLkk0/SpUsXrrjiCvr3709MTEyZhMRTp06lX79+XHPNNVx11VWMGDGCpk2bOhzz+uuvs2zZMuLj40s2LDifSZMmMWrUKMaMGUPPnj3JyMhw6K0DuO2225gxYwbvv/8+bdu25ZprrnHYQ76u0NjLy+x7kTIajQQHB5OTk0NQUJC7myOEEOIiVlRURFJSEomJifj6+lb+BCWrXMFxccTpIK8GV7kK58r7nVY1BpEeOiGEEKI+a3OtCtqCYh3Lg+IkmKtHZFGEEEIIUd+1uValJjmyRi2ACIhWw6w1kKpEuIcEdEIIIcTFQKurkdQkom6QIVchhBBCCA8nAZ0QQgghhIeTgE4IIYQQwsNJQCeEEEII4eEkoBNCCCGE8HAS0AkhhBBCeDgJ6IQQQgjhMfr378/DDz9c6ddpNBoWLVpU7e2pKySgE0IIIUS1Gz9+PBqNBo1Gg16vp0mTJjz66KPk5+dX6PUrVqxAo9GQnZ3tUP7999/z/PPPlzxPSEhgxowZ1dhyzySJhYUQQghRI6688ko+++wziouLWb16NRMmTCA/P5+ZM2dW+ZxhYWHV2ML6Q3rohBBCiIuA1WZlY8pGfj70MxtTNmK1WWv8PX18fIiJiSE+Pp6bbrqJm2++uWTY026388orr9CkSRMMBgMdO3bku+++A+Dw4cMMGDAAgNDQUDQaDePHjwcch1z79+/PkSNHmDx5cklvYEU9/vjjtGjRAj8/P5o0acKTTz5JcXGxwzGLFy+mW7du+Pr6EhERwahRoy7sB1KDpIdOCCGEqOd+P/I7L214iVMFp0rKov2ieaLHEwxqPKjW2mEwGEqCpmnTpvH9998zc+ZMmjdvzqpVq7jllluIjIzkkksuYcGCBVx33XXs3buXoKAgDAZDmfN9//33dOzYkbvuuouJEydWqi2BgYHMnj2buLg4/v33XyZOnEhgYCCPPfYYAEuWLGHUqFH897//5YsvvsBsNrNkyZIL/yHUEAnohBBCiHrs9yO/M2XFFOzYHcpTC1KZsmIKb/R/o1aCug0bNvD1118zcOBA8vPzeeONN/jzzz/p3bs3AE2aNOGvv/7igw8+4LLLLisZWo2KiiIkJMTpOcPCwtDpdAQGBhITE1Op9kybNq3k/xMSEnjkkUeYN29eSUD3wgsvcOONN/Lss8+WHNexY8dKvUdtkoBOCCGEqKesNisvbXipTDAHYMeOBg0vb3iZAfED0Gl11f7+P/30EwEBAVgsFoqLixk+fDjvvPMOu3btoqioiMGDBzscbzab6dy5c7W3w5nvvvuOGTNmcODAAfLy8rBYLAQFBZXUb9u2rdK9fu4kAZ0QQghRT21J3eIwzHouO3ZSClLYkrqF7jHdq/39BwwYwMyZM9Hr9cTFxaHX6wFISkoC1LBmgwYNHF7j4+NT7e0417p160p636644gqCg4P55ptveP3110uOcTbEW5dJQCeEEELUU2kFadV6XGX5+/vTrFmzMuVt2rTBx8eHo0ePctlllzl9rbe3NwBWa/mLN7y9vc97zLn+/vtvGjduzH//+9+SsiNHjjgc06FDB/744w9uv/32Sp3bXSSgE0IIIeqpSL/Iaj2uugQGBvLoo48yefJkbDYbl1xyCUajkTVr1hAQEMBtt91G48aN0Wg0/PTTT1x11VUYDAYCAgLKnCshIYFVq1Zx44034uPjQ0RExHnfv1mzZhw9epRvvvmG7t27s2TJEhYuXOhwzNNPP83AgQNp2rQpN954IxaLhV9++aVkjl1dI2lLhBBCiHqqS1QXov2i0eA8nYcGDTF+MXSJ6lLLLYPnn3+ep556iunTp9O6dWuuuOIKfvzxRxITEwFo0KABzz77LE888QTR0dHcf//9Ts/z3HPPcfjwYZo2bUpkZMUC0+HDhzN58mTuv/9+OnXqxJo1a3jyyScdjunfvz/z589n8eLFdOrUicsvv5z169df2IeuQRq73V52puRFzmg0EhwcTE5OjsMESSGEEKK2FRUVkZSURGJiIr6+vpV+/ZlVroDD4ogzQV5trXIVpcr7nVY1BpEeOiGEEKIeG9R4EG/0f4MovyiH8mi/aAnm6hGZQyeEEELUc4MaD2JA/AC2pG4hrSCNSL9IukR1qZFUJcI9JKATQgghLgI6ra5GUpOIukGGXIUQQgghPJwEdEIIIYQQHk4COiGEEMIDSFKK+qMmfpcS0AkhhBB1mE6nFi6YzWY3t0RUl4KCAoCSrdCqgyyKEEIIIeowLy8v/Pz8SEtLQ6/Xo9VKX4ynstvtFBQUkJqaSkhISEmwXh0koBNCCCHqMI1GQ2xsLElJSWX2GxWeKSQkhJiYmGo9pwR0QgghRB3n7e1N8+bNZdi1HtDr9dXaM3eGBHRCCCGEB9BqtVXa+ktcHGQgXgghhBDCw0lAJ4QQQgjh4SSgE0IIIYTwcBLQCSGEEEJ4OLcGdKtWrWLYsGHExcWh0WhYtGhRucd///33DB48mMjISIKCgujduze//fabwzGzZ89Go9GUeRQVFdXgJxFCCCGEcB+3BnT5+fl07NiRd999t0LHr1q1isGDB/Pzzz+zefNmBgwYwLBhw9i6davDcUFBQSQnJzs8ZGWQEEIIIeort6YtGTp0KEOHDq3w8TNmzHB4/uKLL/LDDz/w448/0rlz55JyjUZT7Qn7hBBCCCHqKo+eQ2ez2cjNzSUsLMyhPC8vj8aNG9OwYUOuueaaMj145zKZTBiNRoeHEEIIIYSn8OiA7vXXXyc/P5/Ro0eXlLVq1YrZs2ezePFi5s6di6+vL3379mX//v0uzzN9+nSCg4NLHvHx8bXRfCGEEEKIaqGx2+12dzcC1DDpwoULGTFiRIWOnzt3LhMmTOCHH35g0KBBLo+z2Wx06dKFfv368fbbbzs9xmQyYTKZSp4bjUbi4+PJyckhKCioUp9DCCGEEKKqjEYjwcHBlY5BPHLrr3nz5nHnnXcyf/78coM5UFuldO/evdweOh8fH3x8fKq7mUIIIYQQtcLjhlznzp3L+PHj+frrr7n66qvPe7zdbmfbtm3ExsbWQuuEEEIIIWqfW3vo8vLyOHDgQMnzpKQktm3bRlhYGI0aNWLq1KmcOHGCOXPmACqYu/XWW3nrrbfo1asXKSkpABgMBoKDgwF49tln6dWrF82bN8doNPL222+zbds23nvvvdr/gEIIIYQQtcCtPXSbNm2ic+fOJSlHpkyZQufOnXnqqacASE5O5ujRoyXHf/DBB1gsFu677z5iY2NLHg899FDJMdnZ2dx11120bt2aIUOGcOLECVatWkWPHj1q98MJIYQQQtSSOrMooi6p6oREIYQQQogLUdUYxOPm0AkhhBBCCEcS0AkhhBBCeDgJ6IQQQgghPJwEdEIIIYQQHk4COiGEEEIIDycBnRBCCCGEh5OATgghhBDCw0lAJ4QQQgjh4SSgE0IIIYTwcBLQCSGEEEJ4OAnohBBCCCE8nJe7GyAqKT8D7DYwhIFO5+7WCCGEEKIOkIDOUxiTYf9S2PgxWE3Q9jroNBZCGrm7ZUIIIYRwMwnoPEFuCnx7GxxfX1q24kXYMhvu+E2COiGEEOIiJ3PoPMHJLY7B3BnGk7DpM7AW136bhBBCCFFnSEBX11lMsGWO6/p/v4WCjNprjxBCCCHqHAno6jwNaMpZ/FBenRBCCCEuChLQ1XVe3tDtDtf1nW8Bv8jaa48QQggh6hwJ6DxBTHtocUXZ8vCm0OkmSV8ihBBCXORklasnCIiCYe/Aya2wfpZKW9JhLDQbCMEN3N06IYQQQriZBHSeIjAaWl4JiZeCzQq+Qe5ukRBCCCHqCAnoPI23v7tbIIQQQog6RubQCSGEEEJ4OAnohBBCCCE8nAR0QgghhBAeTgI6IYQQQggPJwGdEEIIIYSHk4BOCCGEEMLDSUAnhBBCCOHhJKATQgghhPBwEtAJIYQQQng4CeiEEEIIITycBHRCCCGEEB5OAjohhBBCCA8nAZ0QQgghhIeTgE4IIYQQwsNJQCeEEEII4eEkoBNCCCGE8HAS0AkhhBBCeDgJ6IQQQgghPJwEdEIIIYQQHk4COiGEEEIIDycBnRBCCCGEh5OATgghhBDCw0lAJ4QQQgjh4dwa0K1atYphw4YRFxeHRqNh0aJF533NypUr6dq1K76+vjRp0oRZs2aVOWbBggW0adMGHx8f2rRpw8KFC2ug9XWczQbGZMg+Crmn3N0aIYQQQtQgtwZ0+fn5dOzYkXfffbdCxyclJXHVVVdx6aWXsnXrVv7zn//w4IMPsmDBgpJj1q5dy5gxYxg3bhz//PMP48aNY/To0axfv76mPkbdk5cGGz+CD/vBjPbw6RWwcyEUZLq7ZUIIIYSoARq73W53dyMANBoNCxcuZMSIES6Pefzxx1m8eDG7d+8uKZs0aRL//PMPa9euBWDMmDEYjUZ++eWXkmOuvPJKQkNDmTt3boXaYjQaCQ4OJicnh6CgoKp9IHcpMsIfz8LGj8vWDX0Vut0OOn3tt0sIIYQQ51XVGMSj5tCtXbuWIUOGOJRdccUVbNq0ieLi4nKPWbNmTa21063y02DTJ87r/nweclNqtz1CCCGEqHEeFdClpKQQHR3tUBYdHY3FYiE9Pb3cY1JSXAcyJpMJo9Ho8PBY2UfBVaeryQiFWbXbHiGEEELUOI8K6EANzZ7tzIjx2eXOjjm37GzTp08nODi45BEfH1+NLa5lPgHl13t51047hBBCCFFrPCqgi4mJKdPTlpqaipeXF+Hh4eUec26v3dmmTp1KTk5OyePYsWPV3/jaEhgH/hHO62I6gJ+LOiGEEEJ4LI8K6Hr37s2yZcscypYuXUq3bt3Q6/XlHtOnTx+X5/Xx8SEoKMjh4bECY+HGb0Dv51juHwHXfew62BNCCCGEx/Jy55vn5eVx4MCBkudJSUls27aNsLAwGjVqxNSpUzlx4gRz5swB1IrWd999lylTpjBx4kTWrl3LJ5984rB69aGHHqJfv368/PLLDB8+nB9++IHff/+dv/76q9Y/n1totRDXGe5dB4dXQ+puaNgdGnSDkIbubp0QQgghaoBb05asWLGCAQMGlCm/7bbbmD17NuPHj+fw4cOsWLGipG7lypVMnjyZnTt3EhcXx+OPP86kSZMcXv/dd98xbdo0Dh06RNOmTXnhhRcYNWpUhdvl0WlLhBBCCOGxqhqD1Jk8dHWJBHRCCCGEcIeLIg+dEEIIIYQoSwI6IYQQQggPJwGdEEIIIYSHc+sqV1ELzAWQdwqOrQdTLjTqDUGx4Bfu7pYJIYQQoppIQFefmfJg7xJYdA/YrKXlbUbAVa9AgOtky0IIIYTwHDLkWp8ZT8DCux2DOYBdi2DXYtd7vgohhBDCo0hAV5/9M8910LbmbchLrd32CCGEEKJGSEBXn2UfcV2Xlwo2S+21RQghhBA1RgK6+qzFENd1DbuDt3/ttUUIIYQQNUYCuvqsUR8IiitbrtHC4OfAEFLrTRJCCCFE9ZOArj4LiYfxS6DFUBXEAUS2hNsWQ2Qr97ZNCCGEENVG0pbUd2FNYNSHUJgJVgv4BkFAlLtbJYQQQohqJAHdxcA3SD2EEEIIUS/JkKsQQgghhIeTgE4IIYQQwsNJQCeEEEII4eEkoBNCCCGE8HBVXhSxYcMGVqxYQWpqKjabzaHujTfeuOCGCSGEEEKIiqlSQPfiiy8ybdo0WrZsSXR0NBqNpqTu7P8XQgghhBA1r0oB3VtvvcWnn37K+PHjq7k5QgghhBCisqo0h06r1dK3b9/qbosQQgghhKiCKgV0kydP5r333qvutgghhBBCiCqo0pDro48+ytVXX03Tpk1p06YNer3eof7777+vlsYJIYQQQojzq1JA98ADD7B8+XIGDBhAeHi4LIQQQgghhHCjKgV0c+bMYcGCBVx99dXV3R4hhBBCCFFJVQrowsLCaNq0aXW3RQghhKj7LCYoyAA74BcGel93t0iIqi2KeOaZZ3j66acpKCio7vYIIYQQdVf2UVj6FMzsAzN7wa9PQNZhd7dKCDR2u91e2Rd17tyZgwcPYrfbSUhIKLMoYsuWLdXWQHcwGo0EBweTk5NDUFCQu5sjhBCiLsg+Bp9eAcYTjuX+kTDhDwht7J521RV2O1jN4OXj7pZ4tKrGIFUach0xYkRVXiaEEEJ4Jrsd9vxUNpgDyE+DbV9Bv8dAV+UdNT1XcaHqudz6JaTtgUa9oO0oCI6/OH8eblKpHrp9+/bRokWLmmxPnSA9dEIIIRwU5sBX18Hxjc7rI1vB+J9Ub93FxFIMh/6Eb8aCzVpa7u0P45dAXGf3tc1DVTUGqdQcus6dO9O6dWsef/xx1q5dW+lGCiGEEB5J6wXeAa7rvf1Ao6u99tQVeSmw4E7HYA7AnA8LJkBuqnvadRGqVECXkZHBK6+8QkZGBiNHjiQ6Opo777yTxYsXU1RUVFNtFEIIIdzLxx963eO6vtd9asXrxSbnGJhynddlHIDC9Nptz0WsUgGdr68vw4YN4+OPPyY5OZmFCxcSGRnJE088QXh4OMOHD+fTTz8lNVUiciGEEPVMXGc1N+xczQZDwiVVP6+1WC24OLUTMg5BkbHq56ptFnP59ef23IkaU6VVrs7s37+fxYsX88MPP7B+/XreeOMN7rvvvuo4da2TOXRCCCGcyk+DjIOw9QsVrHS+BSJaQEBUFc+XrhZUrHpV9XRpNNBiKAx9BULiq7ftNSHrMLzTFWyWsnX+kXD3SghqUOvN8mRVjUGqLaA7W0ZGBpmZmTRv3ry6T10rJKATQghR46xW2PihymV3ruh2cMv3EBhd++2qDHM+rJsFfz5Xtu6Gz6H1taCtUsrbi1atLIo44/PPP2fJkiUlzx977DFCQkLo06cPR44cITw83GODOSGEEKJW5CXDyped153aoean1XXe/tDtdrjpW4jrAn7hkNgP7lwGzQZKMFeLqvSTfvHFFzEYDACsXbuWd999l1deeYWIiAgmT55crQ0UQggh6iVzPhRmua4/tav22nIh/MKgxRVwywKY9BeM/gLie4BPoLtbdlGpUsa/Y8eO0axZMwAWLVrE9ddfz1133UXfvn3p379/dbZPCCGEqJ+8fEHnrXZXcCakYe2250JdjKt865Aq9dAFBASQkZEBwNKlSxk0aBCgVsEWFhZWX+uEEEKI+so/Cjrd7LzOL0wtthCigqrUQzd48GAmTJhA586d2bdvH1dffTUAO3fuJCEhoTrbJ4QQQtRP3ga47HHIOqJ2WzgjIEotiJDVoaISqhTQvffee0ybNo1jx46xYMECwsPDAdi8eTNjx46t1gYKIYQQ9VZQLFz3MeSdUol4/SMhpBEExakUJkJUUI2kLfF0krZECCGEEO5Qq2lLPvvsM+bPn1+mfP78+Xz++edVOaUQQgghhKiiKgV0L730EhEREWXKo6KiePHFFy+4UUIIIYQQouKqFNAdOXKExMTEMuWNGzfm6NGjF9woIYQQQghRcVUK6KKioti+fXuZ8n/++adkgYQQQgghhKgdVQrobrzxRh588EGWL1+O1WrFarXy559/8tBDD3HjjTdW6lzvv/8+iYmJ+Pr60rVrV1avXu3y2PHjx6PRaMo82rZtW3LM7NmznR5TVFRUlY8qhBBCCFHnVSltyf/+9z+OHDnCwIED8fJSp7Bardx2222VmkM3b948Hn74Yd5//3369u3LBx98wNChQ9m1axeNGjUqc/xbb73FSy+9VPLcYrHQsWNHbrjhBofjgoKC2Lt3r0OZr69vZT6iEEIIIYTHuKC0Jfv372fr1q0YDAY6dOhA48aNK/X6nj170qVLF2bOnFlS1rp1a0aMGMH06dPP+/pFixYxatQokpKSSt579uzZPPzww2RnZ1eqLWeTtCVCCCGEcIdaTVsC8MknnzBy5EjGjRvH9ddfz9VXX83HH39c4debzWY2b97MkCFDHMqHDBnCmjVrKtyGQYMGlQkk8/LyaNy4MQ0bNuSaa65h69at5Z7HZDJhNBodHkIIIYQQnqJKAd2TTz7JQw89xLBhw5g/fz7z589n2LBhTJ48mWnTplXoHOnp6VitVqKjox3Ko6OjSUlJOe/rk5OT+eWXX5gwYYJDeatWrZg9ezaLFy9m7ty5+Pr60rdvX/bv3+/yXNOnTyc4OLjkER8fX6HPIIQQQghRF1RpyDUiIoJ33nmnzDZfc+fO5YEHHiA9Pf285zh58iQNGjRgzZo19O7du6T8hRde4IsvvmDPnj3lvn769Om8/vrrnDx5Em9vb5fH2Ww2unTpQr9+/Xj77bedHmMymTCZTCXPjUYj8fHxMuQqhBBCiFpV1SHXKi2KsFqtdOvWrUx5165dsVgsFTpHREQEOp2uTG9campqmV67c9ntdj799FPGjRtXbjAHoNVq6d69e7k9dD4+Pvj4+FSo3UIIIYQQdU2VhlxvueUWh4UMZ3z44YfcfPPNFTqHt7c3Xbt2ZdmyZQ7ly5Yto0+fPuW+duXKlRw4cIA777zzvO9jt9vZtm0bsbGxFWqXEEIIIYSnqVIPHagFCUuXLqVXr14ArFu3jmPHjnHrrbcyZcqUkuPeeOMNl+eYMmUK48aNo1u3bvTu3ZsPP/yQo0ePMmnSJACmTp3KiRMnmDNnTpn37tmzJ+3atStzzmeffZZevXrRvHlzjEYjb7/9Ntu2beO9996r6kcVQgghhKjTqhTQ7dixgy5dugBw8OBBACIjI4mMjGTHjh0lx2k0mnLPM2bMGDIyMnjuuedITk6mXbt2/PzzzyWrVpOTk8tsJZaTk8OCBQt46623nJ4zOzubu+66i5SUFIKDg+ncuTOrVq2iR48eVfmoQgghhBB13gXloauvJA+dEEIIIdyh1vPQCSGEEEKIukECOiGEEEIIDycBnRBCCCGEh5OATgghhBDCw0lAJ4QQQgjh4SSgE0IIIYTwcBLQCSGEEEJ4OAnohBBCCCE8nAR0QgghhBAeTgI6IYQQQggPJwGdEEIIIYSHk4BOCCGEEMLDSUAnhBBCCOHhJKATQgghhPBwEtAJIYQQQng4CeiEEEIIITycBHRCCCGEEB5OAjohhBBCCA8nAZ0QQgghhIeTgE4IIYQQwsN5ubsBwkNZLZCXApYi8DJAQAzodO5ulRBCXDysVshLPn0d9oWA2Ipfh3NTwZwLWi/wjwBv/5ptq6hxEtCJystLhc2zYe27UJQDhlC49BHocCMERLq7dUIIUf/lpcHWL2DN21CYpa7DfR6EzuPKvw6b8uD4Bvj5/yDjgAro2oyAQU9DSKNaa76ofhLQicox5cLyF2HzZ6VlhVmwdBoUZEC/x8Hb4L72CSFEfWfKh9WvwfpZpWWFWfDHs+qG+/InwcdFj1vyP/DFyNLnNgvs+A5OboHxSyAormbbLmqMzKETlZOXBls+d1639j3IP1W77RFCiItNfips/Mh53caPVL3T16XDb/9xXpd5CFJ2VE/7hFtIQCcqJz8V7DbndVYzFGTVbnuEEOJiU5ABNqvzOptF1TtTXAjJ21yf99DyC26acB8J6ETlnG/irN63dtohhBAXK/15prW4qtfqwDfE9euCG1a5ScL9JKATleMfCaGJzuti2qvVUkIIIWqOXwREtHBeF9EC/FwsivCPgp6TnNdptNDiiuppn3ALCehE5QTGwNi5KrA7W1AcXD+7bLkQQojqFRgNY76EgGjH8oDT5YFRzl+n84Jut0OT/o7lWi+44XMIalAjzRW1Q2O32+3ubkRdYzQaCQ4OJicnh6CgIHc3p27KOQ6ndkH6PohuAxEtIVguBkIIUWtyjkPaXkjdDVGtILJVxYZN89PUa4+sUb19jXqqXKIyZaZOqGoMIgGdExLQCSGEEMIdqhqDyJCrEEIIIYSHk4BOCCGEEMLDSUAnhBBCCOHhJKATQgghhPBwsperEEIIIWqOMRlSd0HSaghpBE0HQGCsrKqtZhLQCSGEEKJmZB+FOcPVXrFnaL1g7DeQ2A+8fNzXtnpGhlyFEEIIUf1MebD0ScdgDtR+s/NuhtwU97SrnpKATgghhBDVryAd9vzovM5igpNba7c99ZwMuQohhBDVxWaDvBQVsHj5qB0YtBdp34m1GGxW1/UFGbXXlouABHRCCCFEdchPg52LYNUrkJeq9ra+9BFof/3Fuc+1TyCENIbsI87rG3ar3fbUcxfpbYMQQghRjcyFsG4W/PyoCuZABXi/PgF/vQXmfPe2zx0CY+DKl5zXNRkAQXG12556TgI6IYQQ4kLlp8Kat53XrZ9ZGuRdbBIugVu+h6jW6rlvMFz6KIycdXH2WtYgGXIVQgghLlRBOljNzutsFshPh7DE2m1TXeAbBM0GQkx7KC4EnRf4R4FO7+6W1TsS0AkhhBAXystQfr3+PPX1XUCUu1tQ78mQqxBCCHGh/MIhornzutBE8I+o3faIi47bA7r333+fxMREfH196dq1K6tXr3Z57IoVK9BoNGUee/bscThuwYIFtGnTBh8fH9q0acPChQtr+mMIIYS4mAVGw+gvVGB3NkMo3PiVWiAgRA1y65DrvHnzePjhh3n//ffp27cvH3zwAUOHDmXXrl00atTI5ev27t1LUFBQyfPIyNKJlWvXrmXMmDE8//zzjBw5koULFzJ69Gj++usvevbsWaOfRwghxEUsqjXctRKSt8OpfyGqDcR1huCG7m6ZuAho7Ha73V1v3rNnT7p06cLMmTNLylq3bs2IESOYPn16meNXrFjBgAEDyMrKIiQkxOk5x4wZg9Fo5Jdffikpu/LKKwkNDWXu3LkVapfRaCQ4OJicnByHwFEIIYQQoiZVNQZx25Cr2Wxm8+bNDBkyxKF8yJAhrFmzptzXdu7cmdjYWAYOHMjy5csd6tauXVvmnFdcccV5zymEEEII4ancNuSanp6O1WolOjraoTw6OpqUFOcb9sbGxvLhhx/StWtXTCYTX3zxBQMHDmTFihX069cPgJSUlEqdE8BkMmEymUqeG43Gqn4sIYQQQoha5/a0JRqNxuG53W4vU3ZGy5YtadmyZcnz3r17c+zYMV577bWSgK6y5wSYPn06zz77bFWaL4QQQgjhdm4bco2IiECn05XpOUtNTS3Tw1aeXr16sX///pLnMTExlT7n1KlTycnJKXkcO3aswu8vhBBCCOFubgvovL296dq1K8uWLXMoX7ZsGX369KnwebZu3UpsbGzJ8969e5c559KlS8s9p4+PD0FBQQ6Pes94Eg78CateV5tJZx8Fm9XdrRJCCCFEFbh1yHXKlCmMGzeObt260bt3bz788EOOHj3KpEmTANVzduLECebMmQPAjBkzSEhIoG3btpjNZr788ksWLFjAggULSs750EMP0a9fP15++WWGDx/ODz/8wO+//85ff/3lls9YJ2UmwZxrVRB3hncA3LYYYjuD1u3pCYUQQghRCW4N6MaMGUNGRgbPPfccycnJtGvXjp9//pnGjRsDkJyczNGjpUGH2Wzm0Ucf5cSJExgMBtq2bcuSJUu46qqrSo7p06cP33zzDdOmTePJJ5+kadOmzJs3T3LQnVGYBYvvdwzmAMx58NUNcPdqCG7gnrYJIYQQokrcmoeurqrXeejS98O73VzX3/4rNO5de+0RQgghRAmPy0Mn3MRiKr++KLtWmiGEEEKI6iMB3cXGN1g9XAlrUnttEUIIIUS1kIDuYhMYA/3/47yu7SgIiKrd9gghhBDigrk9sbCoZTo9dBgNvkHw5/MqfYlPEPScBN0ngCHU3S0UQgghRCVJQHcx8guDjmOhSX+wFIHOGwKiVbAnhBBCCI8jAd3FSqOBoDh3t0IIIYQQ1UDm0AkhhBBCeDgJ6IQQQgghPJwEdEIIIYQQHk4COiGEEEIIDycBnRBCCCGEh5OATgghhKjrigvAlOvuVog6TNKWCCGEEHVVXhqc2gHrZoI5D9rfAM0HQ3BDd7dM1DES0AkhhBB1UX46LJ0G278pLTvyN4Q0hvFLICTefW0TdY4MuQpR04wnIWkVrP8A9v8OOcfd3SIhhCfIPOQYzJ2RfQTWzwKLufbbJOos6aEToiZlHIQvRkD20dIy/0i47UeIau22ZgkhPMCWL1zXbfsKet8nO/6IEtJDJ0RNyU+HBRMcgzmA/DSYeyPkJrunXUIIz2Atdl1ns9ReO4RHkIBOiJpSkAEntzivyzqsJjsLIYQrnca6rmszEgyhtdcWUedJQCdETSkuKL9eUhAIIcoT1Qqa9C9b7hcGl04BvaHWmyTqLplDJ0RNMYSClw9YTGXrNBoIjKn9NgkhPEdANIz8AA7+CeveB3M+tL4Wut2uVroKcRYJ6ET9YDGpOSXe/u5uSamAaOh1P/z1etm6jmPV4gghhChPYAx0uglaXKGucYYw0Ond3SpRB0lAJzxbfjqk7VEpQUxGaDsKmg2sG0k39QbofY/qqfvrdSjMAp9A6HE39LwLfIPc3UIhhKfwC3d3C0Qdp7Hb7XZ3N6KuMRqNBAcHk5OTQ1CQ/NGtswoy4c/nYdOnjuUhjU4n3Wzknnady2qFvGQoLgQvX3XHLXfYQgghnKhqDCKLIoTnyjpcNpgDlSZkzTvO5665g06negwjmqvM7hLMCSGEqGYS0AnPtX2e67ptX6u0IUIIIcRFQAI64bnK64GzFYPMJhBCCHGRkIBOeK72N7iua3UtGEJqrSlCCCGEO0lAJzxXRHNoMqBsuW8wDHiibqUwEUIIIWqQpC0RnisgCkbOgn1LYf1MMOdBiyuh172SdFMIIcRFRQI64dkCY6DrrdDqKrBZ1TCrl4+7W1U32GxgLQKdD2h17m6NEEKIGiQBnagf/CPc3YK6w2qBnKPwzzw4vgEiWkLX8Sovn7efu1snhBCiBkhAJ0R9k/IPzL5aJTIGtQ/khg9gzJfQfDDovN3bPiGEENVOFkUIUZ/knoIFE0qDuTPsNvj+LlUvhBCi3pGAToj6pCADMg85rzPnQc6x2m2PEEKIWiFDrkLUJ3Zr+fVWc+20o7qY8yEvVf3XOwACo0Av8wCFqC1pBWlkm7LRoCHYJ5hIv0h3N0m4IAGdEPWJIQz8IyE/rWydTg+hibXfpqoyJsPvz8CO+WoFs84butwG/R5Vq5uFEDXGbDWzPW07T/79JMfzjgMQHxjP832fp31Ee7xlLm6dI0OuQtQngbFwzQzndQOmec5q4MIsWPIIbP9GBXOgehc3fgR//g9Mee5tnxD13PHc40xcOrEkmAM4lnuMCUsncDz3eDmvFO4iAZ0Q9YlWC036w4Q/oekgCIiGht3hlu9V75an7J6RnwZ7lziv++dryE+t3fYIcRExWUzM2TUHi91Sps5is/DV7q8we9r0jYuADLmK2mcxgVavgg9R/XwCoGFXuOEzNfdM7wuGUHe3qnLy013X2axQlFN7bRHiIlNgKeDf9H9d1m9P305BcYEMu9YxEtCJ2mGzqWS3u3+EpFUQ1kzt8BASrya7i+rnG6Qensg3uPx6T+lpFMID+ep8aeDfgH1Z+5zWNwxsiI/syFPnSBeJqB1pu+GDfrB0GuxfCuvfh5m91T6sxUXubp2oa/wjIbqd87qES8DPQ+YCCuGBDHoDd7S/w2X9HW3vwOBlqMUWiYqQgE7UvPx0WHRv2WEyux0WTYK8iyjZbX4GpOyA7d+qHRyyj5VO+helAqLUzhYRLRzLYzrCiFngF+aedglRWYVZkLYX/v0O9v0GWUfAUvfnnzUNacq0ntPw0pYO5Om1ep7u/TQJwQnua5hwSYZcRc0rzILkbc7rLCZI2wOhjWu1SW6RmwI/3AcHfi8t8w2Gm+ZDg66gk6+jg7BEuO0nyD2pUpgEN1TpSgKi3N0yISomLxWWPa0W8pyhN8ANcyCxn5rfWkcFegdybdNr6dugL4dzDqPRaGgc1JgIQwS+XnW33Rcz+Qsiap6t7EopB5aLYMjVYoI17zoGc6B6Lb8cCfesvTiC2soKjFaPuM7ubokQlWO3w64fHIM5UNvyfTMW7lsP4c3c07byWExqi0BzLga9Hw0DomjYsKG7WyUqQIZcRc3zDYGQRs7rNBrXc6Xqk7xU2PSJ8zpzPpzcWrvtEULUrLxT8NebzutsFtj9U+22pyLy0mDlK/B+T5jZB97tCj8+BMaT7m6ZqAC3B3Tvv/8+iYmJ+Pr60rVrV1avXu3y2O+//57BgwcTGRlJUFAQvXv35rfffnM4Zvbs2Wg0mjKPoqKLoBeoogoy1Re0vNQQ1SnodLJbjaZsXe/71QT4+s5qhuIC1/XZR2qvLUKImmezQm6y6/qMA7XXloqwFMG692H1a6XXKpsV/p0P39+l5v9aitTfDmMyWIvd215RhlsDunnz5vHwww/z3//+l61bt3LppZcydOhQjh496vT4VatWMXjwYH7++Wc2b97MgAEDGDZsGFu3OvZuBAUFkZyc7PDw9ZUxf4pyIGk1zL0R3usJX4yAPT+rAK+mNeoFE5erZLd+YRDTHkbPgb4Pe25qjcrQGyCogev6Bl1rry1CiJqn94XYjq7rm1xWe22piNxTKqBz5vBqMJ6A36bBrL7wYT9Y/iLkyI4RdYnGbrfb3fXmPXv2pEuXLsycObOkrHXr1owYMYLp06dX6Bxt27ZlzJgxPPXUU4DqoXv44YfJzs6ucruMRiPBwcHk5OQQFFRPgg2rFXZ8BwvvKlt3+ZPQ6x7Xub1sVkBTPYmAi4xgzlP7cnrKNlTVwW4/fac7sWxdRHO47Ue1bZcQov5IWg2fX1O2PCAaJvyh8nDWFSn/wqxLXNdf8xb8+axjB0BYE3XtCpY5dtWpqjGI23rozGYzmzdvZsiQIQ7lQ4YMYc2aNRU6h81mIzc3l7AwxxQGeXl5NG7cmIYNG3LNNdeU6cG7KOWdhF8fd1638iXnm7kbk2Hvr/Dd7SrtyNF1Fz5M6xsEQXEXVzAHari52SC49h3wCy8ta3mV2pZLgjkh6p/YTjDmK8fe+YRLYPzPdSuYA9D7OZ8Wc4ZfaNk9lDMPwcHlNdsuUWFuW+Wanp6O1WolOjraoTw6OpqUlJQKneP1118nPz+f0aNHl5S1atWK2bNn0759e4xGI2+99RZ9+/bln3/+oXnz5k7PYzKZMJlMJc+NRmMVPlEdV5Cp0oc4Yy1W+dBCE0rLjCdh7ljHdCPb50LnW2HQ0xdfQFYd/MKg083QdCCYjODlA36R4Bvo7pYJIWqCbyC0uhoadFFTXnTe6jpQF7fi84+EFlc530M5pJEaXXG2f+v2edB2pNpyULiV29OWaM65I7Db7WXKnJk7dy7PPPMMP/zwA1FRpXmpevXqRa9evUqe9+3bly5duvDOO+/w9ttvOz3X9OnTefbZZ6v4CTyEVl9+/dl5hWw22D7fee64rXOg000S0FWVVgfBDYBy5tMJIeoPjUaNSgTFubsl5fMNgqtegbwUOLG5tDy4IVz7Liy+3/nr9H7quibczm0BXUREBDqdrkxvXGpqapleu3PNmzePO++8k/nz5zNo0KByj9VqtXTv3p39+/e7PGbq1KlMmTKl5LnRaCQ+vo51h18ov3A13yHzUNk63xC1EvWM/DTY/Knrc238GOK7g9bt9wNCCCGqS3BDGDtPrc7NTFJ/F4IbwpE1kO18sSK9JqlFX8Lt3DaHztvbm65du7Js2TKH8mXLltGnTx+Xr5s7dy7jx4/n66+/5uqrrz7v+9jtdrZt20ZsrOs5Sj4+PgQFBTk86owzw6GpuyDzsMpZVhWB0XD9p2UXPuj0cMNsCIgpLbPbyk+xYc5TvXiiZjn87pOq/rsX1So918SB1DwOpOaRnmc6/wuEqCFFxVaOZRawNyWX45kFFBVXwzaCAZEQ2wHaDof4HqpnMaEvNHbyd7nddRDd/sLfU1QLt3axTJkyhXHjxtGtWzd69+7Nhx9+yNGjR5k0aRKges5OnDjBnDlzABXM3Xrrrbz11lv06tWrpHfPYDAQHBwMwLPPPkuvXr1o3rw5RqORt99+m23btvHee++550NeiLw02PwZ/P2WCqK0XtD+Bhj4VNW672M6wKQ1sOdHtcAhui10GA3B8Y7bTvmFQqtrYJOLXrqOY8HLu2qfSVRMfhps/hz+ngGmXPW7b3e9mr9Y14du6imzxcq/J4w89t12DqapyeEtowN55foOtI0Lwkvn9rSe4iKSaixi1sqDfLX+KCaLDR8vLTf3bMSk/k2JCqzmNF2BsXD9Z3BqJ2z9AnQ+0PU2tUL/Ysgj6iHcmrYEVGLhV155heTkZNq1a8ebb75Jv379ABg/fjyHDx9mxYoVAPTv35+VK1eWOcdtt93G7NmzAZg8eTLff/89KSkpBAcH07lzZ5555hl69+5d4TbVibQlFhOsfh1Wvly2rkl/uO6TC5vHZrOUP2SamQQf9oeibMfyqDZwywIJKmqSxaQyzK9wkronsZ+6sMocxlp3IDWXq976C7PVsXfax0vLrw9fSmKETAoXtSO3qJhnf9zFd5vL5oG7oWtDnhrWhkDf88ybrqozozPVkcZKOFXVGMTtAV1dVCcCuqyjavsVV0Of96yF6DY19/52O2QlwV9vwe4f1KKJrrdD51tOT+oXNSb7qEr87PJ3v0b1ropaY7JYefqHnXyz8ZjT+jsvSeSJoS3R62RyuKh5h9Pzufz1Fdic/PXWauDPR/qTEOEir6io86oag8is9rrKlFP+PLaswzUb0Gk0ahHF0Jeg/+OAVnWtyx+smmcylv+7zzwsAV0tyyuysPmIi7Q/wMbDmeSbrIT4yfdD1LzsQrPTYA7AZofsAjMgAd3FRvpM66rzJXmsrXkLesPpJfcxEszVFq/z/O4DZM5KbfPRa4kNcT0vqUGIAR+9XE5F7fDzLr8vxs9H+mouRnIFqqv8I6H5EOd1QQ0c04yI+sU/QiX4dCYoTrbZcYMAHz339W/msv6ufk0w6OWPqKgd4f7etI1zPhTXNi6IcH9ZtHYxkoCurrKaoff9auuYswXGwrVvg0Z+deSnQcoO2L0Ejm9SW5XVB2cSfMZ1diwPjFHbhMmCFLdoGRPIE1e2RHtW56lOq+GZa9vQJFKGt0TtCQ/w4f2bu5B4zjy5xAh/3r+5C+EBPtX7hsWFkHUEDvwO+5aqKT+SRqnOkUURTtSJRRFpe+GTwTDgv+oPeNZh9QfdZlUrX4e9pVY8XqxyjsP82+H4htKy0AS4eT5EtHBbs6pVXqragi19v1qIEtJYFqS4Wb7JQnqeiV0njWg1GlrHBhIR4CNDXMItThmLOJFdyLHMAuLD/GgQYiA6qJpTlhTlqoVxP00u3fpL6wWDnoXON9fNbcw8nKxyrUZ1IqBL2QGz+qr/9/JVw3BFOSonGahs3i2vdE/b3K3ICAvvhr0/l60LTYQ7flXBrxBCiAtzcht8eJnzuvFLIOES53XGZLXAS6s/vX9tSMXf02ZTu1WYc0F3+u/fRbRXrKxyrW/8QiEgSvXSWIpUj9QZGq1K6Hixyk+Dfb84r8tKUhcSCeiEEOLCWEywtpyk/KteUwnrfc8KOky5cPhv+OX/SrcLS7wMrnkDwl3PQy1RkKlu1n9/GvLT1d+71sNgyAsQUs+25KxmMhGrrgqIhaGvOq/rfV/VVrnmp5++a6rE3AebDfJOqbslSx3Z5qi4QOXJcyU/ternLvkZ5VX9HEIIUR8UF6mbZFdyjqkOh7Ol/Atzxzju/Zq0Ej67Sm1lWB67HfYvgx/uU9diUFtR7voBvh4NuSnlv/4iJz10dZVWC00Hwu2/wO/PqC9JSDz0+z9oMsDxjuh88tLg0HK1jVR+GjTuC5c9DmFNy9/Cy3gSdnwPmz5Rk2JbXwO97lNz1cpLq1HTfILAy8d1gBlchbu4vDQ4vErt0JB3CuJ7Qf8n1M9IX81zUoQQwgNkFHsRGNcd7+MbnR8Q18VxKLQgE5Y+6fzYvFNwdG35vWy5yfDHM87rzuxpLaMvLkkPXV3mG6g2RB47D+7fDLctUXu5Vmbbp4JMWPYkfD9R7cOXlwo7F8IHl8Kpf12/zpgM39wMS/8LmYfUF23DR/DRALVAw50CoqHHXc7rEi5V9ZVRkAXLX4Dv7lCBc14q7F4MH/SDlH8uvL1CCOFhTmYXMuqDDaQ0H6tuoM+l1cElk1XO1DOKCyF5q+uTHlxe/psWF6iOBJeN2lL+6y9yEtB5Ar9QCI6rWkLZ3GT4Z27ZcmsxLHkE8jOcvy5lu/MvT2EWrHm7bDd7bdL7Qp8Hoc9DasEIqHkWbUfBqA9U72bydvjlCfh+klpmn1tOSpO8U7D5s7LlNota2ZWfVjOfQwgh6iCbzc6Sf5M5klHAE38aSRm1wHH+W0hj7OMWqt2EzqbVqdRaroQ3Lf+Ndd6l13RnqjL6chGRIdf6Lmm167qTW9UWY/7hjuU2K2z90vXrdi1SQ7/uzIcWEAWX/we636km4Xr7q3mFtmJYN1Oldjlj+1w1cfemec7bfGy96/c5tRMKc2pvZw4hhHCznMJiFm09AcCapBxuNPrxaN9PaB1iQWO3k2b1o3VMC4L0escXBkRD34fh50fLnlSrgzbDy3/jgCjofCts/LBsnbd/2byswoEEdPVdefO/NBoXCYo1assvV3Q+1InOXS9fCG3sWJa83TGYOyNlO2z6FC57AnTn/LN3NpxwNm0d+KxCCM9kylW9/BkHVVASHK96sc69DlXSKWMRKTlFZOSbaRhqICLAh7Bq2iFCq9Xg41V63TucUcD9i0v3l+7WOJRPnSVa0GhU0HZ8E2z/prTcyweu/+z8u9x4+cKlUyB9r1pIcYZPENyyQJKqn4cEdPVdwqXqS+ZsVWizweAbUrZcq4Vud8D2ec7P2fX2uttj5Wx4+YxNn0K3O8tumxbfQwW2dlvZ1yReBoaw6m2jEOLikJcGf70O62eVXoN9Q2DMF9ColxpirIL9p3K5ffZGjmcVlpT1ax7BK9d3JCb4whdxBRv03NY7gS1HtzmtH983gSCD3mkdAVEw9CU1vy55mwrGotuqxQznu3kGdX2+/lM1l+7UDnW+iJbVEgTXd/LTqe/8IuHyp7Dv/pHUnneSbwjBW6Mj9Mg6/BMHqMSNzhI+hjeDTrfAtnOGXiNbQ+dbQKerleZXWmG26zpzHuAkaAuIgqtegyVTHMsNoaq8Mgkx6zKrRc0lLC5UPbcB0RW7wAohqmbfr2oKyNmKsuHL6+C+9WXnoFVASk4h4z7ZQIrRcR7zqv3pvL50L88Ob4uf94X/ae/dNJw+TcNYczDTobxvs3B6JJznJtcQqh5Rrar25v4R6hHboWqvv0hJQFffmXMxhjdh7eVTeHXrW5wqOIVOo2Ng/AAe0euJO7nN+URT/wgY9Ax0ukmtbi3Oh45joVFPCKrD20+1HQn/fO28rtlg8AkuW+4doFYPN+yuUrTkHIOmg6DVNRDaqGbbW1vy02DLFyp1TVGOGlLvejv0fUjSAAhRE3JPwSoXuUStZtj7i8opWknHMgvLBHNnLNp2ggcGNqdR2IX/aY8K8mXGmM7sOGnk6/VH0Go03NSzEW1ig4iq7u3FRLWQgM7T5aWB3aruhpz2ttjZrDHz6N/Pl5RY7VaWHv2d/dkH+bj7NKJcnTsgUj3ie6iFEnUsH1tBcQF5xXl4a70JOTN0HNNeLYBI2e54sN4Alz/pevsY3yB1N3jVG2phRXV+1vP+jmpYcRGsmwWrXzurrBDWva+GNYa9VX96IYWoK2wWyDnquj51d5VOezJHDbM2DDUwonMDwvy8OZSWx6JtJ8kzWSgyW6t0Xmeigny5PMiXS5pFoAH0XjKfuC6TgM5T5abAvt9g/Uy1q0GLK6H3vRCS4DCJPw07r+3+3OkpkoxJJNkLXQd0Z+j06lFHmK1mjhqP8uH2D9mSuoUIQwQT2k+gS3QXwoJi1WrWTZ+p3jZzHjQfAgOmVWzbGZ2u+oaTc1NUypT1M9XE6OZXQJ/7yvyOalzeKVj7rvO6XYvg8mkS0AlR3bx8IKqtmgfmTOM+VTptYoQ//3dFS8IDvJm34RgpxiLaNQjm7bGdWbD5GH4+1T8dxlsCOY8gAZ0nyktVm9MfWlFatvEjtYjhruUOgUuRFo7mur5L3JKxk57xLjZerqN2Zezi9l9vx2K3AHCq4BSTV0xmbKux3N/pfoKC4tROGN1uB+xqmLW2N3bOS4VF98DBP0vLNn0M/34LE5dDRAWCy+pSlF1+3kDjiYt7b2AhaoJ/BAx+Vs2XO5dfmOtN7c8jKtCH9DwTv+5IISbYl8JiK8t2neLPPanMuqUr0UEyL/ZiJWG3J0rf7xjMnWEywvLpYC7dq9VL64Wfl1/ZY09rEHCeZeRAck4hv+5I5rHv/uHtP/ZxMDWPArOlKi2/YBmFGTy/7vmSYO5sc/fMJb3w9P5/Oi+1xD2ogeod27cUFj8AfzyvtpApMtZwQw84BnNnmIxqVwpzJfbTvVB6179/wPlKZyHEhWvQDUbMUtMtzojpAON/Pn+S3IIsSP4HfpsGPz6scormnsJutXBzCxuft/uH9wM+5asu+/h1fGNaRvvzvyW7yCoortGPJOou6aHzRP/Od12350cY/JzKdwRE+EYwpuUYPttZdicEb603XaK7lPtWxzILGPvROofl8W/+vp8ZozsxpG00hmpYTVUZueZc9mXtc1n/b9q/NAk5a+VYzgl1h5x21nyV1a/BlS+rBR+V2RO3Mv79znXdnh9hyP9Kfkc1zi8cGvWBo2vK1oU0gsBKbpUmhKgYQwi0Hw2Jl6pddnTe6vt4vu0bCzLhrzdgzTulZZs/g043E93pFrTzR5b0uofzFeG+wXwycgGjf8glp6CYqMC6Nd9Z1A7pofNE5W2NovNWeedO0+v03NLmFnrF9nI4zFfny7sD30WDhjUn1/Bv2r+cyj+F/ax8dfkmCy/9sschmAOVTmnK/H9IzTVVz+epBK2TRMhajZa7Wozlp35vMcTurZJa5pxQiwHWvOMYzJ3x6+Pl7xl4oc73O6pNfmEwcmbZbXcCouCmb8vfqkcIcWF0OpVQN6Y9RLas2F7cGQcdg7kzEvuhnX9r2SkURTnELr2bxy8JQ3vW9V9cXKSHzhN1HKMm2jutG6vuAM8S5RfFy/1e5lT+KXZl7CLMN4ymIU35NelX7lpWusl9pCGSdwe+S6uwVmg1WjLzzfy6M8Xp21htdjYmZdI4vJZ6mU4L9gmma3RXNp/aXFL2Vvdp9Nz7B4alr5Qm7/SPhPE/wRbnC0IA2PNT1fMknU+H0bDuPed1HW+q2EW9OoUmqGGerCRI2wuhiWquZXAdTkEjxMXIZlULus6l0ahefVd7S2ccpGuEFR//urOATdQu6aHzRCGN1Y4HZcobqU3rNTrIOQ7p+yD7GFiLCfMNo3V4a65rcR2XNryU3w7/xjvbHO8A0wrTmPDbBFLyVRBntdmx2pzsMHFaTlHtz6ML9gnmyV5PEuSthkp7RHejS+oBDNvmOu6GkZ8GafuguMDFmYCCjJpraEgj6HGX8/K+D7onfUlgDDTqDV3HQ5PLJJgToi6yWdVCpnNpdGApf1Qk3KAhzF8WRVyspIfOE/mFwYD/QPvrYf0HKlFsu+ug6QC1z+qat+Hvt9RFwScQet4DPSaonQGA9MJ0Zu+c7fTUucW57EzfSVxAHAE+XjSPCmB/ap7TY3smumdLrCbBTZh3zTyWHllKT794ghZMcn5g8jZofAkc+ct5fcuraqyN+IWpfWPbjiz9HbUdBc0uP/9+hkKIi5eXt7qe7/3FsdxmUav1tV7q/8/lHYA+sJZ7/kWdIgGdJ7EWq8myWp0asvMNhYgWag9S/0iVLHb5i7D2rJ43Uy6sekVlLb/yBfAJxGw1YzS7XuWZZEwCICLQh+eGt+Wmj9eX2Qp2QMtI4oINNfEpz0uj0dAwsCHj246HrCOQn+78wC1z1IbQX45UP7uzNehW86k6/MPBvw806KouwLW1CEIIUfssJrX1oNZLffcvRKM+aluwzEOO5Xt+hr4POyYJP2PQM2hkPuxFTYZcPUXWEfjzf/DZlbDgDkj5F1a/Cp8Ogc+vUfsFGk/AhlnOX7/tC5UbDfDR+RBpiHT5Vm3C2pT8f8f4EL6/pw/dEkLRaiAywIepQ1vx8nUdCAuo5cn959BqtGj1BjWM6Ux+GqCBiX9Ck8tVIGwIVTnqxnxZe1teeflIMCdEfWWzqcBr6TR1Pf5yJGz/tuR6WyXBDeC2H6HXPWprQq0XtL4Wet8PvSbBqI9UwKfRQGQruHGuGrGpQwngRe3T2O3n9r0Io9FIcHAwOTk5BAXVUFqLysg8DB9fruZ8aTQwdh4seUTtOXq2G+fCN2Ndn+eOpdCoJ3a7ne/3f88za58pc0i0XzRfXvUlMf6OwU52gZlCsxWNVkNUgA9abR1aSbX9W/h+YtnygCiVxDe4IRTmgDkXNFrwj1J56oQQ4kKl7VPXZ1OuY3mrYTDsTTV6UlUWk7ru2+3ge06C9NxTqudf5622aBT1RlVjEPmrVtcVF6k5cWcm8CdeBof/KhvMAZwvxjrdS6TRaLi80eVkm7L5YPsHFFpUWpJ2Ee14qe8LxOSkwOq31V1h+1EQ3IgQvzBC7Gmqp3DtQhVYth2p7h73LYNG3VXC4xNbILotNB2oAqnaCJyaDYIrpp9O2Ht6vl9sJ7juo9L5aoZg9RBCiOpiyoU/nikbzIHKN3nJwxcW0Hn5qATpzrgjf2RBplpwt/N7KDZB2+GqpzDgvBtIejyjyUhKfgq/Hv6V/OJ8BjUeRGJQIhF+dWfeovTQOVGneuiMJ2FmH5WUEmDgU/DPXBU8nWvwcyqh7bkb04P60t3+q8NFoNhaTFphGjmmHHx0PoTqfAld9hxsn+v42m53wiVTYNmT6ot8tnbXQ9+HYM61pW0E0Bvg1sVqrlpt7FtqLYbcZNUGL9+KJe8UQogLkXMcZrRX85id6fMgDHm+dttUUwoyYNVrsO59x/JmQ2D4O7U3hcUNckw5fLnrS2Ztd5zS1C26G6/0e4VIv+rtIa1qDCJz6DyB9qxeLpvV8fnZ1r4LQ18qu6VMQDTc8Ln6QuYmlxTrdXriAuJoHd6aJiFNCE36q2wwB3BoORxbVzaYA9jxHaTuLptIt7hQDf+e9X41SqdXc+liO1Y8eWc9l1tUzOH0fNYdzGDHiRxO5ZSzn6sQomq0Otd1Gq2aS2c11157akr6vrLBHMCBpbD/99pvTzXLzDex71Quaw+ms+9ULpl5pb+z47nHywRzAJtObeKXpF+wuQroa5kMudZ1/pHQ6Wb4e4Z6vn8ptBmugqhz5aWqORd3LlV7iZ7apYI5uxW+vVUllQ1ppObgRbdxfG1+Bqx1kQi39TDY8KHrNm7/BlpdDRs/Puec6ZCbIvnO3CAt18Qrv+7huy3HS1YoNww18PFt3WgZHYhGsskLceH8wtQoxT9OboQB4nvA+73h6teh+SA1RcUTWcwq/ZIr696Dlld67I30iaxCHvxmC5uPZJeUdW4UwrtjOxMXYuC7fa63cvxq91cMTRxa7b10VSE9dHWFuQCyjqotX3JPlZbr9NBjohoyBTi+EaLaqm1kztVkgKoLilMJZDVa+PkRWHCnCuYAso/CnGFqqOBsNovaON4ZvUHlUXOlKMf1BvDlJfY9j1RjEUnp+RzPLKCwuPaTGHuqYquNL9cdYf7m4w7pZo5nFXLTR+s5KT11QlQPvR/0f8L5cGPncXBiMxSkw3fj1eK2qjLlqvnLGQdd7xQBpBakciTnCCfzTmJyloS4uFD9Dcg4oG62K8pWrFKyuGyfUY0eeaCsfDOPzN/mEMwBbD2azeR52zAWmck0Zbp8fV5xnvTQibPkHIM//gc7F6i5YGFN4MqXVC4i30A1sf+2n+Dgn7B9HuxcCCM/hFM7YesXagi2x10Q17l0jlxuCvz5nPPJuvnpqvfu7AS3hhBoPgTWO0l7cnIrNB8MaXuctz/xMji+oWy5VlelJLq5RcWsT8rkuR93cTSzAL1Ow/BODZgyuAVxIe7JfedJ0nJNfPpXktO6zHwze1OMNJCfoxDVIzQB7vwd9v4Mu35Q19K2IyHrsEo1BWqV6rqZcM0bld8lJjNJpUTZ+7OaqxfVRvX4xXUquZHOMeWw9uRaXt/8Oin5KfjofBjRbAQT208k2v/03wTjCVjxsupNtJrVjkND/qeu3+dbMObtD21HqOk3zjQf4rGLzjLyzaw75Dxg23A4i+yCYoYmDOXPo386PaZvXF8CvQNrsokVJgGdu+Umw8rXIKadGrYsSIeMQ3DkbzVcGtECvP3UsGWXcepCodWpXrPoNtDqKkCjjjmbxeQ8mDsj4wAwpPS5lw/0nKS+7Of2xqXsgCEvwtYvHRc+gBoSbnOtCjT7PKDyvKXtURe27ndVaYXXpsNZTPh8U8nzYqud7zYfZ8eJHD6/owfRQb7qAnlm5a9fuFp1KwAwWazkmlz3aB5Ky+fyGtrCts4y5aneYm9/yQkoqs5mg8LTf/zPvu6ExEO7G06vAj0GvzxedmvB9L2qh6y8gM5arK6xOr26luYch9lXqcVxZ6TugtlXq/yacZ2xWm2sOraa//w9teQQk9XEvL3z2J+1nzf7v0mYtRi+uVndnJ+RfQS+HQejv1DX8PNpdjpzwbmjO94BKj/eufOoPUSeqbjc+sz8YjpFdaJRYCOO5h51qPPV+TKp4yT8XI1Q1TIZcnW3whxo3Fv1ym2do3rPGvdWiYMX3AE/3Kf+v1ilFsEnQAVzZ3j7lw3mAPS+an6HK9Fty5aFNIYJf0CbESpo9PJRwwa3/wzhTWHC72pLGq2Xyn3UdhSM/QZ8gmDoKyplybavwA6M/wV63euYN6kC0nJNPP/TLqd1e1JyOZZZADkn1OTcz4epx7r3VZkAwNdLR5i/66TPrWLqxt1krSgyqmkKC+5USbkX3g0nt6kAT4jKyDmu5oqdue6sn+V43dH7QNpedQ10tk90bGfXNxN2u+qJ++NZ+GwofDkK9i9TKarODuZKjrfB329zMjOPLSePMGPrm05PuyV1Cydzj2FP3e0YzJ1t6TQwVmDxWnA8jP8ZuoxXwZtWB62uUYFlaML5X19HBfmWn4w52KAnxj+Gj4d8zNhWYzF4GdBqtPRr2I+vr/6aRkEuEtu7gaQtcaLW0pZkHVFf4Ibd4NeparFDTPvSbvozNFq4+TtoennFe6JsVnXB+e0/ZeuC49XCCVf5jUx5pb10fmGlAWTuKdj2NYQ2Vs8P/K6CObsNNpwzYVbnDXf8qra9qoQjGflc9uoKl/Xr72tF9A83qhVXZ4toAeMWyQIMwGqz8/mawzznJDCOC/Zlwb19iHXTtm21ymJWK7MX3u1YrtHADXPUXr6SYFpURM4JlZop44BjeWQruOX70utO8nb4sB9l9krUesE9ayGyhfPzZxyAjwaq/bfPaDNC/VvNPASGMMjY79A7dvKmP7lxkZH/DA/n/9bd7LLpT3V+mBvyzfDbE64/3wNb1E17RRQXnQ5Y7eAbUumb9rrGWFjM/323nd92lp1TOLB1FG+M7kiwQd0gm61msoqysGMnQB9AQA0tcpHEwp7GYlYBV5sRsOj05vIdx6rVqOey22Dx/ar3zFUQdi6tDjqMVhNZ17ylhmAB4rrAVa/CzkXQdAAExpWd++AT4PxLmrJdJdE8Q6OFm+bBVzeUPdZqhh8fUkFWJVY+eek0GPQ6CovLTrDtFB9MyLE/ygZzoMr2/wbd7qjwe9VXOq2G4Z3iyCksZtbKg5gsasJu+wbBvDO288URzAHkpcCSKWXL7Xb48UFo0KVKczzFRcZuV0mCzw3mQE0vOfAHdD193Q5vBjd+o67XZxYvBMXByA8oCmxESno+f+w5xdGMQro0DqFZVADx/jaC/njeMZgDCE2EVkPV3OncU+qG3zcIfvsP1vCW/HBIy9HMAiIDGuKl8cJidz7NIlIfBN7lLE7z8qnclmF633p14xxk0PPstW3R6zT8/G8yNruKo69sG8PTw9qUBHMA3jrv0jmJdZAEdO5SkAE7FkKjXmDOV13xhVmu8xUZT6r5GRUN6EDNX7v0Eeh8i5qbV2RUq67mjind0H7ANLWK1hBS/rmsFrXZ/dlCE5ynTzkj5V/1mSoR0EUG+HBj93g+W3O4TN3VzXzx2eEiPQCoBSJtRoJfaIXfr74KD/Dh3gFNub5rQ7ILi/HVawn38yYsoJITsj1ZXqqaN6fRlO0xKcxS3wEJ6MT5FGaqkQlXts5Rc9AMIWr6S/MhcNfK01s1asEvDLMhmr8PpHPXF5ux2tS/xc/XQuMwPz65tRNB5y42SLhU5dP87CqVgeCMkEYw/H2yUo6wYIORBwbFcbxgP5c3upylR5aWaZrBy0ALrwAI8FfDpBYnK9w73Hhhu1nUAzHBvkwf1Z5HhrQkz1RMgI+eiABvAs8zHFvXSEBX2yzFkH9KzVm48Su1HBxUL1x5CSpBBXvHN6nFEoGxFRsu0vuqi8DeX+DXx8vWL/+fWsFq6AS5qZCfqvY89Y8Ev8jS3jsNZdtnt6kLVnnOV38Omx2u6RjLtmPZbD2WXVLurdPSr0UUHC1nyFmjk8URZ/Hx0hEf5ke8qwOsFtWLlZeq/mgERKuH3jMnN5/NbLGS6p1A6qi/0GggiiyiNr6K/sjK0oPk34rbpOeZyMgzYSyyEO7vTXiAt0NPSN2iUdcWV7Sl1x2L1capXBNpuf7Y7H5E+HujtWgoyCjgni+3lARzvRODeaxPMNHabHxzdmEdOx/d6pdVbx9Ar3vguzscgzlQKUfWvY+9z1ME+ubSprGJp9Y/zRv93+Cw8TD7skpHLwxeBmZe8jJRy15QU2CGv6fmZJ8d1MV1hssed5yXfZEK9NV7XAB3LgnoapM5Hw4uhyWPwLVvQfZxNWfON1jNWfP2V1+sMwsgzhaaqCa1Lpmijh8xE5r0r9iKvbxU5xm+z9i5SK1UmndzaWoSjQbaXgdXvKByLGm9oOvtKmXKGVmH1V2ksx4QUHMDK7nyKSPPxJ2zN/Hw4BZMuLQJu1OMhPrpaRzuz+ytp3i60+34ntjs/MXdJ5y/p1EoxUVwdC18d3vpymUvXxj8vBqq9+CfY15RMb/vTuW/C/8l36yG7gN9vHjlqhe5LHAmfju+VHtPXuS9Eu5yJCOfSV9uZndy6Sr8IW2jee7adsQE18GbCb8wde07ucV5ffcJ4BtMYbGVNQfSmfztNoyFKhAz6HVMu7o1Oq0Gs1VNfbi+fRhTWyYTvuSm0rnK3v4w4L9qfvO+X1XaKWe9aQAH/8Bn4KtMuDSMP0++S5G1iCdWP8HDXR7G39ufA1kHiDBE0CioEQ20gXgd31j62hs+U3O389Mhoa9aHBdQd4cQReVIQFebsg7Dt7eoYU5TnlowoAFu/0WtcCougqvfLJ1Td0ZQAxj1ker6H/2Fyvn291tqIYBWB1q9+uN0ds9K3ikVQGq9VH1xkRpe6nkvNLlMXUCsZrBZKNb5YdR5k3fTXKw2E/rCHEJ3/UhA1lE1N82Up4YSIltDy2tg70+l77NjAfR7DFa+7Nhm7wBVfmgFdLqpwr0hVrud7MJinlm8kwAfLxqF+ZFnsnA0U80Bub9bXxo06KqGjs/WoKvKpyQqJucYfHW9Yw+ApQh++T/176ppf7c17Qybzc6p3CJMxTa8vbREBfrgpTt/j++h9HwenrfNoSzXZOHeRUf4+bb7aL3/B5XHMaD+7j1ZV6Uai7hj9iYOpjmuMl668xRBvnqeu7Ytfj518M9S80GqN+uslaL2Bl1Iu3QKRdFt0OclU2z25+4vNmE5K8dsYbGV2WsOM7aHWgnp46Vlcjdvwr+5w/Em2JyvFrDdskBdc8tL5G63k5yRRVxIPLkp6jij2chz654jUB9Ig8AGGE1Gim3FfD34EzJvXkqu2Y4WG6EHfyHg8O/qWt59QqWDObvdzqlcE0XFVrx1WiIDvdFjUwGotVj9DQqMld5vN6mD35x6ymKCte9Dwx4q8Fj1MvS4W83N2POj+jJEtYaBT8PE5WqblaxD0GIoJPZTS8uPrlVflEHPqZxvX49WK6C8fNX2YJc+onrvjm2AXx+D9P2qq73DGLV4wZynArmTW9UE3LXvQW4yep9AQnpMJKVpP25ZNQUbNvo16Mej/R+l8cL71WKIgCh1Bzn0JTUBeP0s1ZMY30vd6cW0h+3fqiG8uC5qHskfz6k8e00vh6DYCv2Y/L29aB0byO7kXPJMFnYlO+5ekUooDcZ8pfL0bf4M0EC329XOGBV8j4uezaZyCp47nHPGihchrqPKg+UmmXlmftmZzIxl+0nLMxHk68WES5swtkc8kYGue3EKTBbeX+Fk8jrq7+dH2wqYfvd6fALDQStZm2pbirGoTDB3xqKtJ3jw8mY0qosBXVAc3Pj16evObLI7jmGVnx9vb3+LU+tP4eflx/XNb+Stm6/i4a8PUmwtDdaOZhbQNFKNpFzVJpyIHZ86H9EAdd0f+pqa8+xKcDwnCr344O8DjLh0IH+f/LukKrc4lz2ZapRlZMJQgvcvIz3yMq6bd5TMfDODWl3Df0bcT0IgpUnoKyi7wMzyvWm88useknOKCDF4sfj2FjTcNwfthg/V35egOLj8KWhxRflps0SNkCtabSkuVAFa/yfg82ug/Q3w6xMqrYL19Dy61N1qQ/v8NLVY4oY5kHCJynl0dK06JrKV+qLMu0UFc6B6VjZ9Ar88poK5L0eqYA5UL9zWL2DxAyoR5uo3VcbwpdNUsAVgykW3+g2arfuYh9rchs1uY8XxFdy24iFODn5KHZOXqlat/vstJPaHMV+qILHb7bBtrpqb4RMADbur5fVfXQ/J21RPYSU2pg4P8OGZYW2d3uB1axxKw1CDCtzaX69y4I2dq3LjVWaxyMXOaoZTO1zXZx5yPuxfS8wWK3M3HuG/C3eQlqdWZxuLLLyxbB+v/rYPY6HrRKCFxVYOpua7rN+fVkShb2S9mCfoiVLK2XbOYrOXDJHXSUFx0P4GrGO/4TeDN/9d9yynCtQ2jQWWAubs/pSfT77HvQMdr0Umi40jmQVc2jyCxGAtPll7y547NJHcSx4ms/lALNmH1IKzllc5bYbtiulszPBmfVIWEV7tifEv29Ns8DJwR8I1GJY+SfyPN/LesFhsdli6O50bPvuXE5bK5aK0Wm38/G8yk+dtI/n07/DBvpHErPoP2r/eUMEcqMV7iyZh37EArHX4d1lPSUBXW/R+ajXRtq9VQGYxO18Gb7fDypfUXAqTUa0sPXs/1G53wOrXnb9Ho16w1EneOVBB0PZvoN1I1TPnhM+enxgY1h7t6YUMGUUZrDIeVOkdzlj1mlrU4e2vegMBYjupIYJtX6tzH/hDLZgANczrVbnJzu0bBjP/7t50aKjOH+jjxb39m/LuTV0ce2d8AtVDVI6XT/n5ASNbut6btxak5pp498+DTuvmbz5GRr7rGwQ/H125iZPbxgXh510He4AuEuVtOeet0+JfF3vnzpFanMfbW99xWrfq5HI6J+jQaR3vSFftS+PBy5sTHx1OYUS70gqtjoxr3uDPwY9zX3ESdyb/xrs5uzhuLcQ+7G24/MnSnvKoNjBuEdoml3FH3yY8cWVL3vgllae6vsuwJtei1+rRoKFfXB++vuQVGi59Wt3sZx4iofiAuhlGJW9ftb+cHkAnTuWaeOW30kBUp9UwqCF4H/jZ6fGa5S+Qm7mfnPKGjkW1q/vfnvrCy1sNC65+Tc1fOHuiKqgvbVQbFbyd3ArBcbBvKRiPQ5MBKv+QzgfCmpb2zJ0rpJHrNCLR7VQ+owZd1XvF91QT37VeqqeuKAf8IgnU6ukT24d1yeuw2C2szPiHkdHt8bFZVfCUtkelTwk5Kzt2gy6q968gA0KbQIvBKv/dzu9hwH/UnIpK8PP2oltCGLNv70Gh2YJWqyEiwAd9BeZPiQrQaNQw/N8zSvMTnm3ANLcuisguKHaahxDU/c7J7EISI5wvBjLovbinfzN++je5zKiWTqvhjksS8faSf0fuEhXkS9u4IHaedJxK0TDUwB19E4kKrKsrXUvlFudiNBud1hm8DNi0eVzftQHfbzlRMvR6Q7d4Xlu6ly6NQrii5yTY/gXYLGQNnMarxn/558heYgNiKbYV88meL5l/aDFfXfUVCX0nQ+ebAa1aMOerksxG+sLEfk25oVtDrHboEnY/D0R0B62OgKMbCPxmvJomk3ApZCURcuxPmkeN43hWIX7eWkzFViwWG14V/C4Yi4rJLijGoNfRrkEQQb56fLLP6ZA4s8AvfR/kpZKefZA/k//m5jY34+uh24J5GrcHdO+//z6vvvoqycnJtG3blhkzZnDppZe6PH7lypVMmTKFnTt3EhcXx2OPPcakSY6LCBYsWMCTTz7JwYMHadq0KS+88AIjR46s6Y9yfoZQ8ItQd01n8l95B8CQ51WwdGyD+kIMmAZ6f2gxRO3x6hMM2FSgpzeoHhZnf4itxapn5ewePVDZvJsOgLxTJEe1IGPMJ9h03tiBA9kHaBrSFK1GS545jw0pG+gY2ZFxbcax8vhKGvrHkhLahr9TWpBqzqZ37wk08QvGYX1gSDzc/hsnbQUk20ysOvEX3rpGDLzsYaJ9wqjqTKwwf28oZwsrpwqz1QTd/b+p4d4mA9Qk/zO7W5jyVAC77zcVgDY5vZAi6wgkXqoSLTsZjjuZXciOEznsOmnkxtbeRJiOoDm0gmJDFAWN+5Orj8DL159Uo4k/96Ti7+PFoNbRBBm8yMgrYumuZAqKLQxoGUHjcD9sVj3/HM/h3+PZNI/xp3mMjvTi/cQFxLIncy+NDJ04mGJj/6l8WsX50aFhCHuMa9iftZ/LGg4gRJfAhsPZHEjNpV0Df9o3COFIwTb2Ze3j0phrSM7Usi4pg/hQAz2bhPBP1kpiDQkE6xrzx540YgN1jLp5Ed6LJpZmn/cNxjT4JXIDEll/cAntI9uTa85lb8ZBEgO68M8REyk5Zvo0jaBFTCDossnOh/2nCvjnaD5NIgK4ppkvgaZT2Pf+jE2jxdp8KPsKA/hpv4keCWE0izZgIY0Yix2vE1sh5V+sMR3QNegCFjM+ASH46MvPvh7oW/5lKyHCj49u7cZj320n83RvXmSAD6/d0JFGYdXf83jKWMShtDz+2p9OVJAvl7WIJDrIB4P0BJYRGejDB+O68si3/7A+KZP4MANTh7amwGzhQGoeS7an0CMxjNhg3wotgHEHvZOBLS+NF/e2f5x4Q0c277UTH6Th+0k9WXMom5YxBmKDDQxoGUmK0cQmYyQt79pO9KKxpMV343JzP9oE+HDwlJlLYvQ07mDl/Z0vMuufD5jU9glOZnuxal86Qb56ejWx4uutI8qgJaL4JOH7foaiPGg3Cv8fJ0NBJpb4nhy//iM25R7mcOEpOgbdTIuQFvgut/Px2FY0ighm1b5U3vhtB/1aRBETpCfano73waVoC9KxNhtMhj6Or/7Np1G4H10TQtBrtDw6pCXNogLYeDgTP28dweFqDl5Rs6tI6f44q49bOZlnp097PS20J2kY2oLbfCPQrnwVq96PUy1vIcmoYfWBDEL89AxuGU50/j7MFisnvBP5fX8O3l46BrWJJibYQLCh9lKI2O12TmYXsvVYNjtO5NAmLpgujUJoEGJA40ELPNy69de8efMYN24c77//Pn379uWDDz7g448/ZteuXTRqVHZ/tKSkJNq1a8fEiRO5++67+fvvv7n33nuZO3cu1113HQBr167l0ksv5fnnn2fkyJEsXLiQp556ir/++ouePXtWqF01tvVXcRHs/lHlj/MLhy9GqFWrq15zXBIf0RyGvQ1H16ktvKJawfd3qUCtw2iVE+kfJwl2245Sq5bWzywt03nDmC9g69ccuvz/2JV7hKTsJGIDYvlw+4c81espcsw5/HToJ/468ZfD6Z7u9TR+egNT//oPNnvp0q0WIS14b9B7DnM3juceZ/r66aw6scrhHBPaTWBc23GE+dbCBNnCHNj3Cyy6p3TIF9TS/Bu/Vj/zHQvhxwccX9egK1wyWeV9GvOVCvLO2kD7UFoeYz5YR3ahmR/GJdJ6+QQ0Z89B02gxDf+Ij08159XlpVvz3HNZU+zYmbWytEc1LtiX10d35L6vt5YEG6CGlT+5vQOf7nuO0YmTeejLJHJNpYsWQv30zLg5gbmHZjCi4cM8/PVBiopLP2NUoA8zbm6MXWNl6rzkklXBAHqdhm8ndePrDUeZv/FUSfnAVlG8emUU+VmnsFstpNsDeXOdkZ0pBXw1oRtLk+ewM20PQ6Ie5In5SVhspZeK9nFBvD6mPXd+voVjmWq+3XvD47n86NsYds93+PHmdb6LRYFjmbY0mb7NIpg91Bf9F8McV/IZQim86Qe0uxeT3+0+bv96F/8cLztcExPky6L7+p43vYXVZueUsYjMfDMajbo5iA70Raut3ovzyexC7vx8o0MKDq0G3hnbhctbR2HQnye35EUqK99MTqHqib310w2k5ZbeoPp56/hqQk86Ngyp9t/XhcrNOoz55Gb+c/wX1qSsLyl/usdr/LwhiD93Zzoc//Kodhh8NEyet6MkBx1Ai6gAvhjfkeP5BUycvbPMteDtWxLx0pt47acch++BRgP/uao1BaZixsacJOq7EaqiyQBo2B3r/qVsHzSVu9Y+SZG1dL5itF80swbMYfM+I0/8eNCh97pzfDAzL9cS8+3VJddNS1wPdvR9m5FfHsLHS8uvD17C9F/38tvO0uvHgpsa0W73G6xu8gh3Lzzq8PmaRvrz+fXxNPyyL1iKSLnhRx5YYWfj0dLvCcD/hrXAYoNnljju/nN3vyZMuqwpoZW9oa+iPclGxny4jpyz5ucGGbz4ZmJv2sTV4PafLlQ1BnHrLdAbb7zBnXfeyYQJE2jdujUzZswgPj6emTNnOj1+1qxZNGrUiBkzZtC6dWsmTJjAHXfcwWuvvVZyzIwZMxg8eDBTp06lVatWTJ06lYEDBzJjxoxa+lTlyD0JPn6Qugc2fKQWFhxaUTa/Ud+HVK66kEYQlqAWNJzpddu5CNqOgJgOjq/R6dVK1z4PQIPupeVthsPORWQ26sF7O2eTXphOx6iOvLDuBW5ufTMLDyzkVP6pMsEcQLR/dJlgDmBf9j4+2v4RptO9hIXFhaw8trJMMAfw8Y6POZJzpHI/p6rKSykbzAGc2gmr31D7MZ4bzIFKgXLkbxXIzbtZ9fCdlplv4qFvtpGWZ+LaduEk7v7AMZgDsNvw+WEiQxNKv06BPl60axDsEMwBTLi0CU/+4HgBB5VW46G5u7in3X/573fHHII5gKyCYp7/IZl72vyHJ+YfdgjmQM0723FUw2crjA7BHEConzcHU00OwRzAle1iGPrpfi79PI1+X2Yx6qujrD6YTWa+mYe+2U6wV0NubH4P//nusEMwB9CjSTgvLtlXEswlhPvRXbe3TDAHELD1QwaGZxDu781/Lg1BP39c2bQMhVkYFo7H0m40YX//jxljOhJ7TtAWZPDik/HdiA46/24XOq2GuBAD7RoE0zYumNhgQ7UHB0XFVt5ffsAhmAOVHPuBuVtINbpeAHCxC/X3JsjgxeMLtjsEcwAFZisTPt9ESh37+WUXZWNO3kr4j5OZ1uEeGgaqUZbmIc3JzootE8wBRAUZmHJOMAewLzWP7SlFPD5/v9Nrwc/bClm5U1PmpsZuhxd/3k37hqH8cCIIW6NLVEXSCohpR+qQZ7h/w/MOwRxAemE6aXlFPL74YJmpCFuP5fDFfm+Km11RUuZ1cgNNj37LgOZhNAjxY9X+DIdgDuDJ5Zmc6Pcq9yw6WubzHUzL5/W/0ihodxPWJoP4JsmvTDAHMO3HfTSKDMbrnO/mB6sOcSDV+Wro6paaW8SkLzc7BHMAxkILd3+5yaO+x24L6MxmM5s3b2bIkCEO5UOGDGHNmjVOX7N27doyx19xxRVs2rSJ4uLico9xdU4Ak8mE0Wh0eNSIQ6sAHWz5HHYvVvnh/vnG8RiNRg3NNuii0plotKWJX0GtUFwwUa0uve4TGPgUjPwA7t+khgyDG8DYr+GO3+DSR1XG8Z0LyYpqQcuwlmw5tYUD2Qew2C00CmxE6/DWLD60uExTW4S2YHfm7jLB3Bk/HPyBzCJ1AUsvTGfB/gUuP/Y3e7/B4ipFRnU6ezHGubKPwK6FzutArdRtO1L9fM8KsDPzzfx7Ql1Ub2prwLDTxdZjdhvByX/ROlZNyB/QKsrpZs/xYQaXF6rknCKKi31LVpGd63hWAcYCPdkFzld5Ng4P4M89aWXKr2gbw+JtJx3KNBq1h+Epo5Ohe2DfqTyaB7bnSColCVHP1iMxjJX7S9/rxvZBRG3/wOm5AKJ2fMywNqEkGgrU78KZzEPYi/PhyF8k6nP4/p4+fH5Hdx67oiUfjOvKLw/2o01sUJ0ZAsnINzN/83GndTY7/H2gchPPLzaZ+Wa2O+mFBfWzLW9FrDtYTbmEbP0KinLwyjZxd/PXeb7nOzzQfhoLNmaXOb5pZAB7U3LL3AydzdW1oE+zCL7ZcMJpnd0OG5MyWZ9iI63t+NLCHx/muE7rdH5fh8gOrNzjeoHCF1syyDhzrtMCt3/G7R39ubpDjNN/5/lmG6sO5TqkaDnbjzszyWh6HWltxvP55gyX7/33gXS6JZSdmPPp30mYXMylrU4ZeWYOZzjf6/ZYZiHp5SzCqmvcNskjPT0dq9VKdLRjLpzo6GhSUsr+IQRISUlxerzFYiE9PZ3Y2FiXx7g6J8D06dN59tlnq/hJKiE/FcISSzdhNuerlaxn0+jU/Dhvf5UqxOTkC28ywk+T1dy4iX9CeFPH+oCo05nwo1Q+I0sRJlsxfl5+WGwWjKffs9hWjL/enxxT2S+6wcvgtLykCVZTyWbQVrvV5SRhgCxTFhabBS9tDf9zyy8bzJTQ6dXP0xVTTunKzoLSi4/5rCyh3lq76+ztgL4ovWQFpZ+3zmlg5uriB2qortDsIiAFfPU6jEWuA2OL1Y6zvx0BPl5kn3P36aXVUHSei6UdDTkFzo+xWO0Od/rBPjjeeJxDV5RJcDBozpPCxl5sUnMYLUXERhiIDTFwWYuocl/jLlarHZPF9e/r3J4n4ai8nx1Qppfa3ew2M7rT/8aLrfDwV0mq1/mqSHIKyv7b9/fRkV3o+t97edcCHy8teeV8/pzCYmx2Ozbvs1Z0a7Xk5Z10eryflx9Zua5/3sYiC1avc1aHF2Xj763Fz9vL6ecI8PEqN9ix2OxY0OHlHUBOoetUQtkFZqcrz7MKzBTbbPhQs9MWzOf5d1gbQWV1cfus03Pvtu12e7l34M6OP7e8suecOnUqOTk5JY9jx45VuP2VkthPJeltfLqbPHUnxPdwPMZmUQslkv+F2A7nT5arK2eOQWiC2kEiqg0hdrUAIsIQQevw1gBoNVr2Z+6na3TZFBZJOUm0O3t5/TlahLbA30utNPTX+zs9xxkD4gfUziqnJv1d11kt0PwK1/WNekPK6aHUht1KioMNegJOp1LYk2FTq4VdyIvrW3LHveNkDt0Tys4b1Gk1+LhYWabRaIgI9CqT8uAMk8VK43DXP8fCYkuZYUqAf0/k0CPRsS3FVjuBvnpcjUIa9DpMtjxaN3D+fvlmi8PQ55oTFgoaD3DZtpzGQ1h/0kyRd6haWe2Mlw9e/mGql9UD0tGcL0VK32YRtdgazxNi0BPoIk2JRkONLGC5IN6B5CaqBXv+2XtoHRtIRr6Zvw5k0D2x7Hc9KS2fdg2CXZ7O4K1zeS3YdyqXLo1CXL62S+MQQny0BJw1j4+CTBKCE50evz97Pz2auk4Z071xCP6nHKf+WOP7svGkiZ0ncuiZGF7mNUnp+bSJdT2/KzHCH/+8w/ilbKBnouulcd0SwtiTXLZDYHCbGPxrYWFRmL833i4W4Oh1GsIDzj/Fo65wW0AXERGBTqcr03OWmppapoftjJiYGKfHe3l5ER4eXu4xrs4J4OPjQ1BQkMOjRoQlwoE/VSoPnV7lmOv7UNkN7PcsUQmEG/aAYxtV4lxnLn+y/JQgWq16z6EvE7nlS5r5RnFl4pVkFWXRMbIjPx76kQhDBCObjcRH5/iP1mg2YraaaR/evsxpNWh4vMfjhBnURSzSL5Lb292Or67sH/8ovyguibuk/J9LdQlNVLtUnEujgb4PQmxH9XM9l1an5h5unaOCwqCGJVVRQb48ekULAN5Zn03qJc853dbGHteFnUURJfMwdpww0jImoMx8r0VbT3BHX+cX3bE9Y9iZtZ4bezr/tzr+klj25mxkWCfngYKNIiYPKbuY6O+D6QxpE02In+Oqsd93nWJMt3in53pgYBP+OLGIZNMueiaW/aP09fqjPH5ly5Lnv+zKIK3NeOeBmF84qY2uZt2hLD7fXkBxr/udvmdBjwexGJNP/7uu+/tLRgT48My1zpNgd4oPoXF4BfZZvohFBfnyyOnv1rlu7B5PREDdSmES4huGrd114BdG+Oa3eWZABBoN/PxvMtd1aVhmAUyuyUJekYVujUOcni/cy8SDlzi/fpuKrTw0sLnTG66W0YFogIld/An859PSCq2OcK0v1yRcXeY1qQWpNI/yp0VU2X+TWg1MuyyMkK1n7fet1ZHWexofbczkt52nGNsjHj9vx89XYLaSlW+mp5NgFuCZy6OI2vwmwds+4D+Xhjm9UW0a6Y+/t46T54xmRAb4cEXb6FqZXhER4M2ky5o6rburXxMi69i/w/K4LaDz9vama9euLFu2zKF82bJl9OnTx+lrevfuXeb4pUuX0q1bN/R6fbnHuDpnrQqIhhHvQdpetX9rSAJs/QpGzylN3qs3qPkQfR9U6TUa91UJifs9qlZpgup5u2E2tBulVsyeT4Mu6HvdxzV2XyyFmSQEJfBA5weIMkTh6+VLdlE2MwbMoEeM6i300nhxTcJQunmHM6PrI9zWehwGL3V31zK0JZ9c8Qntwh17qhr4N+CzKz+jZ0zPknNcmXAlnwz5hPgg50FDtQttpH4uPe5SQ9agFo/cslAFc0Gxaq/EbhPUdmmgVrje8Dn8Mw8636rmI/qXBkx6nZbhHRvw9o2dsdntvPavH5nXLyxdlOLtT37XSSRf+TExcY1KLm56nYYNSZl8PbEXwzrGlEz6zS40MaprDK9e3564071pkYE+PDa0Mbf0iebfrHV0aJbCo1fGExmogsG4YF+eH9GcmJgDPLfxca7pZuX/rmym0rqg5uW9PqY12dr17ClaxJtjm9E0UqX+CPL1YkK/hhRqjvDerQkMahOJVqMu4snGfO66LJH/Xt2CyIDS95p+XSv6tNRye/tb2Jm5jgmDvLn9kpiSnsoW0QFMGdyc9vF63hzbnKaR/lhsdh77PQfjLb9ibz5EBb1aHdZW13Js1GLuWpxKYoQ/reIjyeh4E+YrX4PA06ukg+IouPJNNB1GE6jXQOM68F2toA4NgvlmYi/anl4J5+etY+Klicy6pWvJ7084d+a79c7YziVJb8P9vZl2dWseGdKSQN/aS1tREV46LzQhjSm4bTHF0W1ov+8dvhmbSLOoAN5cto9Zt3ThkmbqGu2l1TC8QzQd47156KpAbu/bAP/TAVHr2EDmjmtF022vclPobl4b2crhWvDokBbEhhhYvjeNryb0oOPpBOu+ei2ju8Xz7PC2tIr2p2nqHyWL5eyN+sCNXxO07GkeievPQ50fIsQnBID4wHie7fkKgT7efDKuHeO6x5b0DHZqGMx3d/egSc7akoVK9gbdSBv9I8+ss2Gzw5RBiTTyt7Do1ib0bx6KRqNGGq5uH03beB0zrmvJ3f0SSq4PLaMDmXVLFzo2DMIeHA8FGTTf8jwLxrcu6XX08dJyU/cGzLkuljYBefRvHlZy3ms6xDJ/Um8ahtZOD63B24vxfRvz0qj2xASp30N0kA8vjmzHHX0TPSr9UJ1IWzJr1ix69+7Nhx9+yEcffcTOnTtp3LgxU6dO5cSJE8yZMwcoTVty9913M3HiRNauXcukSZMc0pasWbOGfv368cILLzB8+HB++OEHpk2bVjfSlpxhMat5Wnab+kJqvdTDUqT+EPoEquDPYgLj6e25tFo1bKhBzfU688ewMvLTwVpMOlbMGg0atBTbi/HWemPHjt1up9hWjF6rIxQtBqsN/EIp1nmTUZSB1WbFoDeUm4IkNT+VAkuBGj70icDfxw29FOYCteLVZlUBcnBDx3pLkfpZ2Kyqd86O+rkHRKmeUxdSjUWYLDZ8vbREaPOwm/MotmvJ8wrFy9uHYIM32QVm8opUMuRQfz0GvRcFJgtpeQVY7XYM3naiA4PQarScMhZhttjw0oFeX4DJasLgZcBkM6FDh8lswGK1o9XaCPXTUmAtwGqz4uvlS4hPGKnGQgotxXhp7YT4aymyFlFsLcbXy5fiYgMF5mK0GjB4Wym0FuDj5YVBF0x2QTF2VFtiAkOwWK2cyMnDarPjpYVAPzuFlkJCfEIwW83kmHPQa3ywFPujQYfBW0fE6QAwLT+NfJMWq02Hj05PTJABr+I8KMrGbLNQ6GUgq9gXDXr8vPVEBvqQVpCG3W4joKgInd2KXaPHy9sPL40NAiJd/vzrsow8EwVmKzqthogAb7y9JF1JZZz5bul1GqJqIL1MdcvLS8HbnI9Gq8eoCaXAqkOv0+BjN5FfbEOj0eDjo6HAbkSv0RGs8SW7SIdVo8XP24dwstV1yMsHAmNKrwVaDV5ayDWb0etsBBo02Kx+5BYVY7eDr5cWX28dIX7eYC6EwnS1Asc3EKzFWMy5WNBg8gvHaM6j2GpFp9ET6hNOoS0Lk6WYQAwUFOuw2u3odVrMGgjU2Qi05uBls6Dx8iXd5k+hRYNOC94GGxqNnVBLMXkWL4xWPVaNBr2+GB89hBvCKS4wkloAJpsGL52WIINetbEgEwozsaGuk9lWPRarHZ3OTlSAL4YidR02agIw2nzQoCHET++WHUPsdjupRhNmqw29l5boQB+3LcCqagzi1oAOVGLhV155heTkZNq1a8ebb75Jv379ABg/fjyHDx9mxYoVJcevXLmSyZMnlyQWfvzxx8skFv7uu++YNm0ahw4dKkksPGrUqAq3qcYDOiGEEEIIJzw2oKuLJKATQgghhDt4ZGJhIYQQQghx4SSgE0IIIYTwcBLQCSGEEEJ4OAnohBBCCCE8nAR0QgghhBAeTgI6IYQQQggPJwGdEEIIIYSHk4Du/9u7/5io6z8O4M9D5Tx3xyngcYhomJuT0lI0FZ2gE6R02myuiaE2nGlqZenW0gXGmswfmdOVWO3UuX6Z2kwbhuNHPwQlPUxxYJlG8iMRkEOYnXiv7x99uXmBJHKfD/fB52O7P/jc+z6f1+vZ9dnLz/0iIiIi0jgOdEREREQax4GOiIiISOM40BERERFpXM+uLsAXtfy8rcPh6OJKiIiI6GHSMnu0zCL3iwNdGxoaGgAA4eHhXVwJERERPYwaGhpgNpvve71OOjoCPgRcLhcqKipgMpmg0+m6rA6Hw4Hw8HD8+eefCAgI6LI6/svYsWNRWFjY1WW0i1l6D7P0DuboPVrJEvD9PLWSpa/nCDx4liKChoYGDBgwAH5+9//OOF6ha4Ofnx8GDhzY1WW4BQQE+PT/WD169PDp+u7GLL2HWXoHc/QeX88S0E6evp6lVnIEHizLjlyZa8EPRVCnLV++vKtL6DaYpfcwS+9gjt7FPL2DObbGl1x9mMPhgNlsRn19vWb+JeKrmKX3MEvvYI7ewyy9h1l6j9pZ8gqdD9Pr9UhJSYFer+/qUjSPWXoPs/QO5ug9zNJ7mKX3qJ0lr9ARERERaRyv0BERERFpHAc6IiIiIo3jQEdERESkcRzoFLRhwwaMHTsWJpMJFosFzz77LEpLSz3WiAhSU1MxYMAAGAwGxMbGori42GPNrl27EBsbi4CAAOh0Oty4caPN4x09ehTjxo2DwWBAcHAw5syZo1RrqlMry9zcXOh0ujZvvv4llvdLzeflxYsXMXv2bAQHByMgIAATJ05ETk6Oku2pSs0sz5w5g7i4OPTt2xdBQUFYsmQJbt68qWR7qvFGjrW1tVi5ciWGDRuGPn36YNCgQXjllVdQX1/vsZ+6ujokJSXBbDbDbDYjKSnpnudULVIzy3fffRfR0dHo06cP+vbtq0Z7qlIryytXriA5ORkREREwGAx49NFHkZKSAqfT2aF6OdApKC8vD8uXL0dBQQGysrLQ3NyM+Ph4NDY2utds3LgR7733Hnbs2IHCwkJYrVbExcW5f34MAJqampCQkIC33nrrnsc6cOAAkpKS8OKLL+Ls2bP46aefkJiYqGh/alIry+joaFRWVnrcFi9ejEceeQRjxoxRvE81qPm8nDFjBpqbm5GdnY3Tp0/jySefxMyZM1FVVaVoj2pRK8uKigpMmzYNQ4cOxcmTJ5GZmYni4mIsWrRI6RZV4Y0cKyoqUFFRgc2bN+PcuXPYvXs3MjMzkZyc7HGsxMREFBUVITMzE5mZmSgqKkJSUpKq/SpJzSydTifmzp2LZcuWqdqjWtTKsqSkBC6XCxkZGSguLsbWrVuxc+fOds+tbRJSzbVr1wSA5OXliYiIy+USq9Uq6enp7jW3bt0Ss9ksO3fubPX4nJwcASB1dXUe22/fvi1hYWHy8ccfK1q/L1Eqy39zOp1isVjknXfe8Wr9vkSpLKurqwWAfP/99+5tDodDAMjx48eVaaaLKZVlRkaGWCwWuXPnjnub3W4XAPLrr78q00wX6myOLb788kvx9/eX27dvi4jIhQsXBIAUFBS41+Tn5wsAKSkpUaibrqVUlnez2WxiNpu9XruvUSPLFhs3bpSIiIgO1ccrdCpqucQaGBgIALh8+TKqqqoQHx/vXqPX6xETE4MTJ07c937PnDmD8vJy+Pn5YdSoUQgNDcXTTz/d6mWd7kSpLP/t8OHDuH79ere5EtIWpbIMCgrC8OHDsXfvXjQ2NqK5uRkZGRkICQlBVFSUd5vwEUpl+ffff8Pf39/jdx0NBgMA4Mcff/RG6T7FWzm2fKFrz57//Mplfn4+zGYzxo0b514zfvx4mM3mTp0nfJlSWT6M1Myyvr7efZz7xYFOJSKC119/HZMmTcLjjz8OAO6XnUJCQjzWhoSEdOglqd9//x0AkJqainXr1uHIkSPo168fYmJiUFtb66UOfIeSWf7bJ598gunTpyM8PPzBC/ZhSmap0+mQlZUFu90Ok8mE3r17Y+vWrcjMzOyW77dRMsupU6eiqqoKmzZtgtPpRF1dnfvlmMrKSi914Bu8lWNNTQ3S0tLw0ksvubdVVVXBYrG0WmuxWLrN2wDupmSWDxs1s7x06RK2b9+OpUuXdqhGDnQqWbFiBX755Rd89tlnre7T6XQef4tIq23tcblcAIC1a9fiueeeQ1RUFGw2G3Q6Hfbv39+5wn2Qklne7erVqzh27Fir9410J0pmKSJ4+eWXYbFY8MMPP+DUqVOYPXs2Zs6c2e2GEEDZLB977DHs2bMHW7ZsQZ8+fWC1WjFkyBCEhISgR48ena7dl3gjR4fDgRkzZiAyMhIpKSnt7qO9/Wid0lk+TNTKsqKiAgkJCZg7dy4WL17coRo50Klg5cqVOHz4MHJycjBw4ED3dqvVCgCtJvlr1661mvjbExoaCgCIjIx0b9Pr9RgyZAjKyso6U7rPUTrLu9lsNgQFBWHWrFkPXrAPUzrL7OxsHDlyBJ9//jkmTpyI0aNH44MPPoDBYMCePXu804SPUON5mZiYiKqqKpSXl6Ompgapqamorq5GRERE5xvwEd7IsaGhAQkJCTAajTh06BB69erlsZ+//vqr1XGrq6sf+Dzhq5TO8mGiVpYVFRWYMmUKJkyYgF27dnW4Tg50ChIRrFixAgcPHkR2dnarE29ERASsViuysrLc25xOJ/Ly8hAdHX3fx4mKioJer/f4OPXt27dx5coVDB48uPON+AC1srz7eDabDQsWLOh2JzG1smxqagIAj/d9tfzdclVZ69R+XgL/vJxjNBrxxRdfoHfv3oiLi+tUD77AWzk6HA7Ex8fD398fhw8fRu/evT32M2HCBNTX1+PUqVPubSdPnkR9ff0D//fwNWpl+TBQM8vy8nLExsZi9OjRsNlsrc6b91swKWTZsmViNpslNzdXKisr3bempib3mvT0dDGbzXLw4EE5d+6czJs3T0JDQ8XhcLjXVFZWit1ul48++sj9qUG73S41NTXuNa+++qqEhYXJsWPHpKSkRJKTk8VisUhtba2qPStFzSxFRI4fPy4A5MKFC6r1qBa1sqyurpagoCCZM2eOFBUVSWlpqaxevVp69eolRUVFqvetBDWfl9u3b5fTp09LaWmp7NixQwwGg2zbtk3VfpXijRwdDoeMGzdORowYIb/99pvHfpqbm937SUhIkJEjR0p+fr7k5+fLiBEjZObMmar3rBQ1s/zjjz/EbrfL+vXrxWg0it1uF7vdLg0NDar3rQS1siwvL5ehQ4fK1KlT5erVqx5rOoIDnYIAtHmz2WzuNS6XS1JSUsRqtYper5fJkyfLuXPnPPaTkpLyn/txOp3yxhtviMViEZPJJNOmTZPz58+r1Kny1MxSRGTevHkSHR2tQmfqUzPLwsJCiY+Pl8DAQDGZTDJ+/Hj59ttvVepUeWpmmZSUJIGBgeLv7y8jR46UvXv3qtSl8ryRY8tXvrR1u3z5sntdTU2NzJ8/X0wmk5hMJpk/f/5/fn2RlqiZ5cKFC9tck5OTo17DClIrS5vNds81HaH7f9FEREREpFF8Dx0RERGRxnGgIyIiItI4DnREREREGseBjoiIiEjjONARERERaRwHOiIiIiKN40BHREREpHEc6IiIiIg0jgMdEVEHxcbG4rXXXuvqMoiI3DjQEREpKDc3FzqdDjdu3OjqUoioG+NAR0RERKRxHOiIiNrR2NiIBQsWwGg0IjQ0FFu2bPG4f9++fRgzZgxMJhOsVisSExNx7do1AMCVK1cwZcoUAEC/fv2g0+mwaNEiAICIYOPGjRgyZAgMBgOeeOIJfPXVV6r2RkTdBwc6IqJ2rFmzBjk5OTh06BC+++475Obm4vTp0+77nU4n0tLScPbsWXz99de4fPmye2gLDw/HgQMHAAClpaWorKzEtm3bAADr1q2DzWbDhx9+iOLiYqxatQovvPAC8vLyVO+RiLRPJyLS1UUQEfmimzdvIigoCHv37sXzzz8PAKitrcXAgQOxZMkSvP/++60eU1hYiKeeegoNDQ0wGo3Izc3FlClTUFdXh759+wL456pfcHAwsrOzMWHCBPdjFy9ejKamJnz66adqtEdE3UjPri6AiMhXXbp0CU6n02PoCgwMxLBhw9x/2+12pKamoqioCLW1tXC5XACAsrIyREZGtrnfCxcu4NatW4iLi/PY7nQ6MWrUKAU6IaLujgMdEdE9/NcLGI2NjYiPj0d8fDz27duH/v37o6ysDNOnT4fT6bzn41qGvqNHjyIsLMzjPr1e3/nCieihw4GOiOgehg4dil69eqGgoACDBg0CANTV1eHixYuIiYlBSUkJrl+/jvT0dISHhwMAfv75Z499+Pv7AwDu3Lnj3hYZGQm9Xo+ysjLExMSo1A0RdWcc6IiI7sFoNCI5ORlr1qxBUFAQQkJCsHbtWvj5/fN5skGDBsHf3x/bt2/H0qVLcf78eaSlpXnsY/DgwdDpdDhy5AieeeYZGAwGmEwmrF69GqtWrYLL5cKkSZPgcDhw4sQJGI1GLFy4sCvaJSIN46dciYjasWnTJkyePBmzZs3CtGnTMGnSJERFRQEA+vfvj927d2P//v2IjIxEeno6Nm/e7PH4sLAwrF+/Hm+++SZCQkKwYsUKAEBaWhrefvttbNiwAcOHD8f06dPxzTffICIiQvUeiUj7+ClXIiIiIo3jFToiIiIijeNAR0RERKRxHOiIiIiINI4DHREREZHGcaAjIiIi0jgOdEREREQax4GOiIiISOM40BERERFpHAc6IiIiIo3jQEdERESkcRzoiIiIiDSOAx0RERGRxv0P9gDUgbr7MsoAAAAASUVORK5CYII=", "text/plain": "
"}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "region_scatter"}}, "output_type": "display_data"}, "region_ecdf": {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEiklEQVR4nO3deXgUZdb38V+TPYEkQCAkGpIAyiIKSEY2GUA2URlQ5wFcWGRRBpUl4oKIAjqCCxBBAR1BRkcRFBeG1ejIIiAaCPOOgiiLBjWYATRBEshW7x886YcmHUh3ulOd6u/nunJd6eq7qk5V2uZ4n75P2wzDMAQAAIAar5bZAQAAAMAzSOwAAAAsgsQOAADAIkjsAAAALILEDgAAwCJI7AAAACyCxA4AAMAiSOwAAAAsgsQOAADAIkjsAAAALMLUxG7Lli3q37+/4uPjZbPZ9MEHH1x0n82bN6t9+/YKDQ1VkyZNtHjxYu8HCgAAUAOYmtidOnVKbdq00Ysvvlip8YcPH9YNN9ygrl27KjMzU48++qjGjx+vVatWeTlSAAAA32czDMMwOwhJstlsev/99zVw4MAKxzz88MNavXq19u3bZ982duxY/fvf/9aOHTuqIUoAAADfFWh2AK7YsWOH+vTp47Ctb9++WrJkiYqKihQUFFRunzNnzujMmTP2x6WlpTpx4oTq168vm83m9ZgBAACqwjAMnTx5UvHx8apV68LF1hqV2B09elSxsbEO22JjY1VcXKxjx44pLi6u3D6zZs3SjBkzqitEAAAArzhy5IguvfTSC46pUYmdpHKzbGWV5Ipm36ZMmaLU1FT749zcXDVu3FhHjhxRZGSk9wKFXX5hsa756yeSpC+m9lR4sOdfdvlF+bruneskSf/6n38pPCjc4+cAANQwhiEV5Xvv+IUF0oK2Z39/YL8UHOGV0+Tl5SkhIUF16tS56Ngaldg1atRIR48eddiWk5OjwMBA1a9f3+k+ISEhCgkJKbc9MjKSxK6aBBYWq1bI2UQrMjLSK4ldYFGgAsIC/u8cJHYA4N8MQ1raVzqy07vnCfnfiaXISK8ldmUq8xGyGtXHrlOnTkpPT3fY9tFHHyklJcXp5+sAAICfKsr3flJXJqGj5CMTCqbO2P3+++86cOCA/fHhw4e1Z88e1atXT40bN9aUKVP0008/6fXXX5d0dgXsiy++qNTUVI0ZM0Y7duzQkiVLtHz5crMuAQAAmM1ZybXwnMeTD0jBXky8gsIlH1mQaWpil5GRoR49etgfl30Wbvjw4Vq2bJmys7OVlZVlfz45OVnr1q3TpEmT9NJLLyk+Pl7z58/XrbfeWu2xAwAAH1CZkmtwuNfLpL7C1MSue/fuulAbvWXLlpXb1q1bN+3evduLUfkfwzBUUFzgtePnF5Wc83uBZAvw+Dm8GT8AwIddrOTqQ2XS6lCjFk/A8wzD0LD1w7Tnv3u8d47SIElPSpK6r+wmW60ir50LAMrx9spImOtiJVcfKpNWBxI7P1dQXODVpK66tWvYTmGBYWaHAcBXVNfKSPgGPyq5VoTEDnabBm3ySlKUX1iilCe3/O85Nis82POl2DJhgWF8owiA/1OdKyNhLj8ruVaExA52YYFh3un/ZhTbfw0PClN4EC87oMapqeXM6lwZCXP5Wcm1IvwLCwC4MKuUMynTwQ+Q2KFSDMNQwTmrW12RX+jefgB8hBXKmZTp4CdI7PxUWYuTyrQJMQxDf168Q7t++LUaIgPgUZ4ooVqhnEmZDn6CxM4PudripKCoxCNJXUpiXYUFeW/hBIDzeKOESjkT8Gkkdn7IWYuTyrYJyXisl9urWsOCAlixClQnT5dQKWcCPo/Ezs+VtTipbJuQ8OAAhQfzsgFcYtaKUk+XUClnAj6Pf6H9nNdanAA4y1dWlFJCBfxCLbMDAABL84UVpZRQAb/BjB0cOGtrQrsSwA1l5VdfWFFKCRXwGyR2FlfW1uRcFbU4oa0J4CEVlV8phwLwMhI7C/N0WxPalQCV5Kz8SjkUQDUgsbMwZ21NznWhFifO2prQrgRwwtmKV2flV8qhAKoBiZ2fKGtrcq4LtTihrQlQCZVZ8Ur5FUA14l9uP0FbE8ALLrbilfIrgGpGYgfAM8xqwmumi614pfwKoJqR2Pkp2prAo3ylCa+ZKLkC8AEkdn6ItibwOF9owmsmSq4AfASJXQ3mrEfduSp6jrYm8CqzmvCaiZIrAB9BYldDudqjriK0NYHHUZIEANOQ2NVQF+tRd64L9aujrQkAANbBv+gW4KxH3bku1K8OAABYB4mdBdCjDgAASCR2fqWsxQltTQAAsCYSOz9BixM45ammwoV+1pgYAHwUiZ2Pq6ilyYXanDjjrMUJbU38HE2FAcBySOx8mKdampyvrMUJbU38nDeaCtOoFwBMRWLnwyrT0uRCrUwqQosTP+Ss5Hqx7zl1B416AcBU/OteQ1TU0oRWJrioypRcaSoMAJZAYldD0NIEbrtYyZXyKQBYBoldDVLWrsQdtDipgbyxYtVZyZXyKQBYBoldDUG7Ej/jrRWrlFwBwNJI7HxQWYuTc1uaFBSVeiSpo8WJl3hqdq1MIStWAQCuI7HzMZVpcVLWrsQdtDjxAm/3g2PFKgCgkkjsfIyzFidnW5qE2h/TrsTHeKMfXJmEjlJEDAkZAKBSyA58WFmLk7DAMLcXTcCLysqv3ugHV4ZZNgCAC0jsfBgtTnxYReVXFicAAExUy+wAgBrJWfmVxQkAAJMxYwecrzIrXJ2VXymbAgBMRmIHnMudFa6UXwEAPoLEzkc4610HE7i6wpXyKwDAh5DY+YDK9K5DFbjSPNjVFa6UXwEAPoTEzgdU3LsuzJyArKQqzYMpsQIAahgSOx9zbu86viHCA9xtHkyJFQBQA5HY+Zjze9cZhqGCohLlF9Kg+KKclVzdbR5MiRUAUAOR2PkwwzD058U7tOuHX80OxfdVpuRKaRUAYHE0KPZhBUUl5ZK6lMS6CgsKMCkiH3axkiulVQCAH2DGrpqVtTU5V2VanGQ81kvhwQEKCwrw78/eVbTC9WIlV0qrAAA/QGJXjarS1iQ8OEDhwX7+56rsCldKrgAAP0Uptho5a2tyLlqcXERlVrhScgUA+DE/nwIyT1lbk3PR4qQCZeXXyqxwpeQKAPBjJHYmOb+tyblocXKOisqvlFsBACiHxM7H0OLkPM7Kr5RbAQBwisTOx9Di5ALKyq+UWwEAcIrEzofR4uQ8lF8BALggEjsfRosTAADgCrIG+CZnK2EBAMAFkdjB91S2ETEAAHBAYucjaHFyDlbCAgDgFhI7H0CLk/91oUbErIQFAOCiSOx8AC1ORCNiAAA8gMTOx/htixPKrwAAVBmJnY+hxYkovwIA4CY/zyDgkyi/AgDgllpmBwAAAADPYMYO5qIRMQAAHmP6jN3ChQuVnJys0NBQtW/fXlu3br3g+DfffFNt2rRReHi44uLidNddd+n48ePVFC08qmwl7NPx0vPNzI4GAIAaz9TEbsWKFZo4caKmTp2qzMxMde3aVf369VNWVpbT8Z999pmGDRumUaNG6euvv9Y777yjL7/8UqNHj67myOERrIQFAMCjTE3s5s6dq1GjRmn06NFq2bKl0tLSlJCQoEWLFjkd//nnnyspKUnjx49XcnKyrr32Wt1zzz3KyMio5sjhMsOQCk+d93NeI+JHf5ZGbmAlLAAAbjLtM3aFhYXatWuXHnnkEYftffr00fbt253u07lzZ02dOlXr1q1Tv379lJOTo3fffVc33nhjdYTsNsMwVFBcoILiArNDMUdlvvuVlbAAAFSZaYndsWPHVFJSotjYWIftsbGxOnr0qNN9OnfurDfffFODBw/W6dOnVVxcrD/96U9asGBBhec5c+aMzpw5Y3+cl5fnmQuoJMMwNGz9MO35755qPa9PcVZyPRflVwAAPML0VbHnf7uCYRgVfuPC3r17NX78eD3++OPq27evsrOz9eCDD2rs2LFasmSJ031mzZqlGTNmeDzuyiooLiiX1LVr2E5hgWHmBGS2subD56IRMQAAHmFaYhcTE6OAgIBys3M5OTnlZvHKzJo1S126dNGDDz4oSbrqqqsUERGhrl276qmnnlJcXFy5faZMmaLU1FT747y8PCUkJHjwSipv06BNCgsMU1hgmH99Xdi5KLkCAOA1pi2eCA4OVvv27ZWenu6wPT09XZ07d3a6T35+vmrVcgw5ICBA0tmZPmdCQkIUGRnp8GOWsMAwhQeFWzupu9giCQAA4DWmlmJTU1M1dOhQpaSkqFOnTnrllVeUlZWlsWPHSjo72/bTTz/p9ddflyT1799fY8aM0aJFi+yl2IkTJ+qaa65RfHy8mZcCqXKLJAAAgNeYmtgNHjxYx48f18yZM5Wdna3WrVtr3bp1SkxMlCRlZ2c79LQbMWKETp48qRdffFEPPPCAoqOjdd111+mZZ54x6xJwLhZJAABgKptRUQ3TovLy8hQVFaXc3NxqKcvmF+Wrw1sdJEk7b9+pcCeJTX5hsVo9vlGStHdmX4UHm76mxTXnfi1Y2TdIsEgCAACPcCV3qWEZBHxOReVXFkkAAFDtTP+uWNRwfC0YAAA+gxk7eE5Z+ZWSKwAApiCxg+dQfgUAwFSUYgEAACyCGTu459yVsAAAwCeQ2MF1NCIGAMAnUYqF61gJCwCAT2LGzkSGYaigqET5hSVmh+I+VsICAOAzSOxMYhiG/rx4h3b98KvZoVQNK2EBAPAZlGJNUlBUUi6pS0msq7CgAJMiAgAANR0zdj4g47FeCg8OUFhQgGy+Ws4sWwUrsRIWAAAfRWLnA8KDAxQe7MN/ClbBAgBQI1CKxcU5WwUrsRIWAAAf48PTRDWbYRgqKC5QQXGB2aF4VtkqWImVsAAA+BgSOy8wDEPD1g/Tnv/uMTsUz2MVLAAAPotSrBcUFBeUS+raNWynsMAwcwICAAB+gRk7L9s0aJPCAsMUFhjmuyteAQCAJZDYeVlYYJjCWWAAAACqAaVYAAAAi2DGDhUra0pMQ2IAAGoEEjs4R1NiAABqHEqxcM5ZU2IaEgMA4NOYsYMjZ+XXsqbENCQGAMCnkdjh/1RUfqUpMQAANQKlWPwfyq8AANRozNjBOcqvAADUOCR2cI7yKwAANQ6lWAAAAItgxg40IgYAwCJI7PwdjYgBALAMSrH+jpWwAABYBjN2/opGxAAAWA6JnT+iETEAAJZEKdYfUX4FAMCSmLHzd5RfAQCwDBK7amYYhgqKSpRfWGJ2KGdRfgUAwDJI7KqRYRj68+Id2vXDr2YFQL86AAAsjMSuGhUUlZRL6lIS6yosKMD7J6dfHQAAlkdiZ5KMx3opPDhAYUEBslXHZ9tYMAEAgOWR2JkkPDhA4cEm3X4WTAAAYEkkdv6IBRMAAFgSfewAAAAsgsQOAADAIkjsAAAALILEDgAAwCJYPGF1NCUGAMBvkNhZGU2JAQDwK5RirYymxAAA+BVm7KzIWfmVpsQAAFgeiZ3VVFR+pSkxAACWRynWaii/AgDgt5ixswrKrwAA+D0SOyug/AoAAEQp1hoovwIAADFjZz2UXwEA8FskdlZD+RUAAL9FKRYAAMAiSOwAAAAsgsQOAADAIkjsAAAALILFEzWZs6bEAADAb5HY1VQVNSUGAAB+i1JsTUVTYgAAcB5m7LzEMCQZQcovLJGMYkk6+7s30JQYAACIxM4rDMNQ/g9jVVqQpJQnt3j/hDQlBgAAohTrFQVFpSotSKrw+ZTEugoLCqi+gAAAgF9gxs7Ltj7cRfUjajtsCwsKkI2SKQAA8DASOy8LCw5QeDC3GQAAeJ/ppdiFCxcqOTlZoaGhat++vbZu3XrB8WfOnNHUqVOVmJiokJAQNW3aVEuXLq2maAEAAHyXqVNJK1as0MSJE7Vw4UJ16dJFL7/8svr166e9e/eqcePGTvcZNGiQfvnlFy1ZskTNmjVTTk6OiouLqzlyAAAA32NqYjd37lyNGjVKo0ePliSlpaVp48aNWrRokWbNmlVu/IYNG7R582YdOnRI9erVkyQlJSVVZ8gAAAA+y7RSbGFhoXbt2qU+ffo4bO/Tp4+2b9/udJ/Vq1crJSVFzz77rC655BJdfvnlmjx5sgoKCqojZAAAAJ9m2ozdsWPHVFJSotjYWIftsbGxOnr0qNN9Dh06pM8++0yhoaF6//33dezYMY0bN04nTpyo8HN2Z86c0ZkzZ+yP8/LyPHcRAAAAPsT0xRPnt/0wDKPCViClpaWy2Wx68803dc011+iGG27Q3LlztWzZsgpn7WbNmqWoqCj7T0JCgsevAQAAwBeYltjFxMQoICCg3OxcTk5OuVm8MnFxcbrkkksUFRVl39ayZUsZhqEff/zR6T5TpkxRbm6u/efIkSOeuwgAAAAfYlpiFxwcrPbt2ys9Pd1he3p6ujp37ux0ny5duujnn3/W77//bt/27bffqlatWrr00kud7hMSEqLIyEiHnxrLMKTCU//7k292NAAAwMeYWopNTU3Vq6++qqVLl2rfvn2aNGmSsrKyNHbsWElnZ9uGDRtmH3/77berfv36uuuuu7R3715t2bJFDz74oEaOHKmwsDCzLqN6GIa0tK/0dPzZn+ebmR0RAADwMaa2Oxk8eLCOHz+umTNnKjs7W61bt9a6deuUmJgoScrOzlZWVpZ9fO3atZWenq77779fKSkpql+/vgYNGqSnnnrKrEuoPkX50pGd5bcndJSCwqs/HgAA4HNshmEYZgdRnfLy8hQVFaXc3FyvlWWPnTqplCe3SJIypv1RMRF1qn7QwlNnZ+okafIBKfh/k7mgcInvnQUAwLJcyV34EtOaKDhcCo4wOwoAAOBjTG93AgAAAM9wa8bu1KlTmj17tj755BPl5OSotLTU4flDhw55JDgAAABUnluJ3ejRo7V582YNHTpUcXFxFTYUBgAAQPVxK7Fbv3691q5dqy5dung6HpzPMM6uiKVvHQAAuAi3Eru6deuqXr16no4F5yvrXeeszQkAAMB53Fo88eSTT+rxxx9Xfj6zSF7lrHcdfesAAEAF3JqxmzNnjg4ePKjY2FglJSUpKCjI4fndu3d7JDico6x3HX3rAABABdxK7AYOHOjhMHBR9K4DAAAX4VZi98QTT3g6DgAAAFRRlb55YteuXdq3b59sNptatWqldu3aeSouAAAAuMitxC4nJ0dDhgzRpk2bFB0dLcMwlJubqx49eujtt99WgwYNPB0nAAAALsKtVbH333+/8vLy9PXXX+vEiRP69ddf9dVXXykvL0/jx4/3dIwAAACoBLdm7DZs2KCPP/5YLVu2tG9r1aqVXnrpJfXp08djwfktmhIDAAA3uJXYlZaWlmtxIklBQUHlvjcWLqIpMQAAcJNbpdjrrrtOEyZM0M8//2zf9tNPP2nSpEnq2bOnx4LzSzQlBgAAbnJrxu7FF1/UgAEDlJSUpISEBNlsNmVlZenKK6/UP/7xD0/H6L9oSgwAAFzgVmKXkJCg3bt3Kz09Xd98840Mw1CrVq3Uq1cvT8fn32hKDAAAXFClPna9e/dW7969PRULAAAAqqDSid38+fN19913KzQ0VPPnz7/gWFqeAAAAVL9KJ3bz5s3THXfcodDQUM2bN6/CcTabjcQOAADABJVO7A4fPuz0dwAAAPgGt9qdzJw5U/n55ZvnFhQUaObMmVUOCgAAAK5zK7GbMWOGfv/993Lb8/PzNWPGjCoHBQAAANe5ldgZhiGbk75q//73v1WvXr0qBwUAAADXudTupG7durLZbLLZbLr88ssdkruSkhL9/vvvGjt2rMeDBAAAwMW5lNilpaXJMAyNHDlSM2bMUFRUlP254OBgJSUlqVOnTh4PEgAAABfnUmI3fPhwFRcXS5J69eqlSy+91CtBAQAAwHUuf8YuMDBQ48aNU0lJiTfiAQAAgJvcWjzRoUMHZWZmejoWAAAAVIFb3xU7btw4PfDAA/rxxx/Vvn17RUQ4flH9VVdd5ZHgAAAAUHluJXaDBw+W5PidsDabzd4GhTItAABA9XMrseMrxQAAAHyPW4ldYmKip+MAAABAFbmV2EnSwYMHlZaWpn379slms6lly5aaMGGCmjZt6sn4AAAAUElurYrduHGjWrVqpS+++EJXXXWVWrdurZ07d+qKK65Qenq6p2MEAABAJbg1Y/fII49o0qRJmj17drntDz/8sHr37u2R4AAAAFB5bs3Y7du3T6NGjSq3feTIkdq7d2+VgwIAAIDr3ErsGjRooD179pTbvmfPHjVs2LCqMQEAAMANbpVix4wZo7vvvluHDh1S586dZbPZ9Nlnn+mZZ57RAw884OkYAQAAUAluJXbTpk1TnTp1NGfOHE2ZMkWSFB8fr+nTpzs0LQYAAED1cSuxs9lsmjRpkiZNmqSTJ09KkurUqePRwAAAAOAat/vYSVJOTo72798vm82m5s2bq0GDBp6Ky/8YhlSULxXmmx0JAACoodxK7PLy8nTvvfdq+fLlKi0tlSQFBARo8ODBeumllxQVFeXRIC3PMKSlfaUjO82OBAAA1GBurYodPXq0du7cqbVr1+q3335Tbm6u1qxZo4yMDI0ZM8bTMVpfUX75pC6hoxQUbk48AACgRnJrxm7t2rXauHGjrr32Wvu2vn376m9/+5uuv/56jwXnlyYfkILDzyZ1NpvZ0QAAgBrErcSufv36TsutUVFRqlu3bpWD8mvB4VJwhNlRAACAGsitUuxjjz2m1NRUZWdn27cdPXpUDz74oKZNm+ax4AAAAFB5bs3YLVq0SAcOHFBiYqIaN24sScrKylJISIj++9//6uWXX7aP3b17t2citSJWwgIAAA9yK7EbOHCgh8PwQ6yEBQAAHuZWYvfEE094Og7/w0pYAADgYVVqULxr1y7t27dPNptNrVq1Urt27TwVl39hJSwAAPAAtxK7nJwcDRkyRJs2bVJ0dLQMw1Bubq569Oiht99+m2+gcBUrYQEAgAe4tSr2/vvvV15enr7++mudOHFCv/76q7766ivl5eVp/Pjxno4RAAAAleDWjN2GDRv08ccfq2XLlvZtrVq10ksvvaQ+ffp4LDgAAABUnlszdqWlpQoKCiq3PSgoyP7dsQAAAKhebiV21113nSZMmKCff/7Zvu2nn37SpEmT1LNnT48FBwAAgMpzK7F78cUXdfLkSSUlJalp06Zq1qyZkpOTdfLkSS1YsMDTMQIAAKAS3PqMXUJCgnbv3q309HR98803MgxDrVq1Uq9evTwdHwAAACrJ5cSuuLhYoaGh2rNnj3r37q3evXt7Iy4AAAC4yOVSbGBgoBITE1VSUuKNeAAAAOAmtz5j99hjj2nKlCk6ceKEp+MBAACAm9z6jN38+fN14MABxcfHKzExURERjt+asHv3bo8EBwAAgMpzK7EbOHCgbDabDMPwdDwAAABwk0uJXX5+vh588EF98MEHKioqUs+ePbVgwQLFxMR4Kz4AAABUkkufsXviiSe0bNky3Xjjjbrtttv08ccf6y9/+Yu3YgMAAIALXJqxe++997RkyRINGTJEknTHHXeoS5cuKikpUUBAgFcCBAAAQOW4NGN35MgRde3a1f74mmuuUWBgoMNXiwEAAMAcLiV2JSUlCg4OdtgWGBio4uJijwYFAAAA17lUijUMQyNGjFBISIh92+nTpzV27FiHlifvvfee5yIEAABApbg0Yzd8+HA1bNhQUVFR9p8777xT8fHxDttcsXDhQiUnJys0NFTt27fX1q1bK7Xftm3bFBgYqLZt27p0PgAAAKtyacbutdde8+jJV6xYoYkTJ2rhwoXq0qWLXn75ZfXr10979+5V48aNK9wvNzdXw4YNU8+ePfXLL794NCYAAICayq2vFPOUuXPnatSoURo9erRatmyptLQ0JSQkaNGiRRfc75577tHtt9+uTp06VVOkHmQYUuEpqTDf7EgAAIDFmJbYFRYWateuXerTp4/D9j59+mj79u0V7vfaa6/p4MGDeuKJJyp1njNnzigvL8/hxzSGIS3tKz0dLz3fzLw4AACAJZmW2B07dkwlJSWKjY112B4bG6ujR4863ee7777TI488ojfffFOBgZWrIs+aNcvh838JCQlVjt1tRfnSkZ2O2xI6SkHh5sQDAAAsxa3vivUkm83m8NgwjHLbpLOtVm6//XbNmDFDl19+eaWPP2XKFKWmptof5+XlmZvclZl8QAoOP5vUObleAAAAV5mW2MXExCggIKDc7FxOTk65WTxJOnnypDIyMpSZman77rtPklRaWirDMBQYGKiPPvpI1113Xbn9QkJCHNqz+IzgcCk44uLjAAAAKsm0UmxwcLDat2+v9PR0h+3p6enq3LlzufGRkZH6z3/+oz179th/xo4dq+bNm2vPnj3q0KFDdYUOAADgk0wtxaampmro0KFKSUlRp06d9MorrygrK0tjx46VdLaM+tNPP+n1119XrVq11Lp1a4f9GzZsqNDQ0HLbAQAA/JGpid3gwYN1/PhxzZw5U9nZ2WrdurXWrVunxMRESVJ2draysrLMDBEAAKDGsBmGYZgdRHXKy8tTVFSUcnNzFRkZ6ZVzHDt1UilPbpEkZUz7o2Ii6px9ovDU2VYnkvToz3zGDgAAXJQruYupDYoBAADgOSR2AAAAFkFiBwAAYBEkdgAAABZBYgcAAGARJHYAAAAWQWIHAABgESR2AAAAFkFiBwAAYBEkdgAAABZBYgcAAGARJHYAAAAWQWIHAABgESR2AAAAFkFiBwAAYBEkdgAAABZBYgcAAGARJHYAAAAWQWIHAABgESR2AAAAFkFiBwAAYBEkdgAAABZBYgcAAGARJHYAAAAWQWIHAABgESR2AAAAFkFiBwAAYBEkdgAAABZBYgcAAGARJHYAAAAWQWIHAABgESR2AAAAFhFodgB+wTCkonypMN/sSAAAgIWR2HmbYUhL+0pHdpodCQAAsDhKsd5WVFA+qUvoKAWFmxMPAACwLGbsqtPkA1Jw+NmkzmYzOxoAAGAxJHbVKThcCo4wOwoAAGBRlGIBAAAsgsQOAADAIkjsAAAALILEDgAAwCJI7AAAACyCxA4AAMAiSOy8rajA7AgAAICfILHzBsOw/xr+0jUmBgIAAPwJiZ03OJul42vEAACAl/HNE16Wf+8XCo9uwNeIAQAAryOx87agML5GDAAAVAtKsQAAABZBYgcAAGARJHYAAAAWQWIHAABgESR2AAAAFkFiBwAAYBEkdgAAABZBYgcAAGARJHYAAAAWQWIHAABgEXylGAAANVhJSYmKiorMDgNVEBQUpICAAI8ci8QOAIAayDAMHT16VL/99pvZocADoqOj1ahRI9lstiodh8QOAIAaqCypa9iwocLDw6ucEMAchmEoPz9fOTk5kqS4uLgqHY/EDgCAGqakpMSe1NWvX9/scFBFYWFhkqScnBw1bNiwSmVZFk8AAFDDlH2mLjw83ORI4Cllf8uqfl6SxA4AgBqK8qt1eOpvSWIHAAB8XlJSktLS0swOw+fxGTsAAODzvvzyS0VERJgdhs8jsQMAAF5TWFio4ODgKh+nQYMGHojG+ijFAgAAj+nevbvuu+8+paamKiYmRr1799bevXt1ww03qHbt2oqNjdXQoUN17Ngx+z4nT57UHXfcoYiICMXFxWnevHnq3r27Jk6caB9zfik2KytLAwYMUO3atRUZGalBgwbpl19+sT8/ffp0tW3bVm+88YaSkpIUFRWlIUOG6OTJk9VxG0xDYgcAADzq73//uwIDA7Vt2zbNnj1b3bp1U9u2bZWRkaENGzbol19+0aBBg+zjU1NTtW3bNq1evVrp6enaunWrdu/eXeHxDcPQwIEDdeLECW3evFnp6ek6ePCgBg8e7DDu4MGD+uCDD7RmzRqtWbNGmzdv1uzZs7123b7A9MRu4cKFSk5OVmhoqNq3b6+tW7dWOPa9995T79691aBBA0VGRqpTp07auHFjNUYLAAAuplmzZnr22WfVvHlzrV+/XldffbWefvpptWjRQu3atdPSpUv16aef6ttvv9XJkyf197//Xc8//7x69uyp1q1b67XXXlNJSUmFx//444/1//7f/9Nbb72l9u3bq0OHDnrjjTe0efNmffnll/ZxpaWlWrZsmVq3bq2uXbtq6NCh+uSTT6rjFpjG1MRuxYoVmjhxoqZOnarMzEx17dpV/fr1U1ZWltPxW7ZsUe/evbVu3Trt2rVLPXr0UP/+/ZWZmVnNkQMAgIqkpKTYf9+1a5c+/fRT1a5d2/7TokULSWdn1A4dOqSioiJdc8019n2ioqLUvHnzCo+/b98+JSQkKCEhwb6tVatWio6O1r59++zbkpKSVKdOHfvjuLg4+zc8WJWpiyfmzp2rUaNGafTo0ZKktLQ0bdy4UYsWLdKsWbPKjT9/mfPTTz+tDz/8UP/85z/Vrl276ggZAABcxLmrV0tLS9W/f38988wz5cbFxcXpu+++k1S+j5thGBUe3zAMp33fzt8eFBTk8LzNZlNpaWnlLqKGMm3GrrCwULt27VKfPn0ctvfp00fbt2+v1DFKS0t18uRJ1atXr8IxZ86cUV5ensMPAACoHldffbW+/vprJSUlqVmzZg4/ERERatq0qYKCgvTFF1/Y98nLy7MnfM60atVKWVlZOnLkiH3b3r17lZubq5YtW3r1enydaYndsWPHVFJSotjYWIftsbGxOnr0aKWOMWfOHJ06dcrhA5jnmzVrlqKiouw/507bAgAA77r33nt14sQJ3Xbbbfriiy906NAhffTRRxo5cqRKSkpUp04dDR8+XA8++KA+/fRTff311xo5cqRq1apV4bcx9OrVS1dddZXuuOMO7d69W1988YWGDRumbt26OZSB/ZHpiyecTb1W5ms1li9frunTp2vFihVq2LBhheOmTJmi3Nxc+8+52T0AAPCu+Ph4bdu2TSUlJerbt69at26tCRMmKCoqSrVqnU1D5s6dq06dOummm25Sr1691KVLF7Vs2VKhoaFOj2mz2fTBBx+obt26+uMf/6hevXqpSZMmWrFiRXVemk+yGRcqYntRYWGhwsPD9c477+jmm2+2b58wYYL27NmjzZs3V7jvihUrdNddd+mdd97RjTfe6NJ58/LyFBUVpdzcXEVGRrod/4Uc+/UXpTyTIUnKeDhFMXVjL7IHAACVd/r0aR0+fNjeVcJqTp06pUsuuURz5szRqFGjzA6nWlzob+pK7mLajF1wcLDat2+v9PR0h+3p6enq3LlzhfstX75cI0aM0FtvveVyUgcAAHxPZmamli9froMHD2r37t264447JEkDBgwwObKax9RVsampqRo6dKhSUlLUqVMnvfLKK8rKytLYsWMlnS2j/vTTT3r99dclnU3qhg0bphdeeEEdO3a0fxYvLCxMUVFRpl0HAAComueff1779++3T/xs3bpVMTExZodV45ia2A0ePFjHjx/XzJkzlZ2drdatW2vdunVKTEyUJGVnZzv0tHv55ZdVXFyse++9V/fee699+/Dhw7Vs2bLqDh8AAHhAu3bttGvXLrPDsARTEztJGjdunMaNG+f0ufOTtU2bNnk/IAAAgBrK9FWxAAAA8AwSOwAAAIsgsQMAALAIEjsAAACLILEDAACwCBI7AADg95KSkpSWllbh8yNGjNDAgQOrLR53kdgBAIBqc/ToUU2YMEHNmjVTaGioYmNjde2112rx4sXKz883O7waz/Q+dgAAwD8cOnRIXbp0UXR0tJ5++mldeeWVKi4u1rfffqulS5cqPj5ef/rTn5zuW1RUpKCgoGqOuOZhxg4AAFSLcePGKTAwUBkZGRo0aJBatmypK6+8UrfeeqvWrl2r/v3728fabDYtXrxYAwYMUEREhJ566imVlJRo1KhRSk5OVlhYmJo3b64XXnjB4RxlJdPnn39ecXFxql+/vu69914VFRXZx+Tk5Kh///4KCwtTcnKy3nzzTZevZcOGDbr22msVHR2t+vXr66abbtLBgwcdxvz4448aMmSI6tWrp4iICKWkpGjnzp0un8sVzNgBAFDDGYahgqISU84dFhQgm8120XHHjx/XRx99pKeffloRERFOx5x/nCeeeEKzZs3SvHnzFBAQoNLSUl166aVauXKlYmJitH37dt19992Ki4vToEGD7Pt9+umniouL06effqoDBw5o8ODBatu2rcaMGSPpbPJ35MgR/etf/1JwcLDGjx+vnJwcl6771KlTSk1N1ZVXXqlTp07p8ccf180336w9e/aoVq1a+v3339WtWzddcsklWr16tRo1aqTdu3ertLTUpfO4isQOAIAarqCoRK0e32jKuffO7Kvw4IunEwcOHJBhGGrevLnD9piYGJ0+fVqSdO+99+qZZ56xP3f77bdr5MiRDuNnzJhh/z05OVnbt2/XypUrHRK7unXr6sUXX1RAQIBatGihG2+8UZ988onGjBmjb7/9VuvXr9fnn3+uDh06SJKWLFmili1bunTdt956q8PjJUuWqGHDhtq7d69at26tt956S//973/15Zdfql69epKkZs2auXQOd1CKBQAA1eb8WbkvvvhCe/bs0RVXXKEzZ844PJeSklJu/8WLFyslJUUNGjRQ7dq19be//U1ZWVkOY6644goFBATYH8fFxdln5Pbt26fAwECHY7do0ULR0dEuXcfBgwd1++23q0mTJoqMjFRycrIk2WPZs2eP2rVrZ0/qqgszdgAA1HBhQQHaO7OvaeeujGbNmslms+mbb75x2N6kSZOzxwkLK7fP+SXblStXatKkSZozZ446deqkOnXq6Lnnniv3ubXzF1nYbDZ7CdQwDPu2qujfv78SEhL0t7/9TfHx8SotLVXr1q1VWFhY4fVUBxI7AABqOJvNVqlyqJnq16+v3r1768UXX9T9999f4efsLmTr1q3q3Lmzxo0bZ992/oKFi2nZsqWKi4uVkZGha665RpK0f/9+/fbbb5U+xvHjx7Vv3z69/PLL6tq1qyTps88+cxhz1VVX6dVXX9WJEyeqddaOUiwAAKgWCxcuVHFxsVJSUrRixQrt27dP+/fv1z/+8Q998803DuVTZ5o1a6aMjAxt3LhR3377raZNm6Yvv/zSpRiaN2+u66+/XmPGjNHOnTu1a9cujR492qUZtrp166p+/fp65ZVXdODAAf3rX/9Samqqw5jbbrtNjRo10sCBA7Vt2zYdOnRIq1at0o4dO1yK11UkdgAAoFo0bdpUmZmZ6tWrl6ZMmaI2bdooJSVFCxYs0OTJk/Xkk09ecP+xY8fqlltu0eDBg9WhQwcdP37cYfausl577TUlJCSoW7duuuWWW3T33XerYcOGld6/Vq1aevvtt7Vr1y61bt1akyZN0nPPPecwJjg4WB999JEaNmyoG264QVdeeaVmz5590eS1qmxGWbHZT+Tl5SkqKkq5ubmKjIz0yjmO/fqLUp7JkCRlPJyimLqxXjkPAMA/nT59WocPH1ZycrJCQ0PNDgcecKG/qSu5CzN2AAAAFkFiBwAAYBEkdgAAABZBYgcAAGARJHYAAAAWQWIHAABgESR2AAAAFkFiBwAAYBEkdgAAABZBYgcAAPzW999/L5vNpj179pgdikeQ2AEAgGoxYsQIDRw4sNz2TZs2yWaz6bfffvPo+Ww2mz744AOPHtPXkdgBAABYBIkdAADwKcePH9dtt92mSy+9VOHh4bryyiu1fPlyhzFJSUlKS0tz2Na2bVtNnz7d/rwk3XzzzbLZbPbHF1NSUqJRo0YpOTlZYWFhat68uV544YVy45YuXaorrrhCISEhiouL03333efqZXpFoNkBAACAKjIMqSjfnHMHhUs2m0cPefr0abVv314PP/ywIiMjtXbtWg0dOlRNmjRRhw4dKnWML7/8Ug0bNtRrr72m66+/XgEBAZXar7S0VJdeeqlWrlypmJgYbd++XXfffbfi4uI0aNAgSdKiRYuUmpqq2bNnq1+/fsrNzdW2bdvcvl5PIrEDAKCmK8qXno4359yP/iwFR1R6+Jo1a1S7dm2HbSUlJQ6PL7nkEk2ePNn++P7779eGDRv0zjvvVDqxa9CggSQpOjpajRo1qnR8QUFBmjFjhv1xcnKytm/frpUrV9oTu6eeekoPPPCAJkyYYB/3hz/8odLn8CYSOwAAUG169OihRYsWOWzbuXOn7rzzTvvjkpISzZ49WytWrNBPP/2kM2fO6MyZM4qIqHwCWRWLFy/Wq6++qh9++EEFBQUqLCxU27ZtJUk5OTn6+eef1bNnz2qJxVUkdgAA1HRB4Wdnzsw6twsiIiLUrFkzh20//vijw+M5c+Zo3rx5SktL05VXXqmIiAhNnDhRhYWF9jG1atWSYRgO+xUVFbkYfHkrV67UpEmTNGfOHHXq1El16tTRc889p507d0qSwsLCqnwObyKxAwCgprPZXCqH+rqtW7dqwIAB9lm80tJSfffdd2rZsqV9TIMGDZSdnW1/nJeXp8OHDzscJygoqFyZtzLn7ty5s8aNG2ffdvDgQfvvderUUVJSkj755BP16NHDpWNXB1bFAgAAn9KsWTOlp6dr+/bt2rdvn+655x4dPXrUYcx1112nN954Q1u3btVXX32l4cOHl1sgUZaAHT16VL/++mulz52RkaGNGzfq22+/1bRp0/Tll186jJk+fbrmzJmj+fPn67vvvtPu3bu1YMGCql20h5DYAQAAnzJt2jRdffXV6tu3r7p3765GjRqVa2w8ZcoU/fGPf9RNN92kG264QQMHDlTTpk0dxsyZM0fp6elKSEhQu3btKnXusWPH6pZbbtHgwYPVoUMHHT9+3GH2TpKGDx+utLQ0LVy4UFdccYVuuukmfffdd1W6Zk+xGecXqC0uLy9PUVFRys3NVWRkpFfOcezXX5TyTIYkKePhFMXUjfXKeQAA/un06dM6fPiwkpOTFRoaanY48IAL/U1dyV2YsQMAALAIEjsAAACLILEDAACwCBI7AAAAiyCxAwAAsAgSOwAAAIsgsQMAALAIEjsAAACLILEDAACwCBI7AABQo3Xv3l0TJ050eT+bzaYPPvjA4/GYicQOAABUixEjRshms8lmsykoKEhNmjTR5MmTderUqUrtv2nTJtlsNv32228O29977z09+eST9sdJSUlKS0vzYOQ1R6DZAQAAAP9x/fXX67XXXlNRUZG2bt2q0aNH69SpU1q0aJHbx6xXr54HI6zZmLEDAADVJiQkRI0aNVJCQoJuv/123XHHHfZyqGEYevbZZ9WkSROFhYWpTZs2evfddyVJ33//vXr06CFJqlu3rmw2m0aMGCHJsRTbvXt3/fDDD5o0aZJ9drCyHn74YV1++eUKDw9XkyZNNG3aNBUVFTmMWb16tVJSUhQaGqqYmBjdcsstVbshHsaMHQAANZxhGCooLjDl3GGBYS4lT+X2DwuzJ0+PPfaY3nvvPS1atEiXXXaZtmzZojvvvFMNGjTQtddeq1WrVunWW2/V/v37FRkZqbCwsHLHe++999SmTRvdfffdGjNmjEux1KlTR8uWLVN8fLz+85//aMyYMapTp44eeughSdLatWt1yy23aOrUqXrjjTdUWFiotWvXun3t3kBiBwBADVdQXKAOb3Uw5dw7b9+p8KBwt/b94osv9NZbb6lnz546deqU5s6dq3/961/q1KmTJKlJkyb67LPP9PLLL6tbt272kmvDhg0VHR3t9Jj16tVTQECA6tSpo0aNGrkUz2OPPWb/PSkpSQ888IBWrFhhT+z++te/asiQIZoxY4Z9XJs2bVw6h7eR2AEAgGqzZs0a1a5dW8XFxSoqKtKAAQO0YMEC7d27V6dPn1bv3r0dxhcWFqpdu3bVEtu7776rtLQ0HThwQL///ruKi4sVGRlpf37Pnj0uzwJWNxI7AABquLDAMO28fadp53ZFjx49tGjRIgUFBSk+Pl5BQUGSpMOHD0s6W+685JJLHPYJCQnxTLAX8Pnnn9tn4/r27auoqCi9/fbbmjNnjn2Ms9KvryGxAwCghrPZbG6XQ6tbRESEmjVrVm57q1atFBISoqysLHXr1s3pvsHBwZKkkpKSC54jODj4omPOt23bNiUmJmrq1Kn2bT/88IPDmKuuukqffPKJ7rrrLpeOXZ1I7AAAgOnq1KmjyZMna9KkSSotLdW1116rvLw8bd++XbVr19bw4cOVmJgom82mNWvW6IYbblBYWJhq165d7lhJSUnasmWLhgwZopCQEMXExFz0/M2aNVNWVpbefvtt/eEPf9DatWv1/vvvO4x54okn1LNnTzVt2lRDhgxRcXGx1q9fb/8Mni+g3QkAAPAJTz75pB5//HHNmjVLLVu2VN++ffXPf/5TycnJkqRLLrlEM2bM0COPPKLY2Fjdd999To8zc+ZMff/992ratKkaNGhQqXMPGDBAkyZN0n333ae2bdtq+/btmjZtmsOY7t2765133tHq1avVtm1bXXfdddq505wSeEVshmEYZgdRnfLy8hQVFaXc3FyHD0R60rFff1HKMxmSpIyHUxRTN9Yr5wEA+KfTp0/r8OHDSk5OVmhoqNnhwAMu9Dd1JXdhxg4AAMAiSOwAAAAsgsQOAADAIkjsAAAALILEDgAAwCJI7AAAqKH8rLGFpXnqb0liBwBADVP2NVz5+fkmRwJPKftblv1t3cU3TwAAUMMEBAQoOjpaOTk5kqTw8HDZbDaTo4I7DMNQfn6+cnJyFB0drYCAgCodj8QOAIAaqFGjRpJkT+5Qs0VHR9v/plVBYgcAQA1ks9kUFxenhg0bqqioyOxwUAVBQUFVnqkrY3pit3DhQj333HPKzs7WFVdcobS0NHXt2rXC8Zs3b1Zqaqq+/vprxcfH66GHHtLYsWOrMWIAAHxHQECAx5IC1HymLp5YsWKFJk6cqKlTpyozM1Ndu3ZVv379lJWV5XT84cOHdcMNN6hr167KzMzUo48+qvHjx2vVqlXVHDkAAIDvMTWxmzt3rkaNGqXRo0erZcuWSktLU0JCghYtWuR0/OLFi9W4cWOlpaWpZcuWGj16tEaOHKnnn3++miMHAADwPaYldoWFhdq1a5f69OnjsL1Pnz7avn2703127NhRbnzfvn2VkZHB5wsAAIDfM+0zdseOHVNJSYliY2MdtsfGxuro0aNO9zl69KjT8cXFxTp27Jji4uLK7XPmzBmdOXPG/jg3N1eSlJeXV9VLqNDJvJMqPZNv/z04IMxr5wIAANZWlrNUpomx6Ysnzu+7YxjGBXvxOBvvbHuZWbNmacaMGeW2JyQkuBqqW5qkVctpAACAxZ08eVJRUVEXHGNaYhcTE6OAgIBys3M5OTnlZuXKNGrUyOn4wMBA1a9f3+k+U6ZMUWpqqv1xaWmpTpw4ofr163u1mWNeXp4SEhJ05MgRRUZGeu08VsI9cw/3zXXcM9dxz9zDfXMd96w8wzB08uRJxcfHX3SsaYldcHCw2rdvr/T0dN1888327enp6RowYIDTfTp16qR//vOfDts++ugjpaSkVPgVHCEhIQoJCXHYFh0dXbXgXRAZGckL00XcM/dw31zHPXMd98w93DfXcc8cXWymroypq2JTU1P16quvaunSpdq3b58mTZqkrKwse1+6KVOmaNiwYfbxY8eO1Q8//KDU1FTt27dPS5cu1ZIlSzR58mSzLgEAAMBnmPoZu8GDB+v48eOaOXOmsrOz1bp1a61bt06JiYmSpOzsbIeedsnJyVq3bp0mTZqkl156SfHx8Zo/f75uvfVWsy4BAADAZ5i+eGLcuHEaN26c0+eWLVtWblu3bt20e/duL0dVdSEhIXriiSfKlYFRMe6Ze7hvruOeuY575h7um+u4Z1VjMyqzdhYAAAA+z9TP2AEAAMBzSOwAAAAsgsQOAADAIkjsKmnhwoVKTk5WaGio2rdvr61bt15w/ObNm9W+fXuFhoaqSZMmWrx4cbkxq1atUqtWrRQSEqJWrVrp/fff91b4pnHlvr333nvq3bu3GjRooMjISHXq1EkbN250GLNs2TLZbLZyP6dPn/b2pVQbV+7Zpk2bnN6Pb775xmGc1V9rrtyzESNGOL1nV1xxhX2M1V9nW7ZsUf/+/RUfHy+bzaYPPvjgovvwnub6feM9zfV7xnta1ZHYVcKKFSs0ceJETZ06VZmZmeratav69evn0IrlXIcPH9YNN9ygrl27KjMzU48++qjGjx+vVatW2cfs2LFDgwcP1tChQ/Xvf/9bQ4cO1aBBg7Rz587quiyvc/W+bdmyRb1799a6deu0a9cu9ejRQ/3791dmZqbDuMjISGVnZzv8hIaGVscleZ2r96zM/v37He7HZZddZn/O6q81V+/ZCy+84HCvjhw5onr16ul//ud/HMZZ+XV26tQptWnTRi+++GKlxvOedpar9433NNfvWRl/fk+rMgMXdc011xhjx4512NaiRQvjkUcecTr+oYceMlq0aOGw7Z577jE6duxofzxo0CDj+uuvdxjTt29fY8iQIR6K2nyu3jdnWrVqZcyYMcP++LXXXjOioqI8FaLPcfWeffrpp4Yk49dff63wmFZ/rVX1dfb+++8bNpvN+P777+3brP46O5ck4/3337/gGN7TyqvMfXPG397TzlWZe8Z7WtUxY3cRhYWF2rVrl/r06eOwvU+fPtq+fbvTfXbs2FFufN++fZWRkaGioqILjqnomDWNO/ftfKWlpTp58qTq1avnsP33339XYmKiLr30Ut10003l/u+3pqrKPWvXrp3i4uLUs2dPffrppw7PWfm15onX2ZIlS9SrVy97Y/QyVn2duYP3NM/wt/e0qvDX9zRPILG7iGPHjqmkpESxsbEO22NjY3X06FGn+xw9etTp+OLiYh07duyCYyo6Zk3jzn0735w5c3Tq1CkNGjTIvq1FixZatmyZVq9ereXLlys0NFRdunTRd99959H4zeDOPYuLi9Mrr7yiVatW6b333lPz5s3Vs2dPbdmyxT7Gyq+1qr7OsrOztX79eo0ePdphu5VfZ+7gPc0z/O09zR3+/p7mCaZ/80RNYbPZHB4bhlFu28XGn7/d1WPWRO5e4/LlyzV9+nR9+OGHatiwoX17x44d1bFjR/vjLl266Oqrr9aCBQs0f/58zwVuIlfuWfPmzdW8eXP7406dOunIkSN6/vnn9cc//tGtY9ZE7l7fsmXLFB0drYEDBzps94fXmat4T6saf35PcwXvaVXHjN1FxMTEKCAgoNz/CeTk5JT7P4YyjRo1cjo+MDBQ9evXv+CYio5Z07hz38qsWLFCo0aN0sqVK9WrV68Ljq1Vq5b+8Ic/WOL/bqtyz87VsWNHh/th5ddaVe6ZYRhaunSphg4dquDg4AuOtdLrzB28p1WNv76neYo/vad5AondRQQHB6t9+/ZKT0932J6enq7OnTs73adTp07lxn/00UdKSUlRUFDQBcdUdMyaxp37Jp39v9oRI0borbfe0o033njR8xiGoT179iguLq7KMZvN3Xt2vszMTIf7YeXXWlXu2ebNm3XgwAGNGjXqouex0uvMHbynuc+f39M8xZ/e0zzCjBUbNc3bb79tBAUFGUuWLDH27t1rTJw40YiIiLCvonvkkUeMoUOH2scfOnTICA8PNyZNmmTs3bvXWLJkiREUFGS8++679jHbtm0zAgICjNmzZxv79u0zZs+ebQQGBhqff/55tV+ft7h639566y0jMDDQeOmll4zs7Gz7z2+//WYfM336dGPDhg3GwYMHjczMTOOuu+4yAgMDjZ07d1b79XmDq/ds3rx5xvvvv298++23xldffWU88sgjhiRj1apV9jFWf625es/K3HnnnUaHDh2cHtPqr7OTJ08amZmZRmZmpiHJmDt3rpGZmWn88MMPhmHwnlYRV+8b72mu3zPe06qOxK6SXnrpJSMxMdEIDg42rr76amPz5s3254YPH25069bNYfymTZuMdu3aGcHBwUZSUpKxaNGicsd85513jObNmxtBQUFGixYtHF64VuHKfevWrZshqdzP8OHD7WMmTpxoNG7c2AgODjYaNGhg9OnTx9i+fXs1XpH3uXLPnnnmGaNp06ZGaGioUbduXePaa6811q5dW+6YVn+tufrf52+//WaEhYUZr7zyitPjWf11VtZSoqL/1nhPc87V+8Z7muv3jPe0qrMZxv9+AhYAAAA1Gp+xAwAAsAgSOwAAAIsgsQMAALAIEjsAAACLILEDAACwCBI7AAAAiyCxAwAAsAgSOwAAAIsgsQMAALAIEjsA8KKCggKFh4frm2++MTsUAH6AxA4AvCg9PV0JCQlq0aKF2aEA8AMkdgD8Wvfu3XXffffpvvvuU3R0tOrXr6/HHntMZV+jfebMGT300ENKSEhQSEiILrvsMi1ZskSS9Ouvv+qOO+5QgwYNFBYWpssuu0yvvfaaw/E//PBD/elPf5IkTZ8+XW3bttXSpUvVuHFj1a5dW3/5y19UUlKiZ599Vo0aNVLDhg3117/+tXpvAgDLCDQ7AAAw29///neNGjVKO3fuVEZGhu6++24lJiZqzJgxGjZsmHbs2KH58+erTZs2Onz4sI4dOyZJmjZtmvbu3av169crJiZGBw4cUEFBgf24paWlWrNmjVatWmXfdvDgQa1fv14bNmzQwYMH9ec//1mHDx/W5Zdfrs2bN2v79u0aOXKkevbsqY4dO1b7vQBQs5HYAfB7CQkJmjdvnmw2m5o3b67//Oc/mjdvnrp166aVK1cqPT1dvXr1kiQ1adLEvl9WVpbatWunlJQUSVJSUpLDcT///HOVlpaqc+fO9m2lpaVaunSp6tSpo1atWqlHjx7av3+/1q1bp1q1aql58+Z65plntGnTJhI7AC6jFAvA73Xs2FE2m83+uFOnTvruu++UmZmpgIAAdevWzel+f/nLX/T222+rbdu2euihh7R9+3aH5z/88EPddNNNqlXr/95qk5KSVKdOHfvj2NhYtWrVymFMbGyscnJyPHV5APwIiR0AVCA0NPSCz/fr108//PCDJk6cqJ9//lk9e/bU5MmT7c+vXr1aAwYMcNgnKCjI4bHNZnO6rbS0tIrRA/BHJHYA/N7nn39e7vFll12mNm3aqLS0VJs3b65w3wYNGmjEiBH6xz/+obS0NL3yyiuSpO+++07ff/+9+vTp49XYAeBcJHYA/N6RI0eUmpqq/fv3a/ny5VqwYIEmTJigpKQkDR8+XCNHjtQHH3ygw4cPa9OmTVq5cqUk6fHHH9eHH36oAwcO6Ouvv9aaNWvUsmVLSWfLsL169VJ4eLiZlwbAz7B4AoDfGzZsmAoKCnTNNdcoICBA999/v+6++25J0qJFi/Too49q3LhxOn78uBo3bqxHH31UkhQcHKwpU6bo+++/V1hYmLp27aq3335b0tnEbvjw4aZdEwD/ZDPKmjUBgB/q3r272rZtq7S0NI8d89ixY4qLi9ORI0fUqFEjjx0XAC6GUiwAeNiJEyc0d+5ckjoA1Y5SLAB42OWXX67LL7/c7DAA+CFKsQAAABZBKRYAAMAiSOwAAAAsgsQOAADAIkjsAAAALILEDgAAwCJI7AAAACyCxA4AAMAiSOwAAAAsgsQOAADAIv4/Gx3DMYfSkdwAAAAASUVORK5CYII=", "text/plain": "
"}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "region_ecdf"}}, "output_type": "display_data"}, "region_qty_dist": {"data": {"text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The distribution of the total number of plastic shotgun wadding found per sample for each region
 nsamplesmeanstdmin25%50%75%max
Grand lac581200018
Haut lac137610002751
Petit lac5514000022
\n", "text/plain": ""}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "region_qty_dist"}}, "output_type": "display_data"}, "region_med_dist": {"data": {"text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The distribution of the number of shotgun wadding found per meter of shoreline
 nsamplesmeanstdmin25%50%75%max
Grand lac58.000.030.050.000.000.000.030.22
Haut lac137.000.170.310.000.000.050.171.64
Petit lac55.000.020.050.000.000.000.010.30
\n", "text/plain": ""}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "region_med_dist"}}, "output_type": "display_data"}, "city_rankings": {"data": {"text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 pcs/mnsamples
Saint-Gingolph0.6813
Allaman0.143
Bourg-en-Lavaux0.122
La Tour-de-Peilz0.1225
Montreux0.1153
Vevey0.1144
Saint-Sulpice (VD)0.0615
Versoix0.054
Gen\u00e8ve0.0329
Pr\u00e9verenges0.0115
Tolochenaz0.013
Lausanne0.0120
Gland0.0022
Morges0.001
Rolle0.001
\n", "text/plain": ""}, "metadata": {"scrapbook": {"mime_prefix": "", "name": "city_rankings"}}, "output_type": "display_data"}} \ No newline at end of file +{"percent_samps_feature": {"data": {"text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Percent of samples collected with the designated land-use feature and category.
 orchardsvineyardsbuildingsforestundefinedpublic_services
191%92%11%72%63%68%
26%7%6%14%25%7%
30%0%1%0%1%7%
41%0%20%9%2%8%
51%1%62%5%9%10%
\n", "text/plain": ""}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "percent_samps_feature"}}, "output_type": "display_data"}, "average_per_feature": {"data": {"text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The average number of shotgun shells per linear meter of shoreline by feature and category.
 buildingsforestorchardspublic_servicesundefinedvineyards
10.030.080.110.130.090.10
20.590.060.010.120.180.08
30.00-0.000.010.08-
40.040.000.010.030.090.00
50.090.680.140.030.000.12
\n", "text/plain": ""}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "average_per_feature"}}, "output_type": "display_data"}, "region_scatter": {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHWCAYAAAD+VRS3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACU9ElEQVR4nOzdd3iTVfvA8W+Spm2694JCy957owgyFBUZKoiKooLiFvSn8r64X8UtTnAjDkREEMUBKkvZS2Svslu6m86kGb8/DrSEJqUtbdOU+3NduTTnPHly0pKn93PGfTR2u92OEEIIIYTwWFp3N0AIIYQQQlwYCeiEEEIIITycBHRCCCGEEB5OAjohhBBCCA8nAZ0QQgghhIeTgE4IIYQQwsNJQCeEEEII4eEkoBNCCCGE8HBe7m5AXWSz2Th58iSBgYFoNBp3N0cIIYQQFwm73U5ubi5xcXFotRXvd5OAzomTJ08SHx/v7mYIIYQQ4iJ17NgxGjZsWOHjJaBzIjAwEFA/zKCgIDe3RgghhBAXC6PRSHx8fEksUlES0DlxZpg1KChIAjohhBBC1LrKTvmSRRFCCCGEEB5OAjohhBBCCA8nAZ0QQgghhIeTOXRCCCGEB7DZbJjNZnc3Q1wgvV6PTqer9vNKQCeEEELUcWazmaSkJGw2m7ubIqpBSEgIMTEx1ZrrVgI6IYQQog6z2+0kJyej0+mIj4+vVLJZUbfY7XYKCgpITU0FIDY2ttrOLQGdEEIIUYdZLBYKCgqIi4vDz8/P3c0RF8hgMACQmppKVFRUtQ2/SpgvhBBC1GFWqxUAb29vN7dEVJczgXlxcXG1nVMCOiGEEMIDyN7i9UdN/C4loBNCCCFEnZKQkMCMGTPc3QyPInPohBBCCFGnbNy4EX9/f3c3w6NIQCfcz5QH+WmQnw56X/CPhMAYd7dKCCFEJZnN5mqZ6xcZGVkNrbm4yJCrcK/8NFj5MrzbDT4ZBLMugU+vgJSdYLe7u3VCCCHK0b9/f+6//36mTJlCREQEgwcPZteuXVx11VUEBAQQHR3NuHHjSE9PL3lNbm4uN998M/7+/sTGxvLmm2/Sv39/Hn744ZJjzh1yPXr0KMOHDycgIICgoCBGjx7NqVOnSuqfeeYZOnXqxBdffEFCQgLBwcHceOON5Obm1saPoU6QgE64j80GOxbCmrfBZiktzzoMn18NOcfd1jQhhBAV8/nnn+Pl5cXff//NSy+9xGWXXUanTp3YtGkTv/76K6dOnWL06NElx0+ZMoW///6bxYsXs2zZMlavXs2WLVtcnt9utzNixAgyMzNZuXIly5Yt4+DBg4wZM8bhuIMHD7Jo0SJ++uknfvrpJ1auXMlLL71UY5+7rpEhV+E+eSmw+lXndYVZcGILhMTXbpuEEEJUSrNmzXjllVcAeOqpp+jSpQsvvvhiSf2nn35KfHw8+/btIzY2ls8//5yvv/6agQMHAvDZZ58RFxfn8vy///4727dvJykpifh49Tfhiy++oG3btmzcuJHu3bsDamu02bNnExgYCMC4ceP4448/eOGFF2rkc9c10kMn3MdigrxU1/WndtZeW4QQQlRJt27dSv5/8+bNLF++nICAgJJHq1atANWDdujQIYqLi+nRo0fJa4KDg2nZsqXL8+/evZv4+PiSYA6gTZs2hISEsHv37pKyhISEkmAO1C4MZ3ZkuBhID51wHy8ftfghN8V5fUy72m2PEEKISjt7NarNZmPYsGG8/PLLZY6LjY1l//79QNk8bPZy5kzb7XanedvOLdfr9Q71Go3motr7VnrohPsExsJljzuv8wuHuC612x4hhBAXpEuXLuzcuZOEhASaNWvm8PD396dp06bo9Xo2bNhQ8hqj0VgS6DnTpk0bjh49yrFjx0rKdu3aRU5ODq1bt67Rz+NJJKAT7qPRQOtrod9joDtrmXt4Mxi/BEIauq9tQgghKu2+++4jMzOTsWPHsmHDBg4dOsTSpUu54447sFqtBAYGctttt/F///d/LF++nJ07d3LHHXeg1Wpd7p4waNAgOnTowM0338yWLVvYsGEDt956K5dddpnDcO/FTgI64V7+EXDJZLh/I0xcDveshfG/QJTcdQkhhKeJi4vj77//xmq1csUVV9CuXTseeughgoOD0WpVyPHGG2/Qu3dvrrnmGgYNGkTfvn1p3bo1vr6+Ts+p0WhYtGgRoaGh9OvXj0GDBtGkSRPmzZtXmx+tztPYyxu4vkgZjUaCg4PJyckhKCjI3c0RQghxESsqKiIpKYnExESXQY8ny8/Pp0GDBrz++uvceeed7m5OrSjvd1rVGEQWRQghhBCi1mzdupU9e/bQo0cPcnJyeO655wAYPny4m1vm2SSgE0IIIUSteu2119i7dy/e3t507dqV1atXExER4e5meTQJ6IQQQghRazp37szmzZvd3Yx6RxZFCCGEEEJ4OAnohBBCCCE8nAR0QgghhBAeTgI6IYQQQggPJwGdEEIIIYSHk1WuolR+BhSkgzkfDKEQEAXe/ud/nRBCCCHcSnrohJJ1GL6+Ad7rAR8NgHe7wm/TIO+Uu1smhBBCVKuEhARmzJjhsn78+PGMGDGi1tpTHSSgE5CbAl9eByfOygtks8LmT2Hte2Axua9tQgghPFZKSgoPPfQQzZo1w9fXl+joaC655BJmzZpFQUGBu5tXr8iQq4DsY5BxwHndhg+h+wQIaVS7bRJCCOHRDh06RN++fQkJCeHFF1+kffv2WCwW9u3bx6effkpcXBzXXnut09cWFxej1+trucWeTXroBGQecl1XXKjm1AkhhLgwdjsU5bjtmmq12Vl7MIMftp1g7cEMrDZ7jb7fvffei5eXF5s2bWL06NG0bt2a9u3bc91117FkyRKGDRtWcqxGo2HWrFkMHz4cf39//ve//2G1WrnzzjtJTEzEYDDQsmVL3nrrLYf3ODM0+tprrxEbG0t4eDj33XcfxcXFJcekpqYybNgwDAYDiYmJfPXVV5X+LL/++iuXXHIJISEhhIeHc80113Dw4EGHY44fP86NN95IWFgY/v7+dOvWjfXr11f6vapKeugEhDZ2XeflA3q/2muLEELURznHYe/P8O936pra6x6I66wWn9WCX3ck8+yPu0jOKSopiw325elhbbiyXWy1v19GRgZLly7lxRdfxN/f+eI6jUbj8Pzpp59m+vTpvPnmm+h0Omw2Gw0bNuTbb78lIiKCNWvWcNdddxEbG8vo0aNLXrd8+XJiY2NZvnw5Bw4cYMyYMXTq1ImJEycCKug7duwYf/75J97e3jz44IOkpqZW6vPk5+czZcoU2rdvT35+Pk899RQjR45k27ZtaLVa8vLyuOyyy2jQoAGLFy8mJiaGLVu2YLPZKvmTqzoJ6ASENIbQBLUw4lxdboeA6NpukRBC1B/Zx2D2VZB9tLTs0HJoMwKueg0CImv07X/dkcw9X27h3P64lJwi7vlyCzNv6VLtQd2BAwew2+20bNnSoTwiIoKiIhVU3nfffbz88ssldTfddBN33HGHw/HPPvtsyf8nJiayZs0avv32W4eALjQ0lHfffRedTkerVq24+uqr+eOPP5g4cSL79u3jl19+Yd26dfTs2ROATz75hNatW1fq81x33XUOzz/55BOioqLYtWsX7dq14+uvvyYtLY2NGzcSFhYGQLNmzSr1HhdKhlwFBMXCLd9D1Fn/wDUaaH8DXDoZ9L7ua5sQQngyixnWzXQM5s7Ytcj1/OVqYrXZefbHXWWCOaCk7Nkfd9XY8Ou5vXAbNmxg27ZttG3bFpPJccFdt27dyrx+1qxZdOvWjcjISAICAvjoo484etTxZ9m2bVt0Ol3J89jY2JIeuN27d+Pl5eVw7latWhESElKpz3Hw4EFuuukmmjRpQlBQEImJiQAlbdm2bRudO3cuCebcQXrohBLeFG5dDPnpYDKCfwT4R4JvsLtbJoQQnqsgHbbPdV2/ZQ406qVuomvAhqRMh2HWc9mB5JwiNiRl0rtpeLW9b7NmzdBoNOzZs8ehvEmTJgAYDIYyrzl3aPbbb79l8uTJvP766/Tu3ZvAwEBeffXVMvPSzl08odFoSoY67XZ7SdmFGDZsGPHx8Xz00UfExcVhs9lo164dZrPZ5eepbdJDJ0oFREF0G3VxCW8mwZwQQlQHezm9X7Zi13XVIDXXdTBXleMqKjw8nMGDB/Puu++Sn1+1RSCrV6+mT58+3HvvvXTu3JlmzZqVWYhwPq1bt8ZisbBp06aSsr1795KdnV3hc2RkZLB7926mTZvGwIEDad26NVlZWQ7HdOjQgW3btpGZmVmp9lUnCeiEEEKImuIXBm1Hua7vPK7GeucAogIrNmWmosdVxvvvv4/FYqFbt27MmzeP3bt3s3fvXr788kv27NnjMEzqTLNmzdi0aRO//fYb+/bt48knn2Tjxo2VakPLli258sormThxIuvXr2fz5s1MmDChUj1qoaGhhIeH8+GHH3LgwAH+/PNPpkyZ4nDM2LFjiYmJYcSIEfz9998cOnSIBQsWsHbt2kq190JIQCeEEELUFC9f6Pug89WsTQZAZKsaffseiWHEBvviKmTUoFa79kis/rlfTZs2ZevWrQwaNIipU6fSsWNHunXrxjvvvMOjjz7K888/X+7rJ02axKhRoxgzZgw9e/YkIyODe++9t9Lt+Oyzz4iPj+eyyy5j1KhR3HXXXURFVXx1sVar5ZtvvmHz5s20a9eOyZMn8+qrrzoc4+3tzdKlS4mKiuKqq66iffv2vPTSS+cNWquTxm4vry/44mQ0GgkODiYnJ4egoCB3N0cIIYSnyz4KW79UCyH0/tBzEjS5DAJjzvvSoqIikpKSSExMxNe38j1pZ1a5Ag6LI84EeTWxylWUr7zfaVVjEFkUIYQQQtS0kEbQ7zHoPhG0OjUUW0uubBfLzFu6lMlDF1ODeehE7XPrkOuqVasYNmwYcXFxaDQaFi1aVO7xK1asQKPRlHmcu4pmwYIFtGnTBh8fH9q0acPChQtr8FMIIYQQFaDzUjnnajGYO+PKdrH89fjlzJ3Yi7du7MTcib346/HLJZirR9wa0OXn59OxY0fefffdSr1u7969JCcnlzyaN29eUrd27VrGjBnDuHHj+Oeffxg3bhyjR4+u1e03hBBCiLpGp9XQu2k4wzs1oHfTcHTamluMIWqfW4dchw4dytChQyv9uqioKJdJAWfMmMHgwYOZOnUqAFOnTmXlypXMmDGDuXPLyQUkhBBCCOGhPHKVa+fOnYmNjWXgwIEsX77coW7t2rUMGTLEoeyKK65gzZo1Ls9nMpkwGo0ODyGEEEIIT+FRAV1sbCwffvghCxYs4Pvvv6dly5YMHDiQVatWlRyTkpJCdLTj3qPR0dGkpKS4PO/06dMJDg4uecTHx9fYZxBCCCGEqG4etcq1ZcuWDhv99u7dm2PHjvHaa6/Rr1+/kvJzt/iw2+3lbvsxdepUhySBRqNRgjohhBBCeAyP6qFzplevXuzfv7/keUxMTJneuNTU1DK9dmfz8fEhKCjI4SGEEEII4Sk8PqDbunUrsbGly6579+7NsmXLHI5ZunQpffr0qe2mCSGEEELUCrcOuebl5XHgwIGS50lJSWzbto2wsDAaNWrE1KlTOXHiBHPmzAHUCtaEhATatm2L2Wzmyy+/ZMGCBSxYsKDkHA899BD9+vXj5ZdfZvjw4fzwww/8/vvv/PXXX7X++YQQQghRdxw+fJjExES2bt1Kp06d3N2cauXWHrpNmzbRuXNnOnfuDMCUKVPo3LkzTz31FADJyckcPXq05Hiz2cyjjz5Khw4duPTSS/nrr79YsmQJo0aVbnzcp08fvvnmGz777DM6dOjA7NmzmTdvHj179qzdDyeEEEJcxMaPH8+IESPKlJ/ZJCA7O7ta368iGxTUZ27toevfvz/lbSU7e/Zsh+ePPfYYjz322HnPe/3113P99ddfaPOEEEIIITyCx8+hE0IIIUQF2KyQtBr+/U7912Z1d4sAyMjIYOzYsTRs2BA/Pz/at29fZiOAhIQEZsyY4VDWqVMnnnnmmZJ6gJEjR6LRaEqen4/VauXOO+8kMTERg8FAy5Yteeutt8oc9+mnn9K2bVt8fHyIjY3l/vvvr+zHrHEelbZECCGEEFWwazH8+jgYT5aWBcXBlS9Dm2vd1y6gqKiIrl278vjjjxMUFMSSJUsYN24cTZo0qfB0qY0bNxIVFcVnn33GlVdeiU6nq9DrbDYbDRs25NtvvyUiIoI1a9Zw1113ERsby+jRowGYOXMmU6ZM4aWXXmLo0KHk5OTw999/V/nz1hQJ6IQQQoj6bNdi+PZW4JwpTsZkVT56To0FdT/99BMBAQEOZVarY89ggwYNePTRR0ueP/DAA/z666/Mnz+/wgFdZGQkACEhIcTExFS4fXq9nmeffbbkeWJiImvWrOHbb78tCej+97//8cgjj/DQQw+VHNe9e/cKv0dtkYBOCCGEqK9sVtUzd24wB6fLNPDrE9DqatBWrFerMgYMGMDMmTMdytavX88tt9xS8txqtfLSSy8xb948Tpw4gclkwmQy4e/vX+3tcWbWrFl8/PHHHDlyhMLCQsxmc8kK2NTUVE6ePMnAgQNrpS0XQgI6IYQQor46ssZxmLUMOxhPqOMSL632t/f396dZs2YOZcePH3d4/vrrr/Pmm28yY8YM2rdvj7+/Pw8//DBms7nkGK1WW2YRZXFx8QW379tvv2Xy5Mm8/vrr9O7dm8DAQF599VXWr18PgMFguOD3qC0S0AkhhBD1Vd6p6j2uBqxevZrhw4eX9NrZbDb2799P69atS46JjIwkOTm55LnRaCQpKcnhPHq9vsxwbkXeu0+fPtx7770lZQcPHiz5/8DAQBISEvjjjz8YMGBApc5d22SVqxBCCFFfBbje9rJKx9WAZs2asWzZMtasWcPu3bu5++67y2zhefnll/PFF1+wevVqduzYwW233VZm4cOZwCslJYWsrKwKv/emTZv47bff2LdvH08++SQbN250OOaZZ57h9ddf5+2332b//v1s2bKFd95558I+dA2QgE4IIYSorxr3UatZ0bg4QANBDdRxbvLkk0/SpUsXrrjiCvr3709MTEyZhMRTp06lX79+XHPNNVx11VWMGDGCpk2bOhzz+uuvs2zZMuLj40s2LDifSZMmMWrUKMaMGUPPnj3JyMhw6K0DuO2225gxYwbvv/8+bdu25ZprrnHYQ76u0NjLy+x7kTIajQQHB5OTk0NQUJC7myOEEOIiVlRURFJSEomJifj6+lb+BCWrXMFxccTpIK8GV7kK58r7nVY1BpEeOiGEEKI+a3OtCtqCYh3Lg+IkmKtHZFGEEEIIUd+1uValJjmyRi2ACIhWw6w1kKpEuIcEdEIIIcTFQKurkdQkom6QIVchhBBCCA8nAZ0QQgghhIeTgE4IIYQQwsNJQCeEEEII4eEkoBNCCCGE8HAS0AkhhBBCeDgJ6IQQQgjhMfr378/DDz9c6ddpNBoWLVpU7e2pKySgE0IIIUS1Gz9+PBqNBo1Gg16vp0mTJjz66KPk5+dX6PUrVqxAo9GQnZ3tUP7999/z/PPPlzxPSEhgxowZ1dhyzySJhYUQQghRI6688ko+++wziouLWb16NRMmTCA/P5+ZM2dW+ZxhYWHV2ML6Q3rohBBCiIuA1WZlY8pGfj70MxtTNmK1WWv8PX18fIiJiSE+Pp6bbrqJm2++uWTY026388orr9CkSRMMBgMdO3bku+++A+Dw4cMMGDAAgNDQUDQaDePHjwcch1z79+/PkSNHmDx5cklvYEU9/vjjtGjRAj8/P5o0acKTTz5JcXGxwzGLFy+mW7du+Pr6EhERwahRoy7sB1KDpIdOCCGEqOd+P/I7L214iVMFp0rKov2ieaLHEwxqPKjW2mEwGEqCpmnTpvH9998zc+ZMmjdvzqpVq7jllluIjIzkkksuYcGCBVx33XXs3buXoKAgDAZDmfN9//33dOzYkbvuuouJEydWqi2BgYHMnj2buLg4/v33XyZOnEhgYCCPPfYYAEuWLGHUqFH897//5YsvvsBsNrNkyZIL/yHUEAnohBBCiHrs9yO/M2XFFOzYHcpTC1KZsmIKb/R/o1aCug0bNvD1118zcOBA8vPzeeONN/jzzz/p3bs3AE2aNOGvv/7igw8+4LLLLisZWo2KiiIkJMTpOcPCwtDpdAQGBhITE1Op9kybNq3k/xMSEnjkkUeYN29eSUD3wgsvcOONN/Lss8+WHNexY8dKvUdtkoBOCCGEqKesNisvbXipTDAHYMeOBg0vb3iZAfED0Gl11f7+P/30EwEBAVgsFoqLixk+fDjvvPMOu3btoqioiMGDBzscbzab6dy5c7W3w5nvvvuOGTNmcODAAfLy8rBYLAQFBZXUb9u2rdK9fu4kAZ0QQghRT21J3eIwzHouO3ZSClLYkrqF7jHdq/39BwwYwMyZM9Hr9cTFxaHX6wFISkoC1LBmgwYNHF7j4+NT7e0417p160p636644gqCg4P55ptveP3110uOcTbEW5dJQCeEEELUU2kFadV6XGX5+/vTrFmzMuVt2rTBx8eHo0ePctlllzl9rbe3NwBWa/mLN7y9vc97zLn+/vtvGjduzH//+9+SsiNHjjgc06FDB/744w9uv/32Sp3bXSSgE0IIIeqpSL/Iaj2uugQGBvLoo48yefJkbDYbl1xyCUajkTVr1hAQEMBtt91G48aN0Wg0/PTTT1x11VUYDAYCAgLKnCshIYFVq1Zx44034uPjQ0RExHnfv1mzZhw9epRvvvmG7t27s2TJEhYuXOhwzNNPP83AgQNp2rQpN954IxaLhV9++aVkjl1dI2lLhBBCiHqqS1QXov2i0eA8nYcGDTF+MXSJ6lLLLYPnn3+ep556iunTp9O6dWuuuOIKfvzxRxITEwFo0KABzz77LE888QTR0dHcf//9Ts/z3HPPcfjwYZo2bUpkZMUC0+HDhzN58mTuv/9+OnXqxJo1a3jyyScdjunfvz/z589n8eLFdOrUicsvv5z169df2IeuQRq73V52puRFzmg0EhwcTE5OjsMESSGEEKK2FRUVkZSURGJiIr6+vpV+/ZlVroDD4ogzQV5trXIVpcr7nVY1BpEeOiGEEKIeG9R4EG/0f4MovyiH8mi/aAnm6hGZQyeEEELUc4MaD2JA/AC2pG4hrSCNSL9IukR1qZFUJcI9JKATQgghLgI6ra5GUpOIukGGXIUQQgghPJwEdEIIIYQQHk4COiGEEMIDSFKK+qMmfpcS0AkhhBB1mE6nFi6YzWY3t0RUl4KCAoCSrdCqgyyKEEIIIeowLy8v/Pz8SEtLQ6/Xo9VKX4ynstvtFBQUkJqaSkhISEmwXh0koBNCCCHqMI1GQ2xsLElJSWX2GxWeKSQkhJiYmGo9pwR0QgghRB3n7e1N8+bNZdi1HtDr9dXaM3eGBHRCCCGEB9BqtVXa+ktcHGQgXgghhBDCw0lAJ4QQQgjh4SSgE0IIIYTwcBLQCSGEEEJ4OLcGdKtWrWLYsGHExcWh0WhYtGhRucd///33DB48mMjISIKCgujduze//fabwzGzZ89Go9GUeRQVFdXgJxFCCCGEcB+3BnT5+fl07NiRd999t0LHr1q1isGDB/Pzzz+zefNmBgwYwLBhw9i6davDcUFBQSQnJzs8ZGWQEEIIIeort6YtGTp0KEOHDq3w8TNmzHB4/uKLL/LDDz/w448/0rlz55JyjUZT7Qn7hBBCCCHqKo+eQ2ez2cjNzSUsLMyhPC8vj8aNG9OwYUOuueaaMj145zKZTBiNRoeHEEIIIYSn8OiA7vXXXyc/P5/Ro0eXlLVq1YrZs2ezePFi5s6di6+vL3379mX//v0uzzN9+nSCg4NLHvHx8bXRfCGEEEKIaqGx2+12dzcC1DDpwoULGTFiRIWOnzt3LhMmTOCHH35g0KBBLo+z2Wx06dKFfv368fbbbzs9xmQyYTKZSp4bjUbi4+PJyckhKCioUp9DCCGEEKKqjEYjwcHBlY5BPHLrr3nz5nHnnXcyf/78coM5UFuldO/evdweOh8fH3x8fKq7mUIIIYQQtcLjhlznzp3L+PHj+frrr7n66qvPe7zdbmfbtm3ExsbWQuuEEEIIIWqfW3vo8vLyOHDgQMnzpKQktm3bRlhYGI0aNWLq1KmcOHGCOXPmACqYu/XWW3nrrbfo1asXKSkpABgMBoKDgwF49tln6dWrF82bN8doNPL222+zbds23nvvvdr/gEIIIYQQtcCtPXSbNm2ic+fOJSlHpkyZQufOnXnqqacASE5O5ujRoyXHf/DBB1gsFu677z5iY2NLHg899FDJMdnZ2dx11120bt2aIUOGcOLECVatWkWPHj1q98MJIYQQQtSSOrMooi6p6oREIYQQQogLUdUYxOPm0AkhhBBCCEcS0AkhhBBCeDgJ6IQQQgghPJwEdEIIIYQQHk4COiGEEEIIDycBnRBCCCGEh5OATgghhBDCw0lAJ4QQQgjh4SSgE0IIIYTwcBLQCSGEEEJ4OAnohBBCCCE8nJe7GyAqKT8D7DYwhIFO5+7WCCGEEKIOkIDOUxiTYf9S2PgxWE3Q9jroNBZCGrm7ZUIIIYRwMwnoPEFuCnx7GxxfX1q24kXYMhvu+E2COiGEEOIiJ3PoPMHJLY7B3BnGk7DpM7AW136bhBBCCFFnSEBX11lMsGWO6/p/v4WCjNprjxBCCCHqHAno6jwNaMpZ/FBenRBCCCEuChLQ1XVe3tDtDtf1nW8Bv8jaa48QQggh6hwJ6DxBTHtocUXZ8vCm0OkmSV8ihBBCXORklasnCIiCYe/Aya2wfpZKW9JhLDQbCMEN3N06IYQQQriZBHSeIjAaWl4JiZeCzQq+Qe5ukRBCCCHqCAnoPI23v7tbIIQQQog6RubQCSGEEEJ4OAnohBBCCCE8nAR0QgghhBAeTgI6IYQQQggPJwGdEEIIIYSHk4BOCCGEEMLDSUAnhBBCCOHhJKATQgghhPBwEtAJIYQQQng4CeiEEEIIITycBHRCCCGEEB5OAjohhBBCCA8nAZ0QQgghhIeTgE4IIYQQwsNJQCeEEEII4eEkoBNCCCGE8HAS0AkhhBBCeDgJ6IQQQgghPJwEdEIIIYQQHk4COiGEEEIIDycBnRBCCCGEh5OATgghhBDCw0lAJ4QQQgjh4dwa0K1atYphw4YRFxeHRqNh0aJF533NypUr6dq1K76+vjRp0oRZs2aVOWbBggW0adMGHx8f2rRpw8KFC2ug9XWczQbGZMg+Crmn3N0aIYQQQtQgtwZ0+fn5dOzYkXfffbdCxyclJXHVVVdx6aWXsnXrVv7zn//w4IMPsmDBgpJj1q5dy5gxYxg3bhz//PMP48aNY/To0axfv76mPkbdk5cGGz+CD/vBjPbw6RWwcyEUZLq7ZUIIIYSoARq73W53dyMANBoNCxcuZMSIES6Pefzxx1m8eDG7d+8uKZs0aRL//PMPa9euBWDMmDEYjUZ++eWXkmOuvPJKQkNDmTt3boXaYjQaCQ4OJicnh6CgoKp9IHcpMsIfz8LGj8vWDX0Vut0OOn3tt0sIIYQQ51XVGMSj5tCtXbuWIUOGOJRdccUVbNq0ieLi4nKPWbNmTa21063y02DTJ87r/nweclNqtz1CCCGEqHEeFdClpKQQHR3tUBYdHY3FYiE9Pb3cY1JSXAcyJpMJo9Ho8PBY2UfBVaeryQiFWbXbHiGEEELUOI8K6EANzZ7tzIjx2eXOjjm37GzTp08nODi45BEfH1+NLa5lPgHl13t51047hBBCCFFrPCqgi4mJKdPTlpqaipeXF+Hh4eUec26v3dmmTp1KTk5OyePYsWPV3/jaEhgH/hHO62I6gJ+LOiGEEEJ4LI8K6Hr37s2yZcscypYuXUq3bt3Q6/XlHtOnTx+X5/Xx8SEoKMjh4bECY+HGb0Dv51juHwHXfew62BNCCCGEx/Jy55vn5eVx4MCBkudJSUls27aNsLAwGjVqxNSpUzlx4gRz5swB1IrWd999lylTpjBx4kTWrl3LJ5984rB69aGHHqJfv368/PLLDB8+nB9++IHff/+dv/76q9Y/n1totRDXGe5dB4dXQ+puaNgdGnSDkIbubp0QQgghaoBb05asWLGCAQMGlCm/7bbbmD17NuPHj+fw4cOsWLGipG7lypVMnjyZnTt3EhcXx+OPP86kSZMcXv/dd98xbdo0Dh06RNOmTXnhhRcYNWpUhdvl0WlLhBBCCOGxqhqD1Jk8dHWJBHRCCCGEcIeLIg+dEEIIIYQoSwI6IYQQQggPJwGdEEIIIYSHc+sqV1ELzAWQdwqOrQdTLjTqDUGx4Bfu7pYJIYQQoppIQFefmfJg7xJYdA/YrKXlbUbAVa9AgOtky0IIIYTwHDLkWp8ZT8DCux2DOYBdi2DXYtd7vgohhBDCo0hAV5/9M8910LbmbchLrd32CCGEEKJGSEBXn2UfcV2Xlwo2S+21RQghhBA1RgK6+qzFENd1DbuDt3/ttUUIIYQQNUYCuvqsUR8IiitbrtHC4OfAEFLrTRJCCCFE9ZOArj4LiYfxS6DFUBXEAUS2hNsWQ2Qr97ZNCCGEENVG0pbUd2FNYNSHUJgJVgv4BkFAlLtbJYQQQohqJAHdxcA3SD2EEEIIUS/JkKsQQgghhIeTgE4IIYQQwsNJQCeEEEII4eEkoBNCCCGE8HBVXhSxYcMGVqxYQWpqKjabzaHujTfeuOCGCSGEEEKIiqlSQPfiiy8ybdo0WrZsSXR0NBqNpqTu7P8XQgghhBA1r0oB3VtvvcWnn37K+PHjq7k5QgghhBCisqo0h06r1dK3b9/qbosQQgghhKiCKgV0kydP5r333qvutgghhBBCiCqo0pDro48+ytVXX03Tpk1p06YNer3eof7777+vlsYJIYQQQojzq1JA98ADD7B8+XIGDBhAeHi4LIQQQgghhHCjKgV0c+bMYcGCBVx99dXV3R4hhBBCCFFJVQrowsLCaNq0aXW3RQghhKj7LCYoyAA74BcGel93t0iIqi2KeOaZZ3j66acpKCio7vYIIYQQdVf2UVj6FMzsAzN7wa9PQNZhd7dKCDR2u91e2Rd17tyZgwcPYrfbSUhIKLMoYsuWLdXWQHcwGo0EBweTk5NDUFCQu5sjhBCiLsg+Bp9eAcYTjuX+kTDhDwht7J521RV2O1jN4OXj7pZ4tKrGIFUach0xYkRVXiaEEEJ4Jrsd9vxUNpgDyE+DbV9Bv8dAV+UdNT1XcaHqudz6JaTtgUa9oO0oCI6/OH8eblKpHrp9+/bRokWLmmxPnSA9dEIIIRwU5sBX18Hxjc7rI1vB+J9Ub93FxFIMh/6Eb8aCzVpa7u0P45dAXGf3tc1DVTUGqdQcus6dO9O6dWsef/xx1q5dW+lGCiGEEB5J6wXeAa7rvf1Ao6u99tQVeSmw4E7HYA7AnA8LJkBuqnvadRGqVECXkZHBK6+8QkZGBiNHjiQ6Opo777yTxYsXU1RUVFNtFEIIIdzLxx963eO6vtd9asXrxSbnGJhynddlHIDC9Nptz0WsUgGdr68vw4YN4+OPPyY5OZmFCxcSGRnJE088QXh4OMOHD+fTTz8lNVUiciGEEPVMXGc1N+xczQZDwiVVP6+1WC24OLUTMg5BkbHq56ptFnP59ef23IkaU6VVrs7s37+fxYsX88MPP7B+/XreeOMN7rvvvuo4da2TOXRCCCGcyk+DjIOw9QsVrHS+BSJaQEBUFc+XrhZUrHpV9XRpNNBiKAx9BULiq7ftNSHrMLzTFWyWsnX+kXD3SghqUOvN8mRVjUGqLaA7W0ZGBpmZmTRv3ry6T10rJKATQghR46xW2PihymV3ruh2cMv3EBhd++2qDHM+rJsFfz5Xtu6Gz6H1taCtUsrbi1atLIo44/PPP2fJkiUlzx977DFCQkLo06cPR44cITw83GODOSGEEKJW5CXDyped153aoean1XXe/tDtdrjpW4jrAn7hkNgP7lwGzQZKMFeLqvSTfvHFFzEYDACsXbuWd999l1deeYWIiAgmT55crQ0UQggh6iVzPhRmua4/tav22nIh/MKgxRVwywKY9BeM/gLie4BPoLtbdlGpUsa/Y8eO0axZMwAWLVrE9ddfz1133UXfvn3p379/dbZPCCGEqJ+8fEHnrXZXcCakYe2250JdjKt865Aq9dAFBASQkZEBwNKlSxk0aBCgVsEWFhZWX+uEEEKI+so/Cjrd7LzOL0wtthCigqrUQzd48GAmTJhA586d2bdvH1dffTUAO3fuJCEhoTrbJ4QQQtRP3ga47HHIOqJ2WzgjIEotiJDVoaISqhTQvffee0ybNo1jx46xYMECwsPDAdi8eTNjx46t1gYKIYQQ9VZQLFz3MeSdUol4/SMhpBEExakUJkJUUI2kLfF0krZECCGEEO5Qq2lLPvvsM+bPn1+mfP78+Xz++edVOaUQQgghhKiiKgV0L730EhEREWXKo6KiePHFFy+4UUIIIYQQouKqFNAdOXKExMTEMuWNGzfm6NGjF9woIYQQQghRcVUK6KKioti+fXuZ8n/++adkgYQQQgghhKgdVQrobrzxRh588EGWL1+O1WrFarXy559/8tBDD3HjjTdW6lzvv/8+iYmJ+Pr60rVrV1avXu3y2PHjx6PRaMo82rZtW3LM7NmznR5TVFRUlY8qhBBCCFHnVSltyf/+9z+OHDnCwIED8fJSp7Bardx2222VmkM3b948Hn74Yd5//3369u3LBx98wNChQ9m1axeNGjUqc/xbb73FSy+9VPLcYrHQsWNHbrjhBofjgoKC2Lt3r0OZr69vZT6iEEIIIYTHuKC0Jfv372fr1q0YDAY6dOhA48aNK/X6nj170qVLF2bOnFlS1rp1a0aMGMH06dPP+/pFixYxatQokpKSSt579uzZPPzww2RnZ1eqLWeTtCVCCCGEcIdaTVsC8MknnzBy5EjGjRvH9ddfz9VXX83HH39c4debzWY2b97MkCFDHMqHDBnCmjVrKtyGQYMGlQkk8/LyaNy4MQ0bNuSaa65h69at5Z7HZDJhNBodHkIIIYQQnqJKAd2TTz7JQw89xLBhw5g/fz7z589n2LBhTJ48mWnTplXoHOnp6VitVqKjox3Ko6OjSUlJOe/rk5OT+eWXX5gwYYJDeatWrZg9ezaLFy9m7ty5+Pr60rdvX/bv3+/yXNOnTyc4OLjkER8fX6HPIIQQQghRF1RpyDUiIoJ33nmnzDZfc+fO5YEHHiA9Pf285zh58iQNGjRgzZo19O7du6T8hRde4IsvvmDPnj3lvn769Om8/vrrnDx5Em9vb5fH2Ww2unTpQr9+/Xj77bedHmMymTCZTCXPjUYj8fHxMuQqhBBCiFpV1SHXKi2KsFqtdOvWrUx5165dsVgsFTpHREQEOp2uTG9campqmV67c9ntdj799FPGjRtXbjAHoNVq6d69e7k9dD4+Pvj4+FSo3UIIIYQQdU2VhlxvueUWh4UMZ3z44YfcfPPNFTqHt7c3Xbt2ZdmyZQ7ly5Yto0+fPuW+duXKlRw4cIA777zzvO9jt9vZtm0bsbGxFWqXEEIIIYSnqVIPHagFCUuXLqVXr14ArFu3jmPHjnHrrbcyZcqUkuPeeOMNl+eYMmUK48aNo1u3bvTu3ZsPP/yQo0ePMmnSJACmTp3KiRMnmDNnTpn37tmzJ+3atStzzmeffZZevXrRvHlzjEYjb7/9Ntu2beO9996r6kcVQgghhKjTqhTQ7dixgy5dugBw8OBBACIjI4mMjGTHjh0lx2k0mnLPM2bMGDIyMnjuuedITk6mXbt2/PzzzyWrVpOTk8tsJZaTk8OCBQt46623nJ4zOzubu+66i5SUFIKDg+ncuTOrVq2iR48eVfmoQgghhBB13gXloauvJA+dEEIIIdyh1vPQCSGEEEKIukECOiGEEEIIDycBnRBCCCGEh5OATgghhBDCw0lAJ4QQQgjh4SSgE0IIIYTwcBLQCSGEEEJ4OAnohBBCCCE8nAR0QgghhBAeTgI6IYQQQggPJwGdEEIIIYSHk4BOCCGEEMLDSUAnhBBCCOHhJKATQgghhPBwEtAJIYQQQng4CeiEEEIIITycBHRCCCGEEB5OAjohhBBCCA8nAZ0QQgghhIeTgE4IIYQQwsN5ubsBwkNZLZCXApYi8DJAQAzodO5ulRBCXDysVshLPn0d9oWA2Ipfh3NTwZwLWi/wjwBv/5ptq6hxEtCJystLhc2zYe27UJQDhlC49BHocCMERLq7dUIIUf/lpcHWL2DN21CYpa7DfR6EzuPKvw6b8uD4Bvj5/yDjgAro2oyAQU9DSKNaa76ofhLQicox5cLyF2HzZ6VlhVmwdBoUZEC/x8Hb4L72CSFEfWfKh9WvwfpZpWWFWfDHs+qG+/InwcdFj1vyP/DFyNLnNgvs+A5OboHxSyAormbbLmqMzKETlZOXBls+d1639j3IP1W77RFCiItNfips/Mh53caPVL3T16XDb/9xXpd5CFJ2VE/7hFtIQCcqJz8V7DbndVYzFGTVbnuEEOJiU5ABNqvzOptF1TtTXAjJ21yf99DyC26acB8J6ETlnG/irN63dtohhBAXK/15prW4qtfqwDfE9euCG1a5ScL9JKATleMfCaGJzuti2qvVUkIIIWqOXwREtHBeF9EC/FwsivCPgp6TnNdptNDiiuppn3ALCehE5QTGwNi5KrA7W1AcXD+7bLkQQojqFRgNY76EgGjH8oDT5YFRzl+n84Jut0OT/o7lWi+44XMIalAjzRW1Q2O32+3ubkRdYzQaCQ4OJicnh6CgIHc3p27KOQ6ndkH6PohuAxEtIVguBkIIUWtyjkPaXkjdDVGtILJVxYZN89PUa4+sUb19jXqqXKIyZaZOqGoMIgGdExLQCSGEEMIdqhqDyJCrEEIIIYSHk4BOCCGEEMLDSUAnhBBCCOHhJKATQgghhPBwsperEEIIIWqOMRlSd0HSaghpBE0HQGCsrKqtZhLQCSGEEKJmZB+FOcPVXrFnaL1g7DeQ2A+8fNzXtnpGhlyFEEIIUf1MebD0ScdgDtR+s/NuhtwU97SrnpKATgghhBDVryAd9vzovM5igpNba7c99ZwMuQohhBDVxWaDvBQVsHj5qB0YtBdp34m1GGxW1/UFGbXXlouABHRCCCFEdchPg52LYNUrkJeq9ra+9BFof/3Fuc+1TyCENIbsI87rG3ar3fbUcxfpbYMQQghRjcyFsG4W/PyoCuZABXi/PgF/vQXmfPe2zx0CY+DKl5zXNRkAQXG12556TgI6IYQQ4kLlp8Kat53XrZ9ZGuRdbBIugVu+h6jW6rlvMFz6KIycdXH2WtYgGXIVQgghLlRBOljNzutsFshPh7DE2m1TXeAbBM0GQkx7KC4EnRf4R4FO7+6W1TsS0AkhhBAXystQfr3+PPX1XUCUu1tQ78mQqxBCCHGh/MIhornzutBE8I+o3faIi47bA7r333+fxMREfH196dq1K6tXr3Z57IoVK9BoNGUee/bscThuwYIFtGnTBh8fH9q0acPChQtr+mMIIYS4mAVGw+gvVGB3NkMo3PiVWiAgRA1y65DrvHnzePjhh3n//ffp27cvH3zwAUOHDmXXrl00atTI5ev27t1LUFBQyfPIyNKJlWvXrmXMmDE8//zzjBw5koULFzJ69Gj++usvevbsWaOfRwghxEUsqjXctRKSt8OpfyGqDcR1huCG7m6ZuAho7Ha73V1v3rNnT7p06cLMmTNLylq3bs2IESOYPn16meNXrFjBgAEDyMrKIiQkxOk5x4wZg9Fo5Jdffikpu/LKKwkNDWXu3LkVapfRaCQ4OJicnByHwFEIIYQQoiZVNQZx25Cr2Wxm8+bNDBkyxKF8yJAhrFmzptzXdu7cmdjYWAYOHMjy5csd6tauXVvmnFdcccV5zymEEEII4ancNuSanp6O1WolOjraoTw6OpqUFOcb9sbGxvLhhx/StWtXTCYTX3zxBQMHDmTFihX069cPgJSUlEqdE8BkMmEymUqeG43Gqn4sIYQQQoha5/a0JRqNxuG53W4vU3ZGy5YtadmyZcnz3r17c+zYMV577bWSgK6y5wSYPn06zz77bFWaL4QQQgjhdm4bco2IiECn05XpOUtNTS3Tw1aeXr16sX///pLnMTExlT7n1KlTycnJKXkcO3aswu8vhBBCCOFubgvovL296dq1K8uWLXMoX7ZsGX369KnwebZu3UpsbGzJ8969e5c559KlS8s9p4+PD0FBQQ6Pes94Eg78CateV5tJZx8Fm9XdrRJCCCFEFbh1yHXKlCmMGzeObt260bt3bz788EOOHj3KpEmTANVzduLECebMmQPAjBkzSEhIoG3btpjNZr788ksWLFjAggULSs750EMP0a9fP15++WWGDx/ODz/8wO+//85ff/3lls9YJ2UmwZxrVRB3hncA3LYYYjuD1u3pCYUQQghRCW4N6MaMGUNGRgbPPfccycnJtGvXjp9//pnGjRsDkJyczNGjpUGH2Wzm0Ucf5cSJExgMBtq2bcuSJUu46qqrSo7p06cP33zzDdOmTePJJ5+kadOmzJs3T3LQnVGYBYvvdwzmAMx58NUNcPdqCG7gnrYJIYQQokrcmoeurqrXeejS98O73VzX3/4rNO5de+0RQgghRAmPy0Mn3MRiKr++KLtWmiGEEEKI6iMB3cXGN1g9XAlrUnttEUIIIUS1kIDuYhMYA/3/47yu7SgIiKrd9gghhBDigrk9sbCoZTo9dBgNvkHw5/MqfYlPEPScBN0ngCHU3S0UQgghRCVJQHcx8guDjmOhSX+wFIHOGwKiVbAnhBBCCI8jAd3FSqOBoDh3t0IIIYQQ1UDm0AkhhBBCeDgJ6IQQQgghPJwEdEIIIYQQHk4COiGEEEIIDycBnRBCCCGEh5OATgghhKjrigvAlOvuVog6TNKWCCGEEHVVXhqc2gHrZoI5D9rfAM0HQ3BDd7dM1DES0AkhhBB1UX46LJ0G278pLTvyN4Q0hvFLICTefW0TdY4MuQpR04wnIWkVrP8A9v8OOcfd3SIhhCfIPOQYzJ2RfQTWzwKLufbbJOos6aEToiZlHIQvRkD20dIy/0i47UeIau22ZgkhPMCWL1zXbfsKet8nO/6IEtJDJ0RNyU+HBRMcgzmA/DSYeyPkJrunXUIIz2Atdl1ns9ReO4RHkIBOiJpSkAEntzivyzqsJjsLIYQrnca6rmszEgyhtdcWUedJQCdETSkuKL9eUhAIIcoT1Qqa9C9b7hcGl04BvaHWmyTqLplDJ0RNMYSClw9YTGXrNBoIjKn9NgkhPEdANIz8AA7+CeveB3M+tL4Wut2uVroKcRYJ6ET9YDGpOSXe/u5uSamAaOh1P/z1etm6jmPV4gghhChPYAx0uglaXKGucYYw0Ond3SpRB0lAJzxbfjqk7VEpQUxGaDsKmg2sG0k39QbofY/qqfvrdSjMAp9A6HE39LwLfIPc3UIhhKfwC3d3C0Qdp7Hb7XZ3N6KuMRqNBAcHk5OTQ1CQ/NGtswoy4c/nYdOnjuUhjU4n3Wzknnady2qFvGQoLgQvX3XHLXfYQgghnKhqDCKLIoTnyjpcNpgDlSZkzTvO5665g06negwjmqvM7hLMCSGEqGYS0AnPtX2e67ptX6u0IUIIIcRFQAI64bnK64GzFYPMJhBCCHGRkIBOeK72N7iua3UtGEJqrSlCCCGEO0lAJzxXRHNoMqBsuW8wDHiibqUwEUIIIWqQpC0RnisgCkbOgn1LYf1MMOdBiyuh172SdFMIIcRFRQI64dkCY6DrrdDqKrBZ1TCrl4+7W1U32GxgLQKdD2h17m6NEEKIGiQBnagf/CPc3YK6w2qBnKPwzzw4vgEiWkLX8Sovn7efu1snhBCiBkhAJ0R9k/IPzL5aJTIGtQ/khg9gzJfQfDDovN3bPiGEENVOFkUIUZ/knoIFE0qDuTPsNvj+LlUvhBCi3pGAToj6pCADMg85rzPnQc6x2m2PEEKIWiFDrkLUJ3Zr+fVWc+20o7qY8yEvVf3XOwACo0Av8wCFqC1pBWlkm7LRoCHYJ5hIv0h3N0m4IAGdEPWJIQz8IyE/rWydTg+hibXfpqoyJsPvz8CO+WoFs84butwG/R5Vq5uFEDXGbDWzPW07T/79JMfzjgMQHxjP832fp31Ee7xlLm6dI0OuQtQngbFwzQzndQOmec5q4MIsWPIIbP9GBXOgehc3fgR//g9Mee5tnxD13PHc40xcOrEkmAM4lnuMCUsncDz3eDmvFO4iAZ0Q9YlWC036w4Q/oekgCIiGht3hlu9V75an7J6RnwZ7lziv++dryE+t3fYIcRExWUzM2TUHi91Sps5is/DV7q8we9r0jYuADLmK2mcxgVavgg9R/XwCoGFXuOEzNfdM7wuGUHe3qnLy013X2axQlFN7bRHiIlNgKeDf9H9d1m9P305BcYEMu9YxEtCJ2mGzqWS3u3+EpFUQ1kzt8BASrya7i+rnG6Qensg3uPx6T+lpFMID+ep8aeDfgH1Z+5zWNwxsiI/syFPnSBeJqB1pu+GDfrB0GuxfCuvfh5m91T6sxUXubp2oa/wjIbqd87qES8DPQ+YCCuGBDHoDd7S/w2X9HW3vwOBlqMUWiYqQgE7UvPx0WHRv2WEyux0WTYK8iyjZbX4GpOyA7d+qHRyyj5VO+helAqLUzhYRLRzLYzrCiFngF+aedglRWYVZkLYX/v0O9v0GWUfAUvfnnzUNacq0ntPw0pYO5Om1ep7u/TQJwQnua5hwSYZcRc0rzILkbc7rLCZI2wOhjWu1SW6RmwI/3AcHfi8t8w2Gm+ZDg66gk6+jg7BEuO0nyD2pUpgEN1TpSgKi3N0yISomLxWWPa0W8pyhN8ANcyCxn5rfWkcFegdybdNr6dugL4dzDqPRaGgc1JgIQwS+XnW33Rcz+Qsiap6t7EopB5aLYMjVYoI17zoGc6B6Lb8cCfesvTiC2soKjFaPuM7ubokQlWO3w64fHIM5UNvyfTMW7lsP4c3c07byWExqi0BzLga9Hw0DomjYsKG7WyUqQIZcRc3zDYGQRs7rNBrXc6Xqk7xU2PSJ8zpzPpzcWrvtEULUrLxT8NebzutsFtj9U+22pyLy0mDlK/B+T5jZB97tCj8+BMaT7m6ZqAC3B3Tvv/8+iYmJ+Pr60rVrV1avXu3y2O+//57BgwcTGRlJUFAQvXv35rfffnM4Zvbs2Wg0mjKPoqKLoBeoogoy1Re0vNQQ1SnodLJbjaZsXe/71QT4+s5qhuIC1/XZR2qvLUKImmezQm6y6/qMA7XXloqwFMG692H1a6XXKpsV/p0P39+l5v9aitTfDmMyWIvd215RhlsDunnz5vHwww/z3//+l61bt3LppZcydOhQjh496vT4VatWMXjwYH7++Wc2b97MgAEDGDZsGFu3OvZuBAUFkZyc7PDw9ZUxf4pyIGk1zL0R3usJX4yAPT+rAK+mNeoFE5erZLd+YRDTHkbPgb4Pe25qjcrQGyCogev6Bl1rry1CiJqn94XYjq7rm1xWe22piNxTKqBz5vBqMJ6A36bBrL7wYT9Y/iLkyI4RdYnGbrfb3fXmPXv2pEuXLsycObOkrHXr1owYMYLp06dX6Bxt27ZlzJgxPPXUU4DqoXv44YfJzs6ucruMRiPBwcHk5OQQFFRPgg2rFXZ8BwvvKlt3+ZPQ6x7Xub1sVkBTPYmAi4xgzlP7cnrKNlTVwW4/fac7sWxdRHO47Ue1bZcQov5IWg2fX1O2PCAaJvyh8nDWFSn/wqxLXNdf8xb8+axjB0BYE3XtCpY5dtWpqjGI23rozGYzmzdvZsiQIQ7lQ4YMYc2aNRU6h81mIzc3l7AwxxQGeXl5NG7cmIYNG3LNNdeU6cG7KOWdhF8fd1638iXnm7kbk2Hvr/Dd7SrtyNF1Fz5M6xsEQXEXVzAHari52SC49h3wCy8ta3mV2pZLgjkh6p/YTjDmK8fe+YRLYPzPdSuYA9D7OZ8Wc4ZfaNk9lDMPwcHlNdsuUWFuW+Wanp6O1WolOjraoTw6OpqUlJQKneP1118nPz+f0aNHl5S1atWK2bNn0759e4xGI2+99RZ9+/bln3/+oXnz5k7PYzKZMJlMJc+NRmMVPlEdV5Cp0oc4Yy1W+dBCE0rLjCdh7ljHdCPb50LnW2HQ0xdfQFYd/MKg083QdCCYjODlA36R4Bvo7pYJIWqCbyC0uhoadFFTXnTe6jpQF7fi84+EFlc530M5pJEaXXG2f+v2edB2pNpyULiV29OWaM65I7Db7WXKnJk7dy7PPPMMP/zwA1FRpXmpevXqRa9evUqe9+3bly5duvDOO+/w9ttvOz3X9OnTefbZZ6v4CTyEVl9+/dl5hWw22D7fee64rXOg000S0FWVVgfBDYBy5tMJIeoPjUaNSgTFubsl5fMNgqtegbwUOLG5tDy4IVz7Liy+3/nr9H7quibczm0BXUREBDqdrkxvXGpqapleu3PNmzePO++8k/nz5zNo0KByj9VqtXTv3p39+/e7PGbq1KlMmTKl5LnRaCQ+vo51h18ov3A13yHzUNk63xC1EvWM/DTY/Knrc238GOK7g9bt9wNCCCGqS3BDGDtPrc7NTFJ/F4IbwpE1kO18sSK9JqlFX8Lt3DaHztvbm65du7Js2TKH8mXLltGnTx+Xr5s7dy7jx4/n66+/5uqrrz7v+9jtdrZt20ZsrOs5Sj4+PgQFBTk86owzw6GpuyDzsMpZVhWB0XD9p2UXPuj0cMNsCIgpLbPbyk+xYc5TvXiiZjn87pOq/rsX1So918SB1DwOpOaRnmc6/wuEqCFFxVaOZRawNyWX45kFFBVXwzaCAZEQ2wHaDof4HqpnMaEvNHbyd7nddRDd/sLfU1QLt3axTJkyhXHjxtGtWzd69+7Nhx9+yNGjR5k0aRKges5OnDjBnDlzABXM3Xrrrbz11lv06tWrpHfPYDAQHBwMwLPPPkuvXr1o3rw5RqORt99+m23btvHee++550NeiLw02PwZ/P2WCqK0XtD+Bhj4VNW672M6wKQ1sOdHtcAhui10GA3B8Y7bTvmFQqtrYJOLXrqOY8HLu2qfSVRMfhps/hz+ngGmXPW7b3e9mr9Y14du6imzxcq/J4w89t12DqapyeEtowN55foOtI0Lwkvn9rSe4iKSaixi1sqDfLX+KCaLDR8vLTf3bMSk/k2JCqzmNF2BsXD9Z3BqJ2z9AnQ+0PU2tUL/Ysgj6iHcmrYEVGLhV155heTkZNq1a8ebb75Jv379ABg/fjyHDx9mxYoVAPTv35+VK1eWOcdtt93G7NmzAZg8eTLff/89KSkpBAcH07lzZ5555hl69+5d4TbVibQlFhOsfh1Wvly2rkl/uO6TC5vHZrOUP2SamQQf9oeibMfyqDZwywIJKmqSxaQyzK9wkronsZ+6sMocxlp3IDWXq976C7PVsXfax0vLrw9fSmKETAoXtSO3qJhnf9zFd5vL5oG7oWtDnhrWhkDf88ybrqozozPVkcZKOFXVGMTtAV1dVCcCuqyjavsVV0Of96yF6DY19/52O2QlwV9vwe4f1KKJrrdD51tOT+oXNSb7qEr87PJ3v0b1ropaY7JYefqHnXyz8ZjT+jsvSeSJoS3R62RyuKh5h9Pzufz1Fdic/PXWauDPR/qTEOEir6io86oag8is9rrKlFP+PLaswzUb0Gk0ahHF0Jeg/+OAVnWtyx+smmcylv+7zzwsAV0tyyuysPmIi7Q/wMbDmeSbrIT4yfdD1LzsQrPTYA7AZofsAjMgAd3FRvpM66rzJXmsrXkLesPpJfcxEszVFq/z/O4DZM5KbfPRa4kNcT0vqUGIAR+9XE5F7fDzLr8vxs9H+mouRnIFqqv8I6H5EOd1QQ0c04yI+sU/QiX4dCYoTrbZcYMAHz339W/msv6ufk0w6OWPqKgd4f7etI1zPhTXNi6IcH9ZtHYxkoCurrKaoff9auuYswXGwrVvg0Z+deSnQcoO2L0Ejm9SW5XVB2cSfMZ1diwPjFHbhMmCFLdoGRPIE1e2RHtW56lOq+GZa9vQJFKGt0TtCQ/w4f2bu5B4zjy5xAh/3r+5C+EBPtX7hsWFkHUEDvwO+5aqKT+SRqnOkUURTtSJRRFpe+GTwTDgv+oPeNZh9QfdZlUrX4e9pVY8XqxyjsP82+H4htKy0AS4eT5EtHBbs6pVXqragi19v1qIEtJYFqS4Wb7JQnqeiV0njWg1GlrHBhIR4CNDXMItThmLOJFdyLHMAuLD/GgQYiA6qJpTlhTlqoVxP00u3fpL6wWDnoXON9fNbcw8nKxyrUZ1IqBL2QGz+qr/9/JVw3BFOSonGahs3i2vdE/b3K3ICAvvhr0/l60LTYQ7flXBrxBCiAtzcht8eJnzuvFLIOES53XGZLXAS6s/vX9tSMXf02ZTu1WYc0F3+u/fRbRXrKxyrW/8QiEgSvXSWIpUj9QZGq1K6Hixyk+Dfb84r8tKUhcSCeiEEOLCWEywtpyk/KteUwnrfc8KOky5cPhv+OX/SrcLS7wMrnkDwl3PQy1RkKlu1n9/GvLT1d+71sNgyAsQUs+25KxmMhGrrgqIhaGvOq/rfV/VVrnmp5++a6rE3AebDfJOqbslSx3Z5qi4QOXJcyU/ternLvkZ5VX9HEIIUR8UF6mbZFdyjqkOh7Ol/Atzxzju/Zq0Ej67Sm1lWB67HfYvgx/uU9diUFtR7voBvh4NuSnlv/4iJz10dZVWC00Hwu2/wO/PqC9JSDz0+z9oMsDxjuh88tLg0HK1jVR+GjTuC5c9DmFNy9/Cy3gSdnwPmz5Rk2JbXwO97lNz1cpLq1HTfILAy8d1gBlchbu4vDQ4vErt0JB3CuJ7Qf8n1M9IX81zUoQQwgNkFHsRGNcd7+MbnR8Q18VxKLQgE5Y+6fzYvFNwdG35vWy5yfDHM87rzuxpLaMvLkkPXV3mG6g2RB47D+7fDLctUXu5Vmbbp4JMWPYkfD9R7cOXlwo7F8IHl8Kpf12/zpgM39wMS/8LmYfUF23DR/DRALVAw50CoqHHXc7rEi5V9ZVRkAXLX4Dv7lCBc14q7F4MH/SDlH8uvL1CCOFhTmYXMuqDDaQ0H6tuoM+l1cElk1XO1DOKCyF5q+uTHlxe/psWF6iOBJeN2lL+6y9yEtB5Ar9QCI6rWkLZ3GT4Z27ZcmsxLHkE8jOcvy5lu/MvT2EWrHm7bDd7bdL7Qp8Hoc9DasEIqHkWbUfBqA9U72bydvjlCfh+klpmn1tOSpO8U7D5s7LlNota2ZWfVjOfQwgh6iCbzc6Sf5M5klHAE38aSRm1wHH+W0hj7OMWqt2EzqbVqdRaroQ3Lf+Ndd6l13RnqjL6chGRIdf6Lmm167qTW9UWY/7hjuU2K2z90vXrdi1SQ7/uzIcWEAWX/we636km4Xr7q3mFtmJYN1Oldjlj+1w1cfemec7bfGy96/c5tRMKc2pvZw4hhHCznMJiFm09AcCapBxuNPrxaN9PaB1iQWO3k2b1o3VMC4L0escXBkRD34fh50fLnlSrgzbDy3/jgCjofCts/LBsnbd/2byswoEEdPVdefO/NBoXCYo1assvV3Q+1InOXS9fCG3sWJa83TGYOyNlO2z6FC57AnTn/LN3NpxwNm0d+KxCCM9kylW9/BkHVVASHK96sc69DlXSKWMRKTlFZOSbaRhqICLAh7Bq2iFCq9Xg41V63TucUcD9i0v3l+7WOJRPnSVa0GhU0HZ8E2z/prTcyweu/+z8u9x4+cKlUyB9r1pIcYZPENyyQJKqn4cEdPVdwqXqS+ZsVWizweAbUrZcq4Vud8D2ec7P2fX2uttj5Wx4+YxNn0K3O8tumxbfQwW2dlvZ1yReBoaw6m2jEOLikJcGf70O62eVXoN9Q2DMF9ColxpirIL9p3K5ffZGjmcVlpT1ax7BK9d3JCb4whdxBRv03NY7gS1HtzmtH983gSCD3mkdAVEw9CU1vy55mwrGotuqxQznu3kGdX2+/lM1l+7UDnW+iJbVEgTXd/LTqe/8IuHyp7Dv/pHUnneSbwjBW6Mj9Mg6/BMHqMSNzhI+hjeDTrfAtnOGXiNbQ+dbQKerleZXWmG26zpzHuAkaAuIgqtegyVTHMsNoaq8Mgkx6zKrRc0lLC5UPbcB0RW7wAohqmbfr2oKyNmKsuHL6+C+9WXnoFVASk4h4z7ZQIrRcR7zqv3pvL50L88Ob4uf94X/ae/dNJw+TcNYczDTobxvs3B6JJznJtcQqh5Rrar25v4R6hHboWqvv0hJQFffmXMxhjdh7eVTeHXrW5wqOIVOo2Ng/AAe0euJO7nN+URT/wgY9Ax0ukmtbi3Oh45joVFPCKrD20+1HQn/fO28rtlg8AkuW+4doFYPN+yuUrTkHIOmg6DVNRDaqGbbW1vy02DLFyp1TVGOGlLvejv0fUjSAAhRE3JPwSoXuUStZtj7i8opWknHMgvLBHNnLNp2ggcGNqdR2IX/aY8K8mXGmM7sOGnk6/VH0Go03NSzEW1ig4iq7u3FRLWQgM7T5aWB3aruhpz2ttjZrDHz6N/Pl5RY7VaWHv2d/dkH+bj7NKJcnTsgUj3ie6iFEnUsH1tBcQF5xXl4a70JOTN0HNNeLYBI2e54sN4Alz/pevsY3yB1N3jVG2phRXV+1vP+jmpYcRGsmwWrXzurrBDWva+GNYa9VX96IYWoK2wWyDnquj51d5VOezJHDbM2DDUwonMDwvy8OZSWx6JtJ8kzWSgyW6t0Xmeigny5PMiXS5pFoAH0XjKfuC6TgM5T5abAvt9g/Uy1q0GLK6H3vRCS4DCJPw07r+3+3OkpkoxJJNkLXQd0Z+j06lFHmK1mjhqP8uH2D9mSuoUIQwQT2k+gS3QXwoJi1WrWTZ+p3jZzHjQfAgOmVWzbGZ2u+oaTc1NUypT1M9XE6OZXQJ/7yvyOalzeKVj7rvO6XYvg8mkS0AlR3bx8IKqtmgfmTOM+VTptYoQ//3dFS8IDvJm34RgpxiLaNQjm7bGdWbD5GH4+1T8dxlsCOY8gAZ0nyktVm9MfWlFatvEjtYjhruUOgUuRFo7mur5L3JKxk57xLjZerqN2Zezi9l9vx2K3AHCq4BSTV0xmbKux3N/pfoKC4tROGN1uB+xqmLW2N3bOS4VF98DBP0vLNn0M/34LE5dDRAWCy+pSlF1+3kDjiYt7b2AhaoJ/BAx+Vs2XO5dfmOtN7c8jKtCH9DwTv+5IISbYl8JiK8t2neLPPanMuqUr0UEyL/ZiJWG3J0rf7xjMnWEywvLpYC7dq9VL64Wfl1/ZY09rEHCeZeRAck4hv+5I5rHv/uHtP/ZxMDWPArOlKi2/YBmFGTy/7vmSYO5sc/fMJb3w9P5/Oi+1xD2ogeod27cUFj8AfzyvtpApMtZwQw84BnNnmIxqVwpzJfbTvVB6179/wPlKZyHEhWvQDUbMUtMtzojpAON/Pn+S3IIsSP4HfpsGPz6scormnsJutXBzCxuft/uH9wM+5asu+/h1fGNaRvvzvyW7yCoortGPJOou6aHzRP/Od12350cY/JzKdwRE+EYwpuUYPttZdicEb603XaK7lPtWxzILGPvROofl8W/+vp8ZozsxpG00hmpYTVUZueZc9mXtc1n/b9q/NAk5a+VYzgl1h5x21nyV1a/BlS+rBR+V2RO3Mv79znXdnh9hyP9Kfkc1zi8cGvWBo2vK1oU0gsBKbpUmhKgYQwi0Hw2Jl6pddnTe6vt4vu0bCzLhrzdgzTulZZs/g043E93pFrTzR5b0uofzFeG+wXwycgGjf8glp6CYqMC6Nd9Z1A7pofNE5W2NovNWeedO0+v03NLmFnrF9nI4zFfny7sD30WDhjUn1/Bv2r+cyj+F/ax8dfkmCy/9sschmAOVTmnK/H9IzTVVz+epBK2TRMhajZa7Wozlp35vMcTurZJa5pxQiwHWvOMYzJ3x6+Pl7xl4oc73O6pNfmEwcmbZbXcCouCmb8vfqkcIcWF0OpVQN6Y9RLas2F7cGQcdg7kzEvuhnX9r2SkURTnELr2bxy8JQ3vW9V9cXKSHzhN1HKMm2jutG6vuAM8S5RfFy/1e5lT+KXZl7CLMN4ymIU35NelX7lpWusl9pCGSdwe+S6uwVmg1WjLzzfy6M8Xp21htdjYmZdI4vJZ6mU4L9gmma3RXNp/aXFL2Vvdp9Nz7B4alr5Qm7/SPhPE/wRbnC0IA2PNT1fMknU+H0bDuPed1HW+q2EW9OoUmqGGerCRI2wuhiWquZXAdTkEjxMXIZlULus6l0ahefVd7S2ccpGuEFR//urOATdQu6aHzRCGN1Y4HZcobqU3rNTrIOQ7p+yD7GFiLCfMNo3V4a65rcR2XNryU3w7/xjvbHO8A0wrTmPDbBFLyVRBntdmx2pzsMHFaTlHtz6ML9gnmyV5PEuSthkp7RHejS+oBDNvmOu6GkZ8GafuguMDFmYCCjJpraEgj6HGX8/K+D7onfUlgDDTqDV3HQ5PLJJgToi6yWdVCpnNpdGApf1Qk3KAhzF8WRVyspIfOE/mFwYD/QPvrYf0HKlFsu+ug6QC1z+qat+Hvt9RFwScQet4DPSaonQGA9MJ0Zu+c7fTUucW57EzfSVxAHAE+XjSPCmB/ap7TY3smumdLrCbBTZh3zTyWHllKT794ghZMcn5g8jZofAkc+ct5fcuraqyN+IWpfWPbjiz9HbUdBc0uP/9+hkKIi5eXt7qe7/3FsdxmUav1tV7q/8/lHYA+sJZ7/kWdIgGdJ7EWq8myWp0asvMNhYgWag9S/0iVLHb5i7D2rJ43Uy6sekVlLb/yBfAJxGw1YzS7XuWZZEwCICLQh+eGt+Wmj9eX2Qp2QMtI4oINNfEpz0uj0dAwsCHj246HrCOQn+78wC1z1IbQX45UP7uzNehW86k6/MPBvw806KouwLW1CEIIUfssJrX1oNZLffcvRKM+aluwzEOO5Xt+hr4POyYJP2PQM2hkPuxFTYZcPUXWEfjzf/DZlbDgDkj5F1a/Cp8Ogc+vUfsFGk/AhlnOX7/tC5UbDfDR+RBpiHT5Vm3C2pT8f8f4EL6/pw/dEkLRaiAywIepQ1vx8nUdCAuo5cn959BqtGj1BjWM6Ux+GqCBiX9Ck8tVIGwIVTnqxnxZe1teeflIMCdEfWWzqcBr6TR1Pf5yJGz/tuR6WyXBDeC2H6HXPWprQq0XtL4Wet8PvSbBqI9UwKfRQGQruHGuGrGpQwngRe3T2O3n9r0Io9FIcHAwOTk5BAXVUFqLysg8DB9fruZ8aTQwdh4seUTtOXq2G+fCN2Ndn+eOpdCoJ3a7ne/3f88za58pc0i0XzRfXvUlMf6OwU52gZlCsxWNVkNUgA9abR1aSbX9W/h+YtnygCiVxDe4IRTmgDkXNFrwj1J56oQQ4kKl7VPXZ1OuY3mrYTDsTTV6UlUWk7ru2+3ge06C9NxTqudf5622aBT1RlVjEPmrVtcVF6k5cWcm8CdeBof/KhvMAZwvxjrdS6TRaLi80eVkm7L5YPsHFFpUWpJ2Ee14qe8LxOSkwOq31V1h+1EQ3IgQvzBC7Gmqp3DtQhVYth2p7h73LYNG3VXC4xNbILotNB2oAqnaCJyaDYIrpp9O2Ht6vl9sJ7juo9L5aoZg9RBCiOpiyoU/nikbzIHKN3nJwxcW0Hn5qATpzrgjf2RBplpwt/N7KDZB2+GqpzDgvBtIejyjyUhKfgq/Hv6V/OJ8BjUeRGJQIhF+dWfeovTQOVGneuiMJ2FmH5WUEmDgU/DPXBU8nWvwcyqh7bkb04P60t3+q8NFoNhaTFphGjmmHHx0PoTqfAld9hxsn+v42m53wiVTYNmT6ot8tnbXQ9+HYM61pW0E0Bvg1sVqrlpt7FtqLYbcZNUGL9+KJe8UQogLkXMcZrRX85id6fMgDHm+dttUUwoyYNVrsO59x/JmQ2D4O7U3hcUNckw5fLnrS2Ztd5zS1C26G6/0e4VIv+rtIa1qDCJz6DyB9qxeLpvV8fnZ1r4LQ18qu6VMQDTc8Ln6QuYmlxTrdXriAuJoHd6aJiFNCE36q2wwB3BoORxbVzaYA9jxHaTuLptIt7hQDf+e9X41SqdXc+liO1Y8eWc9l1tUzOH0fNYdzGDHiRxO5ZSzn6sQomq0Otd1Gq2aS2c11157akr6vrLBHMCBpbD/99pvTzXLzDex71Quaw+ms+9ULpl5pb+z47nHywRzAJtObeKXpF+wuQroa5kMudZ1/pHQ6Wb4e4Z6vn8ptBmugqhz5aWqORd3LlV7iZ7apYI5uxW+vVUllQ1ppObgRbdxfG1+Bqx1kQi39TDY8KHrNm7/BlpdDRs/Puec6ZCbIvnO3CAt18Qrv+7huy3HS1YoNww18PFt3WgZHYhGsskLceH8wtQoxT9OboQB4nvA+73h6teh+SA1RcUTWcwq/ZIr696Dlld67I30iaxCHvxmC5uPZJeUdW4UwrtjOxMXYuC7fa63cvxq91cMTRxa7b10VSE9dHWFuQCyjqotX3JPlZbr9NBjohoyBTi+EaLaqm1kztVkgKoLilMJZDVa+PkRWHCnCuYAso/CnGFqqOBsNovaON4ZvUHlUXOlKMf1BvDlJfY9j1RjEUnp+RzPLKCwuPaTGHuqYquNL9cdYf7m4w7pZo5nFXLTR+s5KT11QlQPvR/0f8L5cGPncXBiMxSkw3fj1eK2qjLlqvnLGQdd7xQBpBakciTnCCfzTmJyloS4uFD9Dcg4oG62K8pWrFKyuGyfUY0eeaCsfDOPzN/mEMwBbD2azeR52zAWmck0Zbp8fV5xnvTQibPkHIM//gc7F6i5YGFN4MqXVC4i30A1sf+2n+Dgn7B9HuxcCCM/hFM7YesXagi2x10Q17l0jlxuCvz5nPPJuvnpqvfu7AS3hhBoPgTWO0l7cnIrNB8MaXuctz/xMji+oWy5VlelJLq5RcWsT8rkuR93cTSzAL1Ow/BODZgyuAVxIe7JfedJ0nJNfPpXktO6zHwze1OMNJCfoxDVIzQB7vwd9v4Mu35Q19K2IyHrsEo1BWqV6rqZcM0bld8lJjNJpUTZ+7OaqxfVRvX4xXUquZHOMeWw9uRaXt/8Oin5KfjofBjRbAQT208k2v/03wTjCVjxsupNtJrVjkND/qeu3+dbMObtD21HqOk3zjQf4rGLzjLyzaw75Dxg23A4i+yCYoYmDOXPo386PaZvXF8CvQNrsokVJgGdu+Umw8rXIKadGrYsSIeMQ3DkbzVcGtECvP3UsGWXcepCodWpXrPoNtDqKkCjjjmbxeQ8mDsj4wAwpPS5lw/0nKS+7Of2xqXsgCEvwtYvHRc+gBoSbnOtCjT7PKDyvKXtURe27ndVaYXXpsNZTPh8U8nzYqud7zYfZ8eJHD6/owfRQb7qAnlm5a9fuFp1KwAwWazkmlz3aB5Ky+fyGtrCts4y5aneYm9/yQkoqs5mg8LTf/zPvu6ExEO7G06vAj0GvzxedmvB9L2qh6y8gM5arK6xOr26luYch9lXqcVxZ6TugtlXq/yacZ2xWm2sOraa//w9teQQk9XEvL3z2J+1nzf7v0mYtRi+uVndnJ+RfQS+HQejv1DX8PNpdjpzwbmjO94BKj/eufOoPUSeqbjc+sz8YjpFdaJRYCOO5h51qPPV+TKp4yT8XI1Q1TIZcnW3whxo3Fv1ym2do3rPGvdWiYMX3AE/3Kf+v1ilFsEnQAVzZ3j7lw3mAPS+an6HK9Fty5aFNIYJf0CbESpo9PJRwwa3/wzhTWHC72pLGq2Xyn3UdhSM/QZ8gmDoKyplybavwA6M/wV63euYN6kC0nJNPP/TLqd1e1JyOZZZADkn1OTcz4epx7r3VZkAwNdLR5i/66TPrWLqxt1krSgyqmkKC+5USbkX3g0nt6kAT4jKyDmu5oqdue6sn+V43dH7QNpedQ10tk90bGfXNxN2u+qJ++NZ+GwofDkK9i9TKarODuZKjrfB329zMjOPLSePMGPrm05PuyV1Cydzj2FP3e0YzJ1t6TQwVmDxWnA8jP8ZuoxXwZtWB62uUYFlaML5X19HBfmWn4w52KAnxj+Gj4d8zNhWYzF4GdBqtPRr2I+vr/6aRkEuEtu7gaQtcaLW0pZkHVFf4Ibd4NeparFDTPvSbvozNFq4+TtoennFe6JsVnXB+e0/ZeuC49XCCVf5jUx5pb10fmGlAWTuKdj2NYQ2Vs8P/K6CObsNNpwzYVbnDXf8qra9qoQjGflc9uoKl/Xr72tF9A83qhVXZ4toAeMWyQIMwGqz8/mawzznJDCOC/Zlwb19iHXTtm21ymJWK7MX3u1YrtHADXPUXr6SYFpURM4JlZop44BjeWQruOX70utO8nb4sB9l9krUesE9ayGyhfPzZxyAjwaq/bfPaDNC/VvNPASGMMjY79A7dvKmP7lxkZH/DA/n/9bd7LLpT3V+mBvyzfDbE64/3wNb1E17RRQXnQ5Y7eAbUumb9rrGWFjM/323nd92lp1TOLB1FG+M7kiwQd0gm61msoqysGMnQB9AQA0tcpHEwp7GYlYBV5sRsOj05vIdx6rVqOey22Dx/ar3zFUQdi6tDjqMVhNZ17ylhmAB4rrAVa/CzkXQdAAExpWd++AT4PxLmrJdJdE8Q6OFm+bBVzeUPdZqhh8fUkFWJVY+eek0GPQ6CovLTrDtFB9MyLE/ygZzoMr2/wbd7qjwe9VXOq2G4Z3iyCksZtbKg5gsasJu+wbBvDO288URzAHkpcCSKWXL7Xb48UFo0KVKczzFRcZuV0mCzw3mQE0vOfAHdD193Q5vBjd+o67XZxYvBMXByA8oCmxESno+f+w5xdGMQro0DqFZVADx/jaC/njeMZgDCE2EVkPV3OncU+qG3zcIfvsP1vCW/HBIy9HMAiIDGuKl8cJidz7NIlIfBN7lLE7z8qnclmF633p14xxk0PPstW3R6zT8/G8yNruKo69sG8PTw9qUBHMA3jrv0jmJdZAEdO5SkAE7FkKjXmDOV13xhVmu8xUZT6r5GRUN6EDNX7v0Eeh8i5qbV2RUq67mjind0H7ANLWK1hBS/rmsFrXZ/dlCE5ynTzkj5V/1mSoR0EUG+HBj93g+W3O4TN3VzXzx2eEiPQCoBSJtRoJfaIXfr74KD/Dh3gFNub5rQ7ILi/HVawn38yYsoJITsj1ZXqqaN6fRlO0xKcxS3wEJ6MT5FGaqkQlXts5Rc9AMIWr6S/MhcNfK01s1asEvDLMhmr8PpHPXF5ux2tS/xc/XQuMwPz65tRNB5y42SLhU5dP87CqVgeCMkEYw/H2yUo6wYIORBwbFcbxgP5c3upylR5aWaZrBy0ALrwAI8FfDpBYnK9w73Hhhu1nUAzHBvkwf1Z5HhrQkz1RMgI+eiABvAs8zHFvXSEBX2yzFkH9KzVm48Su1HBxUL1x5CSpBBXvHN6nFEoGxFRsu0vuqi8DeX+DXx8vWL/+fWsFq6AS5qZCfqvY89Y8Ev8jS3jsNZdtnt6kLVnnOV38Omx2u6RjLtmPZbD2WXVLurdPSr0UUHC1nyFmjk8URZ/Hx0hEf5ke8qwOsFtWLlZeq/mgERKuH3jMnN5/NbLGS6p1A6qi/0GggiiyiNr6K/sjK0oPk34rbpOeZyMgzYSyyEO7vTXiAt0NPSN2iUdcWV7Sl1x2L1capXBNpuf7Y7H5E+HujtWgoyCjgni+3lARzvRODeaxPMNHabHxzdmEdOx/d6pdVbx9Ar3vguzscgzlQKUfWvY+9z1ME+ubSprGJp9Y/zRv93+Cw8TD7skpHLwxeBmZe8jJRy15QU2CGv6fmZJ8d1MV1hssed5yXfZEK9NV7XAB3LgnoapM5Hw4uhyWPwLVvQfZxNWfON1jNWfP2V1+sMwsgzhaaqCa1Lpmijh8xE5r0r9iKvbxU5xm+z9i5SK1UmndzaWoSjQbaXgdXvKByLGm9oOvtKmXKGVmH1V2ksx4QUHMDK7nyKSPPxJ2zN/Hw4BZMuLQJu1OMhPrpaRzuz+ytp3i60+34ntjs/MXdJ5y/p1EoxUVwdC18d3vpymUvXxj8vBqq9+CfY15RMb/vTuW/C/8l36yG7gN9vHjlqhe5LHAmfju+VHtPXuS9Eu5yJCOfSV9uZndy6Sr8IW2jee7adsQE18GbCb8wde07ucV5ffcJ4BtMYbGVNQfSmfztNoyFKhAz6HVMu7o1Oq0Gs1VNfbi+fRhTWyYTvuSm0rnK3v4w4L9qfvO+X1XaKWe9aQAH/8Bn4KtMuDSMP0++S5G1iCdWP8HDXR7G39ufA1kHiDBE0CioEQ20gXgd31j62hs+U3O389Mhoa9aHBdQd4cQReVIQFebsg7Dt7eoYU5TnlowoAFu/0WtcCougqvfLJ1Td0ZQAxj1ker6H/2Fyvn291tqIYBWB1q9+uN0ds9K3ikVQGq9VH1xkRpe6nkvNLlMXUCsZrBZKNb5YdR5k3fTXKw2E/rCHEJ3/UhA1lE1N82Up4YSIltDy2tg70+l77NjAfR7DFa+7Nhm7wBVfmgFdLqpwr0hVrud7MJinlm8kwAfLxqF+ZFnsnA0U80Bub9bXxo06KqGjs/WoKvKpyQqJucYfHW9Yw+ApQh++T/176ppf7c17Qybzc6p3CJMxTa8vbREBfrgpTt/j++h9HwenrfNoSzXZOHeRUf4+bb7aL3/B5XHMaD+7j1ZV6Uai7hj9iYOpjmuMl668xRBvnqeu7Ytfj518M9S80GqN+uslaL2Bl1Iu3QKRdFt0OclU2z25+4vNmE5K8dsYbGV2WsOM7aHWgnp46Vlcjdvwr+5w/Em2JyvFrDdskBdc8tL5G63k5yRRVxIPLkp6jij2chz654jUB9Ig8AGGE1Gim3FfD34EzJvXkqu2Y4WG6EHfyHg8O/qWt59QqWDObvdzqlcE0XFVrx1WiIDvdFjUwGotVj9DQqMld5vN6mD35x6ymKCte9Dwx4q8Fj1MvS4W83N2POj+jJEtYaBT8PE5WqblaxD0GIoJPZTS8uPrlVflEHPqZxvX49WK6C8fNX2YJc+onrvjm2AXx+D9P2qq73DGLV4wZynArmTW9UE3LXvQW4yep9AQnpMJKVpP25ZNQUbNvo16Mej/R+l8cL71WKIgCh1Bzn0JTUBeP0s1ZMY30vd6cW0h+3fqiG8uC5qHskfz6k8e00vh6DYCv2Y/L29aB0byO7kXPJMFnYlO+5ekUooDcZ8pfL0bf4M0EC329XOGBV8j4uezaZyCp47nHPGihchrqPKg+UmmXlmftmZzIxl+0nLMxHk68WES5swtkc8kYGue3EKTBbeX+Fk8jrq7+dH2wqYfvd6fALDQStZm2pbirGoTDB3xqKtJ3jw8mY0qosBXVAc3Pj16evObLI7jmGVnx9vb3+LU+tP4eflx/XNb+Stm6/i4a8PUmwtDdaOZhbQNFKNpFzVJpyIHZ86H9EAdd0f+pqa8+xKcDwnCr344O8DjLh0IH+f/LukKrc4lz2ZapRlZMJQgvcvIz3yMq6bd5TMfDODWl3Df0bcT0IgpUnoKyi7wMzyvWm88useknOKCDF4sfj2FjTcNwfthg/V35egOLj8KWhxRflps0SNkCtabSkuVAFa/yfg82ug/Q3w6xMqrYL19Dy61N1qQ/v8NLVY4oY5kHCJynl0dK06JrKV+qLMu0UFc6B6VjZ9Ar88poK5L0eqYA5UL9zWL2DxAyoR5uo3VcbwpdNUsAVgykW3+g2arfuYh9rchs1uY8XxFdy24iFODn5KHZOXqlat/vstJPaHMV+qILHb7bBtrpqb4RMADbur5fVfXQ/J21RPYSU2pg4P8OGZYW2d3uB1axxKw1CDCtzaX69y4I2dq3LjVWaxyMXOaoZTO1zXZx5yPuxfS8wWK3M3HuG/C3eQlqdWZxuLLLyxbB+v/rYPY6HrRKCFxVYOpua7rN+fVkShb2S9mCfoiVLK2XbOYrOXDJHXSUFx0P4GrGO/4TeDN/9d9yynCtQ2jQWWAubs/pSfT77HvQMdr0Umi40jmQVc2jyCxGAtPll7y547NJHcSx4ms/lALNmH1IKzllc5bYbtiulszPBmfVIWEV7tifEv29Ns8DJwR8I1GJY+SfyPN/LesFhsdli6O50bPvuXE5bK5aK0Wm38/G8yk+dtI/n07/DBvpHErPoP2r/eUMEcqMV7iyZh37EArHX4d1lPSUBXW/R+ajXRtq9VQGYxO18Gb7fDypfUXAqTUa0sPXs/1G53wOrXnb9Ho16w1EneOVBB0PZvoN1I1TPnhM+enxgY1h7t6YUMGUUZrDIeVOkdzlj1mlrU4e2vegMBYjupIYJtX6tzH/hDLZgANczrVbnJzu0bBjP/7t50aKjOH+jjxb39m/LuTV0ce2d8AtVDVI6XT/n5ASNbut6btxak5pp498+DTuvmbz5GRr7rGwQ/H125iZPbxgXh510He4AuEuVtOeet0+JfF3vnzpFanMfbW99xWrfq5HI6J+jQaR3vSFftS+PBy5sTHx1OYUS70gqtjoxr3uDPwY9zX3ESdyb/xrs5uzhuLcQ+7G24/MnSnvKoNjBuEdoml3FH3yY8cWVL3vgllae6vsuwJtei1+rRoKFfXB++vuQVGi59Wt3sZx4iofiAuhlGJW9ftb+cHkAnTuWaeOW30kBUp9UwqCF4H/jZ6fGa5S+Qm7mfnPKGjkW1q/vfnvrCy1sNC65+Tc1fOHuiKqgvbVQbFbyd3ArBcbBvKRiPQ5MBKv+QzgfCmpb2zJ0rpJHrNCLR7VQ+owZd1XvF91QT37VeqqeuKAf8IgnU6ukT24d1yeuw2C2szPiHkdHt8bFZVfCUtkelTwk5Kzt2gy6q968gA0KbQIvBKv/dzu9hwH/UnIpK8PP2oltCGLNv70Gh2YJWqyEiwAd9BeZPiQrQaNQw/N8zSvMTnm3ANLcuisguKHaahxDU/c7J7EISI5wvBjLovbinfzN++je5zKiWTqvhjksS8faSf0fuEhXkS9u4IHaedJxK0TDUwB19E4kKrKsrXUvlFudiNBud1hm8DNi0eVzftQHfbzlRMvR6Q7d4Xlu6ly6NQrii5yTY/gXYLGQNnMarxn/558heYgNiKbYV88meL5l/aDFfXfUVCX0nQ+ebAa1aMOerksxG+sLEfk25oVtDrHboEnY/D0R0B62OgKMbCPxmvJomk3ApZCURcuxPmkeN43hWIX7eWkzFViwWG14V/C4Yi4rJLijGoNfRrkEQQb56fLLP6ZA4s8AvfR/kpZKefZA/k//m5jY34+uh24J5GrcHdO+//z6vvvoqycnJtG3blhkzZnDppZe6PH7lypVMmTKFnTt3EhcXx2OPPcakSY6LCBYsWMCTTz7JwYMHadq0KS+88AIjR46s6Y9yfoZQ8ItQd01n8l95B8CQ51WwdGyD+kIMmAZ6f2gxRO3x6hMM2FSgpzeoHhZnf4itxapn5ewePVDZvJsOgLxTJEe1IGPMJ9h03tiBA9kHaBrSFK1GS545jw0pG+gY2ZFxbcax8vhKGvrHkhLahr9TWpBqzqZ37wk08QvGYX1gSDzc/hsnbQUk20ysOvEX3rpGDLzsYaJ9wqjqTKwwf28oZwsrpwqz1QTd/b+p4d4mA9Qk/zO7W5jyVAC77zcVgDY5vZAi6wgkXqoSLTsZjjuZXciOEznsOmnkxtbeRJiOoDm0gmJDFAWN+5Orj8DL159Uo4k/96Ti7+PFoNbRBBm8yMgrYumuZAqKLQxoGUHjcD9sVj3/HM/h3+PZNI/xp3mMjvTi/cQFxLIncy+NDJ04mGJj/6l8WsX50aFhCHuMa9iftZ/LGg4gRJfAhsPZHEjNpV0Df9o3COFIwTb2Ze3j0phrSM7Usi4pg/hQAz2bhPBP1kpiDQkE6xrzx540YgN1jLp5Ed6LJpZmn/cNxjT4JXIDEll/cAntI9uTa85lb8ZBEgO68M8REyk5Zvo0jaBFTCDossnOh/2nCvjnaD5NIgK4ppkvgaZT2Pf+jE2jxdp8KPsKA/hpv4keCWE0izZgIY0Yix2vE1sh5V+sMR3QNegCFjM+ASH46MvPvh7oW/5lKyHCj49u7cZj320n83RvXmSAD6/d0JFGYdXf83jKWMShtDz+2p9OVJAvl7WIJDrIB4P0BJYRGejDB+O68si3/7A+KZP4MANTh7amwGzhQGoeS7an0CMxjNhg3wotgHEHvZOBLS+NF/e2f5x4Q0c277UTH6Th+0k9WXMom5YxBmKDDQxoGUmK0cQmYyQt79pO9KKxpMV343JzP9oE+HDwlJlLYvQ07mDl/Z0vMuufD5jU9glOZnuxal86Qb56ejWx4uutI8qgJaL4JOH7foaiPGg3Cv8fJ0NBJpb4nhy//iM25R7mcOEpOgbdTIuQFvgut/Px2FY0ighm1b5U3vhtB/1aRBETpCfano73waVoC9KxNhtMhj6Or/7Np1G4H10TQtBrtDw6pCXNogLYeDgTP28dweFqDl5Rs6tI6f44q49bOZlnp097PS20J2kY2oLbfCPQrnwVq96PUy1vIcmoYfWBDEL89AxuGU50/j7MFisnvBP5fX8O3l46BrWJJibYQLCh9lKI2O12TmYXsvVYNjtO5NAmLpgujUJoEGJA40ELPNy69de8efMYN24c77//Pn379uWDDz7g448/ZteuXTRqVHZ/tKSkJNq1a8fEiRO5++67+fvvv7n33nuZO3cu1113HQBr167l0ksv5fnnn2fkyJEsXLiQp556ir/++ouePXtWqF01tvVXcRHs/lHlj/MLhy9GqFWrq15zXBIf0RyGvQ1H16ktvKJawfd3qUCtw2iVE+kfJwl2245Sq5bWzywt03nDmC9g69ccuvz/2JV7hKTsJGIDYvlw+4c81espcsw5/HToJ/468ZfD6Z7u9TR+egNT//oPNnvp0q0WIS14b9B7DnM3juceZ/r66aw6scrhHBPaTWBc23GE+dbCBNnCHNj3Cyy6p3TIF9TS/Bu/Vj/zHQvhxwccX9egK1wyWeV9GvOVCvLO2kD7UFoeYz5YR3ahmR/GJdJ6+QQ0Z89B02gxDf+Ij08159XlpVvz3HNZU+zYmbWytEc1LtiX10d35L6vt5YEG6CGlT+5vQOf7nuO0YmTeejLJHJNpYsWQv30zLg5gbmHZjCi4cM8/PVBiopLP2NUoA8zbm6MXWNl6rzkklXBAHqdhm8ndePrDUeZv/FUSfnAVlG8emUU+VmnsFstpNsDeXOdkZ0pBXw1oRtLk+ewM20PQ6Ie5In5SVhspZeK9nFBvD6mPXd+voVjmWq+3XvD47n86NsYds93+PHmdb6LRYFjmbY0mb7NIpg91Bf9F8McV/IZQim86Qe0uxeT3+0+bv96F/8cLztcExPky6L7+p43vYXVZueUsYjMfDMajbo5iA70Raut3ovzyexC7vx8o0MKDq0G3hnbhctbR2HQnye35EUqK99MTqHqib310w2k5ZbeoPp56/hqQk86Ngyp9t/XhcrNOoz55Gb+c/wX1qSsLyl/usdr/LwhiD93Zzoc//Kodhh8NEyet6MkBx1Ai6gAvhjfkeP5BUycvbPMteDtWxLx0pt47acch++BRgP/uao1BaZixsacJOq7EaqiyQBo2B3r/qVsHzSVu9Y+SZG1dL5itF80swbMYfM+I0/8eNCh97pzfDAzL9cS8+3VJddNS1wPdvR9m5FfHsLHS8uvD17C9F/38tvO0uvHgpsa0W73G6xu8gh3Lzzq8PmaRvrz+fXxNPyyL1iKSLnhRx5YYWfj0dLvCcD/hrXAYoNnljju/nN3vyZMuqwpoZW9oa+iPclGxny4jpyz5ucGGbz4ZmJv2sTV4PafLlQ1BnHrLdAbb7zBnXfeyYQJE2jdujUzZswgPj6emTNnOj1+1qxZNGrUiBkzZtC6dWsmTJjAHXfcwWuvvVZyzIwZMxg8eDBTp06lVatWTJ06lYEDBzJjxoxa+lTlyD0JPn6Qugc2fKQWFhxaUTa/Ud+HVK66kEYQlqAWNJzpddu5CNqOgJgOjq/R6dVK1z4PQIPupeVthsPORWQ26sF7O2eTXphOx6iOvLDuBW5ufTMLDyzkVP6pMsEcQLR/dJlgDmBf9j4+2v4RptO9hIXFhaw8trJMMAfw8Y6POZJzpHI/p6rKSykbzAGc2gmr31D7MZ4bzIFKgXLkbxXIzbtZ9fCdlplv4qFvtpGWZ+LaduEk7v7AMZgDsNvw+WEiQxNKv06BPl60axDsEMwBTLi0CU/+4HgBB5VW46G5u7in3X/573fHHII5gKyCYp7/IZl72vyHJ+YfdgjmQM0723FUw2crjA7BHEConzcHU00OwRzAle1iGPrpfi79PI1+X2Yx6qujrD6YTWa+mYe+2U6wV0NubH4P//nusEMwB9CjSTgvLtlXEswlhPvRXbe3TDAHELD1QwaGZxDu781/Lg1BP39c2bQMhVkYFo7H0m40YX//jxljOhJ7TtAWZPDik/HdiA46/24XOq2GuBAD7RoE0zYumNhgQ7UHB0XFVt5ffsAhmAOVHPuBuVtINbpeAHCxC/X3JsjgxeMLtjsEcwAFZisTPt9ESh37+WUXZWNO3kr4j5OZ1uEeGgaqUZbmIc3JzootE8wBRAUZmHJOMAewLzWP7SlFPD5/v9Nrwc/bClm5U1PmpsZuhxd/3k37hqH8cCIIW6NLVEXSCohpR+qQZ7h/w/MOwRxAemE6aXlFPL74YJmpCFuP5fDFfm+Km11RUuZ1cgNNj37LgOZhNAjxY9X+DIdgDuDJ5Zmc6Pcq9yw6WubzHUzL5/W/0ihodxPWJoP4JsmvTDAHMO3HfTSKDMbrnO/mB6sOcSDV+Wro6paaW8SkLzc7BHMAxkILd3+5yaO+x24L6MxmM5s3b2bIkCEO5UOGDGHNmjVOX7N27doyx19xxRVs2rSJ4uLico9xdU4Ak8mE0Wh0eNSIQ6sAHWz5HHYvVvnh/vnG8RiNRg3NNuii0plotKWJX0GtUFwwUa0uve4TGPgUjPwA7t+khgyDG8DYr+GO3+DSR1XG8Z0LyYpqQcuwlmw5tYUD2Qew2C00CmxE6/DWLD60uExTW4S2YHfm7jLB3Bk/HPyBzCJ1AUsvTGfB/gUuP/Y3e7/B4ipFRnU6ezHGubKPwK6FzutArdRtO1L9fM8KsDPzzfx7Ql1Ub2prwLDTxdZjdhvByX/ROlZNyB/QKsrpZs/xYQaXF6rknCKKi31LVpGd63hWAcYCPdkFzld5Ng4P4M89aWXKr2gbw+JtJx3KNBq1h+Epo5Ohe2DfqTyaB7bnSColCVHP1iMxjJX7S9/rxvZBRG3/wOm5AKJ2fMywNqEkGgrU78KZzEPYi/PhyF8k6nP4/p4+fH5Hdx67oiUfjOvKLw/2o01sUJ0ZAsnINzN/83GndTY7/H2gchPPLzaZ+Wa2O+mFBfWzLW9FrDtYTbmEbP0KinLwyjZxd/PXeb7nOzzQfhoLNmaXOb5pZAB7U3LL3AydzdW1oE+zCL7ZcMJpnd0OG5MyWZ9iI63t+NLCHx/muE7rdH5fh8gOrNzjeoHCF1syyDhzrtMCt3/G7R39ubpDjNN/5/lmG6sO5TqkaDnbjzszyWh6HWltxvP55gyX7/33gXS6JZSdmPPp30mYXMylrU4ZeWYOZzjf6/ZYZiHp5SzCqmvcNskjPT0dq9VKdLRjLpzo6GhSUsr+IQRISUlxerzFYiE9PZ3Y2FiXx7g6J8D06dN59tlnq/hJKiE/FcISSzdhNuerlaxn0+jU/Dhvf5UqxOTkC28ywk+T1dy4iX9CeFPH+oCo05nwo1Q+I0sRJlsxfl5+WGwWjKffs9hWjL/enxxT2S+6wcvgtLykCVZTyWbQVrvV5SRhgCxTFhabBS9tDf9zyy8bzJTQ6dXP0xVTTunKzoLSi4/5rCyh3lq76+ztgL4ovWQFpZ+3zmlg5uriB2qortDsIiAFfPU6jEWuA2OL1Y6zvx0BPl5kn3P36aXVUHSei6UdDTkFzo+xWO0Od/rBPjjeeJxDV5RJcDBozpPCxl5sUnMYLUXERhiIDTFwWYuocl/jLlarHZPF9e/r3J4n4ai8nx1Qppfa3ew2M7rT/8aLrfDwV0mq1/mqSHIKyv7b9/fRkV3o+t97edcCHy8teeV8/pzCYmx2Ozbvs1Z0a7Xk5Z10eryflx9Zua5/3sYiC1avc1aHF2Xj763Fz9vL6ecI8PEqN9ix2OxY0OHlHUBOoetUQtkFZqcrz7MKzBTbbPhQs9MWzOf5d1gbQWV1cfus03Pvtu12e7l34M6OP7e8suecOnUqOTk5JY9jx45VuP2VkthPJeltfLqbPHUnxPdwPMZmUQslkv+F2A7nT5arK2eOQWiC2kEiqg0hdrUAIsIQQevw1gBoNVr2Z+6na3TZFBZJOUm0O3t5/TlahLbA30utNPTX+zs9xxkD4gfUziqnJv1d11kt0PwK1/WNekPK6aHUht1KioMNegJOp1LYk2FTq4VdyIvrW3LHveNkDt0Tys4b1Gk1+LhYWabRaIgI9CqT8uAMk8VK43DXP8fCYkuZYUqAf0/k0CPRsS3FVjuBvnpcjUIa9DpMtjxaN3D+fvlmi8PQ55oTFgoaD3DZtpzGQ1h/0kyRd6haWe2Mlw9e/mGql9UD0tGcL0VK32YRtdgazxNi0BPoIk2JRkONLGC5IN6B5CaqBXv+2XtoHRtIRr6Zvw5k0D2x7Hc9KS2fdg2CXZ7O4K1zeS3YdyqXLo1CXL62S+MQQny0BJw1j4+CTBKCE50evz97Pz2auk4Z071xCP6nHKf+WOP7svGkiZ0ncuiZGF7mNUnp+bSJdT2/KzHCH/+8w/ilbKBnouulcd0SwtiTXLZDYHCbGPxrYWFRmL833i4W4Oh1GsIDzj/Fo65wW0AXERGBTqcr03OWmppapoftjJiYGKfHe3l5ER4eXu4xrs4J4OPjQ1BQkMOjRoQlwoE/VSoPnV7lmOv7UNkN7PcsUQmEG/aAYxtV4lxnLn+y/JQgWq16z6EvE7nlS5r5RnFl4pVkFWXRMbIjPx76kQhDBCObjcRH5/iP1mg2YraaaR/evsxpNWh4vMfjhBnURSzSL5Lb292Or67sH/8ovyguibuk/J9LdQlNVLtUnEujgb4PQmxH9XM9l1an5h5unaOCwqCGJVVRQb48ekULAN5Zn03qJc853dbGHteFnUURJfMwdpww0jImoMx8r0VbT3BHX+cX3bE9Y9iZtZ4bezr/tzr+klj25mxkWCfngYKNIiYPKbuY6O+D6QxpE02In+Oqsd93nWJMt3in53pgYBP+OLGIZNMueiaW/aP09fqjPH5ly5Lnv+zKIK3NeOeBmF84qY2uZt2hLD7fXkBxr/udvmdBjwexGJNP/7uu+/tLRgT48My1zpNgd4oPoXF4BfZZvohFBfnyyOnv1rlu7B5PREDdSmES4huGrd114BdG+Oa3eWZABBoN/PxvMtd1aVhmAUyuyUJekYVujUOcni/cy8SDlzi/fpuKrTw0sLnTG66W0YFogIld/An859PSCq2OcK0v1yRcXeY1qQWpNI/yp0VU2X+TWg1MuyyMkK1n7fet1ZHWexofbczkt52nGNsjHj9vx89XYLaSlW+mp5NgFuCZy6OI2vwmwds+4D+Xhjm9UW0a6Y+/t46T54xmRAb4cEXb6FqZXhER4M2ky5o6rburXxMi69i/w/K4LaDz9vama9euLFu2zKF82bJl9OnTx+lrevfuXeb4pUuX0q1bN/R6fbnHuDpnrQqIhhHvQdpetX9rSAJs/QpGzylN3qs3qPkQfR9U6TUa91UJifs9qlZpgup5u2E2tBulVsyeT4Mu6HvdxzV2XyyFmSQEJfBA5weIMkTh6+VLdlE2MwbMoEeM6i300nhxTcJQunmHM6PrI9zWehwGL3V31zK0JZ9c8Qntwh17qhr4N+CzKz+jZ0zPknNcmXAlnwz5hPgg50FDtQttpH4uPe5SQ9agFo/cslAFc0Gxaq/EbhPUdmmgVrje8Dn8Mw8636rmI/qXBkx6nZbhHRvw9o2dsdntvPavH5nXLyxdlOLtT37XSSRf+TExcY1KLm56nYYNSZl8PbEXwzrGlEz6zS40MaprDK9e3564071pkYE+PDa0Mbf0iebfrHV0aJbCo1fGExmogsG4YF+eH9GcmJgDPLfxca7pZuX/rmym0rqg5uW9PqY12dr17ClaxJtjm9E0UqX+CPL1YkK/hhRqjvDerQkMahOJVqMu4snGfO66LJH/Xt2CyIDS95p+XSv6tNRye/tb2Jm5jgmDvLn9kpiSnsoW0QFMGdyc9vF63hzbnKaR/lhsdh77PQfjLb9ibz5EBb1aHdZW13Js1GLuWpxKYoQ/reIjyeh4E+YrX4PA06ukg+IouPJNNB1GE6jXQOM68F2toA4NgvlmYi/anl4J5+etY+Klicy6pWvJ7084d+a79c7YziVJb8P9vZl2dWseGdKSQN/aS1tREV46LzQhjSm4bTHF0W1ov+8dvhmbSLOoAN5cto9Zt3ThkmbqGu2l1TC8QzQd47156KpAbu/bAP/TAVHr2EDmjmtF022vclPobl4b2crhWvDokBbEhhhYvjeNryb0oOPpBOu+ei2ju8Xz7PC2tIr2p2nqHyWL5eyN+sCNXxO07GkeievPQ50fIsQnBID4wHie7fkKgT7efDKuHeO6x5b0DHZqGMx3d/egSc7akoVK9gbdSBv9I8+ss2Gzw5RBiTTyt7Do1ib0bx6KRqNGGq5uH03beB0zrmvJ3f0SSq4PLaMDmXVLFzo2DMIeHA8FGTTf8jwLxrcu6XX08dJyU/cGzLkuljYBefRvHlZy3ms6xDJ/Um8ahtZOD63B24vxfRvz0qj2xASp30N0kA8vjmzHHX0TPSr9UJ1IWzJr1ix69+7Nhx9+yEcffcTOnTtp3LgxU6dO5cSJE8yZMwcoTVty9913M3HiRNauXcukSZMc0pasWbOGfv368cILLzB8+HB++OEHpk2bVjfSlpxhMat5Wnab+kJqvdTDUqT+EPoEquDPYgLj6e25tFo1bKhBzfU688ewMvLTwVpMOlbMGg0atBTbi/HWemPHjt1up9hWjF6rIxQtBqsN/EIp1nmTUZSB1WbFoDeUm4IkNT+VAkuBGj70icDfxw29FOYCteLVZlUBcnBDx3pLkfpZ2Kyqd86O+rkHRKmeUxdSjUWYLDZ8vbREaPOwm/MotmvJ8wrFy9uHYIM32QVm8opUMuRQfz0GvRcFJgtpeQVY7XYM3naiA4PQarScMhZhttjw0oFeX4DJasLgZcBkM6FDh8lswGK1o9XaCPXTUmAtwGqz4uvlS4hPGKnGQgotxXhp7YT4aymyFlFsLcbXy5fiYgMF5mK0GjB4Wym0FuDj5YVBF0x2QTF2VFtiAkOwWK2cyMnDarPjpYVAPzuFlkJCfEIwW83kmHPQa3ywFPujQYfBW0fE6QAwLT+NfJMWq02Hj05PTJABr+I8KMrGbLNQ6GUgq9gXDXr8vPVEBvqQVpCG3W4joKgInd2KXaPHy9sPL40NAiJd/vzrsow8EwVmKzqthogAb7y9JF1JZZz5bul1GqJqIL1MdcvLS8HbnI9Gq8eoCaXAqkOv0+BjN5FfbEOj0eDjo6HAbkSv0RGs8SW7SIdVo8XP24dwstV1yMsHAmNKrwVaDV5ayDWb0etsBBo02Kx+5BYVY7eDr5cWX28dIX7eYC6EwnS1Asc3EKzFWMy5WNBg8gvHaM6j2GpFp9ET6hNOoS0Lk6WYQAwUFOuw2u3odVrMGgjU2Qi05uBls6Dx8iXd5k+hRYNOC94GGxqNnVBLMXkWL4xWPVaNBr2+GB89hBvCKS4wkloAJpsGL52WIINetbEgEwozsaGuk9lWPRarHZ3OTlSAL4YidR02agIw2nzQoCHET++WHUPsdjupRhNmqw29l5boQB+3LcCqagzi1oAOVGLhV155heTkZNq1a8ebb75Jv379ABg/fjyHDx9mxYoVJcevXLmSyZMnlyQWfvzxx8skFv7uu++YNm0ahw4dKkksPGrUqAq3qcYDOiGEEEIIJzw2oKuLJKATQgghhDt4ZGJhIYQQQghx4SSgE0IIIYTwcBLQCSGEEEJ4OAnohBBCCCE8nAR0QgghhBAeTgI6IYQQQggPJwGdEEIIIYSHk4Du/9u7/5io6z8O4M9D5Tx3xyngcYhomJuT0lI0FZ2gE6R02myuiaE2nGlqZenW0gXGmswfmdOVWO3UuX6Z2kwbhuNHPwQlPUxxYJlG8iMRkEOYnXiv7x99uXmBJHKfD/fB52O7P/jc+z6f1+vZ9dnLz/0iIiIi0jgOdEREREQax4GOiIiISOM40BERERFpXM+uLsAXtfy8rcPh6OJKiIiI6GHSMnu0zCL3iwNdGxoaGgAA4eHhXVwJERERPYwaGhpgNpvve71OOjoCPgRcLhcqKipgMpmg0+m6rA6Hw4Hw8HD8+eefCAgI6LI6/svYsWNRWFjY1WW0i1l6D7P0DuboPVrJEvD9PLWSpa/nCDx4liKChoYGDBgwAH5+9//OOF6ha4Ofnx8GDhzY1WW4BQQE+PT/WD169PDp+u7GLL2HWXoHc/QeX88S0E6evp6lVnIEHizLjlyZa8EPRVCnLV++vKtL6DaYpfcwS+9gjt7FPL2DObbGl1x9mMPhgNlsRn19vWb+JeKrmKX3MEvvYI7ewyy9h1l6j9pZ8gqdD9Pr9UhJSYFer+/qUjSPWXoPs/QO5ug9zNJ7mKX3qJ0lr9ARERERaRyv0BERERFpHAc6IiIiIo3jQEdERESkcRzoFLRhwwaMHTsWJpMJFosFzz77LEpLSz3WiAhSU1MxYMAAGAwGxMbGori42GPNrl27EBsbi4CAAOh0Oty4caPN4x09ehTjxo2DwWBAcHAw5syZo1RrqlMry9zcXOh0ujZvvv4llvdLzeflxYsXMXv2bAQHByMgIAATJ05ETk6Oku2pSs0sz5w5g7i4OPTt2xdBQUFYsmQJbt68qWR7qvFGjrW1tVi5ciWGDRuGPn36YNCgQXjllVdQX1/vsZ+6ujokJSXBbDbDbDYjKSnpnudULVIzy3fffRfR0dHo06cP+vbtq0Z7qlIryytXriA5ORkREREwGAx49NFHkZKSAqfT2aF6OdApKC8vD8uXL0dBQQGysrLQ3NyM+Ph4NDY2utds3LgR7733Hnbs2IHCwkJYrVbExcW5f34MAJqampCQkIC33nrrnsc6cOAAkpKS8OKLL+Ls2bP46aefkJiYqGh/alIry+joaFRWVnrcFi9ejEceeQRjxoxRvE81qPm8nDFjBpqbm5GdnY3Tp0/jySefxMyZM1FVVaVoj2pRK8uKigpMmzYNQ4cOxcmTJ5GZmYni4mIsWrRI6RZV4Y0cKyoqUFFRgc2bN+PcuXPYvXs3MjMzkZyc7HGsxMREFBUVITMzE5mZmSgqKkJSUpKq/SpJzSydTifmzp2LZcuWqdqjWtTKsqSkBC6XCxkZGSguLsbWrVuxc+fOds+tbRJSzbVr1wSA5OXliYiIy+USq9Uq6enp7jW3bt0Ss9ksO3fubPX4nJwcASB1dXUe22/fvi1hYWHy8ccfK1q/L1Eqy39zOp1isVjknXfe8Wr9vkSpLKurqwWAfP/99+5tDodDAMjx48eVaaaLKZVlRkaGWCwWuXPnjnub3W4XAPLrr78q00wX6myOLb788kvx9/eX27dvi4jIhQsXBIAUFBS41+Tn5wsAKSkpUaibrqVUlnez2WxiNpu9XruvUSPLFhs3bpSIiIgO1ccrdCpqucQaGBgIALh8+TKqqqoQHx/vXqPX6xETE4MTJ07c937PnDmD8vJy+Pn5YdSoUQgNDcXTTz/d6mWd7kSpLP/t8OHDuH79ere5EtIWpbIMCgrC8OHDsXfvXjQ2NqK5uRkZGRkICQlBVFSUd5vwEUpl+ffff8Pf39/jdx0NBgMA4Mcff/RG6T7FWzm2fKFrz57//Mplfn4+zGYzxo0b514zfvx4mM3mTp0nfJlSWT6M1Myyvr7efZz7xYFOJSKC119/HZMmTcLjjz8OAO6XnUJCQjzWhoSEdOglqd9//x0AkJqainXr1uHIkSPo168fYmJiUFtb66UOfIeSWf7bJ598gunTpyM8PPzBC/ZhSmap0+mQlZUFu90Ok8mE3r17Y+vWrcjMzOyW77dRMsupU6eiqqoKmzZtgtPpRF1dnfvlmMrKSi914Bu8lWNNTQ3S0tLw0ksvubdVVVXBYrG0WmuxWLrN2wDupmSWDxs1s7x06RK2b9+OpUuXdqhGDnQqWbFiBX755Rd89tlnre7T6XQef4tIq23tcblcAIC1a9fiueeeQ1RUFGw2G3Q6Hfbv39+5wn2Qklne7erVqzh27Fir9410J0pmKSJ4+eWXYbFY8MMPP+DUqVOYPXs2Zs6c2e2GEEDZLB977DHs2bMHW7ZsQZ8+fWC1WjFkyBCEhISgR48ena7dl3gjR4fDgRkzZiAyMhIpKSnt7qO9/Wid0lk+TNTKsqKiAgkJCZg7dy4WL17coRo50Klg5cqVOHz4MHJycjBw4ED3dqvVCgCtJvlr1661mvjbExoaCgCIjIx0b9Pr9RgyZAjKyso6U7rPUTrLu9lsNgQFBWHWrFkPXrAPUzrL7OxsHDlyBJ9//jkmTpyI0aNH44MPPoDBYMCePXu804SPUON5mZiYiKqqKpSXl6Ompgapqamorq5GRERE5xvwEd7IsaGhAQkJCTAajTh06BB69erlsZ+//vqr1XGrq6sf+Dzhq5TO8mGiVpYVFRWYMmUKJkyYgF27dnW4Tg50ChIRrFixAgcPHkR2dnarE29ERASsViuysrLc25xOJ/Ly8hAdHX3fx4mKioJer/f4OPXt27dx5coVDB48uPON+AC1srz7eDabDQsWLOh2JzG1smxqagIAj/d9tfzdclVZ69R+XgL/vJxjNBrxxRdfoHfv3oiLi+tUD77AWzk6HA7Ex8fD398fhw8fRu/evT32M2HCBNTX1+PUqVPubSdPnkR9ff0D//fwNWpl+TBQM8vy8nLExsZi9OjRsNlsrc6b91swKWTZsmViNpslNzdXKisr3bempib3mvT0dDGbzXLw4EE5d+6czJs3T0JDQ8XhcLjXVFZWit1ul48++sj9qUG73S41NTXuNa+++qqEhYXJsWPHpKSkRJKTk8VisUhtba2qPStFzSxFRI4fPy4A5MKFC6r1qBa1sqyurpagoCCZM2eOFBUVSWlpqaxevVp69eolRUVFqvetBDWfl9u3b5fTp09LaWmp7NixQwwGg2zbtk3VfpXijRwdDoeMGzdORowYIb/99pvHfpqbm937SUhIkJEjR0p+fr7k5+fLiBEjZObMmar3rBQ1s/zjjz/EbrfL+vXrxWg0it1uF7vdLg0NDar3rQS1siwvL5ehQ4fK1KlT5erVqx5rOoIDnYIAtHmz2WzuNS6XS1JSUsRqtYper5fJkyfLuXPnPPaTkpLyn/txOp3yxhtviMViEZPJJNOmTZPz58+r1Kny1MxSRGTevHkSHR2tQmfqUzPLwsJCiY+Pl8DAQDGZTDJ+/Hj59ttvVepUeWpmmZSUJIGBgeLv7y8jR46UvXv3qtSl8ryRY8tXvrR1u3z5sntdTU2NzJ8/X0wmk5hMJpk/f/5/fn2RlqiZ5cKFC9tck5OTo17DClIrS5vNds81HaH7f9FEREREpFF8Dx0RERGRxnGgIyIiItI4DnREREREGseBjoiIiEjjONARERERaRwHOiIiIiKN40BHREREpHEc6IiIiIg0jgMdEVEHxcbG4rXXXuvqMoiI3DjQEREpKDc3FzqdDjdu3OjqUoioG+NAR0RERKRxHOiIiNrR2NiIBQsWwGg0IjQ0FFu2bPG4f9++fRgzZgxMJhOsVisSExNx7do1AMCVK1cwZcoUAEC/fv2g0+mwaNEiAICIYOPGjRgyZAgMBgOeeOIJfPXVV6r2RkTdBwc6IqJ2rFmzBjk5OTh06BC+++475Obm4vTp0+77nU4n0tLScPbsWXz99de4fPmye2gLDw/HgQMHAAClpaWorKzEtm3bAADr1q2DzWbDhx9+iOLiYqxatQovvPAC8vLyVO+RiLRPJyLS1UUQEfmimzdvIigoCHv37sXzzz8PAKitrcXAgQOxZMkSvP/++60eU1hYiKeeegoNDQ0wGo3Izc3FlClTUFdXh759+wL456pfcHAwsrOzMWHCBPdjFy9ejKamJnz66adqtEdE3UjPri6AiMhXXbp0CU6n02PoCgwMxLBhw9x/2+12pKamoqioCLW1tXC5XACAsrIyREZGtrnfCxcu4NatW4iLi/PY7nQ6MWrUKAU6IaLujgMdEdE9/NcLGI2NjYiPj0d8fDz27duH/v37o6ysDNOnT4fT6bzn41qGvqNHjyIsLMzjPr1e3/nCieihw4GOiOgehg4dil69eqGgoACDBg0CANTV1eHixYuIiYlBSUkJrl+/jvT0dISHhwMAfv75Z499+Pv7AwDu3Lnj3hYZGQm9Xo+ysjLExMSo1A0RdWcc6IiI7sFoNCI5ORlr1qxBUFAQQkJCsHbtWvj5/fN5skGDBsHf3x/bt2/H0qVLcf78eaSlpXnsY/DgwdDpdDhy5AieeeYZGAwGmEwmrF69GqtWrYLL5cKkSZPgcDhw4sQJGI1GLFy4sCvaJSIN46dciYjasWnTJkyePBmzZs3CtGnTMGnSJERFRQEA+vfvj927d2P//v2IjIxEeno6Nm/e7PH4sLAwrF+/Hm+++SZCQkKwYsUKAEBaWhrefvttbNiwAcOHD8f06dPxzTffICIiQvUeiUj7+ClXIiIiIo3jFToiIiIijeNAR0RERKRxHOiIiIiINI4DHREREZHGcaAjIiIi0jgOdEREREQax4GOiIiISOM40BERERFpHAc6IiIiIo3jQEdERESkcRzoiIiIiDSOAx0RERGRxv0P9gDUgbr7MsoAAAAASUVORK5CYII=", "text/plain": "
"}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "region_scatter"}}, "output_type": "display_data"}, "region_ecdf": {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEiklEQVR4nO3deXgUZdb38V+TPYEkQCAkGpIAyiIKSEY2GUA2URlQ5wFcWGRRBpUl4oKIAjqCCxBBAR1BRkcRFBeG1ejIIiAaCPOOgiiLBjWYATRBEshW7x886YcmHUh3ulOd6u/nunJd6eq7qk5V2uZ4n75P2wzDMAQAAIAar5bZAQAAAMAzSOwAAAAsgsQOAADAIkjsAAAALILEDgAAwCJI7AAAACyCxA4AAMAiSOwAAAAsgsQOAADAIkjsAAAALMLUxG7Lli3q37+/4uPjZbPZ9MEHH1x0n82bN6t9+/YKDQ1VkyZNtHjxYu8HCgAAUAOYmtidOnVKbdq00Ysvvlip8YcPH9YNN9ygrl27KjMzU48++qjGjx+vVatWeTlSAAAA32czDMMwOwhJstlsev/99zVw4MAKxzz88MNavXq19u3bZ982duxY/fvf/9aOHTuqIUoAAADfFWh2AK7YsWOH+vTp47Ctb9++WrJkiYqKihQUFFRunzNnzujMmTP2x6WlpTpx4oTq168vm83m9ZgBAACqwjAMnTx5UvHx8apV68LF1hqV2B09elSxsbEO22JjY1VcXKxjx44pLi6u3D6zZs3SjBkzqitEAAAArzhy5IguvfTSC46pUYmdpHKzbGWV5Ipm36ZMmaLU1FT749zcXDVu3FhHjhxRZGSk9wKFXX5hsa756yeSpC+m9lR4sOdfdvlF+bruneskSf/6n38pPCjc4+cAANQwhiEV5Xvv+IUF0oK2Z39/YL8UHOGV0+Tl5SkhIUF16tS56Ngaldg1atRIR48eddiWk5OjwMBA1a9f3+k+ISEhCgkJKbc9MjKSxK6aBBYWq1bI2UQrMjLSK4ldYFGgAsIC/u8cJHYA4N8MQ1raVzqy07vnCfnfiaXISK8ldmUq8xGyGtXHrlOnTkpPT3fY9tFHHyklJcXp5+sAAICfKsr3flJXJqGj5CMTCqbO2P3+++86cOCA/fHhw4e1Z88e1atXT40bN9aUKVP0008/6fXXX5d0dgXsiy++qNTUVI0ZM0Y7duzQkiVLtHz5crMuAQAAmM1ZybXwnMeTD0jBXky8gsIlH1mQaWpil5GRoR49etgfl30Wbvjw4Vq2bJmys7OVlZVlfz45OVnr1q3TpEmT9NJLLyk+Pl7z58/XrbfeWu2xAwAAH1CZkmtwuNfLpL7C1MSue/fuulAbvWXLlpXb1q1bN+3evduLUfkfwzBUUFzgtePnF5Wc83uBZAvw+Dm8GT8AwIddrOTqQ2XS6lCjFk/A8wzD0LD1w7Tnv3u8d47SIElPSpK6r+wmW60ir50LAMrx9spImOtiJVcfKpNWBxI7P1dQXODVpK66tWvYTmGBYWaHAcBXVNfKSPgGPyq5VoTEDnabBm3ySlKUX1iilCe3/O85Nis82POl2DJhgWF8owiA/1OdKyNhLj8ruVaExA52YYFh3un/ZhTbfw0PClN4EC87oMapqeXM6lwZCXP5Wcm1IvwLCwC4MKuUMynTwQ+Q2KFSDMNQwTmrW12RX+jefgB8hBXKmZTp4CdI7PxUWYuTyrQJMQxDf168Q7t++LUaIgPgUZ4ooVqhnEmZDn6CxM4PudripKCoxCNJXUpiXYUFeW/hBIDzeKOESjkT8Gkkdn7IWYuTyrYJyXisl9urWsOCAlixClQnT5dQKWcCPo/Ezs+VtTipbJuQ8OAAhQfzsgFcYtaKUk+XUClnAj6Pf6H9nNdanAA4y1dWlFJCBfxCLbMDAABL84UVpZRQAb/BjB0cOGtrQrsSwA1l5VdfWFFKCRXwGyR2FlfW1uRcFbU4oa0J4CEVlV8phwLwMhI7C/N0WxPalQCV5Kz8SjkUQDUgsbMwZ21NznWhFifO2prQrgRwwtmKV2flV8qhAKoBiZ2fKGtrcq4LtTihrQlQCZVZ8Ur5FUA14l9uP0FbE8ALLrbilfIrgGpGYgfAM8xqwmumi614pfwKoJqR2Pkp2prAo3ylCa+ZKLkC8AEkdn6ItibwOF9owmsmSq4AfASJXQ3mrEfduSp6jrYm8CqzmvCaiZIrAB9BYldDudqjriK0NYHHUZIEANOQ2NVQF+tRd64L9aujrQkAANbBv+gW4KxH3bku1K8OAABYB4mdBdCjDgAASCR2fqWsxQltTQAAsCYSOz9BixM45ammwoV+1pgYAHwUiZ2Pq6ilyYXanDjjrMUJbU38HE2FAcBySOx8mKdampyvrMUJbU38nDeaCtOoFwBMRWLnwyrT0uRCrUwqQosTP+Ss5Hqx7zl1B416AcBU/OteQ1TU0oRWJrioypRcaSoMAJZAYldD0NIEbrtYyZXyKQBYBoldDVLWrsQdtDipgbyxYtVZyZXyKQBYBoldDUG7Ej/jrRWrlFwBwNJI7HxQWYuTc1uaFBSVeiSpo8WJl3hqdq1MIStWAQCuI7HzMZVpcVLWrsQdtDjxAm/3g2PFKgCgkkjsfIyzFidnW5qE2h/TrsTHeKMfXJmEjlJEDAkZAKBSyA58WFmLk7DAMLcXTcCLysqv3ugHV4ZZNgCAC0jsfBgtTnxYReVXFicAAExUy+wAgBrJWfmVxQkAAJMxYwecrzIrXJ2VXymbAgBMRmIHnMudFa6UXwEAPoLEzkc4610HE7i6wpXyKwDAh5DY+YDK9K5DFbjSPNjVFa6UXwEAPoTEzgdU3LsuzJyArKQqzYMpsQIAahgSOx9zbu86viHCA9xtHkyJFQBQA5HY+Zjze9cZhqGCohLlF9Kg+KKclVzdbR5MiRUAUAOR2PkwwzD058U7tOuHX80OxfdVpuRKaRUAYHE0KPZhBUUl5ZK6lMS6CgsKMCkiH3axkiulVQCAH2DGrpqVtTU5V2VanGQ81kvhwQEKCwrw78/eVbTC9WIlV0qrAAA/QGJXjarS1iQ8OEDhwX7+56rsCldKrgAAP0Uptho5a2tyLlqcXERlVrhScgUA+DE/nwIyT1lbk3PR4qQCZeXXyqxwpeQKAPBjJHYmOb+tyblocXKOisqvlFsBACiHxM7H0OLkPM7Kr5RbAQBwisTOx9Di5ALKyq+UWwEAcIrEzofR4uQ8lF8BALggEjsfRosTAADgCrIG+CZnK2EBAMAFkdjB91S2ETEAAHBAYucjaHFyDlbCAgDgFhI7H0CLk/91oUbErIQFAOCiSOx8AC1ORCNiAAA8gMTOx/htixPKrwAAVBmJnY+hxYkovwIA4CY/zyDgkyi/AgDgllpmBwAAAADPYMYO5qIRMQAAHmP6jN3ChQuVnJys0NBQtW/fXlu3br3g+DfffFNt2rRReHi44uLidNddd+n48ePVFC08qmwl7NPx0vPNzI4GAIAaz9TEbsWKFZo4caKmTp2qzMxMde3aVf369VNWVpbT8Z999pmGDRumUaNG6euvv9Y777yjL7/8UqNHj67myOERrIQFAMCjTE3s5s6dq1GjRmn06NFq2bKl0tLSlJCQoEWLFjkd//nnnyspKUnjx49XcnKyrr32Wt1zzz3KyMio5sjhMsOQCk+d93NeI+JHf5ZGbmAlLAAAbjLtM3aFhYXatWuXHnnkEYftffr00fbt253u07lzZ02dOlXr1q1Tv379lJOTo3fffVc33nhjdYTsNsMwVFBcoILiArNDMUdlvvuVlbAAAFSZaYndsWPHVFJSotjYWIftsbGxOnr0qNN9OnfurDfffFODBw/W6dOnVVxcrD/96U9asGBBhec5c+aMzpw5Y3+cl5fnmQuoJMMwNGz9MO35755qPa9PcVZyPRflVwAAPML0VbHnf7uCYRgVfuPC3r17NX78eD3++OPq27evsrOz9eCDD2rs2LFasmSJ031mzZqlGTNmeDzuyiooLiiX1LVr2E5hgWHmBGS2subD56IRMQAAHmFaYhcTE6OAgIBys3M5OTnlZvHKzJo1S126dNGDDz4oSbrqqqsUERGhrl276qmnnlJcXFy5faZMmaLU1FT747y8PCUkJHjwSipv06BNCgsMU1hgmH99Xdi5KLkCAOA1pi2eCA4OVvv27ZWenu6wPT09XZ07d3a6T35+vmrVcgw5ICBA0tmZPmdCQkIUGRnp8GOWsMAwhQeFWzupu9giCQAA4DWmlmJTU1M1dOhQpaSkqFOnTnrllVeUlZWlsWPHSjo72/bTTz/p9ddflyT1799fY8aM0aJFi+yl2IkTJ+qaa65RfHy8mZcCqXKLJAAAgNeYmtgNHjxYx48f18yZM5Wdna3WrVtr3bp1SkxMlCRlZ2c79LQbMWKETp48qRdffFEPPPCAoqOjdd111+mZZ54x6xJwLhZJAABgKptRUQ3TovLy8hQVFaXc3NxqKcvmF+Wrw1sdJEk7b9+pcCeJTX5hsVo9vlGStHdmX4UHm76mxTXnfi1Y2TdIsEgCAACPcCV3qWEZBHxOReVXFkkAAFDtTP+uWNRwfC0YAAA+gxk7eE5Z+ZWSKwAApiCxg+dQfgUAwFSUYgEAACyCGTu459yVsAAAwCeQ2MF1NCIGAMAnUYqF61gJCwCAT2LGzkSGYaigqET5hSVmh+I+VsICAOAzSOxMYhiG/rx4h3b98KvZoVQNK2EBAPAZlGJNUlBUUi6pS0msq7CgAJMiAgAANR0zdj4g47FeCg8OUFhQgGy+Ws4sWwUrsRIWAAAfRWLnA8KDAxQe7MN/ClbBAgBQI1CKxcU5WwUrsRIWAAAf48PTRDWbYRgqKC5QQXGB2aF4VtkqWImVsAAA+BgSOy8wDEPD1g/Tnv/uMTsUz2MVLAAAPotSrBcUFBeUS+raNWynsMAwcwICAAB+gRk7L9s0aJPCAsMUFhjmuyteAQCAJZDYeVlYYJjCWWAAAACqAaVYAAAAi2DGDhUra0pMQ2IAAGoEEjs4R1NiAABqHEqxcM5ZU2IaEgMA4NOYsYMjZ+XXsqbENCQGAMCnkdjh/1RUfqUpMQAANQKlWPwfyq8AANRozNjBOcqvAADUOCR2cI7yKwAANQ6lWAAAAItgxg40IgYAwCJI7PwdjYgBALAMSrH+jpWwAABYBjN2/opGxAAAWA6JnT+iETEAAJZEKdYfUX4FAMCSmLHzd5RfAQCwDBK7amYYhgqKSpRfWGJ2KGdRfgUAwDJI7KqRYRj68+Id2vXDr2YFQL86AAAsjMSuGhUUlZRL6lIS6yosKMD7J6dfHQAAlkdiZ5KMx3opPDhAYUEBslXHZ9tYMAEAgOWR2JkkPDhA4cEm3X4WTAAAYEkkdv6IBRMAAFgSfewAAAAsgsQOAADAIkjsAAAALILEDgAAwCJYPGF1NCUGAMBvkNhZGU2JAQDwK5RirYymxAAA+BVm7KzIWfmVpsQAAFgeiZ3VVFR+pSkxAACWRynWaii/AgDgt5ixswrKrwAA+D0SOyug/AoAAEQp1hoovwIAADFjZz2UXwEA8FskdlZD+RUAAL9FKRYAAMAiSOwAAAAsgsQOAADAIkjsAAAALILFEzWZs6bEAADAb5HY1VQVNSUGAAB+i1JsTUVTYgAAcB5m7LzEMCQZQcovLJGMYkk6+7s30JQYAACIxM4rDMNQ/g9jVVqQpJQnt3j/hDQlBgAAohTrFQVFpSotSKrw+ZTEugoLCqi+gAAAgF9gxs7Ltj7cRfUjajtsCwsKkI2SKQAA8DASOy8LCw5QeDC3GQAAeJ/ppdiFCxcqOTlZoaGhat++vbZu3XrB8WfOnNHUqVOVmJiokJAQNW3aVEuXLq2maAEAAHyXqVNJK1as0MSJE7Vw4UJ16dJFL7/8svr166e9e/eqcePGTvcZNGiQfvnlFy1ZskTNmjVTTk6OiouLqzlyAAAA32NqYjd37lyNGjVKo0ePliSlpaVp48aNWrRokWbNmlVu/IYNG7R582YdOnRI9erVkyQlJSVVZ8gAAAA+y7RSbGFhoXbt2qU+ffo4bO/Tp4+2b9/udJ/Vq1crJSVFzz77rC655BJdfvnlmjx5sgoKCqojZAAAAJ9m2ozdsWPHVFJSotjYWIftsbGxOnr0qNN9Dh06pM8++0yhoaF6//33dezYMY0bN04nTpyo8HN2Z86c0ZkzZ+yP8/LyPHcRAAAAPsT0xRPnt/0wDKPCViClpaWy2Wx68803dc011+iGG27Q3LlztWzZsgpn7WbNmqWoqCj7T0JCgsevAQAAwBeYltjFxMQoICCg3OxcTk5OuVm8MnFxcbrkkksUFRVl39ayZUsZhqEff/zR6T5TpkxRbm6u/efIkSOeuwgAAAAfYlpiFxwcrPbt2ys9Pd1he3p6ujp37ux0ny5duujnn3/W77//bt/27bffqlatWrr00kud7hMSEqLIyEiHnxrLMKTCU//7k292NAAAwMeYWopNTU3Vq6++qqVLl2rfvn2aNGmSsrKyNHbsWElnZ9uGDRtmH3/77berfv36uuuuu7R3715t2bJFDz74oEaOHKmwsDCzLqN6GIa0tK/0dPzZn+ebmR0RAADwMaa2Oxk8eLCOHz+umTNnKjs7W61bt9a6deuUmJgoScrOzlZWVpZ9fO3atZWenq77779fKSkpql+/vgYNGqSnnnrKrEuoPkX50pGd5bcndJSCwqs/HgAA4HNshmEYZgdRnfLy8hQVFaXc3FyvlWWPnTqplCe3SJIypv1RMRF1qn7QwlNnZ+okafIBKfh/k7mgcInvnQUAwLJcyV34EtOaKDhcCo4wOwoAAOBjTG93AgAAAM9wa8bu1KlTmj17tj755BPl5OSotLTU4flDhw55JDgAAABUnluJ3ejRo7V582YNHTpUcXFxFTYUBgAAQPVxK7Fbv3691q5dqy5dung6HpzPMM6uiKVvHQAAuAi3Eru6deuqXr16no4F5yvrXeeszQkAAMB53Fo88eSTT+rxxx9Xfj6zSF7lrHcdfesAAEAF3JqxmzNnjg4ePKjY2FglJSUpKCjI4fndu3d7JDico6x3HX3rAABABdxK7AYOHOjhMHBR9K4DAAAX4VZi98QTT3g6DgAAAFRRlb55YteuXdq3b59sNptatWqldu3aeSouAAAAuMitxC4nJ0dDhgzRpk2bFB0dLcMwlJubqx49eujtt99WgwYNPB0nAAAALsKtVbH333+/8vLy9PXXX+vEiRP69ddf9dVXXykvL0/jx4/3dIwAAACoBLdm7DZs2KCPP/5YLVu2tG9r1aqVXnrpJfXp08djwfktmhIDAAA3uJXYlZaWlmtxIklBQUHlvjcWLqIpMQAAcJNbpdjrrrtOEyZM0M8//2zf9tNPP2nSpEnq2bOnx4LzSzQlBgAAbnJrxu7FF1/UgAEDlJSUpISEBNlsNmVlZenKK6/UP/7xD0/H6L9oSgwAAFzgVmKXkJCg3bt3Kz09Xd98840Mw1CrVq3Uq1cvT8fn32hKDAAAXFClPna9e/dW7969PRULAAAAqqDSid38+fN19913KzQ0VPPnz7/gWFqeAAAAVL9KJ3bz5s3THXfcodDQUM2bN6/CcTabjcQOAADABJVO7A4fPuz0dwAAAPgGt9qdzJw5U/n55ZvnFhQUaObMmVUOCgAAAK5zK7GbMWOGfv/993Lb8/PzNWPGjCoHBQAAANe5ldgZhiGbk75q//73v1WvXr0qBwUAAADXudTupG7durLZbLLZbLr88ssdkruSkhL9/vvvGjt2rMeDBAAAwMW5lNilpaXJMAyNHDlSM2bMUFRUlP254OBgJSUlqVOnTh4PEgAAABfnUmI3fPhwFRcXS5J69eqlSy+91CtBAQAAwHUuf8YuMDBQ48aNU0lJiTfiAQAAgJvcWjzRoUMHZWZmejoWAAAAVIFb3xU7btw4PfDAA/rxxx/Vvn17RUQ4flH9VVdd5ZHgAAAAUHluJXaDBw+W5PidsDabzd4GhTItAABA9XMrseMrxQAAAHyPW4ldYmKip+MAAABAFbmV2EnSwYMHlZaWpn379slms6lly5aaMGGCmjZt6sn4AAAAUElurYrduHGjWrVqpS+++EJXXXWVWrdurZ07d+qKK65Qenq6p2MEAABAJbg1Y/fII49o0qRJmj17drntDz/8sHr37u2R4AAAAFB5bs3Y7du3T6NGjSq3feTIkdq7d2+VgwIAAIDr3ErsGjRooD179pTbvmfPHjVs2LCqMQEAAMANbpVix4wZo7vvvluHDh1S586dZbPZ9Nlnn+mZZ57RAw884OkYAQAAUAluJXbTpk1TnTp1NGfOHE2ZMkWSFB8fr+nTpzs0LQYAAED1cSuxs9lsmjRpkiZNmqSTJ09KkurUqePRwAAAAOAat/vYSVJOTo72798vm82m5s2bq0GDBp6Ky/8YhlSULxXmmx0JAACoodxK7PLy8nTvvfdq+fLlKi0tlSQFBARo8ODBeumllxQVFeXRIC3PMKSlfaUjO82OBAAA1GBurYodPXq0du7cqbVr1+q3335Tbm6u1qxZo4yMDI0ZM8bTMVpfUX75pC6hoxQUbk48AACgRnJrxm7t2rXauHGjrr32Wvu2vn376m9/+5uuv/56jwXnlyYfkILDzyZ1NpvZ0QAAgBrErcSufv36TsutUVFRqlu3bpWD8mvB4VJwhNlRAACAGsitUuxjjz2m1NRUZWdn27cdPXpUDz74oKZNm+ax4AAAAFB5bs3YLVq0SAcOHFBiYqIaN24sScrKylJISIj++9//6uWXX7aP3b17t2citSJWwgIAAA9yK7EbOHCgh8PwQ6yEBQAAHuZWYvfEE094Og7/w0pYAADgYVVqULxr1y7t27dPNptNrVq1Urt27TwVl39hJSwAAPAAtxK7nJwcDRkyRJs2bVJ0dLQMw1Bubq569Oiht99+m2+gcBUrYQEAgAe4tSr2/vvvV15enr7++mudOHFCv/76q7766ivl5eVp/Pjxno4RAAAAleDWjN2GDRv08ccfq2XLlvZtrVq10ksvvaQ+ffp4LDgAAABUnlszdqWlpQoKCiq3PSgoyP7dsQAAAKhebiV21113nSZMmKCff/7Zvu2nn37SpEmT1LNnT48FBwAAgMpzK7F78cUXdfLkSSUlJalp06Zq1qyZkpOTdfLkSS1YsMDTMQIAAKAS3PqMXUJCgnbv3q309HR98803MgxDrVq1Uq9evTwdHwAAACrJ5cSuuLhYoaGh2rNnj3r37q3evXt7Iy4AAAC4yOVSbGBgoBITE1VSUuKNeAAAAOAmtz5j99hjj2nKlCk6ceKEp+MBAACAm9z6jN38+fN14MABxcfHKzExURERjt+asHv3bo8EBwAAgMpzK7EbOHCgbDabDMPwdDwAAABwk0uJXX5+vh588EF98MEHKioqUs+ePbVgwQLFxMR4Kz4AAABUkkufsXviiSe0bNky3Xjjjbrtttv08ccf6y9/+Yu3YgMAAIALXJqxe++997RkyRINGTJEknTHHXeoS5cuKikpUUBAgFcCBAAAQOW4NGN35MgRde3a1f74mmuuUWBgoMNXiwEAAMAcLiV2JSUlCg4OdtgWGBio4uJijwYFAAAA17lUijUMQyNGjFBISIh92+nTpzV27FiHlifvvfee5yIEAABApbg0Yzd8+HA1bNhQUVFR9p8777xT8fHxDttcsXDhQiUnJys0NFTt27fX1q1bK7Xftm3bFBgYqLZt27p0PgAAAKtyacbutdde8+jJV6xYoYkTJ2rhwoXq0qWLXn75ZfXr10979+5V48aNK9wvNzdXw4YNU8+ePfXLL794NCYAAICayq2vFPOUuXPnatSoURo9erRatmyptLQ0JSQkaNGiRRfc75577tHtt9+uTp06VVOkHmQYUuEpqTDf7EgAAIDFmJbYFRYWateuXerTp4/D9j59+mj79u0V7vfaa6/p4MGDeuKJJyp1njNnzigvL8/hxzSGIS3tKz0dLz3fzLw4AACAJZmW2B07dkwlJSWKjY112B4bG6ujR4863ee7777TI488ojfffFOBgZWrIs+aNcvh838JCQlVjt1tRfnSkZ2O2xI6SkHh5sQDAAAsxa3vivUkm83m8NgwjHLbpLOtVm6//XbNmDFDl19+eaWPP2XKFKWmptof5+XlmZvclZl8QAoOP5vUObleAAAAV5mW2MXExCggIKDc7FxOTk65WTxJOnnypDIyMpSZman77rtPklRaWirDMBQYGKiPPvpI1113Xbn9QkJCHNqz+IzgcCk44uLjAAAAKsm0UmxwcLDat2+v9PR0h+3p6enq3LlzufGRkZH6z3/+oz179th/xo4dq+bNm2vPnj3q0KFDdYUOAADgk0wtxaampmro0KFKSUlRp06d9MorrygrK0tjx46VdLaM+tNPP+n1119XrVq11Lp1a4f9GzZsqNDQ0HLbAQAA/JGpid3gwYN1/PhxzZw5U9nZ2WrdurXWrVunxMRESVJ2draysrLMDBEAAKDGsBmGYZgdRHXKy8tTVFSUcnNzFRkZ6ZVzHDt1UilPbpEkZUz7o2Ii6px9ovDU2VYnkvToz3zGDgAAXJQruYupDYoBAADgOSR2AAAAFkFiBwAAYBEkdgAAABZBYgcAAGARJHYAAAAWQWIHAABgESR2AAAAFkFiBwAAYBEkdgAAABZBYgcAAGARJHYAAAAWQWIHAABgESR2AAAAFkFiBwAAYBEkdgAAABZBYgcAAGARJHYAAAAWQWIHAABgESR2AAAAFkFiBwAAYBEkdgAAABZBYgcAAGARJHYAAAAWQWIHAABgESR2AAAAFkFiBwAAYBEkdgAAABZBYgcAAGARJHYAAAAWQWIHAABgESR2AAAAFhFodgB+wTCkonypMN/sSAAAgIWR2HmbYUhL+0pHdpodCQAAsDhKsd5WVFA+qUvoKAWFmxMPAACwLGbsqtPkA1Jw+NmkzmYzOxoAAGAxJHbVKThcCo4wOwoAAGBRlGIBAAAsgsQOAADAIkjsAAAALILEDgAAwCJI7AAAACyCxA4AAMAiSOy8rajA7AgAAICfILHzBsOw/xr+0jUmBgIAAPwJiZ03OJul42vEAACAl/HNE16Wf+8XCo9uwNeIAQAAryOx87agML5GDAAAVAtKsQAAABZBYgcAAGARJHYAAAAWQWIHAABgESR2AAAAFkFiBwAAYBEkdgAAABZBYgcAAGARJHYAAAAWQWIHAABgEXylGAAANVhJSYmKiorMDgNVEBQUpICAAI8ci8QOAIAayDAMHT16VL/99pvZocADoqOj1ahRI9lstiodh8QOAIAaqCypa9iwocLDw6ucEMAchmEoPz9fOTk5kqS4uLgqHY/EDgCAGqakpMSe1NWvX9/scFBFYWFhkqScnBw1bNiwSmVZFk8AAFDDlH2mLjw83ORI4Cllf8uqfl6SxA4AgBqK8qt1eOpvSWIHAAB8XlJSktLS0swOw+fxGTsAAODzvvzyS0VERJgdhs8jsQMAAF5TWFio4ODgKh+nQYMGHojG+ijFAgAAj+nevbvuu+8+paamKiYmRr1799bevXt1ww03qHbt2oqNjdXQoUN17Ngx+z4nT57UHXfcoYiICMXFxWnevHnq3r27Jk6caB9zfik2KytLAwYMUO3atRUZGalBgwbpl19+sT8/ffp0tW3bVm+88YaSkpIUFRWlIUOG6OTJk9VxG0xDYgcAADzq73//uwIDA7Vt2zbNnj1b3bp1U9u2bZWRkaENGzbol19+0aBBg+zjU1NTtW3bNq1evVrp6enaunWrdu/eXeHxDcPQwIEDdeLECW3evFnp6ek6ePCgBg8e7DDu4MGD+uCDD7RmzRqtWbNGmzdv1uzZs7123b7A9MRu4cKFSk5OVmhoqNq3b6+tW7dWOPa9995T79691aBBA0VGRqpTp07auHFjNUYLAAAuplmzZnr22WfVvHlzrV+/XldffbWefvpptWjRQu3atdPSpUv16aef6ttvv9XJkyf197//Xc8//7x69uyp1q1b67XXXlNJSUmFx//444/1//7f/9Nbb72l9u3bq0OHDnrjjTe0efNmffnll/ZxpaWlWrZsmVq3bq2uXbtq6NCh+uSTT6rjFpjG1MRuxYoVmjhxoqZOnarMzEx17dpV/fr1U1ZWltPxW7ZsUe/evbVu3Trt2rVLPXr0UP/+/ZWZmVnNkQMAgIqkpKTYf9+1a5c+/fRT1a5d2/7TokULSWdn1A4dOqSioiJdc8019n2ioqLUvHnzCo+/b98+JSQkKCEhwb6tVatWio6O1r59++zbkpKSVKdOHfvjuLg4+zc8WJWpiyfmzp2rUaNGafTo0ZKktLQ0bdy4UYsWLdKsWbPKjT9/mfPTTz+tDz/8UP/85z/Vrl276ggZAABcxLmrV0tLS9W/f38988wz5cbFxcXpu+++k1S+j5thGBUe3zAMp33fzt8eFBTk8LzNZlNpaWnlLqKGMm3GrrCwULt27VKfPn0ctvfp00fbt2+v1DFKS0t18uRJ1atXr8IxZ86cUV5ensMPAACoHldffbW+/vprJSUlqVmzZg4/ERERatq0qYKCgvTFF1/Y98nLy7MnfM60atVKWVlZOnLkiH3b3r17lZubq5YtW3r1enydaYndsWPHVFJSotjYWIftsbGxOnr0aKWOMWfOHJ06dcrhA5jnmzVrlqKiouw/507bAgAA77r33nt14sQJ3Xbbbfriiy906NAhffTRRxo5cqRKSkpUp04dDR8+XA8++KA+/fRTff311xo5cqRq1apV4bcx9OrVS1dddZXuuOMO7d69W1988YWGDRumbt26OZSB/ZHpiyecTb1W5ms1li9frunTp2vFihVq2LBhheOmTJmi3Nxc+8+52T0AAPCu+Ph4bdu2TSUlJerbt69at26tCRMmKCoqSrVqnU1D5s6dq06dOummm25Sr1691KVLF7Vs2VKhoaFOj2mz2fTBBx+obt26+uMf/6hevXqpSZMmWrFiRXVemk+yGRcqYntRYWGhwsPD9c477+jmm2+2b58wYYL27NmjzZs3V7jvihUrdNddd+mdd97RjTfe6NJ58/LyFBUVpdzcXEVGRrod/4Uc+/UXpTyTIUnKeDhFMXVjL7IHAACVd/r0aR0+fNjeVcJqTp06pUsuuURz5szRqFGjzA6nWlzob+pK7mLajF1wcLDat2+v9PR0h+3p6enq3LlzhfstX75cI0aM0FtvveVyUgcAAHxPZmamli9froMHD2r37t264447JEkDBgwwObKax9RVsampqRo6dKhSUlLUqVMnvfLKK8rKytLYsWMlnS2j/vTTT3r99dclnU3qhg0bphdeeEEdO3a0fxYvLCxMUVFRpl0HAAComueff1779++3T/xs3bpVMTExZodV45ia2A0ePFjHjx/XzJkzlZ2drdatW2vdunVKTEyUJGVnZzv0tHv55ZdVXFyse++9V/fee699+/Dhw7Vs2bLqDh8AAHhAu3bttGvXLrPDsARTEztJGjdunMaNG+f0ufOTtU2bNnk/IAAAgBrK9FWxAAAA8AwSOwAAAIsgsQMAALAIEjsAAACLILEDAACwCBI7AADg95KSkpSWllbh8yNGjNDAgQOrLR53kdgBAIBqc/ToUU2YMEHNmjVTaGioYmNjde2112rx4sXKz883O7waz/Q+dgAAwD8cOnRIXbp0UXR0tJ5++mldeeWVKi4u1rfffqulS5cqPj5ef/rTn5zuW1RUpKCgoGqOuOZhxg4AAFSLcePGKTAwUBkZGRo0aJBatmypK6+8UrfeeqvWrl2r/v3728fabDYtXrxYAwYMUEREhJ566imVlJRo1KhRSk5OVlhYmJo3b64XXnjB4RxlJdPnn39ecXFxql+/vu69914VFRXZx+Tk5Kh///4KCwtTcnKy3nzzTZevZcOGDbr22msVHR2t+vXr66abbtLBgwcdxvz4448aMmSI6tWrp4iICKWkpGjnzp0un8sVzNgBAFDDGYahgqISU84dFhQgm8120XHHjx/XRx99pKeffloRERFOx5x/nCeeeEKzZs3SvHnzFBAQoNLSUl166aVauXKlYmJitH37dt19992Ki4vToEGD7Pt9+umniouL06effqoDBw5o8ODBatu2rcaMGSPpbPJ35MgR/etf/1JwcLDGjx+vnJwcl6771KlTSk1N1ZVXXqlTp07p8ccf180336w9e/aoVq1a+v3339WtWzddcsklWr16tRo1aqTdu3ertLTUpfO4isQOAIAarqCoRK0e32jKuffO7Kvw4IunEwcOHJBhGGrevLnD9piYGJ0+fVqSdO+99+qZZ56xP3f77bdr5MiRDuNnzJhh/z05OVnbt2/XypUrHRK7unXr6sUXX1RAQIBatGihG2+8UZ988onGjBmjb7/9VuvXr9fnn3+uDh06SJKWLFmili1bunTdt956q8PjJUuWqGHDhtq7d69at26tt956S//973/15Zdfql69epKkZs2auXQOd1CKBQAA1eb8WbkvvvhCe/bs0RVXXKEzZ844PJeSklJu/8WLFyslJUUNGjRQ7dq19be//U1ZWVkOY6644goFBATYH8fFxdln5Pbt26fAwECHY7do0ULR0dEuXcfBgwd1++23q0mTJoqMjFRycrIk2WPZs2eP2rVrZ0/qqgszdgAA1HBhQQHaO7OvaeeujGbNmslms+mbb75x2N6kSZOzxwkLK7fP+SXblStXatKkSZozZ446deqkOnXq6Lnnniv3ubXzF1nYbDZ7CdQwDPu2qujfv78SEhL0t7/9TfHx8SotLVXr1q1VWFhY4fVUBxI7AABqOJvNVqlyqJnq16+v3r1768UXX9T9999f4efsLmTr1q3q3Lmzxo0bZ992/oKFi2nZsqWKi4uVkZGha665RpK0f/9+/fbbb5U+xvHjx7Vv3z69/PLL6tq1qyTps88+cxhz1VVX6dVXX9WJEyeqddaOUiwAAKgWCxcuVHFxsVJSUrRixQrt27dP+/fv1z/+8Q998803DuVTZ5o1a6aMjAxt3LhR3377raZNm6Yvv/zSpRiaN2+u66+/XmPGjNHOnTu1a9cujR492qUZtrp166p+/fp65ZVXdODAAf3rX/9Samqqw5jbbrtNjRo10sCBA7Vt2zYdOnRIq1at0o4dO1yK11UkdgAAoFo0bdpUmZmZ6tWrl6ZMmaI2bdooJSVFCxYs0OTJk/Xkk09ecP+xY8fqlltu0eDBg9WhQwcdP37cYfausl577TUlJCSoW7duuuWWW3T33XerYcOGld6/Vq1aevvtt7Vr1y61bt1akyZN0nPPPecwJjg4WB999JEaNmyoG264QVdeeaVmz5590eS1qmxGWbHZT+Tl5SkqKkq5ubmKjIz0yjmO/fqLUp7JkCRlPJyimLqxXjkPAMA/nT59WocPH1ZycrJCQ0PNDgcecKG/qSu5CzN2AAAAFkFiBwAAYBEkdgAAABZBYgcAAGARJHYAAAAWQWIHAABgESR2AAAAFkFiBwAAYBEkdgAAABZBYgcAAPzW999/L5vNpj179pgdikeQ2AEAgGoxYsQIDRw4sNz2TZs2yWaz6bfffvPo+Ww2mz744AOPHtPXkdgBAABYBIkdAADwKcePH9dtt92mSy+9VOHh4bryyiu1fPlyhzFJSUlKS0tz2Na2bVtNnz7d/rwk3XzzzbLZbPbHF1NSUqJRo0YpOTlZYWFhat68uV544YVy45YuXaorrrhCISEhiouL03333efqZXpFoNkBAACAKjIMqSjfnHMHhUs2m0cPefr0abVv314PP/ywIiMjtXbtWg0dOlRNmjRRhw4dKnWML7/8Ug0bNtRrr72m66+/XgEBAZXar7S0VJdeeqlWrlypmJgYbd++XXfffbfi4uI0aNAgSdKiRYuUmpqq2bNnq1+/fsrNzdW2bdvcvl5PIrEDAKCmK8qXno4359yP/iwFR1R6+Jo1a1S7dm2HbSUlJQ6PL7nkEk2ePNn++P7779eGDRv0zjvvVDqxa9CggSQpOjpajRo1qnR8QUFBmjFjhv1xcnKytm/frpUrV9oTu6eeekoPPPCAJkyYYB/3hz/8odLn8CYSOwAAUG169OihRYsWOWzbuXOn7rzzTvvjkpISzZ49WytWrNBPP/2kM2fO6MyZM4qIqHwCWRWLFy/Wq6++qh9++EEFBQUqLCxU27ZtJUk5OTn6+eef1bNnz2qJxVUkdgAA1HRB4Wdnzsw6twsiIiLUrFkzh20//vijw+M5c+Zo3rx5SktL05VXXqmIiAhNnDhRhYWF9jG1atWSYRgO+xUVFbkYfHkrV67UpEmTNGfOHHXq1El16tTRc889p507d0qSwsLCqnwObyKxAwCgprPZXCqH+rqtW7dqwIAB9lm80tJSfffdd2rZsqV9TIMGDZSdnW1/nJeXp8OHDzscJygoqFyZtzLn7ty5s8aNG2ffdvDgQfvvderUUVJSkj755BP16NHDpWNXB1bFAgAAn9KsWTOlp6dr+/bt2rdvn+655x4dPXrUYcx1112nN954Q1u3btVXX32l4cOHl1sgUZaAHT16VL/++mulz52RkaGNGzfq22+/1bRp0/Tll186jJk+fbrmzJmj+fPn67vvvtPu3bu1YMGCql20h5DYAQAAnzJt2jRdffXV6tu3r7p3765GjRqVa2w8ZcoU/fGPf9RNN92kG264QQMHDlTTpk0dxsyZM0fp6elKSEhQu3btKnXusWPH6pZbbtHgwYPVoUMHHT9+3GH2TpKGDx+utLQ0LVy4UFdccYVuuukmfffdd1W6Zk+xGecXqC0uLy9PUVFRys3NVWRkpFfOcezXX5TyTIYkKePhFMXUjfXKeQAA/un06dM6fPiwkpOTFRoaanY48IAL/U1dyV2YsQMAALAIEjsAAACLILEDAACwCBI7AAAAiyCxAwAAsAgSOwAAAIsgsQMAALAIEjsAAACLILEDAACwCBI7AABQo3Xv3l0TJ050eT+bzaYPPvjA4/GYicQOAABUixEjRshms8lmsykoKEhNmjTR5MmTderUqUrtv2nTJtlsNv32228O29977z09+eST9sdJSUlKS0vzYOQ1R6DZAQAAAP9x/fXX67XXXlNRUZG2bt2q0aNH69SpU1q0aJHbx6xXr54HI6zZmLEDAADVJiQkRI0aNVJCQoJuv/123XHHHfZyqGEYevbZZ9WkSROFhYWpTZs2evfddyVJ33//vXr06CFJqlu3rmw2m0aMGCHJsRTbvXt3/fDDD5o0aZJ9drCyHn74YV1++eUKDw9XkyZNNG3aNBUVFTmMWb16tVJSUhQaGqqYmBjdcsstVbshHsaMHQAANZxhGCooLjDl3GGBYS4lT+X2DwuzJ0+PPfaY3nvvPS1atEiXXXaZtmzZojvvvFMNGjTQtddeq1WrVunWW2/V/v37FRkZqbCwsHLHe++999SmTRvdfffdGjNmjEux1KlTR8uWLVN8fLz+85//aMyYMapTp44eeughSdLatWt1yy23aOrUqXrjjTdUWFiotWvXun3t3kBiBwBADVdQXKAOb3Uw5dw7b9+p8KBwt/b94osv9NZbb6lnz546deqU5s6dq3/961/q1KmTJKlJkyb67LPP9PLLL6tbt272kmvDhg0VHR3t9Jj16tVTQECA6tSpo0aNGrkUz2OPPWb/PSkpSQ888IBWrFhhT+z++te/asiQIZoxY4Z9XJs2bVw6h7eR2AEAgGqzZs0a1a5dW8XFxSoqKtKAAQO0YMEC7d27V6dPn1bv3r0dxhcWFqpdu3bVEtu7776rtLQ0HThwQL///ruKi4sVGRlpf37Pnj0uzwJWNxI7AABquLDAMO28fadp53ZFjx49tGjRIgUFBSk+Pl5BQUGSpMOHD0s6W+685JJLHPYJCQnxTLAX8Pnnn9tn4/r27auoqCi9/fbbmjNnjn2Ms9KvryGxAwCghrPZbG6XQ6tbRESEmjVrVm57q1atFBISoqysLHXr1s3pvsHBwZKkkpKSC54jODj4omPOt23bNiUmJmrq1Kn2bT/88IPDmKuuukqffPKJ7rrrLpeOXZ1I7AAAgOnq1KmjyZMna9KkSSotLdW1116rvLw8bd++XbVr19bw4cOVmJgom82mNWvW6IYbblBYWJhq165d7lhJSUnasmWLhgwZopCQEMXExFz0/M2aNVNWVpbefvtt/eEPf9DatWv1/vvvO4x54okn1LNnTzVt2lRDhgxRcXGx1q9fb/8Mni+g3QkAAPAJTz75pB5//HHNmjVLLVu2VN++ffXPf/5TycnJkqRLLrlEM2bM0COPPKLY2Fjdd999To8zc+ZMff/992ratKkaNGhQqXMPGDBAkyZN0n333ae2bdtq+/btmjZtmsOY7t2765133tHq1avVtm1bXXfdddq505wSeEVshmEYZgdRnfLy8hQVFaXc3FyHD0R60rFff1HKMxmSpIyHUxRTN9Yr5wEA+KfTp0/r8OHDSk5OVmhoqNnhwAMu9Dd1JXdhxg4AAMAiSOwAAAAsgsQOAADAIkjsAAAALILEDgAAwCJI7AAAqKH8rLGFpXnqb0liBwBADVP2NVz5+fkmRwJPKftblv1t3cU3TwAAUMMEBAQoOjpaOTk5kqTw8HDZbDaTo4I7DMNQfn6+cnJyFB0drYCAgCodj8QOAIAaqFGjRpJkT+5Qs0VHR9v/plVBYgcAQA1ks9kUFxenhg0bqqioyOxwUAVBQUFVnqkrY3pit3DhQj333HPKzs7WFVdcobS0NHXt2rXC8Zs3b1Zqaqq+/vprxcfH66GHHtLYsWOrMWIAAHxHQECAx5IC1HymLp5YsWKFJk6cqKlTpyozM1Ndu3ZVv379lJWV5XT84cOHdcMNN6hr167KzMzUo48+qvHjx2vVqlXVHDkAAIDvMTWxmzt3rkaNGqXRo0erZcuWSktLU0JCghYtWuR0/OLFi9W4cWOlpaWpZcuWGj16tEaOHKnnn3++miMHAADwPaYldoWFhdq1a5f69OnjsL1Pnz7avn2703127NhRbnzfvn2VkZHB5wsAAIDfM+0zdseOHVNJSYliY2MdtsfGxuro0aNO9zl69KjT8cXFxTp27Jji4uLK7XPmzBmdOXPG/jg3N1eSlJeXV9VLqNDJvJMqPZNv/z04IMxr5wIAANZWlrNUpomx6Ysnzu+7YxjGBXvxOBvvbHuZWbNmacaMGeW2JyQkuBqqW5qkVctpAACAxZ08eVJRUVEXHGNaYhcTE6OAgIBys3M5OTnlZuXKNGrUyOn4wMBA1a9f3+k+U6ZMUWpqqv1xaWmpTpw4ofr163u1mWNeXp4SEhJ05MgRRUZGeu08VsI9cw/3zXXcM9dxz9zDfXMd96w8wzB08uRJxcfHX3SsaYldcHCw2rdvr/T0dN1888327enp6RowYIDTfTp16qR//vOfDts++ugjpaSkVPgVHCEhIQoJCXHYFh0dXbXgXRAZGckL00XcM/dw31zHPXMd98w93DfXcc8cXWymroypq2JTU1P16quvaunSpdq3b58mTZqkrKwse1+6KVOmaNiwYfbxY8eO1Q8//KDU1FTt27dPS5cu1ZIlSzR58mSzLgEAAMBnmPoZu8GDB+v48eOaOXOmsrOz1bp1a61bt06JiYmSpOzsbIeedsnJyVq3bp0mTZqkl156SfHx8Zo/f75uvfVWsy4BAADAZ5i+eGLcuHEaN26c0+eWLVtWblu3bt20e/duL0dVdSEhIXriiSfKlYFRMe6Ze7hvruOeuY575h7um+u4Z1VjMyqzdhYAAAA+z9TP2AEAAMBzSOwAAAAsgsQOAADAIkjsKmnhwoVKTk5WaGio2rdvr61bt15w/ObNm9W+fXuFhoaqSZMmWrx4cbkxq1atUqtWrRQSEqJWrVrp/fff91b4pnHlvr333nvq3bu3GjRooMjISHXq1EkbN250GLNs2TLZbLZyP6dPn/b2pVQbV+7Zpk2bnN6Pb775xmGc1V9rrtyzESNGOL1nV1xxhX2M1V9nW7ZsUf/+/RUfHy+bzaYPPvjgovvwnub6feM9zfV7xnta1ZHYVcKKFSs0ceJETZ06VZmZmeratav69evn0IrlXIcPH9YNN9ygrl27KjMzU48++qjGjx+vVatW2cfs2LFDgwcP1tChQ/Xvf/9bQ4cO1aBBg7Rz587quiyvc/W+bdmyRb1799a6deu0a9cu9ejRQ/3791dmZqbDuMjISGVnZzv8hIaGVscleZ2r96zM/v37He7HZZddZn/O6q81V+/ZCy+84HCvjhw5onr16ul//ud/HMZZ+XV26tQptWnTRi+++GKlxvOedpar9433NNfvWRl/fk+rMgMXdc011xhjx4512NaiRQvjkUcecTr+oYceMlq0aOGw7Z577jE6duxofzxo0CDj+uuvdxjTt29fY8iQIR6K2nyu3jdnWrVqZcyYMcP++LXXXjOioqI8FaLPcfWeffrpp4Yk49dff63wmFZ/rVX1dfb+++8bNpvN+P777+3brP46O5ck4/3337/gGN7TyqvMfXPG397TzlWZe8Z7WtUxY3cRhYWF2rVrl/r06eOwvU+fPtq+fbvTfXbs2FFufN++fZWRkaGioqILjqnomDWNO/ftfKWlpTp58qTq1avnsP33339XYmKiLr30Ut10003l/u+3pqrKPWvXrp3i4uLUs2dPffrppw7PWfm15onX2ZIlS9SrVy97Y/QyVn2duYP3NM/wt/e0qvDX9zRPILG7iGPHjqmkpESxsbEO22NjY3X06FGn+xw9etTp+OLiYh07duyCYyo6Zk3jzn0735w5c3Tq1CkNGjTIvq1FixZatmyZVq9ereXLlys0NFRdunTRd99959H4zeDOPYuLi9Mrr7yiVatW6b333lPz5s3Vs2dPbdmyxT7Gyq+1qr7OsrOztX79eo0ePdphu5VfZ+7gPc0z/O09zR3+/p7mCaZ/80RNYbPZHB4bhlFu28XGn7/d1WPWRO5e4/LlyzV9+nR9+OGHatiwoX17x44d1bFjR/vjLl266Oqrr9aCBQs0f/58zwVuIlfuWfPmzdW8eXP7406dOunIkSN6/vnn9cc//tGtY9ZE7l7fsmXLFB0drYEDBzps94fXmat4T6saf35PcwXvaVXHjN1FxMTEKCAgoNz/CeTk5JT7P4YyjRo1cjo+MDBQ9evXv+CYio5Z07hz38qsWLFCo0aN0sqVK9WrV68Ljq1Vq5b+8Ic/WOL/bqtyz87VsWNHh/th5ddaVe6ZYRhaunSphg4dquDg4AuOtdLrzB28p1WNv76neYo/vad5AondRQQHB6t9+/ZKT0932J6enq7OnTs73adTp07lxn/00UdKSUlRUFDQBcdUdMyaxp37Jp39v9oRI0borbfe0o033njR8xiGoT179iguLq7KMZvN3Xt2vszMTIf7YeXXWlXu2ebNm3XgwAGNGjXqouex0uvMHbynuc+f39M8xZ/e0zzCjBUbNc3bb79tBAUFGUuWLDH27t1rTJw40YiIiLCvonvkkUeMoUOH2scfOnTICA8PNyZNmmTs3bvXWLJkiREUFGS8++679jHbtm0zAgICjNmzZxv79u0zZs+ebQQGBhqff/55tV+ft7h639566y0jMDDQeOmll4zs7Gz7z2+//WYfM336dGPDhg3GwYMHjczMTOOuu+4yAgMDjZ07d1b79XmDq/ds3rx5xvvvv298++23xldffWU88sgjhiRj1apV9jFWf625es/K3HnnnUaHDh2cHtPqr7OTJ08amZmZRmZmpiHJmDt3rpGZmWn88MMPhmHwnlYRV+8b72mu3zPe06qOxK6SXnrpJSMxMdEIDg42rr76amPz5s3254YPH25069bNYfymTZuMdu3aGcHBwUZSUpKxaNGicsd85513jObNmxtBQUFGixYtHF64VuHKfevWrZshqdzP8OHD7WMmTpxoNG7c2AgODjYaNGhg9OnTx9i+fXs1XpH3uXLPnnnmGaNp06ZGaGioUbduXePaa6811q5dW+6YVn+tufrf52+//WaEhYUZr7zyitPjWf11VtZSoqL/1nhPc87V+8Z7muv3jPe0qrMZxv9+AhYAAAA1Gp+xAwAAsAgSOwAAAIsgsQMAALAIEjsAAACLILEDAACwCBI7AAAAiyCxAwAAsAgSOwAAAIsgsQMAALAIEjsA8KKCggKFh4frm2++MTsUAH6AxA4AvCg9PV0JCQlq0aKF2aEA8AMkdgD8Wvfu3XXffffpvvvuU3R0tOrXr6/HHntMZV+jfebMGT300ENKSEhQSEiILrvsMi1ZskSS9Ouvv+qOO+5QgwYNFBYWpssuu0yvvfaaw/E//PBD/elPf5IkTZ8+XW3bttXSpUvVuHFj1a5dW3/5y19UUlKiZ599Vo0aNVLDhg3117/+tXpvAgDLCDQ7AAAw29///neNGjVKO3fuVEZGhu6++24lJiZqzJgxGjZsmHbs2KH58+erTZs2Onz4sI4dOyZJmjZtmvbu3av169crJiZGBw4cUEFBgf24paWlWrNmjVatWmXfdvDgQa1fv14bNmzQwYMH9ec//1mHDx/W5Zdfrs2bN2v79u0aOXKkevbsqY4dO1b7vQBQs5HYAfB7CQkJmjdvnmw2m5o3b67//Oc/mjdvnrp166aVK1cqPT1dvXr1kiQ1adLEvl9WVpbatWunlJQUSVJSUpLDcT///HOVlpaqc+fO9m2lpaVaunSp6tSpo1atWqlHjx7av3+/1q1bp1q1aql58+Z65plntGnTJhI7AC6jFAvA73Xs2FE2m83+uFOnTvruu++UmZmpgIAAdevWzel+f/nLX/T222+rbdu2euihh7R9+3aH5z/88EPddNNNqlXr/95qk5KSVKdOHfvj2NhYtWrVymFMbGyscnJyPHV5APwIiR0AVCA0NPSCz/fr108//PCDJk6cqJ9//lk9e/bU5MmT7c+vXr1aAwYMcNgnKCjI4bHNZnO6rbS0tIrRA/BHJHYA/N7nn39e7vFll12mNm3aqLS0VJs3b65w3wYNGmjEiBH6xz/+obS0NL3yyiuSpO+++07ff/+9+vTp49XYAeBcJHYA/N6RI0eUmpqq/fv3a/ny5VqwYIEmTJigpKQkDR8+XCNHjtQHH3ygw4cPa9OmTVq5cqUk6fHHH9eHH36oAwcO6Ouvv9aaNWvUsmVLSWfLsL169VJ4eLiZlwbAz7B4AoDfGzZsmAoKCnTNNdcoICBA999/v+6++25J0qJFi/Too49q3LhxOn78uBo3bqxHH31UkhQcHKwpU6bo+++/V1hYmLp27aq3335b0tnEbvjw4aZdEwD/ZDPKmjUBgB/q3r272rZtq7S0NI8d89ixY4qLi9ORI0fUqFEjjx0XAC6GUiwAeNiJEyc0d+5ckjoA1Y5SLAB42OWXX67LL7/c7DAA+CFKsQAAABZBKRYAAMAiSOwAAAAsgsQOAADAIkjsAAAALILEDgAAwCJI7AAAACyCxA4AAMAiSOwAAAAsgsQOAADAIv4/Gx3DMYfSkdwAAAAASUVORK5CYII=", "text/plain": "
"}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "region_ecdf"}}, "output_type": "display_data"}, "region_qty_dist": {"data": {"text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The distribution of the total number of plastic shotgun wadding found per sample for each region
 nsamplesmeanstdmin25%50%75%max
Grand lac581200018
Haut lac137610002751
Petit lac5514000022
\n", "text/plain": ""}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "region_qty_dist"}}, "output_type": "display_data"}, "region_med_dist": {"data": {"text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The distribution of the number of shotgun wadding found per meter of shoreline
 nsamplesmeanstdmin25%50%75%max
Grand lac58.000.030.050.000.000.000.030.22
Haut lac137.000.170.310.000.000.050.171.64
Petit lac55.000.020.050.000.000.000.010.30
\n", "text/plain": ""}, "metadata": {"scrapbook": {"mime_prefix": "application/papermill.record/", "name": "region_med_dist"}}, "output_type": "display_data"}, "city_rankings": {"data": {"text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 pcs/mnsamples
Saint-Gingolph0.6813
Allaman0.143
Bourg-en-Lavaux0.122
La Tour-de-Peilz0.1225
Montreux0.1153
Vevey0.1144
Saint-Sulpice (VD)0.0615
Versoix0.054
Gen\u00e8ve0.0329
Pr\u00e9verenges0.0115
Tolochenaz0.013
Lausanne0.0120
Gland0.0022
Morges0.001
Rolle0.001
\n", "text/plain": ""}, "metadata": {"scrapbook": {"mime_prefix": "", "name": "city_rankings"}}, "output_type": "display_data"}} \ No newline at end of file diff --git a/_build/jupyter_execute/plastic_shotgun_wadding.ipynb b/_build/jupyter_execute/plastic_shotgun_wadding.ipynb index e5250dc..31a1496 100644 --- a/_build/jupyter_execute/plastic_shotgun_wadding.ipynb +++ b/_build/jupyter_execute/plastic_shotgun_wadding.ipynb @@ -530,20 +530,20 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 pcs/mnsamplespcs/mnsamples
Saint-Gingolph0.6813Saint-Gingolph0.6813
Allaman0.143Allaman0.143
Bourg-en-Lavaux0.122Bourg-en-Lavaux0.122
La Tour-de-Peilz0.1225La Tour-de-Peilz0.1225
Montreux0.1153Montreux0.1153
Vevey0.1144Vevey0.1144
Saint-Sulpice (VD)0.0615Saint-Sulpice (VD)0.0615
Versoix0.054Versoix0.054
Genève0.0329Genève0.0329
Préverenges0.0115Préverenges0.0115
Tolochenaz0.013Tolochenaz0.013
Lausanne0.0120Lausanne0.0120
Gland0.0022Gland0.0022
Morges0.001Morges0.001
Rolle0.001Rolle0.001
\n" ], "text/plain": [ - "" + "" ] }, "metadata": { @@ -661,6 +661,71 @@ "cp = cpm.style.set_table_styles(table_css_styles).format(precision=2)\n", "glue('city_rankings', cp, display=True)" ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "989efbdc-f400-4894-8424-a5c4856595ca", + "metadata": { + "editable": true, + "pycharm": { + "name": "#%%\n" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] + }, + "outputs": [ + { + "data": { + "text/markdown": [ + "\n", + "\n", + "This script updated 21/03/2024 in Biel, CH\n", + "\n", + "❤️ __what you do everyday:__ *analyst at hammerdirt*\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import datetime as dt\n", + "from IPython.display import Markdown as md\n", + "today = dt.datetime.now().date().strftime(\"%d/%m/%Y\")\n", + "where = \"Biel, CH\"\n", + "\n", + "my_block = f\"\"\"\n", + "\n", + "This script updated {today} in {where}\n", + "\n", + "\\u2764\\ufe0f __what you do everyday:__ *analyst at hammerdirt*\n", + "\"\"\"\n", + "\n", + "md(my_block)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "11d8473e-9271-4828-b1fc-ecbcf2f28765", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/docs/_images/3b10867ba4b3bf65b1dee903696e5accfa2c51ba007dd2cfe381a0658d975cc4.png b/docs/_images/3b10867ba4b3bf65b1dee903696e5accfa2c51ba007dd2cfe381a0658d975cc4.png new file mode 100644 index 0000000000000000000000000000000000000000..604743772dcdb124e526c53ff536d2c99428151a GIT binary patch literal 20187 zcmeIaXH-<(vNqa)2qF>$BuG$_f=Fs42T_!$D2Nz{0*wfga|T7CAW53k7>JT2NX{ro zRuPb#bB;~s)^hK2_Bnfu^NsJ`al@bcqu<7UyVsg)&YD$ERXxuPymMRe6d4m43WYkQ ztfZiULJ^`-D1t=NDX>|0G@V)mTOl8a<5A1*e2`aa1!qfYBU zOiM>)b(O+_?wH><-LQb54+Ck?ioe+2%VU~%}yLhtK)uj$;fD_ zsZS-&%{_}3YB>sox3gpH8pkkhdWq!qgK`Y-+s%SnJ0@XY;9GeU>3jn^yx*> z__m%dhunL=BL*$CkwN8Q_sOY$q70BfMf@25 z%Uhwa9EMviL?}VZDKsR6TwnV}kn+{5D7s7ce@||+vrk?vr9_*yCyb8NzDQ0@-7VwQ zXuWprTDoqzX!IrREe9v z#2eMXl_47f|^n5?J_cU_Oa;&AHffm zd&9jxQ+4Oig;&U}riXGwW<@k@ln5MA=H7`9Tew;o>L;2a&3?QisI9FneEQS(M(~-^ z%*cpqFdZ2W3%KD^k!QaHBv631|UB8#^>ulSnj%7b#p%k}=0(_md`>PfQpbH4*$pB1yMKP4t; zP=o4NXo`)Eg^jX0>d%({yk8XOzNUP*d~_H_DYsAM?a$_km0Bu!fs=8wT^W(5V3k%% zyPc?X>(*r1e9p&bU7y_XgHG;82l#v0kD`$;O|>$j^jv4TFdewIeyi#>{IFL?o>Ak2 z3TGSTL;BzVC4QaRm3_(~8Q~ERDdAYG zlA4;@D7ThsEsM^W-9vhkR+74tRsE_G4s*0up8Xz~&#g{1Y7E7#)xIE!jEie-ioB3< z_v7&b(~kDlKNStF`!;;4Jvq8f-@hAt3!?KbH~l(l{iEE;YRF}p1x3Lksj%4h<>8lS zbS#qg-@oM4zdFSsA<^4u9@USH?JY1xyQ~=(Sq(46`s~0SgjLKlZaO_SHkPiLM!}&N zYP|3#4~6&wES90K&@6I#JD$C|3YM2^?^DWxrrO9-I8UJFE&9FvLypZ>+8e^9B#imZ zk*ZT>#n1b1K6=C?AtI;;nuaJ%9YHJ4?CilUA&R9e4HqTFZ?jQ+Sev z-U9z0KkleM{-l+O-0Z}O6XJ=tVfAL{26*phDfJgUKiS1kP0hn>WbkloXYzfv;m)97 za@S720KTmF(k&*G4sAPojzBVaUeqC&o=vYwj7#=Oa&p8G9qi%PtB(%COj_Rl%ziBP z>eShWV1cR!@1`^EWkmGkw_(G$NTs1D^}`GW<4yJ zidZ!3Og(i3m$u8wd{}_-nd4(;=W3)r7Q9;`P`&iCW{^meXJr4~h)LkmW~jyzxi*$3 zNL3eg?;1Vn6|-M2Yih1~?o85`+0RDIi(WDBHU@`7&Mf}MJg4-PBCE?wdVTkwb|kYQ zAt6t4dxGdL&HT=wp_E?nPUAa&zScY*{O+{#Qg`;_0)tvYh!$%LDp}yEGqrQ4`pk2Q z2hw6iE&g1c@6HY`rDJEe6}ob5M9!&9pt@Z)I?5xubHy=*&G@Qe>Qi=`u-8rIt!l^5^IvGz`6@G~ENElH{%~*j==9mMC$B0f z90Pylez-FY8<3io_MSzIiI~NoH;73HRBii$Z4G(gbzz*-rM_hEJP&r=SHICO43tLB zb!CoQi_Z*K%L!Dh5LUWwj>Ved&hzpH>3i<@g~=Uakx58Tzj!m0xe0um;>Vk>175#2 zX^!Fnw_NdH?lL<&apYrz)o)sAy&{;@i*-H^OJ212jpaA18mw3qc^%B_OYclXs>O)} z{`vF3vSjqQ?9K$ulP6EobxMW9WVRUE;>D(6s<_Ub^WIsXCR)nl?o3mk&MqGMa63_Q z1BUl!&VJYf{}cAxQpNi1zGABm@M4v&W~f)>jCIl4db5n$>-Cg!RHskZISqR#4wgC0 z4wj4M<>d{yEmtPUdh~T_u6KAHMwTy?1^W<@xZXBA*v$31TvQeu5a2NTEOo4;kBb;@ zpnqXWQ#Cy5>6`HVpIvH5%zTp>Yaf>({_^7rEbJJEWE(_M_P42m9RJ&IMt2(+UQw{9 ze0kOdvBP4hqSw@6w(rX&n8dZ-b?{+3smkkobL$;)rb`2*eEL-h$4@cc`FQix-$4BJ z0{HXqu~Qz?cTn1r44U~)6t|R=-Z?Jzf$PnfzybdFN(dt)4Nbn5OT5zj$jO@kzdUO` zFsZ1aI^{w_!Tfz?v>qanKHU6wu6`0&%*_x6c`z1vd3ha=&91D+#qI0ZQoHHXXU77LUD1|UuthB{Se`YABq!L_;^m;2A?9&GPKUiWT zR>)|3=3^LE%!>7_m}RnI{i^}%`cuqOj#*dtZYwDnG(~XjgU6Tz4%idz~$--suRa5PW zs-3B~N~hw?83YYb`W~Bfs0-@2iN)gKsc-c9$%xrlqECx{&lL zcDZUVG~TKzR?=Y(rt(3)abS(jkJSa1l?TZD_5uowU?T;BrvXdA8fm+7#B zC@JZ(7^(p=^+pRSd8 z2ExV)Q~jvw)>Vdn#t+vjTRvVhR7?AHLU@G2!@FlYW?^k1pNx*zxv0f)YoV8U@6$hB zG6x#nIqw3tw;!lp-}+i?=zBqjtm^VmrCk=fLGXE>2&>n=jVpfX7EE6(ENwz+GU`f7q(^wKqej3Y&HzhdrJO8%aA^=|$(cj~5T}@1wHpM#jRl{g z@!ofs^(N#B6x)kwKi*&WM+Jn0Z19G`f3jNIl9eN^#hGzQGcz-%Gm?Zp^R4c${pkL@ zZ@DZaqQB%|rOkwMTavIWUlct~&Va-U01cG-?yJOr0=?ZVTELAprX_i*K-k_Mc|qws zmyt%cFO9hC9zD0q#RIk{2g{wN=Q49s0X}~lU;?@)UNvr83J+T9>3I}B+>X-8 zynnf7@VcELR>FPTI&>)RB=Pa%rx_kda#)$atnpgfz!8Y=@urO~syH4;(j=Sp{!TR^ zA)()&w1Ney_kU?Rf^kt%V=+4#eaOlyUe&{*#-XB%6 zw^R;`%Wu>WGP*I_DZNrdl$@OWqsqf=Y<#?u+kpnAbFIzlI4UM8_|&;ysGs?_a&sYa z&>5pX4~NFWz^R)k|679huXL|8d3SRj4SS*ku#6G-vlP9sG@NVD+slvN?yd&~1bAs; z!wIFFSI&VyGO8-lLcz@3Owtbolm~tGZqW1O&+4=};3=QdTx>3}pf2 z^9uY!L_~zfSV!*{b8S}l6?x=US67#=S1AdwpTn*19o&6=p`b(9dgLlI19!4k#=nZK^bzz2 zsp8ZAqRZypS%wg-qz^VaEqe2bZo@F{g}^`WFcC0ly|1$gpg)fj$cGo+}-``5k(^OE%YKgMBoz{tJn6;mJ;IzA8Rsfli-R{QhwZ*+Zc}Cp){Ou?SPsj#ZA-4&7 zbRg|8`|I1+hK4wZLF&EmjawELSwan1*Uh=u$5xeH^Fl<&$px?bQ*81+&U@mQap%3S zgvV}SZ>e1xK`VeInfYR?VM`R+VeXzfqrn*gJ&O>bDF9Q#F#l74pi8^$_P1A4Au{Nh zKv0X$>tE!)e7P+XqO*XQRpsVexK}8PR2*!I4s!@Pi*^h1Pl9%L!B&@b7S{K|exo&y zH8nMTZETz_4CResfG_PI@WS{%vY)1xP1E?j6V14+doR*HQ zkSWESW@gqIaW%nU5XACUKp$r`_{}#G9Em01E2tUJnt9yKhE3CG3%HDwl=Qp99s=kg zN<-Me&hG+lZBLYHgw15ulf#07%T8>sj=OZfhv*MR84Ri8WS^8~sjZ2+`cJ=2aR^0F z%t?k|?b2JM2eh@gxViIP)-j>X64xL$LfA-y z!4J63Xa7wH`isLL8Vg$vh=Uzd)_f1=h?Q{@g)|rg*>4D&91dpn%=i&5ARvm441I%& zm9-rlk?pa#k`i%DTigw2XXilKBVDJ#Z?m0g$Xvm=jJ8)s$yp>tIu_%_tlEo*JzJIr z%Mn=h6c$@udiB^B^PVjWD0ne{`1lc??qsDKeoIF-F$N+y4I7&}xD&6#^(3?IEJg(X zr8&(M^;>>4?ZD|c4LbbJdKgJ5yN!x(Yk&aR{G~^)r4m2XLZ_`GKV0R}TWpnd0R>5V zB9eiGut>cXect!k>&O!_O!M}kM1-Qq>YFy^Hr~>(Qr6u~@P|*A)9d-CGr@W43xnJ1WConB~ zW1}|!A=##NLL$Nb#B44$FMWXD9ITcHHqd|1ABdt>PnI=buFQeb-}O=oG`Ly9b62i( zHC_picymyOscr{cAsRhTPy?kts2i0Gri20{>rjw>2#u-D^O~;{2D@(r`U{@)Le|;?&x`(a|411Nx zlLZ4i?nbU&Wyx%6JSttkT9(aygqwmv2^%jdcq)JN9lSFqS3I20Z&1pj2kjssP}TKVXszu9;~^y0xopkolR5Cdy60w zRroSeL>O{gmKpLo@({Hg_+H_%?hJW4z-T>On9D+5qqSrrE(zd?Mphnj15qf9ZRb~nc%14_1?Y~Jbfzl{zI2za0_FI#;e*-A_D*NEnM&_)=z zjROA-!<+ENckBOu`@eMx+Lr5Ep|IO9e01o9l=&co0SIOcPPi)PEwXfhK~*_5-wG+QA8=lWF5sJ?eGr1$YmP*Dcx^r|}LKx9d7`YiJyL`iMyy_WGE>xjhiU6%-@ZQ4$-XjFu&%abQv63ct z5cn;a{_n6`(H+pFsE5)ZRPww6py};4X6^#EzX_Wz$gPJs z6$f3(@G%EbqO$gN3gNr&p(2q^dq=wC?wAaEeX4ET>u4{@)TI?G1Q_CHhUNui*kIxZ z?B9`DU$srCUzc+x`Oj*O8Q5nm~nK#2&b+hQ8Mn-+~rUx5q z(fh(zRq6+92Tm@opPvn{qu%m8tb@{8JJe2MMa)iLx}SBin+$S}058GgZ@F;#tbKhR z&t~iXSucr$_5XA~yBX@h1OZ`TX>Rx>)G=aW8!(x%%tZLr_9;awzBwWx!)cPe`()yB z7sa_-E2~Pl+goz44Yt37;vG4wG!_DVo_PpIs1?()iz!PkHO!3)&FHp#R zzk1#cqvy7G1&VFom#dH371=x#U@izC;u68{F8y<~HpeC__WM|8;?EIr*_#!~{Y>eF z>ve06#b7#O(f)oX>8CF0msp>N>Alp-|97*bz-B3(#=)X6Ni+jAg!09c@Jn3qvj}}Z zGV~sP`2sgLx1tM_=C`4g8>GVn(-^)FlMN1fq>;_5^==hFkPZW+h7$hkPP!nHL_?jo z7OJGzZ{9r4$jImp`Dh5UL&`MSSO3`JfE7}2CpJSldKTI@BUNr&kc$F7XX}vNv&g%Te34VYPqOVE z7>l0EWHfUzKT_&qkaZVV3}xmiB0CfPPe>8ifl3GumxqF#T~sl2LcsFrFflM&?0y>Q zf`6NvP)p%Z+yOs|_`?5~${S25W=JReDOgZYMZ5x~FC;CKhQ2Cp5h|k^8;=lkn|Kea zF`eX<>M-Ap0{4TuQ-HYzjj^TNc1!`?b-KUP2i|WTpc1W<3=Ca?EalEWpv}Ht z9aN|S9>o1W|CUmR07$6phcI1f?$LrJqn0y_6)dnEl*F`R<-x){bm`#3RgSl$Xr$ob zb#w^fIC5ph`X8QtKY**Q6;ewC=*|pPmgi<7v*?-nA@`Cs&-!$SDHM^QLBOxypO%&u ziNh^DbS%~3(z=3NlL)|SWK`5wK+Z19m3UGzvgRHmsH4BEA6?l8>O_q7WtgU~F%}IB zhH%7qL!piz)pzI0;v||6Wk@ zHjA>K-pP^ZFVjS?FR`TN+QhIaZ$3YORbEpyOl7uBtzA5MepS5n&kTi#DSAL2GsW$+ zvv{)WI_%wUgHj>1hP~)n`!E|4dTWw6b*Fl8;#Qp>ecYsA-n`Oqv9{k?NjduJ-`t;W z;U^cq{MHBcxt9h9IX<3)$E&*cro#%E zv{K?Ty5FE1cK@Rgf*+rlk^NtMiz6thP$h^UxIlGW0X15c^#%e?Pim0~G6Wo5cX7Y(qLR_01m5KiEvEUu!bCnOD^}Q^v8jXwPJ*e( zWxk;!03ID$Y0a5R=lH`M{sG4Revga<6OR7z)g*d;%>wdS(l)dv?%#0JgMd0U7y8gT z=oLPQ`|E-NQh5HF)BneBI}TVRQhM!nCXt>x1ry{8<-uschP!2tU`fUl_a$51p`As3 zRy3q5Q+pjkhwajU1XP~H9p<8PGr3_(#d&Hd3{HJUoA(Cor?ZF}g{%&C(zil*1C(_P z>9_%&cwWW&kFq|LKNcL_PW0RX0LC8SU3+z(*ugEapJ%Kp1~8%g=rAwr1TMf#5-NNIfWS7#?cemq~fPR_4% zC@y{f#ubT183%VfV$*Z&;t`Rv@HcVAASGST{Z&O-2n@lNVrIWMnJN6IFG%*O95}+W zU;y(E>2DiK@lj)5L6P@Yis}v!8v=rY%4Uj?J~LEd*TH4oQ~3foq?A;Vx@YesTvr4MHA@Y+v=xM!a}^WzqR+ba%7?+-c2sxHKDk;GXM7j z_LvXv`c6?TT-#nvco zPv?_P;2-OdU9x6}{7rol`Fnrm%o13T-+O|Z$!NBrI$cQBIZxoET}oO^Yik+4d`iy(%X2P_+iEkBWkMt4D1ntzy2k{ zi{hOd>wMXGWTv4*TteOmb24}Y*G(1F z43*HVb);QL^wzveXPr%8M4}jwYkuKvv_ku16Jvd@>5mc@p(c`oDjxAvmm?`bNm-*x zSRXvv)%suOlVDtULr$R#5cY{iqihN%g*ezoi76>i2gmC`QR|MiPpG4DFnCf^_t&?h#& z1JV&3r6^jIK$KzVc3NCA)qd9A!)Da$ZxO1{mXa_g=TnugmM*-)SAF(Xp``xSq#oXp z-ET~Buwyb2-F84cbuGs}ST{R8?}6Q&&Z*S$LsQarBAu$Saqggt{4M!s)g4PKoOuN{G(CX)3ti3z0*MT zn44642dd(X8YFujx>D3UWTtUapE+5bAc-P0%6TtW3Hr=QO5D znaUc!Pe>;H#{a!iLP7$^cjMr&unQ8U8|7Pc7_xJF%=Sf$XW!3PtWPHsxQcxKE-{nu z=-|E7%RcrknxeDVdDw2Tjx`P@B>J+1dTg*xP^Zgk&Yo(v04yu90g`l9P8+RCk_`4; zqiKtNANwdVt=54Ge|bg<^?abEy;C*^8$daURsVE?Z+Tkg)l`c@+XXJ-X=|N|`9qC) zRo^-_0x)xnY3X)(r+lS1O&B6e5?O*Xn1d>r%mMb$gqM13b(gAr%o(Xh4`mL-oOZ$^ zt8(54SWUnsS?={6=jbz&<>86@+hnm_?h6YJ<`B;R$HRS(rsz0&(BJ~YDq=a#J-{DN~Hs2n4@vd@mT?k=icY0YUdS04o^RnZ&*8s1(bOD=6ssu`V6rZ2`z25#Qy z{}Ai7=N{pIVO-5_jMSFOMKHoT-bz-S7FMm;jp_C5#8O5Rg}DBbAIZ@~{4SjmH>V$` z&~|<8S1$+8d#*ag;+WU*H|$f7)H7mb!j7A^Q`#2pOEa;5;~{2HYL~k0MVLH}d)eMm zT^PWoLU3H(*xN#(;FGA=zv-SeR~H{4FjvQz&!(b**7 zt5&p~JEkm~Xb~tl{^?Zt>B#Nv-dgv~$(=3xd1}S-7*m@YiBIhnb2L)jX0|DBh0c04 z*X`9)hFyY=VLGj~^cx4tkD3onU}xA$dvhIcClpuLdxG=UJUr5FkEW30Oj(&xT0Td# z(iO8REomz#w;%B&QNGtio=oECPUIJ9hL#Gs=8#W-E5BuCRmkmI|Iz|p=DjVM*M}GP za5s(e6rA3F?Bkj`L5e@(@qX>oZ1#7|xm6+4d4?c z{^|8&FZYgUYeLVFHkE99IV-*D1Y2zm5nemIh;FZ|YK)vI|0Iwn*7)naItkNJijar) zrpfTQvUPV49iORi%??pX72zl2Xe}E7DKG2X;$!~^N$>VQyJZX3>5jHC2?dw1dSNfT zQ)Di<*~&g(;+IQ8#p=3xw4$0F^CY#C$#b%piHDpuV(%1zKRHXQ)s-w;y^j{+8uYFn z$8!_*>p7Dy02OU+x9k-$)oUQLF4oLt4X>~EmVlr0<-LR#k)-(PbQ4`Y=w9TNpV)O$ zyWk*lvDHc}X-4YfXi4rRtXw!9N8mh8kx~;c&VK39B(aV9625U&213cLU2W=_w~b|% zGle&KASVk=u28S%4-PX`)X4u5DsXc6MO*CgVy}cNP1E@&G&4_ zT;2mzFApK{(R*=kO)A;*2@PUmsUAsNB2}eAqcnAcMDdq@y{E>pwm(MOCIzl#GZv7_ z8NH^TK;qI!6^)zYyCz(6UJoJORaKlYgwyoh>{~6*W$ChFT(ggz6z|D|k!euF2w| z&KvU7fO}~uc)Vo#1ZllwOqWkN$?TbTj7xIlW>*D2lWm`9*$`w2^x2EKiJmLnQS*?E zrEyDqDQf+BSi$zF*?Opw_}O+@M9heqU59Rz^Zq{HFC$5p4pEQ2Yxs?IPr1Vjv@@r8 z3N(~FWf{|2l(8Hk0mJO1Y|Iq;yJfzU{xVejnKr9dTrpkN4~#ULRCS4seVUF!eBzmE zd&#l*kL3$>%CaOy-g093-(Sm765ct()DT4ZXlMF1^UP zV9XFYLh7qoZ}VVM@4{#e?EuNp%ahIJL{?*XFNT`({;jIzI>tWE1R=4y_2HzWBD=lD zLpDMSQM_2b0L}TGWQ6D6f8ftw!me=NkM$Ja+Uv`N5ob6jv2TQO9y1r5X=RtJQwbd2 zeP()U<7gbqXpPtFE~>fe^-fKP*tnp!IB@AKT@TrJiKgj6mb%zd0;c=x4!71vosiZ- zOMZ8ZEjEwQD3JNV(|>i!1OUe?-mX(Wp{(X=EU2$%&0nUd!yI-CccY-?V}_xhd?-&z z`P22X!gj)8d!1Q9kIfx7v=6>A|J=M~?c%}F+v92NH5mnO-VoyX{eBlvX`H|e6UO*o zk5;*plAmktV#Y(FIV1Ji3de?9pKiZUQIy2?fL?`rS}ps`&OV8CN?p!@vc%Mrxo(co zX+7LGy3G%Hk4I1bxi5bAq#EI$+(r-H3bK-_nq`CO5Gg zYkW*y!Q8E6xs7B4X>ZroSgddTOiG2SJ_P6ywHK7#X`g3et4b+8&BOKklM>Xci$*;M zX;393Kfmc2A2<$7Cm$rti>v8VqKl_=#5O)et=jz$ysZ4(a@5|tL>srKN@mcGjWlY8xAro&563^^SYT84>twX?uGOOrWkzCtV<-SMvl#3c>y@iF@0%Qmp9BuI5buJ<$ z7n@wXQ@e=M8%D<`c?9$?Xtk4~a zgRvyG=+20P!%ft=fMESEGcP_b;|(#jzQj-f41zjv0OpvVopf^;q#+sYda_+7m$_2lEkNs zEPIWIrq#}R2eXN15KuUU`Ljvkjynn1__t(G;wL|G=h>GO5oupBYyIs%IJ&mPwe2Cr zEdO~%G~h%_*$elJ_dZc_Tr*UnaoYLNzwai^SR+A{WOd81j^o9{Eq{Dt%<8I|v#}t2 zG@6i9Ezf)3d&G|ZXrHv*TI1)kT(ph;wryVKnXnjJkIz@JvBD-~(9eIeGExhqC}AiU zK&j9L9?)GQY2_3Bkr9hy;HKwC^46Gf75~|IgQ*Uvsx7>aU8SkWmzW;7e3(i|MQ6Qg zWpS6FY1_>|iQpF@$80wTo+$HinD{TkgQFVZ2?3o)@~^M2B%K|UZx~_`UpSOu|E;Sx z{wCMl*^F-OC&y5QiZI>&{wZ628ev}j{q^%7BVO3Wrrdk~fs}Z6wCeO0je%kJGR4Em z_bzgU$=eQCkPJc9#p1gIML0rk-Teyv?b9G4*t;3OovB}Oc!a^Cykvx znx5@D_7-pFHQ$Qyv$R*FO4b|OP@Ow*RDJonGnM@_hW6wb(@9d1ULs~GF>?IgD)*>7 zmFDai8%`)X;-HEJ#f(xk{p?h~*HAJzFv+}PIJm|mCo@LJ_k&}J)c1JIjbAch9brp0 zHXfkYJjuYRhg@uI!LN*SQpvN`w&+jN0e|IT(xmwVAODfnmFB;C)K&&xMt_iF<==#N$^ ze!EsvA77~5v&H1U#T#cAqx{Fm8mkZB8sALLkG8s_@yfEMRab&ruJNs0J`G*T&s!e{=q<$wCGow_My~t!ToSkN0_c%yeWNQWG_nT zW-i5re6szI&-0{pXGt4RR|>jh7>>w^y?CyDUu-uc%W}g+a35p6?UGAga((U4ZmARP zqC5Fnjw2%7{-}D6Gv$QZ5i7>3-NoR*(qJMfYjuawHLz)l|I3io%W<3(Z?S}YnNc9V z>JkfK{eaAv{*-N#S6GR-ZymeM!;u3Ymbo;5Jj(#&%a@-l0gm5s;~bSAy|dAKT}6E> zW^^IrBy)+IvAez6jzfnU@K_N-+Ru}AK%-)=ywVGWDTJaV_w5^^aJgzsCw`WyUF+^^ zvm-aRxSLm|)QFwlJpA3rBtu~GiiLUBASu8}Y*)dllG$euMgDpg87Vs0<@@?-Lp4Qp5xDRJ;| zyNU63dt7&ok3ILp^SRVstDes7d*EuIbl0RjDS_x)QkT8au&S^>uSZ& z@g=5{ji=?04|rL*UG|>PT-veC$$6`G)iG>a2=6WtuC?!#YQ<9`e8p_Ym-r+i1+c2x z;YMhVz!*i^DL{$Sfag$^t>UZ;QBt-}^;zWmgC}bAem3%nBsId}P>D^J*on_~e$F&e zqmP0oZ;3VDYOB`2___j}e$U!3iX>Zo+<`#>?Gs)uyRm@CA50W5>1%W9qpjs#Op6yU zg(jCRt9Mrtggm9#S{!*sE^tJu&sFC3^+0ApwKh6KkZ4JHom(B(3UvUpzCs>o#7*{@ z3y8+7xj@k@<pl8rhWp&Wa>*`v&t9z0lKdQ8wYgo*Rj zwRvEX9E!FIYyYbv5xezu;!m%6lPCnYDwdl6K%z}i45C_bJz zlZOOwo9wm}ec2X>M(u0MRXo8=e&O200A>gNF{45IxNsNKxTX6!+-nH;jd6(In)Dqh-T5v|GDBH19e~MLsNo0;@X1; z*xXDzPD$3+(J^{YLhk46K0HVX?rpu^{P^f@g25kgAazz+pJEGhKGOn~bO zb@>iiV6}!qae31e)K6UZ@xFybBWy?8B*3(gfOb4Wlhgw#sZk?E?g7w$5VLgYEbu{p0bL15!q6FK2VuxK z@QD}tz61mPAAZAPSvq+JsBE*n1s7!8wkGl#Sz8?RK|lQ-k*F^G2?xq4aCc9g6-8RP z2)Par#KTfsE?752b4J4E{`q%**E@M4gcbwpLnWXQ{i*hn134-iNT>{cez<``q^>VW zC|wu#0x#eUdh<;RK{)$hUgwYFfNjfV1YI5;>}eKT>H@u@K~r7khK>$1G!l*-JBC^* zu0D9J?{yFj9b{&2V2}&LnM2)Wj)*9w4S*n2wtru2n5-|yg3WXLeTGhHzJ%MB zMb3Ojf`k!x1K=-7Yg#x|V(W^GfLD85&~0l$sDS|?%M)RtedSgJ`r2rMR+!(Q>M^f7 zI*Z@ifRl3zbiH}M*EQDqL&2uvp*K9~R-NLZ!>GC4lMJHLDOm4KzQ?0~c7bH3=0`>s z(mA^k#U|z0ikbo&--v=scc>*weo4+u$Q*mt2qx8L5~GU&GV^3-8IzHkib@cpuyFu% zfdqlpHT5YoM>xrSEf7fZpxng*og%J80{z(FO)0EU*{q5v$_n z|Jq+9)x|Wu}5IoN_gYMAH3yIwe1# zv-TS(F|ojJinSapn|#E&_sI9MhF& z6Q!PD@~P0Cp91&6qe8cy@_A9*Wi6TU%CjgiYN6TL*#-uqAoRw> zY1$NVh=E|V1k@R~?q<3u?>tw8{ZG&eqMBP^>3^RXq$h14qFr-WGh@|mpgp|uu-dbd zpcNDpBRmCld0&7WMMFhp00eAl6A+FeqriZJ#^odWheuzY{e7M@mmgt)EX0F6dL3A*STOY83`VV> z2zjRGJW5<(*2x|D=8ZwBdXgm}Az{Ten;3pwHRxit0l}dSjII^8)CqejtjDR?dNH`z@N8Zv#P-h7+gjb-E^i{ zaC<2T;Tv?50&1J<_ppwPT3p^P=4 z9r(Ro!lRjrootDTM;BIl@TUd>IQNg`oykUtsw8&PQ80)F0r4Ue47m ze+zOnyDly5a2!sLy`vOlBw)PXBGqM;!&qfhCM3vyfhO@A=!p~{(lE$*y65ceZT9Hz zfQw=fd3q=Cx0nEI9XN%ex6q6R>B2*t91E3NI(PZ<<&FdIy{)y<=$Myd&lHP@NGN_3 zn5qNqtsWw$YQe;bMm{l3_=I?M;JU zS?$Y#0Ib*1m1m^rxIAaGB zrLuYC%mO$d~(xt6G38$l^tR*0nZ8-5`9Ks!@?&S%tHD+S7 zn3hR)e*REU{1iX{0KjZJ*v?Q7XVR2FOjCJ2;d)n}%_wC0>`e$Gu;_5WLU(~DAVGk> zz=geM;n04|rif?+klsgdr-hb-abS(kx`7%I01RMl5SZw=G%%}G1$0k@7^XE9JWfW2 zkE=M?>PKQNK-SL8foF~Pk$n5)$#JM0PJu(BKNSw(hp?UGWrRk;;!`+h0ziOX<1lO{ z;4bQij^}dD_kn490=-gNz)Uai2{Cej0%EzB9~AgxAE z^)?G1BCrkS${0cc?owrt#*yy>_;sSB!2c%a;HbBA zHz|NKXqE^}f3xIs@WL!ch?I?lCRK&!!!$G>nX9Ok$Q6a0G}I>==yW!XHEA z><8p?R@a&HMj=9=Y7~J76NcR(;=Kba(F*9LqP=!$xO&*4udoTxcBTSyz<}u>FC2lI z+|hmkoQjh=J6v5Y;k@#0dK%_O7Fjvr#r|S3SPV1-fz?l)aF{^FR zei?^FMT4gm>CyM9+yOUPsfYG5^A~CW$JPa;^#X8R1#WmtG>Fz{XlbL2_QP^RGkpuc zF&Kecd2S&ZzXJkT+rgM>w#N+&Fh+}lXI;D?X=7c7=Z=GibopX4*&K}lk;~u51tB|9 zQw6rF6yTapds2K(rpZcBg{aF4H7yb1UeVFZ1tMn zg4o{{!KI3zWrW}vGH5A=9LFToAoJD~_8bOwItJnk?vi-{iQ2Rxh|U^H6z|Fbu?m>R z4fj6XYl1^~x(dyE+L2RMreNa&-~)>OvP0~nEkNvc(tD*K5Vacwf>l-Nj4ZOHA{|XA zG3|>NgoJ*Y>jNVi4Ytf1?t1163!G^bUkc|BApr0%`UnaV_S)+ow$(Y~28{I1YA-Ju zCZ=a_veqpalz`-$eztxgNZ_RPVWky|lq0!g;rtPr)2E*R`5HUlrB)@K6Vl}MnAL4T z2uVPoXlXkbhOBQ1N$Aa+H{)PNV}VT_8>8piWNt7E+DJ8!j=ruR6-3~3^QBx7$hq;m zUZ1Z?h1lrN9l_xsosi~Z!7X;e`aLO+%Q)u%UMn4F*=}kGkh*i{4b)aLc3@}EKkPwF z_scUa;7b~UWI1MBW0GID42u8-yGeCt=Mon{6f%ptAkPIoWAF(|N-@a65&pEEHWl5M z!<|!TGcz*`oHNrfYK{H;SZASpm@#hQwzJ_T&&qO8AE`J@>*Sp*UMz$rpiIVyQAaM%~99FRko5Z%JJ z{0>{Gzx522A;?z2^QVCX8YsByP@0IqV!scAO#X>m=zn}k57H$pNKFui;S8u;I2mgp{o#sfU~`^PRD~aL^n|`NnO9oNETY{|AKI B(Ek7c literal 0 HcmV?d00001 diff --git a/docs/_images/44661da8d7b6632d7323190eded41307ef7514e245c37c044cb00987aa2adae3.png b/docs/_images/44661da8d7b6632d7323190eded41307ef7514e245c37c044cb00987aa2adae3.png new file mode 100644 index 0000000000000000000000000000000000000000..2629acc290267807b975288950c284371ad7182a GIT binary patch literal 23142 zcmeFZbySso*DksM0Rus4q!a~2x;s>)LrO$R=?3YBM-h+`0b!9UC5klCp%Ma%5Ri~s zv~+i!dHcTKx4*N`9($a<&l%^h^NhjED=Y5%{>7Zvysm5h!tSfdUp#;1JPL)nsHh;T zi9+G>qfj`hX9?ghb9ozI;g_iEy@#$^jux&SCQr>#swS>Zc8;!g)=#dwn?H52c68w9 z66WINxN7C<>f|EE&29gmZ{Tu#YRNr({%i<*$vGzlJr@*;#02@l`5>KRjY8@5D$3s0 z_DoqG_3+egI%!$oWyuu2dgI!)YwwgPZr_tl3VnO?VgAKTh4qg&uj=2<4}E*~C4Qdn zOvs@4q)x&4hce`^C}qSNpI;%8Rlp5;eq-~{)Pyps;v?5+QX#R zH1JxH05d=GQER~wdYOCe?d?+yL3n5I@l8sGM(Cs9eQ|-jFCrp{-oJmpwsx~_HLH!4 zpOBdDDho^Vs0qBRK(jPjo$%++pC^o3GqLEmZ?86-JUK&1SS@-5zMU;>Ys>Y?lP7fJ zQ%$)Wtr)bH^4G6ll`N3k$i8t`Rsi+z|9VHIx1=qyZ$$7;Pfx!}PF`HOFZ+>PU0vO# z@54Lu%d(kwbPml}#Kn`Rr_K2I`A6wrD#TB(uBw}v-547iTOqzD`|*QKDrS0SCMGd4 zG$)5uLqo&U$7hi$Gc=ak^hamsZ1=mnH&|GDG8JPtxqO+KG%0_Hp<6pUS-82Q6BDVA zj*my_qZHz&=H@~Y5~!*@R^ei_Mn*;+Avc(GUiq^G`E$P1zUo&eoB4je;O|I2DwFEC z0fT7nO09qsg(?ejy4olC?t>*V+DeurPGsGr6}VP7BLqus>LLrsl*GJN#wWm~4V;h> z*qNRs!#ZH`-oCNDtJxLtDm8U^<&vyyF7OPP zPUrm&YOP7?*w?QMhwShjMyuTLjQ2NYT<3f6rKP1|z^Mgo$XlWrJ?t2%s9H*`d#U-% z&cfP@pytI5+~1t*EjCy7_4N%651*=>OLJMUWoKg2kr8q_=X8CIxe)&$Y75UhCEtTL z)k3T#Osldqv8H>bt9oYLaL*@UX*o13?3$?Pkn<__>oa|~UpjEv;PHUdRKr^D^+qyv z9*-4$VtTR0fY@FznhN#I;yneD*S#n0t@=56E-)yqO}xQ#mf zc1Pu{tZv?YLF8=n_?~RzH{YPJ;5b^W308OD1)ec~);ww9TUbnY?%YvOR=zGGB4RY! z8q2DvqLO+089`K24PS}NEk8b&FR`rZJ)a*7fBW`rZ#Cew{nfR*Ynz)>+XF@(60-?L z{_kuD^68}g>0m-9CnqcZybpg^XdE=fi$_3&g@wWKsPu=1kpGeA$!`5=k=N$zhM?NV zvTstBOixVOgVdV(3eJedom#& zN?pF3`(&d{&j=?Dlk(l7BtAE!kv>~Bx!GgfujQl8r?cnJ<1P&(AIwRgwtmpaI4@D> ze|!*iN_ghX^e6si@(L~;iq%rG%Q3|t@SdZrgZqL_j9i+V^433d;$zaK(_0t=QXK1# z-^fK?5p5eTvu&B}NVXoSaL(Nscz^GL|NcyZuX%d{caC*$_Ch?Y(fVNAl0cKeme!OB z987ascSYiBnhU>6t;wDdTzvBF`MFZNq1Vp{NpP{t%N@_pkyR`ew^NHgy>VSG;_B6_ zfuA3j7sFT>de3Ju?TR{#h;UU-lcsr2oJzmuVb}XWapv7d z0=Ysi-MZwr-O>7-uJ=-|r4=MTKDF(_bV;9L;7QcAwaJB&Bf0DLn2c(9U$ALqU!tH0PETiqSZE4cZROk-k;(>A z?DyW&*(!eO>cT=Ei0t&cWTd24<8_j%Ndng-Bx-&X_dJy+FiiaO#|pVc|Kn|47PXWg zj~#1u@{gHs+;EzS*CnN=U+yvd^t;TKjC}e9Stk<{v+El6wpxmahLwT0w-_5+zL8b) z=T^-6R7>UBw+mjdkuH2r7jqE^{L0Zt|Ft@_u}2B zTlLO4?d(6`lQaTWmx6+VWaZ>GMqIimJTXH#Xb4b=(g9MdHJilnsMqekAb&*g>dl+x zQIBy|PfroZr21Yn@pglSUyH_J0J>qI$9y+cuL#+NMn{u0Cz3kuu2ip*Qc=k(D4Z=H z_xGvW<%1-blkT6?97#JhHFfv+VB2e>m6d+`aCdd?%dkVngU^qizj)D8U?lze^=s7H z#>Thr-=95ye#S81c-xl>E1~<~0cD0$5<&ATCeJ@8FuW+EsYwcV*w?51f|&kg zhXp$yZ(C=l#nIk+-zVMZz(ACk>z@Xgc)D#!r?Ur(1vzk?GiT0pLmH~vpQVLsA!`Cv zX7j6U_kha1$_c_u)ULRY(3?{T#B^e=p%CdVQ&THIvKSl`{v zaa-*7-J1xBI)Fhcbe-2U^qj!A6QUJL?pPOd7%C37EvS9d&>#bQjatO%Y6!_`ZHlF0 zl;q{y-<<DA?NCI{W8mM(~@NnHjWN zsu+5)pnfdRu=e-TVA1yoTH#KZm?U^?_*k^$PU5+k>7Uw{I5?5L$y90MFr!Kc~rEu*+5F?T?7|fmB-ui$57uXib=>aE0OTWw75j4=; z($a!F8nvlPx|E+vSDIu8tV-28cmCO5_*8)D$x>ETQ;R}N2h`zUc9w_f3+j2BU6+5C zH5@{6wcq@0TY#n)cTa?o9ss*ks7*0-euo(TE(z1g zsVU^^z1EwkB6D(b^eUfb!2o2)M<+qxO1gYqE)l{`Y)XpV)2B}{L3o5JsbX%J#xSyu z{?Cs)Ai^T|sJgo{s_eFu`e`Jc|8lPO&eD)6KnJY4PJ*mQ$mv^mjAizh}@{9Tynu?TD1j~_e$ zV`np>rJlxRWoKWJmab=tr7?||A1Fwtk??e?^Gkia^PNOG5sNi;*_dwijkfLk5aV^c zJrK#eli3IWJ~J~j&RaYnARsm^ZRJD2pLZcDA;k0%yv><8Ikb$7jPe^#^DABEl3;>G z>k1=zS=iaz_xAVE!565K0GM4#?y!JZX9-)@_yrM-<{y6;9E+No8qDEp{p!v3&Q2jf z)E2WCbX4)HSC{x5$7=5Enndsd+Tnx!wlrQZZR7mb9+0x5fel+(>I)t->j~>dd0Dz zb4&38Nf;!~LN#>q%LDfPAS~XP;f_S!XSrHA53KA^9C$kvT8@QASNv$YJG|7BU%irX zcNc;c*lCi$S$J1-1IqjcG+vQqqcpg-@;R?c$EKkb6Yj7RX^$J&p77 z@^YTfN+^a%v*{4f46B5vxf_sE&(3c2X{oQTw=k9jocb3R7yoE$YZJa&!-L#Eg!@~r4K8=? z;IgWvd?++km(Ba$+Z)TCU-6G>ve0^``06D_#xCXr{cnLdcu*01w_vyN!oJk9jz#l# z`e{V)Hr3sSC}#$HHR^DFe!j7>QAE1Xj8!`Sc?56g=!D+J#ztsF1V(seDx!q&YuaJf z!=B|%$u66cA-Z#+>FMKMrnZoASL;vxgQ`l%K5dF_9>nid+~Qz>qOL#RAUr3>vaX81 zwE<8Egc+*S!|~IHrB;{uEihOpPNsqg8E&p`%A5==t3(9Hr+RUw`>cq<^fWCEl^}Qq z5KaUQ|BI!irOhw%kXz>FbJDr)Qvv+zOr0}i(v|(l?&#>4BxK)4rY>IhXDWVc< z4R}z(;=M{W!rGB63`NH9aCL)AIe=iO@5rdAbpN30 zUP|o9HYV8#CEM1ybY=8#B@Mj2jknPMxqY%JoZftBXo$n0Dh_b?NMuZEKTT-%pK$x3 zz{K8Ym-mn?UtFYZzDpw6NFsgI07VE=K{7DR1h5xWE!+}wU;1%Tc%~{r-sST%HhC&&tBRPOFAta0l84z<_eq+EWz`2FqqtNEp zt&_be5=zcTjZh`Fc65C1hK-adG4h+=WoeMtefjrHMLOIMJX)?nwb1tBfF&l87ZO`4 zO1P3%)<TNIt>9T*i)!0A@MKI(*}Uze0jg|yVu({tW;K2^f&HIyb-1gruJ3LJ;7 ztc&s_9X$&&Eo9{rj<-)>(h1Xo%3gDseD~OotDJ>D|NcZP(V*^;!3)1a#~V9Z$`sw# zuRpm5d{rigQY=RMH%`Nw$uO-PqwvsBZEv3-&IX~k_}z4e4>g7F|E1WnO7JU4_crs2 zy&Ixsdhe8fxS#X_Vdj_T-`P76wRnimZ-Mv1YtN;GXwT4$r3oAHEU66aIbLM3)19 z&ZRIF4yQ8-tO5)FstMn$-U)Mdc1FP1U$zD*K>&`o#OGaLC#y!r9rDQ3%uEw(X6%X+ z>d^dp-QMH{6htE+mhz11$7Y;~X!tUFYFL;i2||Dk$g!-)^*vv6Hm@nIJF`ma#x_P< z1L_-=t5+MG1O6Y>g)Wd*UZtcUkV|Q64`960)*lUdz8g%M7C3_i@_QZg!<9z{w8S^j z&M!ws^dZ&DJ$=d-6BFaQGD4%SzH8WZm4kz0{1|GL-{p?#u`H@DIoUsJ<)}@}%;?N6 zr!tF)CBgQlBq1Rg^I4S~^IrV?l$js$IaFJcvhv~{qRN)FhG}VOeV-o>oVy$r8mB4J zO*CkzFdCe*XrPjVZkylil4ga~x-wdg;MppVRW*HmIzY5u!IE?TA60PTG&D3(Ex>KA zZ}qD8RydnNwt~`F3V?5BhX3iw@re7dJ#6K0*trmjs+|UwObKcut0~{sBmbl&1IY zt@kK%&-g@iSWH1kK#~yDa3Yg{Zwio_x~{HHz;5sr;46S}Q-cnW&JaQp(gCvFA?0i? zmlyV`Bnvx2Fq8t0n2elU7T%-?8KNzYt>$=V_y}0HCW{gvpC1;RwR#z86|ydvwnSw? zx(5u#2fW-~l}Wjiu;Yo0k!|0XD&qXjZm75^Ma22N z%3&H55Jf|F1U@0jQx+vdaP$0|b6wnyd%;zZYgAobOZ7^vVumW5Gb$m3sTdo-rIGY5 zo#F+QX94TEnc7rSQ&VMithVEG`IrqnSqCs27dQcE^TS%@g9K5lSL9Yc7UtIZitWHvXc%~y>LoV2E4?zH79-`c4J??GKT1Y z0ZP*HpJ&fHfGRNukc)YLFI+`mKLyQa{t{{`*rB~2b=Z4>(;;JIbbP~QV8d1QhY2qc z=p<^>2*?crfnm|n!p+o3$)pAKoJ+5&F#6Xg-DKp_!sEWZcEevffKN??3;fzz8U0&K zBIQ|pyw3Z9Ex>p}z-P~vbV>0egYo^vMgH5jZ)d}roD)?#eK6LA4%OE5iQo;7V=b671(wW*Nm z71h-}`lPqI?`FfS!3_2E_C`iWM_>069T=%}Q7y6PP%$)2%i#Ebq5N`|v$M;aAFcMN zD+VsKL*J!CFzPT6CQ_xY1>)ln;1Efpq3YE-TPRkbDC5wt=tict*5~x3eQmjXoH7}s zk|Od`z^c2!%+iwT$|5A%3pcLL`KUsD$j8?svE8Q?bpX*64NMtiBFza%hgKLB8ej_| z{0?_0^c*8hV2^OXKLMbKE_*?(16oTqY~HA1C?|V?gM7N`1Av)M+&!YZ`-q(Zw&_0* zty_)<2M2vkpDI-uKsbdtj5>s`Xu|q!*m(wLZGZZXk=ek2EhRnAYe(kHh zo0*+OiZhUphN|4y0jzZi8_tc)i4H)_oQKKDZJtV56;uVCK~z+9++_gpeK>dB!<;19 zOic|wEji#g)co`nb*2*(3=J9JcB9tGEyaBnc7{qal}bh{jY^>sjtPXSI#u`!a2J~= zhpSW{#61dKoI7j$g_1wZ>{ptbyRG=2_o>ZROKpRIpl$rv$Y}h|_|#^Td)+_*Pp7x) zJ=qb}Ru!6ia%tilxxUftxd>?oxwQmMD6J6VX3(7|5q5Bw@$|a=)>u zNoUX9(zYk_oWH+6QX&&EO4W4F?d?rP)8j?7e*^#w<-{fc|87WR4N~8&Adc+!&$H#m zv+Gh;1boG(BCl43f_|{hPaHTQuF^UP0#I&+;1Lo7&5GXu#rn%p%VZ&Y&%@>N@D$FO zXumn!Z7)L7LIBMeZ6 zu=T_|R+jqaE)o%$fr26d`vtjUyWgc@00OWR8Ykr&A3x>4hlPZ&IH*VZ0gd3RcOuf(mCC3M?9Ae-(O^1rjLG~*Kc2F*w z!C+~=&ISL>8K>3S-Hq9l%_reh(pWS?J3pt<45nYBo0~?a9}F z@F5gN9KQ_uAuu9} zSMc9uL|=hXI#Nc!lk&U%xsNd43u#F?Y2JTn2_VXP@(skH1ZskEFjwc()}muHt#A|~ z^8LI=g(!k+0J44pN_wgu~^og{OU;n5Y1H*4p+qXYYyh>Cq-`Egml~ zFCgaXZr;n9Zm^knEij3Esc9e8Qr1PuVis~LR##oDF)E^?uDz;J4hL6mxVQP*5@a7difJQ~pPG&C&TyW+sZyk68IF`>{VT z7*`iim5wlxfgk~m;381&REXpal>6ueNQ?^1_j6;> z6zmVWLESjmn#YrYd;>(yHQW9?XBRVgdQCm;gqcuF(^eAHp1c(x*@3UNX z&jGN|0H$ZnG z4UNI5NJwmi{F$H6%^iZLo4lXfg3$*ZM`C|E7TMBJLy-dW2OzWyIE_*IB;>J3;|~P1 zecyHX4nD43QAZKY+mxJjyN{0L@_s;ppAbm`*y1C+i%$m zGhS6)H72`X@2h?dM&MOini?>VVRiNFZe1!si*bSyr`uoScwi_EbP7nu@5F?i1bB!*|v(dtcS;#|@W@?Ls9 zg5AdU2px;o`ShU3td$gy{|_h&b$5YzOAzM?BxLk`1sE%3zBk7ONULJt5XU^HE+RiU zOZ9zsf_Sj^uek{ZzR15Q4^!Nhh(Y*5#aNb~d3uN^t8nNfE!lVHw0#jWr3v5wfao!Z zi34ah9-kdM0wQW`>DKR_@zMM!xN9e0T3Z}71 zIrF5BE$lOrjW+fI5phb}+_2-)SW?6}R(?yX3sZlx%?+{iE@;A5Ki}g6*Ra0;S=1%x z3@bdrQz>&L3kFXtjz4HW2w`Gn^+Aj97&1<1oE-W!+GETs1aTwfs54r&AQm;vTjp2z zk#Z0?&FLk?8z!stS)~;NQ|`G`)Pm$lcL{hOQgm1A_x^x&(Z;F=`EJ=@ilw z`1T+Bact-H&!3Kl5M`a)jrU5jM z2`>ACyqmhOkZW|_|7gY{C>Rey>FcDVwn*VI1zFiMkP)U}R;NM7qoBw@zC5PQ^_?Qh zln6eFMP7j)Gf)W;00w1a^kRN>6co>vEst2l5S!Q&NecI*c_8H@k;Q?aC@7)|!Ak*% z`5RQb_f%9O@<$Or8JEUv8hSD_I~$>)e*%eYxmwlN#}5Mq-!aC&xijpz3HolAa{!{W z=jp{FUkFto*_A7g*#6E@?m=4|va0AIb)x>mbb~?jLt-K(k=lE!g-4DoVl^~n2k4R9 zfb|KmQ0ZV9PxlC+!WTxO2UJs?5$Z6=nGeku(C3JVZU_p38z!96`In9^4t8;|9hlq{ zs#Ijyz2b5$vn{*Qpx{Ue=c)=th8!jrCFD4Uumk*4kg_kcJwSU~7<$c6Alx#bQN-f_ zC=Znfnu_>J#rIqsWPy<9+{w1kWl2in{QJ04f<6$Ud?8xlw@DvwX(36ocu5nvEfsi1 zq(JS1r;_mkV+5=xZjbxO6f)~%n_0kI0D5>U<7H>Z;j^>E_TOG&0b~TvOnGy>(BzpZ z53(de*^!k4R1^*HV{jod@MagMfq~j~Cg#lbSP0Nwt9UL3Uo>+{^&6t+BaTj9)0HyUz}WVUew4*8@fZ1%*mG zl*fah!Vt{fRYgTbm1Log+}nT0 zD+@?U*uvkHxofqtJ@^Q+A(2=^ftca`C~zk0Z_@5eNKI7*-V_KQAm+)yF_Vyx(7R(a z!H$}Pnizy}s+&+RNJ80bK9mKc@vsq?Bea;?Em)(OFy|oWCP6&goJ$X=VorlwgDuQ@ z3KGisxcc>GT2N=+j@(AT)=XSl8d9PqO8JQadqsHl`t@hvQJH3U$>K}3@WuuadV)9v zPC}#vz(W)w#77Fs&dj2PH@JdQsqAU~2q66SCKv|7fdB-}LicSx)VD}E1i#`By>9sm zfm)Gl1+^~<0s#tS*~^ra&G09>=#n8j^PyV!ytXC?1h)iYaDKG5P88IiJXPY;x&m z2u%*=lg;>+rl$2)*7Qr1l(QR&Z8iUjE9#JBO`Bd)ER9sg!X9t}fY=ReEr>94Z#>)F z>{-~m|N6`pbJy-|!Wx#nb>ZJO-2ZjBW6+6Mew7@#U!AAJ{T6ipYSkd;t%$#%j4jom zLB@DS&pb7#9MTL)i)IcQikYAe3sYERh*wrN)B86e5la9QULnyQ>#L=W(7ad-l4^y= zJfDH!Tp4je{4J)!)vkWb>K}0)(QhvV;(Yv@Ru(%*~ zI*rL9810tAXm7dFTTNDki7bU|Z=?r;CPX&;w!Z`YvG3mqIY)CBLvGRfnt6rzHuAa4 ze@%Y>r9Au}xwU63_`}GU@y<0k%J^ZQTqU5VfVjwZ@cU!_4r&0$lDlw;(3em@DvAg^ z-9)JtAETo1NMfa9a71wQFD!X@$-=vJyucn_U;inG92?8D5QRq@^l%^;u0RRq_Qq50KN<*DEuX6FB;LC#YWTE#VJDF7jXe738%{M!-^aV5{2 z-Z+f5ywF>Ao`iZbDkEcR9+I;jTKX{O`>A5;eqWT||ByF@JD|fFVEM6^-wGKQrf=2| z@1;$u-wgwhNfC5RxYl}S0oS>mP649hyQrV?;T25;v%~!)5$GpzG3jr zLK;5PU*RY>Eeel-xbEqz%(WZ+4o1qZo&xrZrCDQI+aHRu2wdGgAnR+g?c+QP%5KPL zP{ZP46|tlZ!`s)`(792##;Z9#mCloqc?RYE8g$guKfaMrKD8dq>g#?7G2~wE#jUS( zbr{8^b7~(Bzx_mEZT@(6OdTDj2Fxj&p};~Tw~A9c#Q2dJe59FY7EnJc1Y>aE)-{!s z&NKQQX}og-Y3HbJW@M2LiCKm)0qOV)>$Sj}!vM?S9+VadNY^jNwn3})a7<2Zh=V*yt z9H9xGzeX?IJbxB%SeABsCEv0>{oE1NAi>de{~x#srF*R^ZrXU%Fa7*br@iJUGOWfz zRdGS^v6t|%HoU`lRaR60PFh1p!}1D|5-RA(o zHUBQa<3VoX2Z^4>4PI1q_nHJ~A=BY$v44ynk0|<`J^2+=7Dc z_5C{YsEP{-T^pKwTJ-xkT7g`1aRa!Nru8Y+@X>o#Htuc|7kyv)@vN~d)e3f~C9pS9 zT)un(*xl6N^tyQ_sFN4awm><`6u#oc5=I9zg-9fGRdFxCg%ba1Zn-7D|os^Pdr(<;{DuY_T@% zDg*jko`(hno-?=NqaH&i?cxMSht%64Y z_-VZwPhP+f`hMHLz-&J<`c7|L5$l2F!fL*y;$ak-?tF{fUzbG$B%$}2&@2G?RYW;~ z3#{E-%)eRwQ^NLmOusw@Ni!h zNHd6a3b80rFeJ=mqCCJ?hvP{@9fst>q6j5FK;6yM%~AC26uSDiKRx*T(su-$Lub#O za~=VTMV~tB9vzMll~(@D*p5L~S5c{C zQ(x*ge=iy~vcHHX|NaOarICPP5#3+fu;Pxu{l27vU7Q%Mh^&_y2%efe?-o=L*l8L6 z3w3f%;yEP;XNZy{(ifDe6oyBM3JEkF97xE$aHfJc`x1V$rhM{2(%;JiI=A(A0qP6 zb*4^}z?vrun`+W>nH`s`}+luDzfPqc9PEM_ctdlUR4bA>p%93DgugJT-T)BQlcI6ve-b5rC!{r!t`f5?vJ&ZnDCh?w8|L` z4DWm-V&=~(qd%kwv@|jL&`NvAw>*HNGOpC!0@ES*%QQ3OF2bf}_CXi7P9-80vo4**_*}XG|I_*9ueKfQ7!I!Q#()gWNK6_Nq9-)}2-rHaao4P%wGcbytBv_d5FV z^>aw078_gckArdl!w$EvaRXe&k~@Mo-AzxktnuoaPd;g9iXAfSa1OS_z0k6f%on^! zC^WspS-yFASRY#}O$(BR%;mZJhKA=`_@k*F2kaFJ)=AdZ)POaKT5C`H#iMIw`g9sJ zS*AwhOV_Th=WSFrd>{0&vER4ZnUX z!xihc!OCYT5$s14SutjarCH*)uEHz%>CNI$yuR1$3sC?(l@dpj-!sty!m`YhzDgEK z*LtL1|NJgb^~l4ZVDT(TadXz=XVHZGK3jHAOgGhQH@3E>OHO^|rq#kR7GgNQk5rDM z0nE_tJW)4hc~T$MNomZnLnEMMrN2_bEzMr+@N+j@p-aufM1YAxJ_oJzRk$&ss63*H z`$x2;k@p)Y%_g87>y>y2kJp;n9Y0RKuAc-KLxiRi<^oJQjBNKzmPrIY3$116O zU~(Yy;6PI))^*5c$nyt?@aVhSl_UjPN@kfh0Nk#yHH6&j`%FmuB+`svsg~Eakk#Zu zk&)3tx(wb@Z_4Ml1ZH%t#!aOZ5^Dv7VBsVLLkM=~v4iFBlHO2B>zJ9uPcQEqpWV6l z`#eASS!X=~+~)!pCepljyXO|AYEDNF>C~h#(p4wVgo^A##VE7zS+d%?t+RVV3124v z*`(hIih2+mEcvf&}yLxiKWSgNb(5`1EIDxZliVl0&52twc3` zow%z@Mtha_`W~B+-p7$zA%1J8S*+#hbo4B^e;Lfqs*i>B*wOnJLMX7}%3DyTiUQk(YYo>k^Oiz6M1dl#Dt6uybEqZq&W zUpe|z(ng6RZJdtkZiO_Yx^kkwV?Ww*V6dn-lAusMyKF@_l=$I+#!jYOn{2C!^_eF| z5uCJ#6jog+Z>w=VNo*NHLkbH9H1Q5S884*Te4H?N1|1qby%&twGYst{spPfYeR_7g zmk%6nu$H-kM*mbODZGEOxds-0Fh>->Q)_oUt`8(+<6mcH$} zzo~?z!)nax>H{DS_f|$%LobAtboywvTGh#0|02l7VGm4KKRp!Np}F(mb(EitJNHs= z33ua|pKWBjG7ffX=DUH%sE$=C=+6e#u5Qk<<}M2jY=*~OpY}=7{8Fa}E?*qR7hZf& zS}o|SPZV{rc<0tkZPAscD)%Co@>H==s=9!&oA8hXZQv03VN2}W1Uh7YKP$a*b1!w| zl_#EyV|shqzK`+we$n84EnYWTR5*uO&1tv4H_4I#mT(YEGc@~u6nb8B_PkP3fZbk3 zyt6XY-W(B`H(K@P!Xy{A=O95dz|v2`+bi&1f3hi!(+g{lTUP+x+UyAGmWE(jY|{BW!rD`EX%?Tw3#$MIM~oYAy6Z zi?$)dX>o?#`eYLjy~We9%#HM6CA%WJ?l~mrk$~CaxlYOHgIUs2*3i%Z`9U(3aNk(w zCDp5ff@R%Rj#Pf_?@U9^{*0^VD{8#92A;|dXj(!nv7l#zQBMebGwyy@2~Fn0Qe97V zJ$6>dS8oy%6VHb1`oBG%*cp7!S@=qh&ne)tn-MD7G|UY8V#0Y%n|a)q9)jUT70?KD zfKC2$f$Oi8WmZbKTDNxx5&*z(20xP zY$qfYf$V#4;iNi1p!48dq2q?sYt7f59>1&M1J1*r%YXWMyG;5=KeOU+7Q5QY8kS(> zQz^3#ZdtFD?Kw~P-z9qw-(52>_Be8oIy~VwWZ2_F?CfAnkl8HDOW`HOWybqu(+Ec?MEr1E*Q8K4A{X`Wn==8ZnUs3>dMOefr`q?>>eB; zU+DS3IFkES>JiI0hz8%5Mk~rkx+X{;NAi-pBu~|KD_w_{Axw%;FAA|Mm)Z~a3pk7n zqM8Q=25#6XJ9&gMKiz0h)Uhniy6<_J4>zaWP30olwpJ;O5%1@i zWdB}rna_X&h!p8}qCchkAG9XkU5P3*dvN^aeJdMX@Pey`F*^$T6cQRv^mP%H3u}ywYKmAO=0#o7(CJV z`T=f2p{0>FaYo;`Res_^yCz4>=?41>y;A|R)b*BPbqcHRG&vh~W@&9@jg~if_fg{< z2X!)!H$W#%YLH*`S5a{)_4$WAn2dGv&(Fmx{zpYv9VhunztB7mj&*>TMORx<9w6F6OTK6Ybmq$)wdN`7FbLGhy09u2D!^E_qt_(^l7W?&Emt-dx zIiR?1;e;bEtk?U93sjBYQpmLf=cCOSe`NNv$n)FRMB$59SILuej&hRY)Q91vMLdH1jn2!#O07bfhm{X`GnQ z$PMTcvl}jsR2I{}W5P^i5@yWBH-{EO;i>8Da9bC_9BOx|l`G^?EM zx{BR1QtOZt%wm--a+d_J(v&muMwT`7?Hdx69uUH*>73ykEQh4RV* zbh~Ug8iIfa=|F{LFO1kHhw9^co@nh|on>iG^mB;#6z8wMW%}+J?(y+)N4|aa2)$ve zy>Rn$^gpZeal95ev{SdTz+;96>6_eB8oJIg{hW_S=?&3G;2xWWR+d>9{T1S@KH^m= zJ44^~Cfrqduy&Ubbfob#`&y}VUJ$id{awrAZ2w--Fy0R1X^OexL8!YASh89(8jbU( z`yC#l_W#l~a*Hdo`uPv^8^>Fr3bnWeypnidfbkeyZ$UukfZ5a2`;qaAolYF_5pD!7 zX`#Bw3E>WY=i~_018e%@#ha(cll2h{;z^|fhu`!rUJ<~4-<8Td&RWjZ$SC%(OfjeB zq2HrB3|o2}v@WCNL7=0AF0?)6vgk-_0>O(IO#;30-lsfz`gTQxgb;!Wo#KEFTKV5d zQFq-JzeQD+@l@kqzj8mgrxeJ~5?w@5{-0>uY&z)rKioUi1-Z^er2Zt^ZDP7`1!Acpdf{~g+Z!^7LNNR7OEa0E{4CP(4r7Dz-F2a7GdZN z0YdL9aHU_tStkeJ0EMg{5bWUe73$;;kijz$vfBh4)&qWAL|;ezZhmm2#~J81`C|{>Yzj&r>)$wQ zT>&Stpzuz>S3G=3jhJ_bzu52ZxJ>`JOh8Nrz8>T(8zMT9!tUK7zH;Cg!c4xu_zAs@ zz<^ryeYgz$@zjta;y==(5K{(NS6q*-E%kqa+|8(PknF0~o!L>cT@sPdb zb)z)kC0N&b_5PCJ8gz1LoYS4rMR9e4C-^oT@$x~hgazUra!LW5X;f(1LW~^K04FN_ z87}7rDIVGzlEL){a%SV5-T2hh4$ktCJK*d_i+eZ(9RL6!1yLKCf#sn!6b@*agF_vf z!Tk&2Vti)VX0Y%Y9LR(nvP{oHT-sx`$v!KUh*NtF{)FQMZTHa9p5i!;meCaee z?~7H$zt|7Uf%P3eBL?)i1*q_Fw9r3rmcZsxN!NoU_q>Ni-`4fKpu>4>XU76oMbylX zQ9u27IJ)Fui|x`Jtz*qs@Sz~5gwUDC9}h14%pe4GE(nh1YhWL{ZX8ex-|hV%Umxv= z-a|}J(4H@{LP$XHz>_v*6zOs0f6{ms8i_i=m>tIZ0-kI%s|d=50qd?gJLX7f=nH^< z^@0U~X%}cXHh_@&)PB4wg8k4XLq<<;51QNqD?b3db%)^dh{eG`zvs)5IXJCI1#yn0 zoz@+$@PnI%+q#1J!Eg6eMCC`CLlA%VoyC%p5;%jS!s}?gC6&_Fx$Sop)Tq=A$l(TX z;sD@OB4fDuc~8vWzIGU{*`tQ8i9C05q;ozSd=6@1o4!iFqd@ye1j|>vXMMg@egxa0 z4{}@z;<9e>W2buz{j36D%|Z?g&^Up-K+^!7tAiSpw6wOclXQMwqiWMzhMw}cT-}1S z{rb~G>GEcq2wvz6;Duv&c%Z)vIb{J3>gn;_{-p~|D8!6Xc8G^X3r;J56Rs?wC&*lC z5BtpbaQ=7MC&Xcj{D7B&7s0*J5*rG2rkgOryfDi`AZ37KW@H4MC^q_`Qh>cIE_OXY}G=b{#Za#W#QuLgg}x6mW(9usLu`0fk_90MYJmpf zj<>g;snq))(?#z?Lz^mSG7$v@1-S;*U*?gf4_?ab-z@y#U=f0T3dAPRI4mNLh6O7V zMqJl(Q@Oe`5e~6{Z&ZufPWRhEudl6vF>Z-XJ(O9q-yJOD7|?f`|8}*Qo5LXr$cB2i z3jJoGUSNh#z3dQ^G8FXKGzZX|KM?tXNIp~Z^VVu<67x6PF&JdVW{X-FT;iIVo0E|KE@*&B zzQA464Q`#!gQi`2a8-m7Ma@EcmVo{67eR;&f?#40f{u!()_Gt#ngv%3KX`5g!YMiV zU^-@D+wnopgt1P9TZMLEuja;+$e|sO0j`)XwW`1Zhat;{ z0pkI$5uAfItdb@%l=rBt4VFD)lnCrp)0PvMTML_ke0wSI{UIII&``OH98V$7=Ynm( z(E@6H6C9Dr(1=^&JSDdY(Ks<8BI3!E#N#qm3)m#qs7(NIbL=G0ItR`CNNpCuC@p1_ z${&k{CT&`7ZtfB=7ZyJ^$}BEzr#`%GSnuz*2`502SFYOTS2iQIg9qocEf z;@UonQQ84HCIjS8YZTJ&EdIp@s%jW*Xh~n{>Hb;oAZjL~x-uM3i^;sgaOq`{m>IJ{|cnk&{cKs+8 zpyV6vMRm&2>LHWZ5k1vwxvKqas9!^L5&1`Y6+7kXU0cb4?7b!jBIL)!#o zFh-=2(==N0!JiX|tu4^*0d?ua;Ks*sufLc=uMMn7LJPEs#@U&Vn29U;cNP&^c-?f;F(J_LSM`f=m88 z)E)@%O%(Uwf{x5L)-C9%)fjn(323NCwmT+SxS-+f^2;bU02s3J^1a{p9gd{4whJ|*R>e951H?$eFBOdv2{V62&1D2og&1JQ4V30o4A&4anz68h%I(y(LrT|t=^#29377)0?EBhQIoXexRJJ)$n{ zoaH>A=|ESz=KC)x8uo-JVK_Ge(2;S!G9*zPILhwRtGUr)^9#C$Ud#~UjbU-CjR#l{ z$H&Cn27eUTGtIy$e2;iG30nEVd&EUM2+1o2tq5-<D-DDTj$-G&(jpsBtJBiUQI~(5av`NYQv88;bQ15j*S%Iu{WYJJF&d zxS3Lss>nPb9xzrQnN|>-QWV+sxc%ABneaoB68OINeV_Yz-ut?3oBItYcN)W>M!qWw z94^=I{Ido1X+7i2rN-AWS`lw1MS6D8i^AFUdSa>i)bSulo1vTAH2LPEZl~9kS9g1< z_Ly>)5^dwYay)IhM#KZLSzYZ3#5GRA1y>B2LKEbl)|;=<5Ay&j^HZzK`Yc$|>d+6- zzjb$Y)tyYZG<9dywrzhInm*^~_>6&NB4ZA*8p5g*05<2SDTizBV+*ZDMdZGd%Wn9= zB8VqA?!x-DyXO>}UtI7RJa|{zyHSOP-?HLNPrseF z7eq(g3Fs)@jf2xGUe-s-`TrI#t!?-rUCEhAfjl+gMj!6%#4(J4z0e zrP&iBQX2EHH_|Nbuv$YFZ*VJMpR>amTcIA{k9O65bt34qj{u zGmi1Um#G5673CHe7gw29;=2%SQ-l@}MvCO0AqCT@_YTX!){*puqN9l{%e*Pc_O+^_T!7r{(7;8=!($w2YHdd z#m>{%kZVxVUr-2)rugQZDm5afn%U|#q8sgEkpy9*Qmnf9{no9*4zvaCA-yxS@*3B5 zc*}Dr)8HmMd0-eG{4+)*hfj&^Cwhssw|~I+@{0x-G%dqUEn>d~9xsUAMa%h%Y!P1B zV5pGDst+UqZaJRXPV<%r7c#Aa5%bptL8y-m4}ZuJ6y~X1(O6c)&NC4>BAHJ1aSDZP zoNLC+nIXOt)+jMg1+x&Z_{@okiK*<#>g{>$se~e4z5ZD9iU?AhC=}-;W{er5RR9DD zUlLK`X2{|D=FbP`tt64`m~TnUmM=nRP76Ce_LdPQy8ueFfI3wF3~}F-Id^^|;YciL z6+K=Hm{L&Ky60*@K^04;Uv+Q!)AG^L3v&asOqjVoF_BSlrY39;>vk4pfXJwUB>eB$lxog@)>rvM=X4PEVqzKJ^+A-1!nmhp462*tia zw8v+cuzrn}EHaj46OImtsW|VZK|Lb>5^- z*(3i)c@#MVXdGm}i8)irYZqsWS{@WOBV~1iy+c?fEsdd=xQ(XMI?t&5X{Tefxt5&= zD>-kYxmeG|!pyO!mf3Gci%BOre8{AUuNsovzZ9F#g1=w46k=oc>E6$@wYVXR*~huV z8l7jLk3KRg%3&=P*ZCr%d4_(Z%eZGDLJ382M~HWD+hm+P(KJE>qP9mzM+cD;s^lyh z>F8KtKV^<@x=8K1^P}_xOdOq0pQcg?wFC)R45eF!vXHWl_Ch$y z%j9fR&C{&S`$HR;H}W>Km2~Q-2^L5`C91yiU3Y4P25l{o2K@&O3SrHSR>q#?LZpSx zCf)HCRC8Yjt*x(1LmZswfB6npbzJRbH6dG$RJ_Pno1ol(9;RCQgY*QDh-%!orShpx zMIf!MxCW{Y`9j|+t@qQmi*cSDGQ~g%J)lnK0=%a*mK94QIHQ}jnQJi*oW+J8odYI* zgI0$tBiHj;2gY;#g2WL{rUPI!G`aAW-s3%@Q9%oa{PR1fcS*pOB0wPIJlpv{)927w^C>hBDg$R;Ca#92&D>uhWtlT1G$be#>WrMM zlqw2^k4B;Jl1~!BJM%dkb?_qOD6Q?NW`l8jW^8YUQZjb5wX$)vvUtSkY-aCZVPlQv z6yW6HV0`T8XzL)%#r5=m9l&X0Z_YJLaxwr;a>`a##{q>RGe&;!K1yU-pioL)a#DBH zU6PhZUG<`VOtq|c2ao@Lww$KF5V%*cel&6 zODMdP+T&{GLC*h>?<#;>cjUE5(P>Mt)T?zV}Zr zxg+86tS3!K&AU^sF*7#|Yeb%(nxB`MZI8Z1XDIan|KpnR+@FO$T0vW%@88vJw4~*= zzdrf#Q7!YVMz-dbvxbz^hYK3NxZlLb%RPF;z}rv#^~)Td*;O z4et2bUOCBLzk%|C(?#+u>OTVpaPcHfkwjgN-Mr@I*&~-PAUF7-_H3r)D&gAi1P9;d z__KXl742m1#^Ry%At-L!iQCrIyBHg-wEH>Q=H%q;4j<~4PhVN5#tu%9@R{@K-NDS= z)7o7=-BBHoAxVbH3*25Bx~r&2dRf5w1Kj1xhDBe7aR}?yJcFPuV@nvF$@)}N`jH+J zlWL(A|1a`s5>7ae;ga8Yc&bQ-`P~6KGdbgXsL#X8V|jjofjgx}-qhd5wvLMkI(P42 z9$%*RN?$B3{LrCz?F!-G*&HHg)2Fe#CZumzl-?URygWff)LUq#AbzxCqUEHj`fDJc z0al2Kn>(U8^fKDKix&0h(IeF3(ehjTiJ{h`<#<9|Lyn96p_2^(=qKNANZ!306cS?E z9C9g1)b+LdN?E|$w~U-se^jdvHWY9syu7^Be2>rZ@bJL**zeB9qM!cc!yRR&dL_7S z&aI~&9}p*YzU;)93>BK84%S;3Mw|xpU%Y&Io|5w3>R8oKk$HGa8H3xeE0U6uCr_U? z!N&2J^}e~v#FXN9Xl!L3NV35ZPU6Rt+%DegQ?Iyw4bRg@`z=AwRZEd9$5iK$Qafxs zIzV9DFz1JGZB-Uo$s1!OaY9d!z{B*cE(WY9?#YGTh*`I@Fw9uQ5 z*q@5TAz$}=oPZ7e-<)OwQ#jE$47^w+1Jg%x-MR9 zl40;{?9bJ8{hgJ$Q**p8A-?yE8Ab0pL%veEsqD7(yUCY;SkQI?l`QPUbn8~MWnS4! znp;oSYK{-X8N3f7;rE_wEiUC$@iVpT`IYrcLq)Fh$%<A~`wPP*F@F7mshYOa>q4E&ZjeQ(b@8d&kszj=0?n537mRd7M`@x5Ki*N7!_mB5?cgex3Hs?A= z%_1WsQMAI2t@_*jx;EeP^hKWh_#_SIi4$^Q+23BS__dj1Sd%hZ@r>fag&Avw&V*ZX z3JT0uuHXeU)WHUd`sqTzvKYwIkNkO!iAmaoltW3hMC{8Mj*81KzldvXciQAlx4$Mr zQ3a&M?FZjLqbYojk8m}5_HEbb_YV#aA!=g4ybo|S$7Wz{j;mwI;EL-T9b8nuT|cR3 zO%*&X8WL?UbbnB|xcNdpcY^JAQohEX)&} zmQ6ibTI$1}L4t{C5xu^AcYepMTJ?1ifg3Is?=5SpLPQ!aVqP)VoVuOPcjqI-n4SIo zBAapXa_8lQMIQM4qlsEyQd+@??ELBku;Zv$L$4uE;)Rfqkn{Ni8?zk?-?J#lMAv*O zIIdi&n~sC1JLj^(|Mcf)qdI&@2OCTBIS{9_HFMu9#B%y9^7id*EyC9*ohp%(lHz2k zq&b-99Qd=iq#!p`l=RY2XZsG(1aiKR+d8#FO|01iQbp^8;VKVq#=`+n8Y{ z@Z@{ovvJSZ{Fey{0m7@r7_martt`OxqhF=Oyi+@4Ao| zu9wtKh3Y5{@nJFqC4F^D{W^B13fmQo*KCTt4;KwZx4x?>CJ9Ck4r=FBtO$$mFQFlr zeth_qEnMPA@aDrWZ(*T!c6WKak34E`^_%YfS*SeR9!65ySe1LMb~5;wxOLT*=1Tb@ z=g$(G?nq`CQ8x?JOVUgAv$2LN^je#JDiRNJAKn7vI)0FEAch?L$i$=!H|8$n^gF5| zb8a$#0aNRP2m9LNd1^66*P6AUJUB4W$%0=^4(lvecWZFKcd=LXYC4VS2P3{jIjP2S z5_Fbvz#Yd_2vT;>WE#6hWSMX1;SYgYwPfc{<3N4FP24kwuL1)vMAR#i3-wNH`$xEt zVytWl6VR9P7|{-C*$3PHdDHSgzgYCSY!8_Sy?QlO>r0TMUlGG&(!ADoJ(b&LOcYYc z?X-KLrLez(VDs;~k|QE&;c9jdHoO1+!0x$B`csYUGkE@aPd8l!u3CN6bx= z!@aF*qf+GLk@#wHtW1e#+!~XHQws3PI~@q)t;8;uhp}6LeM34vI5_yIU%~(5lg4zX z!1zphtijaYVtyvLCN@dvO>OP%F~~8J$s%afSxQq1E}kX6`R%NNai>IFu~pWMwBHT|2If z4C!m8%U{f^+>nQyp!w0^*5e)@xDT8&n1G<;uZVqDNRUc^j7Ik%VYh)R7+@*EC@v&x zHDKG`T(=l1yp~_J{V;F;x>7IN><-UecZM9z$ zbGhm`XncV@_(B(I5>;FNX=Z{eR{WO%DoxEL+7KBvy}Ae{6@R#oQ_EDQ z!`UIX%gP#*U%kgRu=yb~^G%9Zo=D?@Bh&_=4U>$5f`ik8fGo~aPy_`9U15B?#y&!) z?4(q)GPE{gG`>Wim>#sYPIt~Aw04u0ct&Uh24%NC)S(Cv`Fox| z;LzP>eP<|0ymlsuQyY;tA4KW3xRS?XZ=Yx7Tgh*sl;6bHeV@`|3MK(>GzN9 z7Klu7+{XB!mjyEHrkfSxxP1ZBtV3ED4gN~`Z&q7mJt~}6Hb;ZozDp){qIUGzcqhcb zOK1#frgHL>FEKsiwQK&{%fl25466kn6Tzd@t;Er&(l2^es7Ru~7#lZFX{nrSZUP@q zXDnP$pzNLhq!yK}hPYb`(Ry?k$_BuEv94lBGU zJSeK<6T8Q{Zp-&C^krtjfk8>^`vq*08Cxh z>WE$82O{|u4vrAG_sA-%`(UarD`oT4kP09MUb*`cm3P_2d7;-Iq8(JXmv|nXxUQ1o zn2H0`I^r@N3e^d0cmu%jRoZUPNwbV`@8e`~&%OJwx}UW2l`EW=wX582Im~y>#+#=Y zgF!-S0V{(y2x}*8xnZB-LQkGOJNMHv-wggt-@RFXn(N%9OLBnM;A)s|-pqY*%>F7+ z*7Ys7nxdSX9F(d701Sj3f8B;s>{nkV8N8W(Gy)$^v!89xF{ny_g+QCNU%+%G%#Ix+ zAO%8mf4*V&8x`?3u9|~-s6JY9OUBx}C62Lvgr|`z0a=RC@Jn#t?%PX~6|2?L)8P_x zp#ozQaHp>QlZ`|uz!5fN9+s^abj6p?Z0-;OyH(;^ua;HV4O1G(8zqfGMaskS2 z-r1yvNp2rIL0X}02;A*fqvb!6gq=Rg&WpSK`4|)&jJ_R~T3RXyr}{RfDWRfY;d~2X zAPXAZr_T=%3(%Hj2u}t8v^j9(Z5Kr-v^wD~#M)!H46WHTKA9>f3!8y47^8{+{Nj!v z2wbXFjOT6ACyJ8}ro3bl;<~?FqICa$gpmD=Y~B{FgjXe`hIE-B$ZM8RAt^n4m>{zY z`S8h@*ZxzJ5FR=aXFlBMv(%O&@Pc{4fu;*Mq#9W*8=S}ae@Cm4LT%I7(lTGpB`%&a zGc%*=d32Ue*r;e|WEehb3IzeAMN|(I6yehYuu%m}wiB6gQwT72xOrU^R`uR2ZnnDb>$Br$Ev*y4asiPyV+(kTcaUkD(ZK959*>hpI zgbVUJVk>h1K-;evcDH8o%^79LEzlY` zdFIT`AM*^{MkpkZwzKD(4t_Q!We`t#cQ;_p)dOaj2f$`5mE$XC_+NA(H5)>YO9pGxs(N;d6%~%rDA9bT5j>At&zCm{Y3E>dj zn*tcT0y{C&;Fw4qG2*^jrRO|khQt*y_w7=G3H@iIO=>D)O|Y02!^JnR~< zj_n~)rVNI(J&gO1WG|cyIhyt?aa~;<{eEw6FSHAwefHAF$A?KmMqZu-Odk3PfQ6AQ zqc;UVzXv6rs5P1~MgBKoa2kOD*8r!fLBq_ay*M zWMkU;zcnmTvmTOK{^@m)ek7h%C$jERjV^O6kG#pqO(2QoXZL#B15W@=S6HAt}Mu3Wj|IyQC(jtwB8!=RoFC+n zLqllk)v$TQ0ltT96adv?SCY{5@^9HwS*q!;+)UxR0!bJ!g}b}E3k@n#QjLCWe^5wL zE)e&>^!E<__kBq{iv}=j23;;_pPZwnmIZflg<7KxkgD?!aPvkPb?E$Z&NWdP&On}c z1h8GtuIXZqZb=w)>WC{wyILcetMtX-KG*TY=`fmkdUDW~D4TqF8TGj5Egpl{&XvXf z+)evVI{06fovxt)U&MOHfA?S;z6@H+Y#JLm?^9D#GcZsM2PUe7 z$Cs@)Uv@p(ozK$Br`OW6BZQb}x-rv+_|;fm0vxn+GPN4(c(7xa;;|tIg;*na_eb3l zPS5@A*{sZz_u!L+!U3FUs86+3jKym_g|Sg5{+iDstAGj8HkR5*<3>8?F&Y2o<^R_u znAK&$U-@ZXr+M?eN9f4Ji8@lJY zsRJeQInKrrO1Y=sgU!4cqhg48SZI1``RCW^Fp(9c&j2YC?J%dfs>$Y`bmwKxa-GgT zVzt;E$GF|)l5v;KP63ONQXZt%0ldKg-H8bVjc@WSEG!5nD~G3^k5=qrd~;LW5}GA} zQJ28*qG03!Fcbm#D99ifsHQ7-=MqV&xfusqkS>#XifhInw%HqVUWlnbkUoos;@B86 z7j!xUu~@}$&o|dqIGvkNP^;dBtSZ(HouXZ6g#W|Ax}YYQ8FLm+mXe8`xJ~KKg9FEq z4PsM`i-)g-)Hn_8$?Lql=V5v@_U!1GE3YeAqzI5kcp(G>)f%ruQHJT&)$p1c@1P%7 z0%Y}`dpcBnzYzP?5LUBYF|r;D&@oQTou7dCEXU+;7aB1)K7fUf>R+51f&K&1V24VC z+oU-})pIPEr0JF=YyOa8Lds1@RvE7@U;yw*&37d$lyeFl%yM}fe|s-2dbBewy1#^U zkGY+Gt3$g{>vy;3gKxDSUAbtJmLJS%j7Uv5XVpxtHi!hGAi%w7=-;S*RBij`#5a}~ z2FrZmHaKnYcl0K-AZ;7Y2-q&9$M$})Q2W~fIEGH!&2|geMJbY8S!2x3+N1{z1N0m^ zZ@uvMkN))*G7WiT{SDPPSJ+WxSxX^|%9o2H>Cj*G!$lvYRRLJ@VXqS$NzVF($v+-x zIIT~&yh%uS*t_-j-6$q~OoF(lFu*>jqbp+I+SN{VU z3bH0h=Aw%n=9M`smI`}wRD$}1ktW@>jz}W@%O_Hw;TX+@sR_1yUb}|Xdw5Yj!74&H z4+;%61H_f1S5~MUjl|zYp(K(js@iNzJv<`4V`al-Hi;$w$uIsSXqhlthD>@NCtfzP{drsTDpa+h(895G>(JbjkLq%0oNr`?fm&<|HsuM8UGY9x!kZg~10o zJ$)A-WQ8w&uqRWOH)zmrZo0$K#0jwVFj$4A_6elhR|Y-bOTvyfD6T7;!i?qG!#l7k z>t~v4dm9~w?+%x8-b|KwIhQ!Dhpec7JbcV{rj;BuH9fuXEsYq3hlhuhRWnZjF*1oa z(4!c}@p!Jx6YXmvy?;TL#;-LWD7)A{!e+b$yg*7X8VBJCu^Q{rNg`CS)sQ3xOzxJ>l_8hJJV*o`roeh=C)5#U;gvMDhkuL zQ5l&1^Gco2btp(tO-&GkAtEKGUR;{TWW7H&Q6T?DCSrB0ui;*h#`@aY8tp8+0X>U% zgV8XsC1?Eze}cg*l;m&HDxm;e8ZOEIr#}IT^MXW8JDVtA<4i_`v^Q8!OOv3XTWj1H zNRId=)L{{kk##TyXaS4^g|v#?zyq+3t18kD&F9MIQ%t}Tk-1BIw0R&uc~k?dVJxb@?o=45i70!)#4V6rjqrhjPe)l@}Ix z)nNDt9jPZ_x>O!eDj=l;d?r?#Fjyfr9xgj4^Sc(RtF`qle3wu=j6ph}J_)w}`$bHw zs&Tt55=V8=Jc>{AfKlup*qeV}u19B3Vd3GKcLUC%avpwt1!hM?N?nV@dU0z&H%t1!EH%Nd=$X!_mDvkpi#UsZN;y9O8xKZ*}y78Ys6D-;4WO%2iaGA z7-YKN2pxMk&Ho!t!hfH=@UKVeuwfzDk;7C0O4LeysLsjP$zx8Tq4#M9xBlhvxB6iO z>ya}&3gUK{YCHv5p#>87sWWG`oSl$s4bW!7l3wNyxolnPOE2c;Qo)88z6qOq1^#Zl zgtz!*ek&tL<%GiGVq(bvYH`JV3mmzhkf{UN8h}Sw!h2z~ZP1)lxqbV#FFo3BN@~fu zV*k3ZaCwv^E1Yc16x~d1qs7D(OvN<^BNxEG-TE<+k-nXnG-xeD0qVZ=e8e3CohYc| zPY@Hw>Wm`r;8&9Jb*Rd3r;dwz#%Dpjb^s}t-V98I43d{I1Z^QdQlFX{iKC+Rk0)XKmu9@& z9k8jKyT%!Q{|L0(tv;6Sy|0prkk*AqbiE>Bl$a%}JC@XCyT_D_MDs0N0z2G-Pl#`N z(0p+~v9H-P_po=na{>c)aQ)TFMe%Hm?kEqB0Lwk6?w5IW)fxwS&;9ByI*L~}{Nn

Lor5ywN`HMJ*-w_5*;EIDo)XS}z+;DDgTa9E0uOHCs%yqjW1j+15N z4EMDAkK;%PF_Gw=Mzd&3w_+$&Ui8OjwZ8Y=P0}@Q4$GFghpaw_6rAt0^dwj%htl5& z^gp=E|LN-dSD*6`M%+KL1|Z-GLPFU1I;4jKjj2lgoAAH&D^SKFt@D>>E;qv@V+XoH zg6`WKc6N5acjz6~01(BRaKT9AGtFS+*Qe6r-_IuUG`p-WoSug!D)37Dpyu`E)GxpA zi$^(=qGA-vP8bQ4Mp@oqVzMWft2JUgsw@;VqCB@8O>7+-51v(c5fA(nq^XOH3IB4omj1bHesB}^lC$0bdstmhJUrPK8y~`hq#0x(x%7r-$iIb_`y$9a1UBB1Wi#HaIN(HSl$cmakUSg$BO`@F;!!Xqn*fBdUYjDLSGK*8_r z#5R+hP%B)ZLFql%owzw7E!8Ob+V+f`;7dz+E;z*uQ}*n!o$^DozV(Vh_`A|Mj&G6OymWYA*b}Y1z6VUwYT2MPDsU19GNk=L8$e z+|fVqpSTxEs&f8HF=U$666PkP4xJy2r?35o@>+6}_eQv<7iPWw=tB-$nzz*lImmM_Pu-=P!7tD>sU z-mfdW5NLZS;#re@uy)F3;68^O?%+J@@lvVV9~=CilO){Bg~eo((H)8;=!+4|XRMD; zoDZ)H$zA(xCs;(B!4MFyt3O-fJteIC;l5)xSL8-FF_pds#A#r$eVZ8B4$19VzN;0{ z)?ehiC>SaEO|0evUpi{o_ebs7?|t((#Y=yEYR0PHt~=s>f6aDJ&u8~=r|j@ZTS-eGN!37n9DKbuuAjo@BO+66E9uHyG&Z68k_Lp zq({!aPCH&`(`yf~27F$k7?zY_`kzEGqi2wMWB+f)k)FCc+I=yZxpRwf&ZEmQxKs1H zHb+|kq%Bi2pYTWz|`Yyie|&Y&~*zKJRyo zKXOX(UM!Im2Nv_3o`>5Z&CrauT%kgsj6Mo}jmF4tn%f zbL07O+uAK+V{6XYES*`CZw#l%Pdnsak2VPFe?ube9eY)a2CXK$V%cNab>>q?3Y}?| zWlsVfqv{Ib>dOMH*@Bes8hM9Iv%d9;R|F9fg$|DI=UGa;&+qwhA z(^0YPEK|}#{coO-bnMkfWX!i$%YAoKRTT$TiYnBW%SkP_ekoI);vKT8U9L5+t1HblY`FdwC$sjOVM32Ys`M!NDB$0`rcuN`=epB1^&t}GJmfq_aGuv_I)ek&aLXQc zj_+oP_@o5eDO#A0pY$)UarPk#p;Fk){nTG8ydhqU`>-_IQfxiWvgTSdcTkky+LJsd z)0ZXBC!W{poK${EzN|Mp35?de1$+$UmHFIiCs*8Qk_GNHPt*J%>ef*fUp|*d_)!y2 z0RI`v8@?gw>v+qMRZm)7+43dbcf$cGCMVqZKetk|M5;bg@tqJawPyc@S32_bX-O>= z<+`!lZ3aflf&EW%{m!qSeS)#k$=Tm2_b$~ANAzCtUrv2$zE%HYX~%<@l}>eHIp>A0ixXVG4_hr=xMvl%4D^mMnWpxEynn zT#v*;YcD!-IGhotczqP#IAQTT$optSgg4Kfw&-3LlW-r+;&WmKp8~ChSgIT=nu{k) z@?Nq9-3}~yqUD=zYn|Q?Z99cCY+M4b+jf2bHq8uT3(dF2!%Ziy%epf8&zx-&?4^Bi z;^nylUca8KcLuJ8S>_oLe@opLlauE>PW5zctp?g^m1*SN$sAPGyECWTUE{bu-i&tn zX{2h^ztcXKL%@~SZbI6}X4}7|T*b!6u;`W7^F=UYm6fc9q27PuqQb;hK_h#%I;qquc#rAnu~L_87rAL+llNs6 z`+N4620pGOEpQ*2$Cd5s#kWvrbUu_x!$Jsi@Ye(yVY+GboAL0dgk6tIc{lTc zEVi1CwC9eWKCG4t(T!tPySZ#6r^DiZB`C4%?J zufT3v&FCb}S@)%gXO(O62L%_N-MDh zG0iPSVyr_CSGgD-e#reyYhk;esT1sBZAX|u8|>lrBy=1H&9SMejU8TEDj8GLA@6f+ zaHpxzxpAzv^Fq7ig5isHF_AIN!zcZ-aA! z&{rihdNV~bA-5=ZNza@y>t8GiT(ql;ous$Jx|vYEduMih=i{oJH2E3qi7>On7p8~W zCKi;jvTsFRU=GOypQ&W5XlDd0tflvOp9*=LAbH5}M(8N<`GmsV!8e!c{@6&muCkoO zIbYkHly%6}k8;6&eZ^P0vgvg6qz|0liL9b^;~14-g2d*G{N$70;eB~iyuq(QkT9fSnRg?foA>kF$J4NarP6T z|L0w)6Xu^@+IunwD{2d(zNMwbk9&!?G3zg42MLy>@?KqaRKI~m{f>GX4GhxSNRr~| zb0en)(nEhw=$&D?xJ0RA{_?&NuPwvcf$OZ8Ps!S@1nC3`-eGKQ>)=%bdXd32kt+9Y zL3&qX%EMSG^fCYVSv>y4#mhqiK@lGH7avy-&OT(n{+U;*-zViv?s{nGN!f=HjT7^t znNORY!cF@9bfjdoS=V(9lkX4A`kZdT`YhVtPQD-PVJYNI*|S>}HQ$ZDv0kIYe>rFH z^x@^JJdf9mnp1GNPcnM6MVPLsP0w$9pB9?rDZi)I&Y#=cbv1m+HDcIo+>8miW^WWJ zl&lQ%*0TZ6CnhEyrLL}>`gNR|lY$y16vNZK>zXg{Lf1ILgd~si=LlzJi*b;RaF^qb zg$zl)Xz%p_JG@c%=Jhr9%>@sgkKNw;qOLT`DZVc*ls-H4A;tHJhS9c?t;G%XeEc8T zZWS@R3PKT*slJ{Y2Wv?Z&&1z3c^rf~Rh!!9eSZ?!?Ts>LTN+7hG+}mlc}SJfIaRp# z?S$^+=|M_CgUiY+nYJ7}ms(hful$hwED-qC&Gg0{Vqf-3{k8)-S!Ltf$Ko8Fv#T22 zrGj%+0;$5}lskvoXC2F0kB;%QsE#d2Hg|I&n}qTG+LY5&sRhdF3B}>LeK9;A%X9im z(%Uu-PD(#po{p9$v*)!|T+uDIO0!TKw~=+0rSBK@|0v(Kq~Lr%-}z)sYUsq4VJ^k% z5}P4qtD;K7@TWD_X>Av)kKItT3Ix4ZW_a}k3_^XPl8rV4&KVvbvRGn&uf4m@sX6NJ#6BtjC?hJe^=^+{= z)HgYhJG?N$vN|4q@p7@9bRUcOvD@0|o++k%Z=!^M+}YD0yjozw5FxsU6DNS#t_zfv zm1ws?EAIEM@?newYs&)bl?Q`H_xMx_nrD6N3+Y?enW^$0d+mGr0(vvO*UZAR6)FD3 znqFa*p6>Bz&M7s9|BHFOIqH3vERQ;(pUfsR^ZuR&f%`#$GMor zLb{y6M9Fa#y?xJQp3jcq*|DozhIe(mD^FDk7n_f+vs4~g-pDe~Dfl=O-VUrBU}{rbKacyN({^8LXk_5{cy5vN4sRAjwA zyT0mH!3xI^Wgc)Ijf?!~UirPgX57*{vC@=hD>NG^uJ?^E=B&Q3Ev&4fYvV=ERfCZ3 zlD}>3n6DpA)u`!DXwcLKG7coqnMlGtR#ENd_`VqD5^oZn#F=*O?QqG?%AZr)pQ>Tt z`MRvWy{lrTM`6gxZ@I30X@L0ji+CW2q96A#5|Pm>T3K-bDe#)GZ~|yV`q;OGQdA1N zY-+l15HHRO_8G4Z$(G}=Rad~H3Iv#Y=T|$`PX%sNxX6ZWC^Qd<9FRuLd9M#Jcj5>0 z(2!7a<}w~I9?ZLGMXYP9^R{Zxd-V+8!WyRIEA!;fOxG})qmB2og7doz57n=lqdQ6; zNt2)W({xMv2yJBCUqe^eURCfVVBHudfX&b^^Z>FW{VWUyxq<80w#8#%VbMHkTk8G# z^=nci+Osl2-z_>~o)Qg=SLk^|3ty9|Ta9J=lF3vEPZEwIR>K;vMfpZSR0Vffb^`QIP6ai^qw-2(d`(&Jj}nt2<}7f;Xpk~8VI>O9=iE^Cc)$Xm-foUzvN_ubMP@SVq@ji6dCN9lf zFG=U9Lwqx{Z}=9++ccJW^OoJzD>4dm7I4YF5;dM~Pqv{=(FPs&f&?Q|)2qZ}b4SsS zfG8@uiAATYrf$09ZzPBn2{6C@=s3=BpSZNYDZaaGh{jn@jF*yHkt}az9cS%#r10K# zr)gI)btXZd@_SF00Y%%F+&m|YN7ZGzTKc5!jfveQ+{Jgg?=%)4Thj@o%A`2urjctm zblGGwTR7?5(BQ{kuGH^1pp!^aA+r+S_q=!VvqqJ|E&3xkFuKRxO zFUkiFgC3G3=e3;orfpY~Rkk4M^L{auXkT4$#K*nC)xUE<+HPJ@cCfu4a$nC<=4Pjv zAsNSd#j0Y!w8q`tf$ut|GrUa)Wm!dn4{lw^B=nLvNwkmmS%O}Exw~sW+?#og-^d?e z`0ik=G4zgsa}NT9*gc1;6d!x$#c%?OwMv1$6C9f@?t$TWHZ_<{#moNA*mV{`4G?!F)*iYLB`h`Z-2D8~_#R6o4$Uz_*(qkCFXlC` z!o#rUdE*(s|AXZ!{XYCp1lR_1$=d}xJ#fv2<{1!ffbkmxg!2adei+cY;Z{0<*tqHG zA;*Gj`ayCyhN!?A4wXm>sQm^hozTgn9Y}@d=DsrOBTI4xko4TGTV~lg2IVQ zwue>Ao@4t@WG$(OPZ?^8oS9YAdUqK!j*JI@~`+LQ;<@ivCrWtb83f8bA%w*{fE05@7Q{#3T6U zr0(~#GD(z7u8nW{}Kt*)z!1aWkAWAJ{~dzN4|I7q5RrV@{z7O z{mait!*E6ZGbm)NsGt@H{~|A}MBd)sKz0RwLrqDxD#yQk(G>gg4IF_FGQ;su>qgc` zJK^s#{p*X1pvxK~aPvMOgPIpFTq=ZjKY`vAW`+pk5XOh(=g!@RposK{ZK}2?L5_z4 ze(rNn&XCj6h5*+OsC+_Qo1hNq0|6rRw__Gh*8mF(SXBrS3g*v^&CR?ZvCRLv2$N@| zzY8R)Bp@as;vnFM`T~n86%ktwS{3VggA7LZi4&Ki2OTzltXpCYlWCH*P@Kk{pM@}c7F{f}os`76=B$m$gW3Z|WA9+d2m>$&5SYA9 zN?Ni@0fNEI<9U;CF-(~=3K7VqgSR8}Y#62khwb5<)0P=w)^QZ88X}_v62K!Mg&5@7 z9km~l)KYDNHsKp+B!F0p5M@BCG7sv)rIE5XFfUarvDUXPUtj^=;KGk=sw%gwDPT-@ zZ|T96&jE4gEsSW9nXb@wKB)hIfxZreGzvPp&Q}-NsbM}3YGcuziRWfxc`#il1f8^j z*RELt|I>D0Gn9bsT=iR|BmslL()j5<;PO*!4L z#_M~wRyYiUH~#dgAc9EXr^5MB2f#d-$Blc>1GK_70twZh)$!DB@qH}s@?f>6NPK)e zq7dT)fg5m#qJh|M3sMo}I#MlKfMzjT!;T0WKrVui&{t+#s}8H#9_zxO|0V5K5|0TH zP|XqX&$HOwJ@;&wFg7+deFJVQq5`em8sBfeY-0-aQ~HiZ3EE0|}uAk6iK(J^v+z`}P;S%j%8XjjrnExpMz z@PSOesHmZXw_ZfQ6m@bASj8%jOa+Ngj^kvs+aZ zdV*3V0}L3#C%SA!!gKEngbHq05v!mdTaRA-41+zsT)Q+@HB4=S1zy7$Be1AhaSYIY ziMYXrxprR}zWwks5>cYY$Hm2+&ocKS`56ZM?nJoCi#wHOht<3pzw+gP)QYXbjV+E9 z*SjwQsO67l)8IWD(4g-H#1VqHzrqa78ZS>^4+1W5jMn0l z5FS=mRt&5V3lmd4h$|D>^GfSIfRNctZE}`D+zRA)k#LU-LGS(?BQ>XfX5kIAgHY9v1V{c!GhXwvJBJEO=l6nEs*kGM%57(4% z)(%`WkF>WEY_K^B5j~c5KnwxWUC{dGCK|BuN+EDM)v{Etp}h`Vp6P&4K?$5r2_|hy zK$Por=oWkS4QC+7+U5+xik~P9NbWPhOER37e`aXq8_WR<{AOP{#?&+pSjKV4#sSYi z@x_Z1n?vTQ@xTMD2lHC3Ikq-%TewzaH+}C-M1)a>N~$%8>qI5(fcdWk`e7_^O*&y2 zI)NNu1K}Bi!NwVf@L=Fl{$hF%XCUMc49w9mK()B0dJMdbc!Mgpc#+jg+(v?9(} z>S+=*B%QhBXJb6T14BN6JQHCKIHtTnBIBt!+)k`Wfl|yibrqN_Xb=wYfnYUjsQ76j z5{DEauZdun#%spa^Yn%kQ$&Y=(47E7#G%Tgy~R1mrBu1|yKGi*K+%uJ!vYEI_XB!L zN(_hztdSqEj_HE@s|{F)dy3!%iXI*w4?d-4zW>reJ&;%lmpd19J*9PX1QxBT3{I)= zrP`I%N(5mEsa3f-5yY`5CAj>-h#ntoB4Q+=lr;Dk14O^{fs<;5%cVUaAW?#gj2Cji zWc`rPy)zs+%8m$`5XOBGuzwNTQ3I(Ekd(UgfI6|tZu06##2$D(i6EH?=Vh-ffo(Dc z2}dWg;!x3bf@T5>#9>mSmuKmIdyRnTuM=dYSl|(l8d^b8QUCPx#)30Kt|8(E5gZx< zb%9Qabu!2X@=u*UjZocKi^?%LrsctcwA%TjMZ@DK^j&Ut*mlnRIreJM_21q z#CIDZWnIqf)0x^5XpV#EU*T?Ah=+l~cvrlefJ}5^U0RHnx3>}!$xy{ZR`kONM-#}H2rnCWA+hZa)&LR_dfaz4m2dD_RiN&D=~!^I z2SQ>GU|oP9sf)W_$A`}l9W!!cY+IcQcZR>^8%h9UsTJnLw}Gr#2L1+`^^Q%^iSjBB z>)G^o5CfkAB>nUIN3h6B>GQhh#IbINMY988Kn<zVZ&_n+PUEFazYvdBN0@ zF|GThX3^7Jcu-%Fo{ z`WmZiQ`H2P-2kEvj=r!Z+&G1bXdQ&Hd%$1<)uVFQo#Ax-0Z_4#!=n?-V)bJdr_sE; zF2L;q%|0Ozd0|PP@9elBY8*SgfU|U>DcO*u5j_a-$r15CIJyN$hXJF^BRY6rVg{;t z2d)ykrwD!mw@ZU;fSd%rt$cXOR!~-1c@Fd$jtr~t)DgIf(P2=#e1JrV$Sja`fdiq$ zR()G+n*Eu;=kl#5FFG+DJd5d|&qo0aiD}T?eC?7fBi$O(&g0L0DdV4Y_)}3 zey^X(6vK@GqjaFBz(fXO$AeE>-I_hl5WR_gKqcfxOLh5j;xyT}fovlNyhfbZ)zy*kz$ZGJjuUSV7IRisCqA7t8 z-1+mX%C&(I z021lTi|m@`;6#9N+7XKY{UX;My_li@ay+hHy{)PZll}rp?X{^izXp<-VI3Y1#MIakfpeM zgDRSUhC9F@mCxxagGBK6c_YZ9Ou%-z0e^(Y-$>7TyNn1Qzz@tI2hq=pJX`qydvv@Q<*R8KYt#y@7eH z<8U~aV-OO*1lT|0avY7(*ZuOi4iZVqeAL`*M{FNFcK~@PNe_T98h)!*a2|Ww62LpO z!yx5!#z|@9>BR#}joYI4DsUdnA$&}yENCR{Q8oX^6B!UbIHD8=GJ7d*c-a|*R$^W< z@a&b5)qE?^Ujk7Zx+~qEA#Huq%th>v#2}K%@GTp$^Xk}BI9dr{A@*Q*vlH^`-~0ud z2XlD86L^BAAv|*cW-$;{FksX~+{gRl$5?n8f>>T1#PI>>1AarAHyL0ne-DBKSMU^T zj`p&%pg;l0kSb(5;j=#v(mexY=lDRzDFCQVpyJu;_QyU5G-6#Pjti;;ac~>Oz`^NZ*Vp ziU(;W?|=gUlc{ zMc`C3t&wxD6*v)w|JR{v&x%WYk0TJ^3W8<88P1FSod{(Q!5HIS`<))^O;js5M0BU< z==f!KAu|<$vYk*EiV-!^I9Q|Bpql%;F+c}0LUQz&+u}_SET(#H$H((OO&BV*OM`_B zcbyIuP)wJP-k@93>)D&Xg~0$#p56@N_bt$O&4I)5ia0NE!xo|8{~6%WD<%;5g(x8X zQ*s$t72AwkLve#aGAj_PtU~NUXAw;d;_ID|l}6E)MZ}6!QvPSr&87DqNI*Hn!ot!F zFuw_+Y=fTbZ1fy(+<8G<%hybeV6kwECqohrb6C67d7#*KZN-7@AHARd2q;$TXS7(H zP)RDNBEucFmWKx%L7AZbTW7=>c@oeZlqmuLgAiF53maQIQWl>Ea56P0b!SGHKw{Z%nFFqeDLIs4DiwnNEc;Yn2ovp_Bg+iSvao%{Dp;? znR#Gy2if6)+HWwqQ-kLX^Z|u;6LNzKDTjWISCs{bh~QZ|2rAa|+MUH5?5xut)8+J> zHPKT$1eTaF5WS53{QMNd>BZ!&_|=Smy8$a3fF>^P^Ji{~bLWiyV*KL+2V6C*Tq4l6 z{C-g28csOioPtX0$L6h*Z;R=sk`@XN1S`;)iPoS<=0s|MtoV!?Z zM0f^)xERpoHd~h@f)WmS3{heWy*ri}p5Wlnj8vs7&LMOn{UdfQbbw05o2duR6A$P= zOGaD}f{;M0zH_|m)(@@Id-l{OAq8d{_Yp3o6bPsv|M+wf>;s;yC9j9Uuz&&=kz*VH z{$Y!B&>Y08h0;THZ+m4_0iHVnj&luIu?WE(cI^lrI}$tSp#JX%K@rdhlGoi1!y`$k z%He?#hT2g5!YQw9)0Sg_UI)sjl>bk%x-ZAXv($T6&(5r>!{gada?;9Dd6Gtc{})E; Bs3-sc diff --git a/docs/_images/a17b221991c8fe26eb7f6c3320065aff20d9460441e62fe8c1e0623ccdeb4808.png b/docs/_images/a17b221991c8fe26eb7f6c3320065aff20d9460441e62fe8c1e0623ccdeb4808.png deleted file mode 100644 index 091d046dcc6f1a511ddc48283c61eb222c4ff15a..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 23131 zcmeFZcRZH=`!{}GgzPRvwg?%Sg^WlxWha~LhLxFhm37I8WR)#KLXvFC9)*&!S7v6( z$od^;@9+Kj-k;y^{@wTEd*A=w@5j4GkFIr|=W86t^LRd=$16hTiYg@;6B&XalW@Yi_{u5{7B zCv|z$+s8n8n0U?a^RA*IKdE{wZbOLpnUON-lz`qdHQmQFM~HlL`IRp|c%ZR!nx0Nq z;o`;YqjiUYLoaE%>RJIYjq@<+upw%`E-lmK0pnx~|nBp1XJ-xF$;_%)x zM=g8wt9?aUtP09qJw2-a{<5iQX<2#&TC7y?@dO;6gPWV^!i5W^rKjsxb3gHludlDK z{rV;Dc>=y~Kg@(ci=K z8zgAkm%V-+7YoC<;h`U{Xux+~N~&>qm{~$XB9AH*&tJfw*8P2Mj*EwfI59DCZGHV- zbTsAR{ZnGcuou0&B%H@;Ba)L(93di-bDtF8%r49S)S(5h|NQl9a&C?U{?iY?WU%mU zc(`e3h$%_fQU%^zT3XU#rNJ61?unC5SVk%x$IDwP8T4(N{vFwu8kY7jrrBcEL>$;g zR-_n_MJiKx=r+5L!E7v;VS1?*E+N_&M`VHVi-R;TUvPw#^>1j7N z!tsx#TEBg}mTyo<@bF5SGzOt!lf_f9N;i&;vBA(Mi&ztU`t-?Tm*mJ1tCf+e6BqoY z`fr?5dB{eIe5>^pXOg&e)YR1U2)w&K)j}NL5`oXBX(#SwYW#&%VDL!kafPF};;qH# zsH7COM{)7t#NytJ`<`55KS)WQJ_=xgOQ@--^~yB_?n_sD{s@CBPmBj0D)*$ztsm^J z+I)C&uG04xPir)DxZ8BA^=P$cbpZVtlMqI6d#gVi3kYs)&2?jSoc*;!PphVIT}Utq z^;ERv81Cs)<}hk@=iUk$Y~1}pO!8H=D#VAR5i=b|i171WPQnpz^YUJLdG%6GUt>#) za*2?*IIXCt=urxa{xh=)FfyAR-N9nw;(Z1Byp=UI({mX?t!tA_)-Em&69kMFD|U8Q z8~R?^s6NZhefRMr6$XQG9IHKF;XGP6Y`-?~4!!61@85ga>E~&^D`_}*0QZ+z;%1P0 zeDjWq5}DUAg_`S&)P#=u2T6P@ySvs)DZco+H{6_KKb#(YJrfznrOFArrs42FMo>`j z7#mwme*WoO-%2mOjmFPAkLol81|SMAuD;xexwA5IJ|rY$KH<&HuT))$XD(S-unC^& zqG!iq4aIh5ib@bId$w%7g3kU+*U9e8eQa@Q*bn1UjcFVlWW;R->X+1QGVy37>salY zyt%P(usT1VZ^X+>&&httFpv>fMU86~U7 z6x^?h^;g{R3G;ow!{=~Y(Z)9Q!!rekkE!o^vo48xE*hM@_3hZ#63e#VKfb!{Zr;{P zlRh3!#rpo+D;u|;-_^}(eXzq7x0|-trz7QNzjwsH^4oH*Jv`XOM@2O!Sq4VTbR|u{ zd^;wl_W~jlcI4hoZS$u5ZC#(eowmNhAc20rdbY93UE-*_oo2JZjKQjh2P_SS`6$f6d%xjdZX`)f8?)P@+|j+C>Hq(4*Y^qJ?@NF_F! z>D>G76!G;jzg0ILS}b;<>dqWhYe>vHYWV})p8qnEvbX2&|9X;H>tNOP6fZBc9M4Dl zDM9jVvX%_-?9Q3@q2xY$>uuyO^$QFtT_*|d-@o6vFP)q6p*bB5v;41y-?}gu^Kw?+ znTx^Z^j-fOk-2B5uK5dh3Uh>z=Nk)91ZT=&xr}rsTyOPWL#}FDM!?*F(phEYf)<< zyH?&4`1MQwaltv#Oqq%GL=ss8Hpg4zC)#nFD)C&aUzi#Hx&HZcIBuj6bB&yX6?XkdPy(vc5Do-c+}XJqoQD_Q zf7X^apPjz^B)nRI){ywGua-fRRdeaV4&C|z(&Q=(H)_te#qISA;8Pq#<8B5R8k`B zwK5VxNJ3>bRPJ;Q_IOnc11oE^ka>0E*RNmm>#i0T7rS~%yd!epTSwI*ua=T}(24Gm>qeQA;`>5^W2F!bi8&q8jJPTgJ4%Brf9r%oMt_39OZ+`M`7 z+O=yO($Y);fbq%CF6>t+pQd!>Ff{E}U>*SFT(^mthR6Ox`drA0H{q zPY6sE3kyqcrJIfa)~I*&pUI|hoALU9?d|D@fP7%^JXUR#l#ZnP&N51!KmYFYXWC0) z6z^V|zV+Bm{650PDJCsSi`f1ccv(FM12i==!_Dr$cCT1aTwK5Z#+#yRudKb)=5@8JhKnWdcCgFio}e*6%ywzhWvv*F~s zIq1;R(V?z*>5}L0_U>-ir(8{CrBkA!y727W`@367utBOIUS`?Bg+CRW%lNKT&3&Km z%b{Upgtv`_Hn*?^CqFaT@8ZqXw6%X z)iLuc85hp<_4Snn?0OBpb;(LsY%^oX26NDbyU7ZSsxj0|B;PNNcw1m#HjjtE-bQ_|8V7k0kWzA7(& z+!Rh7iEkgR@#dD2x&|2O4BYXf*jSFLswx_GcHwh3`eU6w=XF4i_zv0YQ=Omp0<7_Z zk9FY*yK_+U4ea(69aET8rXE|T3Uj?1F5K}9;K!hy$IS}ew%ywsRYbkYN}vG zMMd@Z8S9$^MR7153-zVSO0XrH$HpwYmWQ|}Cno`3JcGgbly{k#@q)ikR-5|e%g5nI z2TQGkiv?w5O#S`+Z71J{R*StcIRlGcVB-WQC(IRm?>oeSyEEoBUI{QR5qP!f)@ZxU zrNPjZ28SLt42Sp1NS}bPV2ba~Op<30Ee*{PTz9hQB_pr--jf&(7+mGn-EQ%ob^rm9 z{;b$IK!s`#+2l4lR}S}JaFC$kstyC%9r4^Et#PIXy z&$V|X>=OV}+W;D(w^39iScjPmC8efrgAGTo#DW!Hc|VeAf; zPiHd|ro;NvGxh4Zj*bqrTJyIeB_1mdQEDzF@mB~8yZ}JxcWc1N)&$45@CG`~>hY%6 z9`J1;%&WI=gKTe|F|BA0qhu!QmrK4T*SWt{Qa)#By?)Kagi}_Q1*)pMo?G$vbaPa) zAX9Gt{%VOn6A?K*T0@+W5A=_)Bx1 z%WIQscmu-vWD~W#pw1i&dL)BzBEK^yr;X^aZEIH-Ij$nSb$Hm+C_Op(TISo?i?EVQ z-@JLbwmq>we_7*=Iq8=IeUgEJ0V)4&ksDtMi4Z_pRGeH~0PNe`S!-ZTS3+4*R8(~A z*fE{SUAfbzPalPi^{viNQYD(naQ>$M;r>=Nrq#|6O>f`6O{_K?wnB76935-{Qx+NA z%suNe#^USitEQ!;w7a<+Ir6cmhuWq!3WX&iw};LaS=2GXHV=mi6X6il5)DAlG2QIMdU0IG4XqN zWGESG&^^ZtSGxo#`SOWDxn;~Y!Rf_^zQ>UUzhTDM_;^~C7?y~)J%{WSmuCm~OV zQ?s`|Id>C5pz?x2Id_bP=04;Zw0cHw!O`(_vBjB{yBQZ$RaMbsO+;gcctNOjHjmiUz#$&Z?r-U@XD@>zPY)10@4x+9?)csG&V=jzPkBU2z?!5=k~82 zc~8>Nh6Z^Qgzd~QjMVzl78De42QI4?=s%|lJlywYk@Yz?_c5*MW=UOM%`HDm1qI|_ zXO126{?x!r)ApX8HngIE0)v7@>X>Q_%e!37q+_rUv0N$~!onqrJ#w7cKSi8+v~Jws z&(6;F=&`we-4zOu%IfOBKt{@qbG9erVP+-=kO9^Qdpjt;+gHA=mxx>-USoHpO(H2d z7}0i393B4Hh!(B={RSHgpGiJ`{Fp53D+al}>fsB$f>L>!z@*i^0V0?d=L$S`@HcT_+kb=*`OcZ7N;8O24ZpH8ce?FQUESSE=p_gVtsRV7J(J%eM?(*+tmGYOQv&T|PU+fRkIfM0EOdXc zdk~nc9?xi#zh+C^TfAMvKJ>1Btk=S%5XZ*I$&J=IcDhe&TW^sd0uQ(;r1ziT@$E}3 zKw-GDDG(yRvsg865d0;(@;x{a4~*;dy|O3B!4aLey>k3?&rhOEO$RsP!}ceF0x=_8 z0!RMqz2txNKWYYs&eL+-Z9}!v7X2Ae_6JK zRHnu?&c#;b^yr@);&+26&t>4w1RRhnQR$ztUyHpwVh6}d<2)&)pFMvB5H|~>r$sq9 z5Wq&C{~=SnSE*pjjiwcm3vj&z(3%PSNohre3gDQ_tW?PIZ7#HSK@@J?5`-;uC0*8O zLkgu#BvwhWDUFvAuB^25eMTHR;!nWAG8Dqov3>H@Keg6rNF1I${|D6;WfMd}$lm#o z0U|2cfl^u-t9zjdTv%r}c4!y7Qn}@m9PHMFN$x(O1cU|}69Mq~`1$1o>~5BppIzRk z7#SV?oemF}W7m~6-5shn^VxmMmaktKWV}~GLPLq_cV?MkIn|q?pz3UE z6eFRfWs{JDQ~p*Lu!0sA7Q{d_=0BE2`UzdLVypB1p{hEaU?7hkJ*oilL)5XC!((NH z5jdW2Wp}(k13FiMe`oMg?d!7+k_%>Q2_x*$80ub2=V8G4I0J5vX@K`%IgadrD`IvgX{lkYZ z%iil#$`H6PUS3{~y_py^0@qE`d!;NuZ9G3(BMIf>#L`j}uqj-SH&DV3C2KN*4j5sy z;D0Dr1HSu_Inw?H?j;MJ)Ai1sCdf289WHY!N)M-qtOUxpIQ?VUahH2PdWlICd_T(+ zjU0KkDt(8I?FVI4JX2(8FQ@3O|PGME&q!pZny=i?A|H9gPD6>&tI` zy^`*?a{fG!4N591oq#!8K76?R=+Pr3CEI}_wro`0-Wy zV1LVU=SN9Hb61zRQ%V+8%Sw+@DCq8gyQAW$8!FdS@b zY-RQzm?C0g5`hrjS$;bXm4-5Uk5D_&(9`q4!W8q{yoJSfball;u2+Ye@H?dCGMDiS zPGhxINGw#i5Ac9>qL5gCXb?aFGPivBVhH38uj)g#1gN9hVad$w?fimq<3#IGbg1E0 zPn|lY1{8h7*k@|_Jsl{5_n?-h!D3GWS4rpK-~iFWx7qlQ{LKD&E>3YzWu-udxEane zQ>7^iziqT?YPHRaYOuX?=ML=sw+fuUtQ4o`=6Ip-3Uds*qM`8s;8{DMM^8JbC9k`< zSlWtlanjJxaKfm4mKkWW11LlfX%C95{^6BZZEW#C^FF{!@V%<2NCeEGw>md5!2w{n z`VRmnQ^-eLoSg8_>o;${(6nHyfPq7&2{!AG&i~`;XlrM8SF^;TZllxU?gF>(pM~e1 zJ(zYF>E9Jj78} z!NJg0X&{aXNZWJ9^s!j@!p=l6wa4%C=g$Le&;=wRznRk`#+Veo9GH!1SU<`Gkw>A* zE`>!2R91&o2{V)lASVD!_|a)*ZmtVA=FTnyI3D1Z>z&V*>!-Q62w{m-&%qwLYvZm_ zjUp`&fjoQa>gwW>^Xnqo{$G{Q`%9}Um z(tV~#fsk2=+m&B>*E4zWi^L%g^Oy8ahZ<}eu;JaLUMO?W-vK2DK1%iG#+OgbCBN2w z$S%R|bc9S-&^j%T3%*nG=-4&3UCd9CpEQ~(8v8P?OeU%r-Lesir6k( zv0nX}dj3vtiDd)9?$F@i@js06{1vKoL7}4kei}-)H?-_K+lO~2I7 zAR%->(y;{g+qK|-tbIIO%-wfu2#Fh zIgFM{kRO79AZvP`y~l3%)_L?83rkde!0z?0#pXa+w7d%@5e@j`!6M_;J@LO+VK}}@ z+GU%apT`3=%L@92MBwhSBmgEWSX*k^+HLJ|T$=u=yHqSvxKMHiPBAf>jDStX!0kzr zkgzcNnjVzDhib+ehzBXZO+lc5!=aF4`}|y+Br`z%$Cnr3S(n16`U~{GH3Z3z1#FF8 ze|X+`L<&%-O(PB?<+XGIRSD44%^>7BcZK-KkqLnLD4P#udT45DDox$LLvkBp40fttn%Bns5XO6ab-`}>Bu@CVq@5L@KXas{|@ zDc1=F$Oh;`Krw{Mj!>9R0)Bw+*7vW{Vs(}E)VbL^l2TJC-k4AV3YgFo{+Easl9pzk z64L{m+O#ige^PpRSgOLpZgbE{nFu)0nL3z$au#r&%;pNze~6;>@zt!v23 z2`g0f`gP7i!xybHWcd8|1`D>tNNsH`qL9>kEY8~S#nsDOpcxuq3;o4%V4E#3Q&Lk? zfB*hHS(*i;?V+J3a$-sblko1HjNDxApasa9d^!nif3@*Wxb6R?cK@%(_^*oo|Mf50 zgS0+7dmWTpP+CLk>f}H>h~66WqlOfaM->gX+8vTmKzRCNIC~)exWLtkF5w20uXkJe zCR+QmQviVRQA)~lo<1-ow#41iDd#=rk0~lD_SSg2APSIn>UURU&`{DG2jD5LO5{hE z7OEI{t&T+luZuJSGDG7fTJZ9@X8X_$?*xGGg{WC+tz22EdPp3e?#eo&v}=F zRdV{|AejQ7gWF+zs-e`}f03>Qs-M-`UsSCztS;pVE6m!H7sL$RU zpa5Rj|DatGoY*eFnXxx6n|ac6%yvZEZ~fsv|T6e!VDJjL!TeB$~KPvU@0#{q625O$Tu$L&YOr-AP!revB=_)=oY4u}SJGjP@y zbNc4lK;#G`pQk6&wnaFI8tt0u(3?nzGNwkHzZSC!nN?;Q(K9lV1_d2*Zh=-5`ts%N zmLrdM@qdaQ_!^_4yGcrX3e+7|t7CO2aSO$t#VG8mPSz7h?au5|$Ki@IDDejx*EC>@ zYj18G2VK)Hb~@<^GvbX%k{7%t&>60rM5!Id_>`Srb2bq0@{LN^AUkL2?YlVt3_cVt z0S?jz)R1I}+f3jdkUK(5d>zvM30a@gcNRGYHwd;_8Y4sdKM+qi^*h2EIBLg&EP-l) zPB3r_CAe6M7iS6a8mEYc?$v+Bq!JuEdYkjtsd70K`WQIp?i>i|_e22$0_(~sZ-TCe zQ9%Uv0r`Y{yQdE8GLAICN#gTUm--0c)w+9Moz^_(C@doy2a80kK3NItc>F* z7cy4o$1KeTuV(Au)YjGpXA#{A#D8zwE%=BkTzKQOore9N&E=aDBJdmd&O8GFL{&v48=%&4 z#)t11{fVsLR|;Lx=l_zN0yE1kzy5UPE-;zFrZr;cp2Ho=0^bvFtJRaQ+-31M~V{wUoa}Xj})%YH#z_! zj6+V26%c_ymo=KTFtD9*Y;t!eIuit{%TPKB%8F`I#a4s7E-et%F*o}2bu&krnh1Z* z^$2_Gz~ybzokuF~!J=5;7DHSivej;U(ged+UY`xWzSy0epLVbn=}&{GC)_KAt|eLY z^Dvr@AbgGuheOYO^-&*_~y)Q7zRl>zFVgPJ0^ zwpJEOs!8w^D1jV8OmV_${si26yB6FUA%8+)uQb%9@g6rG^QEK!8bG;j2(s_NfCpj| zYKp1$Sa>grTK*D}pFekqqYXf5Oppn_)+ z2R9PqRYgStR5ydg!v*68Q=AN{1@Iswu(g6~RnRd`?JhEYO$=Or3y4h^1ePQE8C2j( zY%)CYm#_{?0{!sE*AlKXXDDN0V%9b{!$53)7h^g3qZ8IOoZ95+QR8@!HF$jSu1+p(%>L3WP7YO3* z?TtG9pc<@Reqdq{j&4*P2vM-W+j`v~m}3*vQ(95N9-Bh`@9x)sPv-vx+w8x8QQ)&V zx+U@-L=wgxnczVnVIlsPY03UES*4vuE+H&|nMHEA-^dMSc@|}Jdy`Tt46ye+S5h4p zb>M~z^Ijlf7vP7 z10&v4)RQ0KnZF~lYikeUy;R_y6aZzN>}3YQYv2NU>9@VJW9S-!{vw_kx1!wt8>7>N ze>Gw=(4l2!#sWSS6hVWrr&wuM>!}1KQ?$w!J~Hyf#Az6a!ei`+0J0HQ!Arb#5Wv=` zhorYst8;T+-%C1^k`efa6tGltO{Bk#*>|J;k%L03+%?YC*VIhiZQ@p$^Im)QSfN#C}yCF?5Yw ztX+}o#u@X9gJS2{pC4zDl9R&)^()z9_(9z-wgWcyFy?r+mLflUve#fW`fIsWvJd&| z&;6G-`rjw{KUPOx<)D_W0x6P>*(1!P$6ZDC8eiWBmvyM6so|I7NDqOJ>peR^qyghd zp3VqH>l3xz2FG(TJ|w8VWQ+I^H=fHu^Pxt9%ObM9<^ARHQ7e6{rxS98a81$zrtq1_ zVDIKy5H$yj0yA=WZ?mT9ND5JWO5tf*1q;#Nq^)Eja5Y}`p;w8c7~4^SVKOT!oIFO> zX)o3%rGVcZGoh~)plL&-2nKLk>IvmN;kYVc!bVM0AL-CC{7z_PjrC;BOzT4jDw%nU zEwqYYA`fd*6%Ow{Bk098GVKYwy&@E$X_Q9TcpdIijaKU?iKw4_VYUxKes6FDfuH__Vws;Bn-1nq;SX4&&CAvjVMzdVV(|e?$R>UiIFA|5H4>1l%V;$ zv#F`6Z~8ae_U>H6WYZ6j;SA`Ekh&~$OCH*xBW)i%CQBXi$TZroG)^T%lD~`u!(q!) zhG-Vp8+>|{NWF*?Cn4O?BghW1si|hR`v3-`Pf)_@*@2huvlOvR%+Fu54H(5$t3*Nm z&-YL6Hn?apU~yurvr_Q~s_AAjT~vvI$IM?s->TTDIJ$i7!6aeWrChy*PQZ_m@&kJq zO94w-6<7`i(y1Q|jvFImZ|h!l-(ftc*>6zOQV)p_rj?zRoqRJuegakt>@1BKm?c{x z4jLUv-Ans|Bq7YWSMfG)tj;~J67~oOd|vFK-^1BFD%cKxhuCfhnaWBVwIy$)Jv7Av z6{L33=VDf&20f6TQfLV^I+ zK3x~nPw*Y{E0^%(KnJ+33s&xbHf#J31Jb{Dc|3urM@}!O01FIAHws{!HkOAO7=+A3 zJg+5aGL?JxT@m}|w;_^u1Dz}4wR8<-v{BDGaK%vCQG=S5B7JtI>&Tig&IpmkWb#7& z;rvAGGq)rwSVbT+bOIenZ4XOQ;;xB z>YYcWDcCR6Dz#1YFR30w7?E36vju0caqn9Q=Mj$T*lJzyvrJg^HbW;9uNn&ABv!&neO&{;N zht5TuDAVLLIq!T>p>=XUo;1n4m9Io+Mg=RN75lLlvl#oK44&otFN&@!_z1!6{5P zQSVWlJk9}OL1J%oX11IC{fH}}NNw^TU8KL2G?YJu8Jd2Q2`5(S%5sn)LaFQ7$^Y?7 zIv5{}!l>fn6J*|b#5JF$iejQiv6HCL$1$F@@RQWj2s}j_^^nt`DN+==*^_I8ktNB@ zBc0~76L4PhIfA1@(p4UWcGCdZ6cdz3Xc3D05Gcc(nzA$+UnWc6TzeYjLv~D;NC)F8 z>3Ph+$pf(>Qr{wKSL|%o-UkilmbS zNhZmx;JeSyrRwN+eGDR+Z4Am-=9g7tChX>6{gq-H?Hz^Xu!evAIs7j^^o|i^iexDI z+2~|z;F3}_G?8XPchlIk49c72H?JAI?zIT65cPD;O^S~X1}OV&aPS>e0R5B4;!d{E z>w8ny)*Ufq(z4g!+tL#fx+!Ecofj?T`UhbmmT1PG3KE2U7~2({dgAHX2+ zpD49Hm>bh}AQu)>C&MWxXKr-M$tfbE{(w|2W0CZx{111PTP(cV=}O?_+8Dwhz}cY< zFc6z>Ww+zotvE3u7+2y_(xI9}Z=zlTg*SeO(kc8>*;5I#yH7i`_{r*#bzzmOQ?at5jB3G~bIK=^S|Zp& z;kLie9zSv`lO}MPYj_`aQRcyORa#GU$r;*HH8*+oOBk%-$HGlbe)bV`qm!qmC zYAPgJgj(wU@R6q+g<@*Nu}7b=skcOLO2$s4AS5y*K4a@4J?8BB&iOv^m-IUbV?9<6 zS9*DpZ9UfIruybyUXXHI3@N_l@a@XdSPgSqpmbO(ee~rMtZ^ttq`NUY(9EzJr0Y1k zB#6Z13rm^b9f7XTd4=etfn-VZ~UP9ubjxMdoEv`$!TvmAxqAPc_ z#;a|m#EYxkqgzjU*zAxEwsa!H}gNowp2*yF);YbE$>qGJ&r6nz+&-I#`+^bZ4=5H&+%UiY{qR)NX3QD0yh=wGwXK&0gn}s{MMrA4 z7W_g7P%YzdegCKj9^!|QOkKRn9 zc-2`m3_Syi`!xce z_s{wgu6YGYfI;Lzk$k{!zc;_Kzjpng9Yo#=mYrEb; zz?Gvk?#qLMP@+}g(>i0&XH?s_OL=YXv`w6Lw(6u^-Y2yqYvurpvz7;S+P@jgQcaw| z-A24HN0BuqoPy)?^8&cHIg+zio<^Ru38Tx0fOP3;;%%*ChR0`#t)y`Gg&@O#T}VVdfjB?dcxa(L`DLywAz3Nexi9NM>y7M|_lr-wJX6FSc! zZ?eoe52ecI3=Zm4O&$G?xG2gPK8SoLIZwpS$mR-V$Q5ek!=yjc1IwnRuU`k( zp103E_R+Cu)LSPx)t)&yYKbQd;&U2;tTYh#+YrMa=G?l_S58qrOb^NkYz2b0i*f7iZe-B z%ehg6YqB^#osS|!;?2yL6R*ma|FFMxzoLs4NhesNM7S-!RFZNK4wVnkc2@U$ur{h7 zF7$eHWLCU%;^IF#cLe4)w0ObUG@r2L2OdnzpXX(RAFrFP02!hJ&TaC?FAVtiz-8?? zYI4t9+$d|=^JmzmN}fg;Q{xN7?B3GYVEdb%&?b4RMm{7u^D^;ck*o!&@*oj{p|0s0 zNK$6n<375fr}q4lKW8X8=F(Wq0w(!4m6w`YDkB|-pPhLkEg9+(RkB&5{7!Br>?&xS zo86BS1#neJtD+w}2ZLh}qk*KIj$JIpvM^q~chjmLS)<2g>3p0iGea~Z^J^$4IO*cL zzcoS^(OUM;$Yad6=F5Xa!}dAaW0 za1=J)BoR5Lz^YGdsPV4xW$4>uy5a;~lEQ7HKfKpJ;gWg-?7jORnRHf#RFSl=JdVB@ zUp$#HA9O58obC403gw9p3O@DIq>h<*TOLVKhVYE@QEbAS3ikGS#Ur5Y1|5uN>f&EJ4CuQPqYYUNAFImT4Jl5-dAdH zsT?qP)5dihiE(eWm|>s$*~MRGH0v;z3o-=lh-j$(!mF|}8gg>-(O)3pYFMbG7c}`l z>*`BFTa&6Q*#pa+M@@>&>+KgsG-n^-DQMz;bGqv&QQ_O|vA!3Tvb9ba@s0kONsM9^ zFK%?0TwN6wJ#5CCiF$@`$G>#KHsC7 zbjAGpX4P;WRbSEL*k zrrMLOZIU?SUW-kg`$v%J2l=}T7Iie=5Jyt8L3g5?Brla4nD<3G?df8QWbO~Uj1xae zk#3|ZL!hO;uOTRC50>FJG#0)>dv3p#Vt^J_bapQ06gsSus>uXPmhyn)jsBxw%nBKW zGk@ZV%j|6@r)U}6IJS_3&OhXFzq#V1g$;+}Q+~H|C5K)cz9wk-s#akKIPq6LGuLg6 z`EpKvWornVv+$)dHvY5DcESC`ufUY>?!^@4B_|6Z9*Yna{q6nIgOOcc=UMvN2+@RC z?4uX%gOzSM*Gx^jK)(RpOA)BdmcBk+A_xAS4_7cQzeiE#r4QT7fCaT%{=iM4BH%8r} z4}fSdri9MVGV3Pd^BZ#~<5=`njR~qaL9}{^cI{_?Qz181D)2pgF-k@0jxLw{;l^v| zQCJ+B0Lx;A|6ar?Gp%EMgC*?oPo=D{$I01&3_#<}{jvXKV!M%LprNe{98Yjcf`0&g zp>10 zDQZc#XZu^fGD}!bJ<~bG&5c1|Ypf6QW;6+Ou`jGw4Xqo`3Nlw_M!X{@B<2(r*52~9 z{r>&r#>=<5GV^X8&L)?z@>~Uj=ZOL(R=PTjPRj98FAP?x#1w913tOHkV>R}@Kg?I) zYNR0JPk4i2kP4*D{Guhgbzi#Hu^}4%goVUyi64Vn;H`vyk4BJVabQWZFk)k3dH@ZS z*THp2wAsSCp5?JGt9>e$-yv!}Rdewh+PCD2V2-OF6_(-h6Wet$e^V7X`tehHyAv_4?Qa#`+Kd4Jtwf^*2J#-)? zLC`Vj%;_7|dxDN%kBI#mmp*TNK3Vi8aiXxWlq)>~a&Xi+fq}-HJQ{jOOtED{Oqxtk zlS9TCRSkEt^o3Do&q0c7I#UhHmT6wtbv!7;ZE^~k@e=6G7Gc1YhDeR zKJ`gdY@r(GL(M&CPbRdY%_nFli(HiUnAgd+IpL1D-nda%yE$|-lxhU*M`@>ccoKKd z<$GLVKYs?r;ujt|RLgToUUyEGuBF)(U+Pip5dcF*gmg(}RU?B^vpE?R{}whbk|*lL zFHlIk>idDHyhc&mgX{v-h8i?)f)NW6T56XB92J^vkr}$e# z_wJ;eyPfEzP@!jwACdC9bXC~&%)NW}uG`sh0~eGiC%=sSU`%+1T`vM+>~K*$BQ}mV z-AByXvEQn2m{)Mzkh8Mo16(Ws2#xp%t6~-&8o6viJ19QQftoBxXCIK zZ?Ox4uUij%b;dh=8W9b2E{nYyGgm&b8aLS2jWN-|mEE@+tvfn&-y7tSq|(Nn%r+12 zFji7|Akm>4+do`DQy~D?@%P9GH+h-(=H@_WwA9S0js%U`_AlZ_GmhVM2kV^PDzQa8 zuF>^QcvBBu@`ZS%2hE2x!bVi7`QV=KS9s=j>k#_EUT%I8jg(R*Gqzx^E@w)oa+KXn9qsid+Zb{58eO#~9V z&@LqO6jhG((~_BSMeB=5`l%TfLB z@KPyi_?qBo5B>yem&;GU8YwR?4=#SbKlR$T!hNk}y2*#FExu9x(u-R@hJ{+a zv8|1Sp1$SbgMtk?ae8`sIEv?G?^jnhH{Fd6ANGGf``#;=p`xkQz(9uW3)dZX667z( z_xErI^zrnmpsh0b+)eshw{Kr&)u<|EoefX}-$7pu z_+hfiolBgfesnR&=!j)UPvSK4~C((1VHkzx>VKFj(*ILFY!jr=~nHr zC&815_Unk*s%2&5oPWzDAwdu3Atfs-4)Beyf3taL4c#HoIVtf1ehaJ`=ot#5!tdeE zPl9nC=bLK8?W74l?l`vtXm+fgK0P_|ASR|2pf@!tNmo{81|1$$LSPwlgGM^C@?UA* zW4dNC$OJIW%0Nn^!aviw8<}8VReAU&HR03&^f5x?HwLAPY;B)Ka0QlYG!VGD!9fxs z&})RY)+EaZU0{-Qj)FsypqJ%3v>!va&&7-j0kP@nG0>8c1r6?COft!8>-_k!6}%UC zbf+4>&Ql2R@sR=&<*#ZBSQpNCX?{^sPX+~86tm>V`Q<|M8i}dt>GeKUcC-Vq(tk$` z+zP?l+dgPV2Z95N9PaJn>Nj!w?nd^Yy?Zc=jAv)dDsr?lE;tUBaT8OsMZq0Tf|ooQ zY+-jd=I_CAOVHpzfPmjC1VY6WbYKu7wSN|0pkbuKWxP1q3pG`PhxA&NJ2%+tgF)K= z>;Bf%Y*J+pu$5Sr@|cfZahL&`D-?QdVeE5FV@CSt4AqA}LFWg7TQNi-Fv&N=2VM$@ zZ{2wT?Nwk%CV3)p`+@x79xZNjKM+nzaNS;d#Tl;0Yp0egiq8yxw8_8qH4)t}G{{S7B9 z_y+`VpF8)a_YZ90x;ekiB`o3&t!JDMtAL!>ees3+?!M%h&m~B$W}jR&i^`X)UBF&? z-NuFs8aYA-pg|@QoJh6cq$Q4gBV~8H4UDWuaBvU<^wcXUg&?uu82eEHX4zOI7K|{= z7uLd06tadILytU|U6@XNRONG$L7Q5@^e(*a79C&_@pxa{X`m@5GbGxUgjy#QY2_zU7meO=yBFiTzov&xtjxz4|f|5#hr>cIiZ0+4x}LT z=HU1b4e;&QL2b#&>HcHj45Nq@4w_5#VVC4WSp5kNM~ke_frJzTDG54Ji}JtRaP#y` z@E#8^S{>P2dfoF3<_#Kd1R$gRd`~WX;#6QzP!J~54?QMANeO8OPsquDKO0!c)+y)j z@mCto9|P;F4wEq zuW7-jwg6tDI8pk%P97AL(IjYagB*5x{X*Ckdsv}n+3_W3J3kfgUM;aW1D>nXWe3n~ zK?j9dmHUi_ucBaFSp^&uU}{E>j@?% z{<)rvB$xUf6$q)ekgj2t;UF3mfyBArjp;IuZ4!1Xu}8R!~KoV+FcMFZuj~` z>J54M!#OMHw~_DgJYRo&Ko7NnCh+4v(a;T^A|Djka!!$AI3`>fc3@;=Bv@;z-%mA^ zJX@|D7np=|Mj*N*ppAlH+-hlURe>`H$mJ?Tdj#Uj4x`X6c|GX)uM^`=HI0afK#x3u z_7U_T73jD^HwT6TdQ1zQ8{kpf!C^TAttr*=x6n5FtlJ_UGN=b0!vU>Dk08G4LQ4=2 zSnufmIoL(aq-e`84oq`8Q#SIyy2Ztyvt#rZd`1Hdiofq(&%2UVC_^IYGA0P8@WJUH zx7N0mmC*emC$@!&1)JH0pPpkr)0B1c{c>`0c755()pO8frw1w2T#S~DO$a$9AyLtM z+xJ=mI|5xn8|m!l-H)J|2=;zlLW1GR65q`wW3W$Jf#Da-ZGNHPLK{j*O+~$;Igl{` zN?grqtGWA|A97VFoP>5&tyUSL6Pg#Gsn81QE3hFeLVIRhN{aD!H)MHvhFqZJXxNRm z061E3{>uvn3;%UxXg4W*Ki#mZy9|x~B$=$;dz}LRPb23V6lEEP;WeGiG!qR)fer}f z!r}s=peQ;FhnN;iLxl#AMntxTf`v$FJOxdlfmo)}0CF->D*;!8#Xt%MPy)k3L@`}m zP=r7{r5JQQ{O(788TRyj@B2LW`+WCxAJ0V|hUk-i=9F$ zbUq(dLeH$~KMCg&3rdS+P!gO59zF7-Jv&D|*tXI6LeeU2**EWW|p_ zWP$dpcLb}sAkQk$NoyPKKn~>M>9bgx=t}s*hXXhEmxU^oO1ZXN5g?{EoAGg+RwfgJ z;%nKyrX%6XLI0^Qy_78c56`~p@isdH@K9gO7vH#!2^W9u_vOB4iu=mdo}MpbWcQ7U zaiaCF&b#~P+SUX(>amJhu2H$CLRp6spXNXN<+iXf8-^~8u)jcQ($P&l-#D1A^w5(r zy~ol&f`WrZ$_xw+dWDCF@2TGg&pJi{PYXAEZ2R=6nWfgBXKzEC7754Hz0RlZNm2i9 zJdW#cw;qzQAOdI-K(i*xy(Dn{wCwEcSX{=vos}~Hs1GcPn-kfRlSWUUzUZ5dDSv)S zy+~|vi|$AkcOyw7@&kYzO9&j2F=^uErCG}x$9}S^RIjgPhMG>6g^fxz37eXd5)vx^ zQF?2OcZdd;rNaj zd^^N@nAMPx=)^g;AT31Q-#y#LQ0>HW!RHopv%xI%AC$`2G~Xn;!YozS&laWDikQBR z1(HbS_^$p8ue~3cA6WQR*=&*mFxi5reHOMkBEpt9h6iUgv2w*Vh}9&|Elh_Yr%SHf*TZ zgd|;|y$Uf$^%xjDr!HVX!JSwLD;E@Ai5{7;3AC~BPAc9FFIsFdCoGEgEGoYtGt87) z?JC$mKSlB!g;9_UF>gP=J3W8Azku1ugRQ>sIq}^Ww;=x6A-@1%#u#fS$OXf-V)tTU z(~Khf9Rw%dy?=i%-8qC2!(5JLy5XmrA2Uv@yKvzhzNxK^4REoJR|dmiD>ABwpS-yu z%RTRt7ao$OCVwX(C7l>A340RU*)T?fany_|F%z#ohr(MgQ>Eu<*XneodhG>YmX(TC znCNWk>guuX-@R;jiUKCkOEdmssHy3YwT%tC)EsR2@%1lWxoNE19t?i%(Q%Y7I2`ohdcg7y&?6y^#w)sX_l|c1SUG#5hXK7 z^=tsVv~_fZvLZ_EkXu0C@Onuey}<_k{(Ll^?ss~f*)stMz@*HHpUP7d>kqD-+0n{! zeLnTX>CwBj1kGT)e*HCsz9h6Ud$V_PT&Ps~)5%mkf;aZ|swfik5?(#Es7&79XKQ3v zYx)r5zE|lMMuxXFH8r0%N4l6c+pQWb!yX$T=LDi@&fhpNRAHBI?cQ_ywvzX!^x9IA z+AM=+(SoBp^kyV&G0T#IaE;0UuA%M8L}KSgf-)E}6wuG2 zAcN${h5`5$h}o)|u%!Js8i739M{_d&R|xWd8jBu|XgV59%eLC-2zpld`>gQ((JTD3 Fe*tiy$1VT> diff --git a/docs/_sources/grids_2023.ipynb b/docs/_sources/grids_2023.ipynb index 62b2e8b..7047ecf 100644 --- a/docs/_sources/grids_2023.ipynb +++ b/docs/_sources/grids_2023.ipynb @@ -496,21 +496,21 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -540,106 +540,106 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 1: The objects of interest. The average pcs/m per sample for each object. The fail rate is the % of all samples that the object appeared in.
  pcs/mquantityfail rate% of totalpcs/mquantityfail rate% of total
code
G112Industrial pellets (nurdles)0.1626860.220.02G112Industrial pellets (nurdles)0.1626860.220.02
G27Cigarette filters1.12164580.850.15G27Cigarette filters1.12164580.850.15
G30Food wrappers; candy, snacks0.5467670.860.06G30Food wrappers; candy, snacks0.5467670.860.06
G32Toys and party favors0.056060.480.01G32Toys and party favors0.056060.480.01
G67Industrial sheeting0.3033560.570.03G67Industrial sheeting0.3033560.570.03
G70Shotgun cartridges0.0810300.480.01G70Shotgun cartridges0.0810300.480.01
G89Plastic construction waste0.1419700.510.02G89Plastic construction waste0.1419700.510.02
G95Cotton bud/swab sticks0.3947770.740.04G95Cotton bud/swab sticks0.3947770.740.04
G96Sanitary pads /panty liners/tampons and applicators0.043730.290.00G96Sanitary pads /panty liners/tampons and applicators0.043730.290.00
GcapsPlastic bottle lids0.3139530.840.04GcapsPlastic bottle lids0.3139530.840.04
GfoamExpanded polystyrene1.02128710.810.12GfoamExpanded polystyrene1.02128710.810.12
GfragsFragmented plastics1.34174790.930.16GfragsFragmented plastics1.34174790.930.16
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -759,18 +759,25 @@ "execution_count": 7, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { "data": { - "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The number of different locations and cities for the data. Note that there are 31 different municipalitites in all.
 before may 2021after may 2021
Number of cities2119
Number of locations4823
Total objects57,62314,703
\n", - "application/papermill.record/text/plain": "" + "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The number of different locations and cities for the data. Note that there are 31 different municipalitites in all.
 before may 2021after may 2021
Number of cities2119
Number of locations4823
Total objects57,62314,703
\n", + "application/papermill.record/text/plain": "" }, "metadata": { "scrapbook": { @@ -832,7 +839,9 @@ "slideshow": { "slide_type": "" }, - "tags": [] + "tags": [ + "remove-input" + ] }, "outputs": [ { @@ -870,12 +879,19 @@ "execution_count": 9, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { @@ -909,18 +925,25 @@ "execution_count": 10, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { "data": { - "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The observed values from the training and testing data. Remark that the testing data is only 22% of all the data. This is because we are only in the first year of a six year sampling period
 before may 2021after may 2021
weight all samples0.780.22
Number of samples26373
Median3.472.28
Average6.133.25
25th percentile1.520.78
75th percentile6.694.31
\n", - "application/papermill.record/text/plain": "" + "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The observed values from the training and testing data. Remark that the testing data is only 22% of all the data. This is because we are only in the first year of a six year sampling period
 before may 2021after may 2021
weight all samples0.780.22
Number of samples26373
Median3.472.28
Average6.133.25
25th percentile1.520.78
75th percentile6.694.31
\n", + "application/papermill.record/text/plain": "" }, "metadata": { "scrapbook": { @@ -974,12 +997,19 @@ "execution_count": 11, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1079,12 +1109,19 @@ "execution_count": 12, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1096,12 +1133,19 @@ "execution_count": 13, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1172,12 +1216,19 @@ "execution_count": 14, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1272,33 +1323,40 @@ "execution_count": 15, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 4: The 94% probability interval of the objects of interest for Saint Sulpice. The median value is used for the predictions
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
3%0.000.000.000.000.000.000.000.000.000.00
25%0.000.000.000.010.010.000.000.010.030.00
48%0.030.420.130.040.140.000.300.080.120.35
50%0.080.450.130.040.160.000.320.090.140.41
52%0.100.460.130.040.170.000.340.090.140.50
75%0.540.660.480.060.310.040.520.120.230.82
97%1.391.290.910.112.830.091.000.220.412.753%0.000.000.000.000.000.000.000.000.000.00
25%0.000.050.030.000.050.000.010.000.040.00
48%0.080.460.350.030.160.000.320.040.110.68
50%0.120.470.390.040.160.010.320.040.110.74
52%0.220.480.430.040.220.020.340.050.120.74
75%0.680.930.570.080.330.050.520.080.231.24
97%1.461.471.210.110.645.581.110.200.505.05
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 15, @@ -1471,12 +1529,19 @@ "execution_count": 16, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1507,12 +1572,19 @@ "execution_count": 17, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1525,33 +1597,40 @@ "execution_count": 18, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 5: The estimated amount in pcs/meter for each object that the participants expected to find.
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
00.161.120.540.050.300.080.390.040.311.34
10.150.570.240.080.050.050.160.100.140.22
20.050.800.200.020.150.040.300.010.251.20
30.100.350.150.030.050.010.060.100.150.50
40.070.150.050.020.010.000.040.010.080.12
50.150.500.300.030.010.000.050.050.200.20
60.161.120.540.050.300.080.390.040.311.34
76.003.000.600.100.400.030.801.002.001.34
80.401.500.300.101.100.010.500.200.402.0000.161.120.540.050.300.080.390.040.311.34
10.150.570.240.080.050.050.160.100.140.22
20.050.800.200.020.150.040.300.010.251.20
30.100.350.150.030.050.010.060.100.150.50
40.070.150.050.020.010.000.040.010.080.12
50.150.500.300.030.010.000.050.050.200.20
60.161.120.540.050.300.080.390.040.311.34
76.003.000.600.100.400.030.801.002.001.34
80.401.500.300.101.100.010.500.200.402.00
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 18, @@ -1756,33 +1835,40 @@ "execution_count": 19, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 6: The survey results of the objects of interest on October 5, 2023 in pieces per meter
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 19, @@ -1894,21 +1980,21 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 6: The survey results of the objects of interest on October 5, 2023 in pieces per meter
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 20, @@ -2018,7 +2104,7 @@ "outputs": [ { "data": { - "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNfklEQVR4nO3deVyU1eLH8c+ICqgwIAhqoGJaYu56cyu1VLLbLdvT69Usl1uZW4vWL8vqlpaVW7uaS3VLs9Jr3Raysmu5r5W7hEqpmIozKoIK5/fHwOgIyM7MA9/3ffHyPud55plzmoH5znnOOY/NGGMQERERsahK3q6AiIiISHEozIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilVfZ2BUpbZmYm+/fvJygoCJvN5u3qiIiISAEYYzh+/Dh169alUqWL972U+zCzf/9+oqOjvV0NERERKYKkpCSioqIueky5DzNBQUGA6z9GcHCwl2sjIiIiBeF0OomOjnZ/jl9MuQ8z2ZeWgoODFWZEREQspiBDRDQAWERERCxNYUZEREQsTWFGRERELK3cj5kpCGMMZ8+eJSMjw9tVkRLi5+dH5cqVNR1fRKQCqPBh5vTp0xw4cIDU1FRvV0VKWLVq1ahTpw5Vq1b1dlVERKQUVegwk5mZSWJiIn5+ftStW5eqVavqm3w5YIzh9OnT/PnnnyQmJtK4ceN8F1wSERHrqtBh5vTp02RmZhIdHU21atW8XR0pQYGBgVSpUoW9e/dy+vRpAgICvF0lEREpJfq6CvrWXk7pdRURqRj0115EREQKxZEGznTPMme6q9wbFGZERESkwA6nQu8F8Oqac4HGmQ7TV7vKD3thPo3CjAAwcOBAbr75Zm9Xo1CsWGcREStzpMHtCyHxGMzY4Ao0ZzJcQWbmRlf57QvLvoemQg8Aroj27NlDTEwMGzdupFWrVu7yadOmYYwp9ecfOHAgx44dY/HixaX+XCIiUrJsNugR4wou4Ao0X+yC34+fO6ZnQ9dxZUlhRgCw2+3eroKIiPi4YH8Y0d71/7MDzflBZmgbGH6l67iypMtMJSEF2A6sBnZkbZcyYwyTJk2iYcOGBAYG0rJlSz7++GNXdVJS6NevH7Vq1SIwMJDGjRszZ84cAGJiYgBo3bo1NpuNbt26ATkv2XTr1o3hw4czatQoQkNDiYyMZMaMGZw8eZJ77rmHoKAgLr30Ur788kv3YzIyMhg0aBAxMTEEBgZy+eWXM23aNPf+p59+mnnz5vGf//wHm82GzWZj2bJlAPzxxx/cddddhIaGEhYWRu/evdmzZ4/HuR966CFCQkIICwtjzJgxZdKTJCIinoL9YWxniAryLI8KgjGdyj7IgMJM8SUBfYBYoAPQJGs7qXSfdty4ccyZM4c333yTLVu2MHr0aP7xj3/www8/8OSTT7J161a+/PJLtm3bxptvvkl4eDgAa9asAWDp0qUcOHCATz/9NM/nmDdvHuHh4axZs4bhw4dz//33c8cdd9CpUyc2bNjAddddR//+/d2rJ2dmZhIVFcVHH33E1q1beeqpp/i///s/PvroIwAeeeQR7rzzTnr16sWBAwc4cOAAnTp1IjU1lWuuuYYaNWrwv//9jx9//JEaNWrQq1cvTp8+DcArr7zC7Nmzeeedd/jxxx85evQoixYtKs3/xCIikgtnOrz4k2ePDLi2J63IOcupLNhMOf9663Q6sdvtOBwOgoODPfalpaWRmJhITExM0RZVS8EVXOJz2RcHzAdCC3/a/Jw8eZLw8HC+++47Onbs6C4fPHgwqampnDhxgvDwcGbPnp3jsXmNmblwLEu3bt3IyMhg+fLlgKtnxG63c+utt/Luu+8CcPDgQerUqcPKlSvp0KFDrnUdNmwYycnJ7l6j3MbMzJ49m0mTJrFt2zb3CsynT58mJCSExYsXExcXR926dRk5ciRjx44F4OzZs8TExNC2bds8x98U+/UVEREP2bOWsi8xgatHpjQuNV3s8/tC6pkpjmRyDzJklSeXztNu3bqVtLQ0evbsSY0aNdw/7777LgkJCdx///3Mnz+fVq1aMWbMGFasWFGk52nRooX7//v5+REWFkbz5s3dZZGRkQAcOnTIXfbWW2/Rrl07atWqRY0aNZg5cyb79u276POsX7+e3bt3ExQU5G5LzZo1SUtLIyEhAYfDwYEDBzyCW+XKlWnXrl2R2iUiIkVjDCxNPLc9tA0suxuGtD5X9s1vruPKkgYAF4ejmPuLKDMzE4D//ve/XHLJJR77/P39iY6OZu/evfz3v/9l6dKldO/enWHDhvHyyy8X6nmqVKnisW2z2TzKsntRsuvz0UcfMXr0aF555RU6duxIUFAQL730EqtXr863PW3btuXf//53jn21atUqVJ1FRKT02APg4ztc0697NnT1wFTxOzcoeGmia7+9jDvDFWaKI78JQKU0Qahp06b4+/uzb98+unbtmusxtWrVYuDAgQwcOJCrr76aRx99lJdfftl9B+mMjIwSr9fy5cvp1KkTDzzwgLssISHB45iqVavmeO42bdqwYMECIiIi8uxKrFOnDqtWraJLly6A6zLT+vXradOmTQm3QkRELia8GvznLtf06+xLSdmznIZfWfZBBhRmiicS19iYvMbMRJbO0wYFBfHII48wevRoMjMzueqqq3A6naxYsYIaNWqQkJBA27ZtueKKK0hPT+fzzz8nNjYWgIiICAIDA/nqq6+IiooiICCgxKZlN2rUiHfffZevv/6amJgY3nvvPdauXeueQQXQoEEDvv76a3bs2EFYWBh2u51+/frx0ksv0bt3b5599lmioqLYt28fn376KY8++ihRUVGMHDmSF154gcaNGxMbG8vkyZM5duxYidRbREQKJ7fA4o1ZTNk0ZqY4QoFZuILL+eKyykth8G+2f/3rXzz11FNMnDiR2NhYrrvuOj777DNiYmKoWrUqjz/+OC1atKBLly74+fkxf/58wDXWZPr06bz99tvUrVuX3r17l1id7rvvPm699Vbuuusu2rdvz5EjRzx6aQCGDBnC5Zdf7h5X89NPP1GtWjX+97//Ua9ePW699VZiY2O59957OXXqlLun5uGHH2bAgAEMHDjQfQnrlltuKbG6i4iIdWk2U0nMdknBNdjXgevSUiSlGmSkYDSbSUTEugozm0mXmUpCKAovIiIiXqLLTCIiImJpCjMiIiJiaQozIiIiYmkKMyIiImJpCjMiIiJiaQozIiIiYmkKMyIiImJpCjMWZYxh6NCh1KxZE5vNxqZNm7xWl27dujFq1CivPb+IiFRsWjTPor766ivmzp3LsmXLaNiwIeHh4d6ukoiIiFcozBSTI83zzqEAznQwpnTvHJqQkECdOnXo1KlT6T2JiIiIBegyUzEcToXeC+DVNa4AA65/p692lR9OLZ3nHThwIMOHD2ffvn3YbDYaNGhAeno6I0aMICIigoCAAK666irWrl3rfszcuXMJCQnxOM/ixYux2Wzu7aeffppWrVrx3nvv0aBBA+x2O3369OH48ePuY06ePMmAAQOoUaMGderU4ZVXXimdRoqIiBSQwkwROdLg9oWQeAxmbHAFmjMZriAzc6Or/PaFruNK2rRp03j22WeJioriwIEDrF27ljFjxvDJJ58wb948NmzYQKNGjbjuuus4evRooc6dkJDA4sWL+fzzz/n888/54YcfeOGFF9z7H330Ub7//nsWLVpEfHw8y5YtY/369SXdRBERkQJTmCkimw16xJzbnrEBus1zBZlsPRu6jitpdrudoKAg/Pz8qF27NtWqVePNN9/kpZde4vrrr6dp06bMnDmTwMBA3nnnnUKdOzMzk7lz59KsWTOuvvpq+vfvz7fffgvAiRMneOedd3j55Zfp2bMnzZs3Z968eWRkZJR8I0VERArIq2Hmf//7HzfeeCN169bFZrOxePFij/3GGJ5++mnq1q1LYGAg3bp1Y8uWLd6p7AWC/WFEexjS+lzZ7+euxjC0DQy/0nMsTWlJSEjgzJkzdO7c2V1WpUoVrrzySrZt21aoczVo0ICgoCD3dp06dTh06JD7eU6fPk3Hjh3d+2vWrMnll19ezBaIiIgUnVfDzMmTJ2nZsiWvvfZarvsnTZrE5MmTee2111i7di21a9emZ8+eHmM4vCnYH8Z2hqggz/KoIBjTqWyCDLhCH+Ax/iW7PLusUqVK7uOynTlzJse5qlSp4rFts9nIzMz0eB4RERFf4tUwc/311/Pcc89x66235thnjGHq1Kk88cQT3HrrrTRr1ox58+aRmprKBx984IXa5uRMhxd/8uyRAdf2pBXnBgWXtkaNGlG1alV+/PFHd9mZM2dYt24dsbGxANSqVYvjx49z8uRJ9zGFXZumUaNGVKlShVWrVrnLUlJS2LlzZ/EaICIiUgw+O2YmMTGRgwcPEhcX5y7z9/ena9eurFixIs/Hpaen43Q6PX5KQ/aspfPHyJzfQ5M9KLgsAk316tW5//77efTRR/nqq6/YunUrQ4YMITU1lUGDBgHQvn17qlWrxv/93/+xe/duPvjgA+bOnVuo56lRowaDBg3i0Ucf5dtvv+XXX39l4MCBVKrks28jERGpAHz2U+jgwYMAREZGepRHRka69+Vm4sSJ2O129090dHSp1M8YWJp4bntoG1h2t+cYmm9+cx1XFl544QVuu+02+vfvT5s2bdi9ezdff/01oaGhgGtsy/vvv88XX3xB8+bN+fDDD3n66acL/TwvvfQSXbp04aabbqJHjx5cddVVtG3btoRbIyIiUnA24yMDIWw2G4sWLeLmm28GYMWKFXTu3Jn9+/dTp04d93FDhgwhKSmJr776KtfzpKenk55+rjvE6XQSHR2Nw+EgODjY49i0tDQSExOJiYkhIKDwK9wdTnVNv+7Z8Nxg3+wem6WJ8PEdEF6t0KeVElLc11dERLzH6XRit9tz/fy+kM+uAFy7dm3A1UNzfpg5dOhQjt6a8/n7++PvXzYjb8OrwX/u8lwBOHuW0/ArS3cFYBEREXHx2ctMMTEx1K5dm2+++cZddvr0aX744QefWsLfHpBz1lKwv4KMiIhIWfFqz8yJEyfYvXu3ezsxMZFNmzZRs2ZN6tWrx6hRo5gwYQKNGzemcePGTJgwgWrVqvH3v//di7UWERERX+LVMLNu3TquueYa9/ZDDz0EwN13383cuXMZM2YMp06d4oEHHiAlJYX27dsTHx/vsaibiIiIVGw+MwC4tFxsAJEGiJZven1FRKyrMAOAfXbMjIiIiEhBKMyIiIiIpSnMiIiIiKUpzIiIiIilKcxIvho0aMDUqVPd2zabjcWLF5d5PZ5++mlatWpV5s8rIiK+TWFGCu3AgQNcf/31BTpWAUREREqbz97OQErW6dOnqVq1aomcK/tWEyIiIr5APTMlICUlhe3bt7N69Wp27NhBSkpKqT9nt27dePDBB3nwwQcJCQkhLCyMcePGkb1sUIMGDXjuuecYOHAgdrudIUOGAK4beHbp0oXAwECio6MZMWIEJ0+edJ/30KFD3HjjjQQGBhITE8O///3vHM994WWm33//nT59+lCzZk2qV69Ou3btWL16NXPnzuWZZ55h8+bN2Gw2bDYbc+fOBcDhcDB06FAiIiIIDg7m2muvZfPmzR7P88ILLxAZGUlQUBCDBg0iLS2thP8riohIeaAwU0xJSUn06dOH2NhYOnToQJMmTejTpw9JSUml/tzz5s2jcuXKrF69munTpzNlyhRmzZrl3v/SSy/RrFkz1q9fz5NPPskvv/zCddddx6233srPP//MggUL+PHHH3nwwQfdjxk4cCB79uzhu+++4+OPP+aNN97g0KFDedbhxIkTdO3alf3797NkyRI2b97MmDFjyMzM5K677uLhhx/miiuu4MCBAxw4cIC77roLYww33HADBw8e5IsvvmD9+vW0adOG7t27c/ToUQA++ugjxo8fz/PPP8+6deuoU6cOb7zxRun9xxQREesy5ZzD4TCAcTgcOfadOnXKbN261Zw6dapI5z569KiJi4szQI6fuLg4c/To0eJWP09du3Y1sbGxJjMz0102duxYExsba4wxpn79+ubmm2/2eEz//v3N0KFDPcqWL19uKlWqZE6dOmV27NhhALNq1Sr3/m3bthnATJkyxV0GmEWLFhljjHn77bdNUFCQOXLkSK71HD9+vGnZsqVH2bfffmuCg4NNWlqaR/mll15q3n77bWOMMR07djT33Xefx/727dvnONfFFPf1FRER77nY5/eF1DNTDMnJycTHx+e6Lz4+nuTk5FJ9/g4dOmCz2dzbHTt2ZNeuXWRkZADQrl07j+PXr1/P3LlzqVGjhvvnuuuuIzMzk8TERLZt20blypU9HtekSRNCQkLyrMOmTZto3bo1NWvWLHC9169fz4kTJwgLC/OoS2JiIgkJCQBs27aNjh07ejzuwm0RERHQAOBicTgcxdpf2qpXr+6xnZmZyT//+U9GjBiR49h69eqxY8cOAI+AlJ/AwMBC1yszM5M6deqwbNmyHPsuFpxERERyozBTDHa7vVj7i2vVqlU5ths3boyfn1+ux7dp04YtW7bQqFGjXPfHxsZy9uxZ1q1bx5VXXgnAjh07OHbsWJ51aNGiBbNmzeLo0aO59s5UrVrV3VN0fj0OHjxI5cqVadCgQZ51WbVqFQMGDPBon4iIyIV0makYIiMjiYuLy3VfXFwckZGRpfr8SUlJPPTQQ+zYsYMPP/yQV199lZEjR+Z5/NixY1m5ciXDhg1j06ZN7Nq1iyVLljB8+HAALr/8cnr16sWQIUNYvXo169evZ/DgwRftfenbty+1a9fm5ptv5qeffuK3337jk08+YeXKlYBrVlViYiKbNm3i8OHDpKen06NHDzp27MjNN9/M119/zZ49e1ixYgXjxo1j3bp1AIwcOZLZs2cze/Zsdu7cyfjx49myZUsJ/tcTEZHyQmGmGEJDQ5k1a1aOQBMXF8esWbMIDQ0t1ecfMGAAp06d4sorr2TYsGEMHz6coUOH5nl8ixYt+OGHH9i1axdXX301rVu35sknn6ROnTruY+bMmUN0dDRdu3bl1ltvdU+fzkvVqlWJj48nIiKCv/71rzRv3pwXXnjB3Tt022230atXL6655hpq1arFhx9+iM1m44svvqBLly7ce++9XHbZZfTp04c9e/a4A+Bdd93FU089xdixY2nbti179+7l/vvvL6H/ciIiUp7YjMlamKSccjqd2O12HA4HwcHBHvvS0tJITEwkJiaGgICAIj9HSkoKycnJOBwO7HY7kZGRpR5kunXrRqtWrTxuMyCeSur1FRGRsnexz+8LacxMCQgNDS318CIiIiK502UmERERsTT1zFhUbtOaRUREKiL1zIiIiIilKcyIiIiIpSnMAOV8QleFpddVRKRiqNBhpkqVKgCkpqZ6uSZSGrJf1+zXWUREyqcKPQDYz8+PkJAQDh06BEC1atUKdV8i8U3GGFJTUzl06BAhISF53t5BRETKhwodZgBq164N4A40Un6EhIS4X18RESm/KnyYsdls1KlTh4iICM6cOePt6kgJqVKlinpkREQqiAofZrL5+fnpw09ERMSCKvQAYBEREbE+hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSfDjNnz55l3LhxxMTEEBgYSMOGDXn22WfJzMz0dtVERETER1T2dgUu5sUXX+Stt95i3rx5XHHFFaxbt4577rkHu93OyJEjvV09ERER8QE+HWZWrlxJ7969ueGGGwBo0KABH374IevWrfNyzURERMRX+PRlpquuuopvv/2WnTt3ArB582Z+/PFH/vrXv+b5mPT0dJxOp8ePiIiIlF8+3TMzduxYHA4HTZo0wc/Pj4yMDJ5//nn69u2b52MmTpzIM888U4a1FBEREW/y6Z6ZBQsW8P777/PBBx+wYcMG5s2bx8svv8y8efPyfMzjjz+Ow+Fw/yQlJZVhjUVERKSs2YwxxtuVyEt0dDSPPfYYw4YNc5c999xzvP/++2zfvr1A53A6ndjtdhwOB8HBwaVVVRERESlBhfn89umemdTUVCpV8qyin5+fpmaLiIiIm0+Pmbnxxht5/vnnqVevHldccQUbN25k8uTJ3Hvvvd6umoiIiPgIn77MdPz4cZ588kkWLVrEoUOHqFu3Ln379uWpp56iatWqBTqHLjOJiIhYT2E+v306zJQEhRkRERHrKTdjZkRERETyozAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilubzYeaPP/7gH//4B2FhYVSrVo1WrVqxfv16b1dLREREfERlb1fgYlJSUujcuTPXXHMNX375JRERESQkJBASEuLtqkEKkAw4gBAgAgj1ZoVEREQqJp8OMy+++CLR0dHMmTPHXdagQQPvVShbEjAYiD+vLA6YBUR7pUYiIiIVlk9fZlqyZAnt2rXjjjvuICIigtatWzNz5kzvViqFnEGGrO3BWftFRESkzPh0mPntt9948803ady4MV9//TX33XcfI0aM4N13383zMenp6TidTo+fEpVMziCTLT5rv4iIiJQZn77MlJmZSbt27ZgwYQIArVu3ZsuWLbz55psMGDAg18dMnDiRZ555pvQq5SjmfhERESlRRQ4za9asYdmyZRw6dIjMzEyPfZMnTy52xQDq1KlD06ZNPcpiY2P55JNP8nzM448/zkMPPeTedjqdREeX4EAWezH3i4iISIkqUpiZMGEC48aN4/LLLycyMhKbzebed/7/L67OnTuzY8cOj7KdO3dSv379PB/j7++Pv79/idUhh0hcg31zu9QUl7VfREREykyRwsy0adOYPXs2AwcOLOHqeBo9ejSdOnViwoQJ3HnnnaxZs4YZM2YwY8aMUn3eiwrFNWspr9lMmp4tIiJSpooUZipVqkTnzp1Lui45/OUvf2HRokU8/vjjPPvss8TExDB16lT69etX6s99UdHAfM6tM2PH1SOjICMiIlLmbMYYU9gHTZo0if379zN16tRSqFLJcjqd2O12HA4HwcHB3q6OiIiIFEBhPr+L1DPzyCOPcMMNN3DppZfStGlTqlSp4rH/008/LcppRURERAqtSGFm+PDhfP/991xzzTWEhYWV6KBfERERkcIoUph59913+eSTT7jhhhtKuj4iIiIihVKkFYBr1qzJpZdeWtJ1ERERESm0IoWZp59+mvHjx5OamlrS9REREREplCJdZpo+fToJCQlERkbSoEGDHAOAN2zYUCKVExEREclPkcLMzTffXMLVEBERESmaQq0zs3PnTi677LLSrE+J0zozIiIiJcuRBjYbBJ939yBnOhgD9oCSeY7CfH4XasxM69atiY2NZezYsaxcubJYlRQRERHrOZwKvRfAq2tcAQZc/05f7So/7IXhtIUKM0eOHGHSpEkcOXKEW265hcjISAYNGsSSJUtIS0srrTqKiIiID3Ckwe0LIfEYzNjgCjRnMlxBZuZGV/ntC13HlaUi3c4AwBjDypUrWbJkCUuWLGHv3r306NGD3r1787e//Y2IiIiSrmuR6DKTiIhIycjugZm58VxZVBD8fvzc9tA2MPxKz0tQRXqu0rrMdD6bzUanTp144YUX2Lp1K5s2baJLly7MnTuX6OhoXn/99aKeWkRERHxQsD+MaA9DWp8rK40gU1hF7pm5mCNHjnD06FEaN25c0qcuNPXMiIiIlKwzGdBtnmeQiQqCZXdDFb+SeY5S75mZN28e//3vf93bY8aMISQkhE6dOrF3717CwsJ8IsiIiIhIyXKmw4s/eQYZcG1PWnFuUHBZKlKYmTBhAoGBgQCsXLmS1157jUmTJhEeHs7o0aNLtIIiIiLiG/IaM5Mte1BwWQeaIoWZpKQkGjVqBMDixYu5/fbbGTp0KBMnTmT58uUlWkERERHxDcbA0sRz20PbuC4tnT+G5pvfXMeVpSKFmRo1anDkyBEA4uPj6dGjBwABAQGcOnWq5GonIiIiPsMeAB/fATEh5wb7VvE7Nyg4JsS1v6QWziuoIt3OoGfPngwePJjWrVuzc+dObrjhBgC2bNlCgwYNSrJ+IiIi4kPCq8F/7vJcATh7ltPwK8s+yEARe2Zef/11OnbsyJ9//sknn3xCWFgYAOvXr6dv374lWkERERHxLfaAnNOvg/29E2SglKZm+xJNzRYREbGeUp+aPWfOHBYuXJijfOHChcybN68opxQREREpkiKFmRdeeIHw8PAc5REREUyYMKHYlRIREREpqCKFmb179xITE5OjvH79+uzbt6/YlRIREREpqCKFmYiICH7++ecc5Zs3b3YPBhYREREpC0UKM3369GHEiBF8//33ZGRkkJGRwXfffcfIkSPp06dPSddRREREJE9FWmfmueeeY+/evXTv3p3KlV2nyMjI4O6779aYGRERESlTxZqavWvXLjZu3EhgYCAtWrSgfv36JVm3EqGp2SIiItZTmM/vIvXMALzzzjtMmTKFXbt2AdC4cWNGjRrF4MGDi3pKERERkUIrUph58sknmTJlCsOHD6djx46A6+7Zo0ePZs+ePTz33HMlWkkRERGRvBTpMlN4eDivvvpqjlsXfPjhhwwfPpzDhw+XWAWLS5eZRERErKfUVwDOyMigXbt2Ocrbtm3L2bNni3JKERERkSIpUpj5xz/+wZtvvpmjfMaMGfTr16/YlRIREREpqGINAI6Pj6dDhw4ArFq1iqSkJAYMGMBDDz3kPm7y5MnFr6WIiIhIHooUZn799VfatGkDQEJCAgC1atWiVq1a/Prrr+7jbDZbCVRRREREJG9FCjPff/99SddDREREpEiKNGZGRERExFcozIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKVZKsxMnDgRm83GqFGjvF0VERER8RGWCTNr165lxowZtGjRwttVERERER9iiTBz4sQJ+vXrx8yZMwkNDfV2dURERMSHWCLMDBs2jBtuuIEePXp4uyoiIiLiYyp7uwL5mT9/Phs2bGDt2rUFOj49PZ309HT3ttPpLK2qiYiIiA/w6Z6ZpKQkRo4cyfvvv09AQECBHjNx4kTsdrv7Jzo6upRrKSIiIt5kM8YYb1ciL4sXL+aWW27Bz8/PXZaRkYHNZqNSpUqkp6d77IPce2aio6NxOBwEBweXWd1FRESk6JxOJ3a7vUCf3z59mal79+788ssvHmX33HMPTZo0YezYsTmCDIC/vz/+/v5lVUURERHxMp8OM0FBQTRr1syjrHr16oSFheUoFxERkYrJp8fMiIiIiOTHp3tmcrNs2TJvV0FERER8iHpmKjBHGjjTPcuc6a5yERERq1CYqaAOp0LvBfDqmnOBxpkO01e7yg+nerd+IiIiBaUwUwE50uD2hZB4DGZscAWaMxmuIDNzo6v89oXqoREREWuw3JgZKT6bDXrEuIILuALNF7vg9+PnjunZ0HWciIiIr1PPTAUU7A8j2sOQ1ufKzg8yQ9vA8Ctdx4mIiPg6hZkKKtgfxnaGqCDP8qggGNNJQUZERKxDYaaCcqbDiz959siAa3vSipyznERERHyVwkwFlD1rKXvMDHj20GQPClagERERK1CYqYCMgaWJ57aHtoFld3uOofnmN9dxIiIivk6zmSogewB8fIdr+nXPhq7BvlX8XIOCwRV0Pr7DdZyIiIivsxlTvr9/F+YW4hWNI801/fr8wb7OdFePjIKMiIh4U2E+v9UzU4HlFlg0i0lERKxGY2ZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTStAJwRZcCJAMOIASIAEK9WSEREZHCUc9MRZYE9AFigQ5Ak6ztJG9WSkREpHAUZiqqFGAwEH9BeXxWeUqZ10hERKRIFGYqqmRyBpls8Vn7RURELEBhpqJyFHO/iIiIj1CYqajsxdwvIiLiIxRmKqpIIC6PfXFZ+0VERCxAYaaiCgVmkTPQxGWVa3q2iIhYhNaZqciigfmcW2fGjqtHRkFGREQsRGGmogtF4UVERCxNl5lERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNJ8OsxMnDiRv/zlLwQFBREREcHNN9/Mjh07vF0tERER8SE+HWZ++OEHhg0bxqpVq/jmm284e/YscXFxnDx50ttVExERKZoUYDuwGtiRtW1FPtQOmzHGeO/pC+fPP/8kIiKCH374gS5duhToMU6nE7vdjsPhIDg4uJRrKCIichFJwGAg/ryyOGAWEO2VGhVNGbSjMJ/fPt0zcyGHwwFAzZo1vVwTERGRQkohZwAga3sw1umh8cF2VC77pywaYwwPPfQQV111Fc2aNcvzuPT0dNLT093bTqezLKonIiJyccnkDADZ4rP2h5ZddYrMB9thmZ6ZBx98kJ9//pkPP/zwosdNnDgRu93u/omOtlK/nYiIlFuOYu73FT7YDkuEmeHDh7NkyRK+//57oqKiLnrs448/jsPhcP8kJSWVUS1FREQuwl7M/b7CB9vh05eZjDEMHz6cRYsWsWzZMmJiYvJ9jL+/P/7+/mVQOxERkUKIxDVINrdLNHFZ+63AB9vh0z0zw4YN4/333+eDDz4gKCiIgwcPcvDgQU6dOuXtqomIiBROKK7ZPnEXlGfPArLCeBnwyXb49NRsm82Wa/mcOXMYOHBggc6hqdkiIuJTUnANknXguiQTiXWCzPlKuR2F+fz2+ctMIiIi5Uoo1gwvF/Khdvj0ZSYRERGR/CjMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKX59GwmKQPnT60LASLwmdHpIiIiBaGemYosCegDxAIdgCZZ27oDhIiIWIjCTEXlg7dwFxERKQqFmYqqILdwFxERsQCFmYrKB2/hLiIiUhQaAFxR+eAt3EVExEKScA1JOIZrAkkoEO2dqqhnpqLKvoV7bqx0K3oRESl7u4F7gZZA16x/780q9wKFmYrKB2/hLiIiFpAE3A8svaB8aVa5F2bE6jJTRRYNzKd83IpeRETKRgo5g0y2pVn7y/hyk8JMRedDt3AXERELOFbM/aVAl5lERESk4EKKub8UKMyIiIhIwdmBHnns64FXZsPqMlNFdxA4xLl7M9UCanuzQlIu6J5fIuVXOjAFGI3n2JkewNSs/WVMYaYCc6SC7QgEdwJOAtXBuRpMMNirebt2YllJ5LxVRvYsOS+tQSEiJSgFuAnX7/QLgBMIBvYD1wJLyr5KusxUQR0+Ab0Xwqv7wbkUiHD9O32/q/zwCW/XUCxJ9/wSKf/suHr0bwLa4Qow7bK2D+GVy0wKMxWQIw1u/wQSj8GMrfDqcTizB6Yfh5lbXeW3f+I6TqRQdM8vkfLPBxddVZipgGw26NHg3PaMrdDtQ1eQydazges4kULRPb+kNKUA24HVwA7U0+ctPrjoqsbMVEDB/jCiJXD6XID5/fi5/UObwvCWruNECkX3/JLSorFYvsXHFl1Vz0wFFZwOY6+GqCDP8qggGHO1a79Ioflg97OUAxqL5ZtCgSZA+6x/vThjUWGmgnKGwIurPXtkwLU9aY1rv0ih+WD3s5QDGosl+dBlpgrImQ7TV8PMTefKooLOBZsZGwEbDL9Sl5qkCHys+1nKAY3FknyoZ6YCMgaWJp7bHtoGlt0NQ1qfK/vmN9dxIkXiQ93PFZ0jzfUF5nzOdIvNVtRYLMmHwkwFZA+Aj++AmBAY2hqGt4Aqm1yDgoe0dpV/fIfrOBGxrsOp0HsBvLoanA5gvevf6atd5YdTvV3DAtJYLMmHzZjy/f3b6XRit9txOBwEBwd7uzo+xXEKbIkQfCXnVgBeAyYG7IHerp2IFIcjzRVYEo+5toc2hTFXwYs/npvFGBMC/7nLIl9cNJupwinM57fGzFRUKWB/CPgIyP52dhKC/wLcCUxGlwZELMxmgx4xMHOja3vGVvgiyXPQf88YC60npbFYchEKM0XgSHP9ATh/cKwz3TXGxBLfcMD1B2FuLuWpWeVj0R8JEQtzryeVXo7WkwpFf5ckVxozU0jua9Brzg2qy54dZKlr0JodIFLuBe+GsVflsZ7UVa79IuWBwkwhONLg9oVZ9zTa4Ao0ZzKypjlvzLqn0UKLzBLQ7ACRcs/ZyDVGJtf1pH507RcpDxRmCiH7GnS2GRug27xz16QBeja0yDXo8jY7QPdsEfHgTIfpmz3vuXZ+D82MrfDq5pzTtkWsSGGmEIL9YUR7z/VYPK5Bt7HQQnPlaKVWxylwHsB1C/oOQFvXtuOUlysm4kU51pNqCsv6wpCm58q+SdR6UlI+KMwUUrA/jO2cxzXoThYJMtlswO3AZ8DCrH9vzyq3iMMnoPdH8Oof4FwKRLj+nf6Hq/zwCW/XUMQ7cqwndSVU2QojrtR6UlL+KMwUkjMdXvwpj2vQKyzUZZsCDAP2nldmy9oehiUu0zjS4PZPssYwbYVXj8OZPTD9uKtrPfGYa78lxjCJlILwaq51ZIa3g+CDwFkIToYR7Vzl4dW8XUOxNB+6vK8wUwjuexqdN0bG4xr0Bs9ZTj7tEK4FqFYBNwJ3AH/L2h6ctd/H2WzQo8G57RlboduHnmMEejawyBgmkVJiT4HgPrhuK9EBuNy1bbfAFxbxYUlAHyAW1/uqSdZ2kneqozBTCOXqnkYZwNuQ0iGF7Z9tZ/XC1ez4fAcpHVLg7az9Pi57HY3zxwBYfh0NkZKUAgzEdQn5fJ9llSvQSFGkkHM1ZrK2B+OV95UWzSuE7GvQty90rZx5/j2NwBV0LHMNOhOS/pnE4GmDiX/+3Dsyrnscs0bOIjrTGuuDBx+AsVfDlxesbBoVBGOuhiqJQIi3aleBpXBupdYQIAJLDSovN5LJ+YGTLT5rv16Xsmf1349k4CdIeSKF5A7JONIchASGELEygtCpoV55X6lnppDCq8F/7oTh4RB8CdDO9e+IcFe5Va5Bp9hSXEHmW8+/dPHfxjN42mBSbNb4yuasAy+uymMM0ypw1vVOvSo0H+t+rtC0OKbvKQ+/H8ch6cMk+qzqQ+yNsXS4owNN/taEPqv6kPRhEhzP/xQlTWGmsFLA/kDWPYxOZpVl3dPI/gCW6bZNzkjOEWSyxX8bT3JGchnXqPCc6TD9Z5i5+VyZxximzVpHo8z5YPdzhVajmPulZJWT34+Umvl8Ga5Z9g1RmCms7HsaXXjbgux7Gvl+BgDAcfLiX8ny2+8LcoxhagnL+sOQlufKtI5GGSvIZQ0pO5WBIZAy/oKxceNTYAgaaFDWkoHfgAt78KtllVvk9yM5PZ8vw+ll3xCFmcIqJ922dvvF71eQ335f4LGORnMYHgBVomBEAAxppnU0vKKc/H6UG2dgzxNJ9Fl5weWAlX3Y80QSnPF2BSuYDHD8BM5vgepZZdVd246fsMTECwDH8Xy+DOezvzQozBRWObmnUaR/JHHdc7+fQVz3OCL9rXE/g/BU+M+NMLwaBPcADrn+HVHdVR5ulRt/lhe6rOFT/ghPYfCQwcTHX3A5ID6eIUMH80e4Ra5rlBOH60HvL+HVExcs8nncVX64nrdrWDC++GVYYaawysk9jUKPhjJr5KwcgSZ7NlPoUYsMrd8P9jsh+EY8xzDd6CpnvxfrVkiOtJzje5zpFlv0rzLQPY993dFljTLkSIPtScl8+03ulwOWxsezPSnZWu8vH1qkrbAcaXD7p1mLfG5xBZoci3x+ao3f98jISOLi8vgyHBdHZGTZfxAqzBRWebmnURBE941mfof5bPtsG6sWrmLbZ9uY32E+0X2jISj/U/iETHB8AM7P8Oy2/cxVjkXGyxxOhd4LPBddzF6ksfcC135LOAyMJGeg6Z5VfrjMa1Rh2WyQeeri3f2ZpxzWWVTS4rOAbDbofv6NirfkXOSzR4w1FvkMDQ1l1uuziOtxwZfhHnHMemMWoaFl/0Go70lFEQ3MBI5l/YRk/VhjaRaXSKA7hGb9Dzh3T6buWKaH6fCl0H8JjGiaQv0fkzn+m4PgS0PYkxnB9G9Cee8mCPd2JfPhSHOtXZR4zLWKNLju83X+atO3L3QtP+/z43+CgFshZVYKyS8m43A6CLGHEPFHBKGDQ+Ebb1ew4gj2h0vCL97df0m43RqLSuY3C2g+Pv9F0hi4obHrz2zVMym0qJ7MqRMOqgWFsPlEBGeqhnJ9I4tMWDgA0aOjmd9+PskjXevM2APsRK6KJHRUKMwA6pRtlRRmisCRCrbjENwJ16WN6uBcDSYV7BZZZ4ZQYDJwH/D8eeU9gLfw+T8M4AoB/ZfAyNgkXh472KM7vXvPOB55YRb9l0Qz/zbfDgE2m+sb2TeJkHzCFWi+2OVaKyewMkTWgJ4NrfGNjQhIWpDE4Oc8p23GdY9j1oJZREdYKfFbX51Q1+WAC8fMgOtyQJ1Qi3xrOX8W0Pm9lOfPAvLxv1k2G6zYC/0bJDFo8GDGnvf3qkdcHLNmzuLzfdE0qunFShbUn8DnEPr5eV+GL9xfxmHGZowlcmCROZ1O7HY7DoeD4ODgYp/v8Ano/5+sngDbBT0BW0N5rzeEW2GQYwquLtrcLqfHYYlvOs50+GlHCq880ifXcQHde8bx8Cvz6XxZqM9/+zx5Gk6egYQUuHcJpJ6BalVg9k1waShUrwLVq3q7lvlLOZBCn4F98vzwnD93PqF1fPyNdb5kcq7UapHPfwBnKuzcm8RjI3OG/RemzeKy+tEEW+EL2BY4XhtOJqdwLDEZxykHIdVCsDeIoHpkKEEHgSu8Xcn8HUhOYUD/PizN5e9Vz7g45r03nzoRFvj9WA50ucj+/wFXF/9pCvP5rTBTCI406PNJVk/AY7n3BEzb5vs9AYBrEF3sRfZvw3VN2sdt3bqdK67IuyFbtmyjaVPfb0h2SB7WPIWoSsnsS3ZQr3YIv5+N4PVfrROSt2/ZTmyzvF+Pbb9uo8kVvv96ABxLA9Ih5DJcN16NgJSdYPOHEF///SZrzNUq+PcWuOdy12WNM6kOqlSz8/PJSObsCOUfzWB4e9+/f9mxVDh6KIn7/+k5MysuLo43355FzYhoQnw8lDnT4det2+ncJu/fjxUbtnFF0yY+/3rwC9DiIvt/BpoX/2kK8/ltiQHAb7zxBjExMQQEBNC2bVuWL1/ulXrYbDCieUqOIAPw7TfxvPzYYEY0T7HG5YBysh7I8SMXr2h++32BI80VZEbGJjH1kT60bh5L7x4daN2sCVMf7cPI2CT6/8casxyO5rO+RIoX1p8oikMnoe8n8NPeFLYu287q/61m67IdrNibQt9PXPt9nTGwdI+rl+/1X0NZf7wJvTq2Z93xJrz+ayipZ6yxqOSJdDjmSGHo0NynmP/zn4M55kjhhI+v9G0MHEm5+Pv/cIrD518PAAK4+KxFL4R9nw8zCxYsYNSoUTzxxBNs3LiRq6++muuvv559+/aVeV2C/aF+5bynOn77TTz1Kyf7fqqGcrNeTlDYxSua335fkAk8mE9IfrB5is9PzDqWBqf8Lv7fO9XP7urx8GHH0uDuxa5wOeWRPlzRNJYOXTpwRdMmTHnEFS7vXozPt8MeAB/flrWoZFMYHgRVGsCIINed5mNCXPt9vRf5rIGE3y8+xTzh92TO+vgvSOVKEFP74r8fMbXtVPb5T2VcE18uNmvxWBnXBwuEmcmTJzNo0CAGDx5MbGwsU6dOJTo6mjfffNMr9TmeT7LOb7/PKAfr5TjTYe/ZSLr3zL0h3XvGsTcj0ufvzVQJiPK7eEiO8kvG1zv8DJDmf/HXI80CizEaChYurSD8IPzneleQ8VhUMshVHn7Q2zXMX6UCTjGv5OO/IGczYfupi6/Psv1UJGczy7hiRREE9MU1Rf4zYGHWvx2yyr2xtIfxYenp6cbPz898+umnHuUjRowwXbp0yfUxaWlpxuFwuH+SkpIMYBwOR4nUacuWbQbX37tcf7Zs2VYiz1Mm9hlj4owxnPcTl1VuAcdOGdPrfWO+XL/PdO8Z5/E6dO8ZZ75cv8/0et91nK9bsXLVRd9XK1au8nYVC+ToSWPWbM399VizdZ9JOentGhbMlq35/J5vtcjv+Q/GmEbGmGrG8/e8Wlb5D96rWmFs+TWf1+NXa7wefzqNWf7zPtMzzvP3o2dcnFn+yz7zp9PbNSygoybnZ8f5nyFHS+ZpHA5HgT+/fXpq9uHDh8nIyMixmmBkZCQHD+b+lWLixIk888wzpVKf83sC8po9szcjkqh03x9QB7jWxZnPudkadlw9MhYYTA+u7vH3boL+S6J5+MX5TJ/kml0W1NDOXhPJtK2udWZ8vRsdwB6cz/Lg+ez3FaFboVXraG4dN59HnnWtoxFYw85vpyNpdVkoVTYC7bxdy/wdP5xPD2w++31GCLA7l/LUrPKQsqxM0dWsefEp5jVr+n6PH0C4geaXRPPu5Pkc2+OalWUPtBPSIJLAOqHYffxSmVv24rEXrv3jxcVjfTrMZLNdMKLWGJOjLNvjjz/OQw895N52Op1ER5fM2hbGwPRfQnnkBdermOtspp9D6dS4RJ6ubIRimfCSm3AD868H285QgnuEutf9iVoKna7HEn8cylNITmkK03+E2ZtyvrH+NDDyL9b4/AzKZ7G5/Pb7jFBca0ctzWVfDyzxu+9Mh+NVQ/nX1Flk5DLF/LmpszhRNRSnBX4/CAb7AbA/Hkrtz877j38j8DZghTVmsvnYl2GfDjPh4eH4+fnl6IU5dOhQnvd+8Pf3x9+/dN7R9gB47xbovyiah1+ez3S/ZI7/6SColp29ZyOZ9mso791ijZ6AciPrjwMT8Lw30wQs88ehvITklDSYvhZmbzpXFhXkWvwPzpWPbO/bU5tT0iDxzMXDZeKZSOqm+XY7ANcHzpvA/XgGmuzFMS2whmFGJrz3MyzcFs09Y109fudPMR/wfSh3NoVR7b1d0wKqA8zDZ0JAsfjQl2GfX2emffv2tG3bljfeeMNd1rRpU3r37s3EiRPzfXxJL5oHrimytkwITsJ9OwNnNJhKCjJek4Kl/zgcToX+i1xT/+tfEJKnZ4XkcB9fR+NYGty8wHVbBoB7W8H/XQUTfjwXZGJCYPFdvh0CjqW5pmXnt57Uh7f5djs8JOH6HTmGq2ssFEsEGXD9ve193vtqSGsY2wleWAGzsm73ERNikdt9SKGUq0XzFixYQP/+/Xnrrbfo2LEjM2bMYObMmWzZsoX69evn+/jSCDMipcGRBrYzELwXOArUBGd9MFWs80f60Em482O4pkHWJaVtkBLr6rH5fg98dDtEVM/vLN536KRrevaDzVOIqZLM8cMOgsLtJJ6J5LVfQpl3szXaUV4cTnXdn6xHQxjRAoK3gbMJTPsZvk2Ej+/w/bAvhVeuwgy4Fs2bNGkSBw4coFmzZkyZMoUuXS62lvI5CjMiZSt7/ZXzey1yK/N15aUd5YUjzbVw6fnjYpzprsu0Vgn7UjjlLswUh8KMiIiI9ZS72xmIiIiI5EVhRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQszafvml0Sshc4djqdXq6JiIiIFFT253ZBblRQ7sPM8ePHAYiOtsgtYkVERMTt+PHj2O32ix5T7u/NlJmZyf79+wkKCsJms5XouZ1OJ9HR0SQlJVn6vk9qh29RO3yL2uFb1A7fUprtMMZw/Phx6tatS6VKFx8VU+57ZipVqkRUVFSpPkdwcLCl34zZ1A7fonb4FrXDt6gdvqW02pFfj0w2DQAWERERS1OYEREREUtTmCkGf39/xo8fj7+/v7erUixqh29RO3yL2uFb1A7f4ivtKPcDgEVERKR8U8+MiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIeDh48CA9e/akevXqhISEeLs6+arwYebgwYOMHDmSRo0aERAQQGRkJFdddRVvvfUWqampAMyYMYNu3boRHByMzWbj2LFjOc7z/PPP06lTJ6pVq5brC79582b69u1LdHQ0gYGBxMbGMm3aNK+16+jRowwfPpzLL7+catWqUa9ePUaMGIHD4XCfY9myZdhstlx/1q5dW2p1L0w7AP75z39y6aWXEhgYSK1atejduzfbt2/3OE9KSgr9+/fHbrdjt9vp379/rq+jL7djz549DBo0iJiYGAIDA7n00ksZP348p0+f9ql2AKxcuZJrr73W/YewW7dunDp1CvCN91VB2rJnz54867lw4UL3eazw3kpISOCWW26hVq1aBAcHc+edd5KcnOxxngYNGuRo52OPPWa5dgD897//pX379gQGBhIeHs6tt95a5nX1ZQWp/5QpUzhw4ACbNm1i586dXq5x/sr9CsAX89tvv9G5c2dCQkKYMGECzZs35+zZs+zcuZPZs2dTt25dbrrpJlJTU+nVqxe9evXi8ccfz/Vcp0+f5o477qBjx4688847OfavX7+eWrVq8f777xMdHc2KFSsYOnQofn5+PPjgg2XeroYNG7J//35efvllmjZtyt69e7nvvvvYv38/H3/8MQCdOnXiwIEDHud+8sknWbp0Ke3atSvROhe1HTfddBNt27alX79+1KtXj6NHj/L0008TFxdHYmIifn5+APz973/n999/56uvvgJg6NCh9O/fn88++8wy7di+fTuZmZm8/fbbNGrUiF9//ZUhQ4Zw8uRJXn75ZZ9px8qVK92/K6+++ipVq1Zl8+bN7uXIvf2+Kmhbbrjhhhz1nDFjBpMmTeL66693l/n6e6t79+7ExcXRsmVLvvvuO8D13/vGG29k1apVHsvEP/vsswwZMsS9XaNGjVJvQ0m345NPPmHIkCFMmDCBa6+9FmMMv/zyS5nW9aabbiqx5ytpBa1/QkICbdu2pXHjxnme68yZM1SpUqUMa38RpgK77rrrTFRUlDlx4kSu+zMzMz22v//+ewOYlJSUPM85Z84cY7fbC/T8DzzwgLnmmmsKWt0CK2y7sn300UematWq5syZM7nuP336tImIiDDPPvtsidX1Yorajs2bNxvA7N692xhjzNatWw1gVq1a5T5m5cqVBjDbt28v+YpfoKTakZtJkyaZmJiYEqlnfgrajvbt25tx48YV+Lxl/b4ypuivSatWrcy9997r3rbCe+vrr782lSpVMg6Hw11+9OhRA5hvvvnGXVa/fn0zZcqU0q5yrkqqHWfOnDGXXHKJmTVrllfraowxKSkpZsiQISYiIsL4+/ubK664wnz22WfGGGMOHz5s+vTpYy655BITGBhomjVrZj744AOP83Tt2tUMGzbMDBs2zNjtdlOzZk3zxBNPeLw3X3/9ddOoUSPj7+9vIiIizG233VYi9a9fv74B3D933323McYYwLz55pvmpptuMtWqVTNPPfWUOXv2rLn33ntNgwYNTEBAgLnsssvM1KlTPc555swZM3z4cHc7xowZYwYMGGB69+7tPmbhwoWmWbNmJiAgwNSsWdN07949zzrmpsKGmcOHDxubzWYmTpxY4MeUdJjp169fgd58hVGUdmWbOXOmCQ8Pz3P/xx9/bCpVqmT27dtXnCoWSFHbceLECTNq1CgTExNj0tPTjTHGvPPOO7m+Jna73cyePbskqpunkmxHbp544gnTtm3b4lYzXwVtR3JysgHM9OnTTceOHU1ERITp0qWLWb58eZ6PKcv3lTFFf03WrVtnAPPTTz+5y6zw3lqyZInx8/MzaWlp7rLU1FRTqVIlM378eHdZ/fr1Te3atU3NmjVNy5YtzXPPPXfR915JKcl2rF692gBm9uzZplWrVqZ27dqmV69e5tdffy3TumZkZJgOHTqYK664wsTHx5uEhATz2WefmS+++MIYY8zvv/9uXnrpJbNx40aTkJBgpk+fbvz8/DxCcdeuXU2NGjXMyJEjzfbt2837779vqlWrZmbMmGGMMWbt2rXGz8/PfPDBB2bPnj1mw4YNZtq0aSVS/0OHDplevXqZO++80xw4cMAcO3bMGOMKMxEREeadd94xCQkJZs+ePeb06dPmqaeeMmvWrDG//fabu54LFixwn++5554zNWvWNJ9++qnZtm2bue+++0xwcLA7zOzfv99UrlzZTJ482SQmJpqff/7ZvP766+b48eMXref5KmyYWbVqlQHMp59+6lEeFhZmqlevbqpXr27GjBnjsa8kw8yKFStMlSpVTHx8fFGqn6eitMsY15u8Xr165oknnsjz3Ndff725/vrrS7S+eSlsO15//XVTvXp1A5gmTZp49GY8//zzpnHjxjmeo3HjxmbChAml1whTsu240O7du01wcLCZOXNmqdU/W0Hbkd0rUbNmTTN79myzYcMGM2rUKFO1alWzc+fOXM9dlu8rY4r+O3L//feb2NhYjzIrvLcOHTpkgoODzciRI83JkyfNiRMnzLBhwwxghg4d6n7c5MmTzbJly8zmzZvdX2wGDRpUqm0o6XZ8+OGHBjD16tUzH3/8sVm3bp3p27evCQsLM0eOHCmzumb3Iu3YsaPA5/7rX/9qHn74Yfd2165dTWxsrEdPzNixY93vwU8++cQEBwcbp9NZ4vU3xpjevXu7e2SyAWbUqFH5Ps8DDzzg8UU9MjLSvPTSS+7ts2fPmnr16rnDzPr16w1g9uzZU+C2XKjCDwC22Wwe22vWrGHTpk1cccUVpKenl8pzbtmyhd69e/PUU0/Rs2fPUnmOwrTL6XRyww030LRpU8aPH5/r+X7//Xe+/vprBg0aVCr1zUtB29GvXz82btzIDz/8QOPGjbnzzjtJS0vL8zzgur18buWloaTakW3//v306tWLO+64g8GDB5d6/bPl147MzEzANZj5nnvuoXXr1kyZMoXLL7+c2bNn5zift95XULjfkVOnTvHBBx/kWk9ff2/VqlWLhQsX8tlnn1GjRg3sdjsOh4M2bdq4x5QBjB49mq5du9KiRQsGDx7MW2+9xTvvvMORI0cs047s998TTzzBbbfdRtu2bZkzZ06OQdulXddNmzYRFRXFZZddluvjMzIyeP7552nRogVhYWHUqFGD+Ph49u3b53Fchw4dPJ6rY8eO7Nq1i4yMDHr27En9+vVp2LAh/fv359///neBBx8X53Mvt3Ftb731Fu3ataNWrVrUqFGDmTNnutvicDhITk7myiuvdB/v5+dH27Zt3dstW7ake/fuNG/enDvuuIOZM2eSkpJSoLZkq7ADgBs1aoTNZssx66Vhw4YABAYGlsrzbt26lWuvvZYhQ4Ywbty4Ej9/Ydt1/PhxevXqRY0aNVi0aFGeg7nmzJlDWFhYmQ1sK2w7smeSNG7cmA4dOhAaGsqiRYvo27cvtWvXznXGw59//klkZGTpNYKSbUe2/fv3c80119CxY0dmzJhRqvXPVtB21KlTB4CmTZt6HBcbG5vjDzWU/fsKiva7//HHH5OamsqAAQM8yq3y3oqLiyMhIYHDhw9TuXJlQkJCqF27NjExMXmev0OHDgDs3r2bsLCwUmiBS0m2I7f3n7+/Pw0bNsz1/Vdadc3v8+OVV15hypQpTJ06lebNm1O9enVGjRpVqJmJQUFBbNiwgWXLlhEfH89TTz3F008/zdq1a/OcSl0Sn3vVq1f32P7oo48YPXo0r7zyCh07diQoKIiXXnqJ1atXexx3YYAy591Jyc/Pj2+++YYVK1YQHx/Pq6++yhNPPMHq1asv+h49X4XtmQkLC6Nnz5689tprnDx5skyec8uWLVxzzTXcfffdPP/886XyHIVpl9PpJC4ujqpVq7JkyRICAgJyPc4Yw5w5cxgwYECZjVwv7utjjHF/w+jYsSMOh4M1a9a4969evRqHw0GnTp1KrM65Kcl2APzxxx9069aNNm3aMGfOHI+ZKKWpoO1o0KABdevWZceOHR7lO3fupH79+h5l3nhfQdFek3feeYebbrqJWrVqeZRb7b0VHh5OSEgI3333HYcOHbpoiNy4cSNwLiCUlpJsR9u2bfH39/d4/505c4Y9e/bkeP+VZl1btGjB77//nueU5uXLl9O7d2/+8Y9/0LJlSxo2bMiuXbtyHLdq1aoc240bN3b3RFWuXJkePXowadIkfv75Z/bs2eOe6VWc+hfG8uXL6dSpEw888ACtW7emUaNGJCQkuPfb7XYiIyM9fkcyMjLc769sNpuNzp0788wzz7Bx40aqVq3KokWLCl6RIl+gKgd2795tIiMjTZMmTcz8+fPN1q1bzfbt2817771nIiMjzUMPPWSMMebAgQNm48aNZubMmQYw//vf/8zGjRs9rsHu3bvXbNy40TzzzDOmRo0aZuPGjWbjxo3uAUy//vqrqVWrlunXr585cOCA++fQoUNeaZfT6TTt27c3zZs3N7t37/ao09mzZz3Ot3TpUgOYrVu3lnhdi9uOhIQEM2HCBLNu3Tqzd+9es2LFCtO7d29Ts2ZNk5yc7D5Xr169TIsWLczKlSvNypUrTfPmzc3f/vY3S7Xjjz/+MI0aNTLXXnut+f333z1eM19phzHGTJkyxQQHB5uFCxeaXbt2mXHjxpmAgIAc43+89b4qTFuMMWbXrl3GZrOZL7/8Mtdz+fp7yxhjZs+ebVauXGl2795t3nvvPVOzZk2PNq5YscJMnjzZbNy40fz2229mwYIFpm7duuamm26yVDuMMWbkyJHmkksuMV9//bXZvn27GTRokImIiDBHjx4t07p269bNNGvWzMTHx5vffvvNfPHFF+730KhRo0x0dLT56aefzNatW83gwYM9BsQac24A8OjRo8327dvNBx98YKpXr27eeustY4wxn332mZk2bZrZuHGj2bNnj3njjTdMpUqV8h3sXND65zVmZtGiRR5lU6dONcHBwearr74yO3bsMOPGjTPBwcGmZcuW7mOee+45ExYWZhYvXmy2b99uhg0bZoKDg83NN99sjHGN5Xn++efN2rVrzd69e90za7MHTBdEhQ4zxrhGUT/44IMmJibGVKlSxdSoUcNceeWV5qWXXjInT540xhgzfvx4j2lq2T9z5sxxn+fuu+/O9Zjvv//+oueoX7++V9qVPZg5t5/ExESPc/Xt29d06tSpVOpZ3Hb88ccf5vrrrzcRERGmSpUqJioqyvz973/PMS32yJEjpl+/fiYoKMgEBQWZfv36XXQgty+2Y86cOXm+Zr7SjmwTJ040UVFRplq1aqZjx465zmby5vvKmIK35fHHHzdRUVEmIyMj1/P4+nvLGNfA0cjISFOlShXTuHFj88orr3gMLF2/fr1p3769sdvtJiAgwFx++eVm/PjxHv8drNAOY1xT/R9++GETERFhgoKCTI8ePUpsNlNh6nrkyBFzzz33mLCwMBMQEGCaNWtmPv/8c/e+3r17mxo1apiIiAgzbty4HFOVu3btah544AH3zJ/Q0FDz2GOPudu7fPly07VrVxMaGmoCAwNNixYtPGYQFbf+BQ0zaWlpZuDAgcZut5uQkBBz//33m8cee8wjzJw5c8Y8+OCD7naMHTvW3HHHHaZPnz7GGNcSB9ddd52pVauW8ff3N5dddpl59dVXC/pyGGOMsWVVUERERHxEt27daNWqFVOnTvV2VUpcZmYmsbGx3HnnnfzrX/8qkXNW2AHAIiIiUvr27t1LfHw8Xbt2JT09nddee43ExET+/ve/l9hzVNgBwCIiIlL6KlWqxNy5c/nLX/5C586d+eWXX1i6dCmxsbEl9hy6zCQiIiKWpp4ZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxtP8H5Rj6JA7k71QAAAAASUVORK5CYII=", + "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOSElEQVR4nO3deXgUReLG8e8QIAdkJuFIABMgCEqQG5ZTBQUirqu4KArLoijHqsjlKuhPFHUFFBUQb0AOdRUEhcVdj4iKotynyk0IGAWCQJgBQgIk9ftjkoExCeSe6eT9PE+e0NU9PVVMT+ad6upqmzHGICIiImJRFXxdAREREZGiUJgRERERS1OYEREREUtTmBERERFLU5gRERERS1OYEREREUtTmBERERFLU5gRERERS6vo6wqUtMzMTA4cOEBoaCg2m83X1REREZF8MMZw4sQJ6tSpQ4UKF+97KfNh5sCBA0RHR/u6GiIiIlIISUlJREVFXXSbMh9mQkNDAfd/ht1u93FtREREJD9cLhfR0dGez/GLKfNhJvvUkt1uV5gRERGxmPwMEdEAYBEREbE0hRkRERGxNIUZERERsbQyP2YmP4wxnDt3joyMDF9XRYpJQEAAFStW1OX4IiLlQLkPM2fOnOHgwYOkpqb6uipSzEJCQqhduzaVK1f2dVVERKQEleswk5mZSWJiIgEBAdSpU4fKlSvrm3wZYIzhzJkz/P777yQmJtKoUaNLTrgkIiLWVa7DzJkzZ8jMzCQ6OpqQkBBfV0eKUXBwMJUqVWL//v2cOXOGoKAgX1dJRERKiL6ugr61l1F6XUVEygf9tRcREZECcaaBK927zJXuLvcFhRkRERHJtyOp0GsBvLL2fKBxpcP0Ne7yIz64nkZhRgAYOHAgt956q6+rUSBWrLOIiJU50+D2hZB4HGZsdAeasxnuIDNzk7v89oWl30NTrgcAl0f79u0jJiaGTZs20bJlS0/5yy+/jDGmxJ9/4MCBHD9+nCVLlpT4c4mISPGy2aB7jDu4gDvQfLobfj1xfpseDdzblSaFGQHA4XD4ugoiIuLn7IEwor3739mB5sIgM7Q1DG/n3q406TRTcUgBdgBrgJ1ZyyXMGMPkyZNp0KABwcHBtGjRgkWLFrmrk5JC//79qVmzJsHBwTRq1Ig5c+YAEBMTA0CrVq2w2Wx07doVyHnKpmvXrgwfPpxRo0YRHh5OZGQkM2bM4NSpU9xzzz2EhoZy+eWX89lnn3kek5GRwaBBg4iJiSE4OJgrr7ySl19+2bP+qaeeYt68efznP//BZrNhs9lYvnw5AL/99ht33nkn4eHhVK9enV69erFv3z6vfT/00EOEhYVRvXp1xowZUyo9SSIi4s0eCGM7Q1Sod3lUKIzpVPpBBhRmii4J6AvEAh2AxlnLSSX7tOPGjWPOnDm88cYbbN26ldGjR/P3v/+db7/9lieeeIJt27bx2WefsX37dt544w1q1KgBwNq1awFYtmwZBw8e5OOPP87zOebNm0eNGjVYu3Ytw4cP5/7776dPnz506tSJjRs3csMNNzBgwADP7MmZmZlERUXx4Ycfsm3bNp588kn+7//+jw8//BCAhx9+mDvuuIOePXty8OBBDh48SKdOnUhNTeW6666jatWqfPfdd3z//fdUrVqVnj17cubMGQBeeuklZs+ezdtvv83333/PsWPHWLx4cUn+F4uISC5c6fD8D949MuBenrwy51VOpcFmyvjXW5fLhcPhwOl0YrfbvdalpaWRmJhITExM4SZVS8EdXOJzWRcHzAfCC77bSzl16hQ1atTg66+/pmPHjp7ywYMHk5qaysmTJ6lRowazZ8/O8di8xsz8cSxL165dycjIYMWKFYC7Z8ThcNC7d2/eeecdAA4dOkTt2rVZtWoVHTp0yLWuw4YNIzk52dNrlNuYmdmzZzN58mS2b9/umYH5zJkzhIWFsWTJEuLi4qhTpw4jR45k7NixAJw7d46YmBjatGmT5/ibIr++IiLiJfuqpexTTODukSmJU00X+/z+I/XMFEUyuQcZssqTS+Zpt23bRlpaGj169KBq1aqen3feeYeEhATuv/9+5s+fT8uWLRkzZgwrV64s1PM0b97c8++AgACqV69Os2bNPGWRkZEAHD582FP25ptv0rZtW2rWrEnVqlWZOXMmv/zyy0WfZ8OGDezZs4fQ0FBPW6pVq0ZaWhoJCQk4nU4OHjzoFdwqVqxI27ZtC9UuEREpHGNgWeL55aGtYfndMKTV+bIv97q3K00aAFwUziKuL6TMzEwA/ve//3HZZZd5rQsMDCQ6Opr9+/fzv//9j2XLltGtWzeGDRvGiy++WKDnqVSpkteyzWbzKsvuRcmuz4cffsjo0aN56aWX6NixI6GhobzwwgusWbPmku1p06YN//73v3Osq1mzZoHqLCIiJccRBIv6uC+/7tHA3QNTKeD8oOBlie71jlLuDFeYKYpLXQBUQhcINWnShMDAQH755Re6dOmS6zY1a9Zk4MCBDBw4kGuuuYZHHnmEF1980XMH6YyMjGKv14oVK+jUqRMPPPCApywhIcFrm8qVK+d47tatW7NgwQIiIiLy7EqsXbs2q1ev5tprrwXcp5k2bNhA69ati7kVIiJyMTVC4D93ui+/zj6VlH2V0/B2pR9kQGGmaCJxj43Ja8xMZMk8bWhoKA8//DCjR48mMzOTq6++GpfLxcqVK6latSoJCQm0adOGq666ivT0dP773/8SGxsLQEREBMHBwXz++edERUURFBRUbJdlN2zYkHfeeYcvvviCmJgY3n33XdatW+e5ggqgfv36fPHFF+zcuZPq1avjcDjo378/L7zwAr169eKZZ54hKiqKX375hY8//phHHnmEqKgoRo4cyXPPPUejRo2IjY1lypQpHD9+vFjqLSIiBZNbYPHFVUzZNGamKMKBWbiDy4XisspLYPBvtn/96188+eSTTJo0idjYWG644QY++eQTYmJiqFy5Mo899hjNmzfn2muvJSAggPnz5wPusSbTp0/nrbfeok6dOvTq1avY6nTffffRu3dv7rzzTtq3b8/Ro0e9emkAhgwZwpVXXukZV/PDDz8QEhLCd999R926denduzexsbHce++9nD592tNT889//pO77rqLgQMHek5h/fWvfy22uouIiHXpaqbiuNolBfdgXyfuU0uRlGiQkfzR1UwiItZVkKuZdJqpOISj8CIiIuIjOs0kIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwY1HGGIYOHUq1atWw2Wxs3rzZZ3Xp2rUro0aN8tnzi4hI+aZJ8yzq888/Z+7cuSxfvpwGDRpQo0YNX1dJRETEJxRmisiZ5n3nUABXOhhTsncOTUhIoHbt2nTq1KnknkRERMQCdJqpCI6kQq8F8Mpad4AB9+/pa9zlR1JL5nkHDhzI8OHD+eWXX7DZbNSvX5/09HRGjBhBREQEQUFBXH311axbt87zmLlz5xIWFua1nyVLlmCz2TzLTz31FC1btuTdd9+lfv36OBwO+vbty4kTJzzbnDp1irvuuouqVatSu3ZtXnrppZJppIiISD4pzBSSMw1uXwiJx2HGRnegOZvhDjIzN7nLb1/o3q64vfzyyzzzzDNERUVx8OBB1q1bx5gxY/joo4+YN28eGzdupGHDhtxwww0cO3asQPtOSEhgyZIl/Pe//+W///0v3377Lc8995xn/SOPPMI333zD4sWLiY+PZ/ny5WzYsKG4mygiIpJvCjOFZLNB95jzyzM2Qtd57iCTrUcD93bFzeFwEBoaSkBAALVq1SIkJIQ33niDF154gRtvvJEmTZowc+ZMgoODefvttwu078zMTObOnUvTpk255pprGDBgAF999RUAJ0+e5O233+bFF1+kR48eNGvWjHnz5pGRkVH8jRQREcknn4aZ7777jptvvpk6depgs9lYsmSJ13pjDE899RR16tQhODiYrl27snXrVt9U9g/sgTCiPQxpdb7s1/NnYxjaGoa38x5LU1ISEhI4e/YsnTt39pRVqlSJdu3asX379gLtq379+oSGhnqWa9euzeHDhz3Pc+bMGTp27OhZX61aNa688soitkBERKTwfBpmTp06RYsWLXj11VdzXT958mSmTJnCq6++yrp166hVqxY9evTwGsPhS/ZAGNsZokK9y6NCYUyn0gky4A59gNf4l+zy7LIKFSp4tst29uzZHPuqVKmS17LNZiMzM9PreURERPyJT8PMjTfeyLPPPkvv3r1zrDPGMG3aNB5//HF69+5N06ZNmTdvHqmpqbz//vs+qG1OrnR4/gfvHhlwL09eeX5QcElr2LAhlStX5vvvv/eUnT17lvXr1xMbGwtAzZo1OXHiBKdOnfJsU9C5aRo2bEilSpVYvXq1pywlJYVdu3YVrQEiIiJF4LdjZhITEzl06BBxcXGessDAQLp06cLKlSvzfFx6ejoul8vrpyRkX7V04RiZC3tosgcFl0agqVKlCvfffz+PPPIIn3/+Odu2bWPIkCGkpqYyaNAgANq3b09ISAj/93//x549e3j//feZO3dugZ6natWqDBo0iEceeYSvvvqKn3/+mYEDB1Khgt8eRiIiUg747afQoUOHAIiMjPQqj4yM9KzLzaRJk3A4HJ6f6OjoEqmfMbAs8fzy0Naw/G7vMTRf7nVvVxqee+45brvtNgYMGEDr1q3Zs2cPX3zxBeHh4YB7bMt7773Hp59+SrNmzfjggw946qmnCvw8L7zwAtdeey233HIL3bt35+qrr6ZNmzbF3BoREZH8sxk/GQhhs9lYvHgxt956KwArV66kc+fOHDhwgNq1a3u2GzJkCElJSXz++ee57ic9PZ309PPdIS6Xi+joaJxOJ3a73WvbtLQ0EhMTiYmJISio4DPcHUl1X37do8H5wb7ZPTbLEmFRH6gRUuDdSjEp6usrIiK+43K5cDgcuX5+/5HfzgBcq1YtwN1Dc2GYOXz4cI7emgsFBgYSGFg6I29rhMB/7vSeATj7Kqfh7Up2BmARERFx89vTTDExMdSqVYsvv/zSU3bmzBm+/fZbv5rC3xGU86ole6CCjIiISGnxac/MyZMn2bNnj2c5MTGRzZs3U61aNerWrcuoUaOYOHEijRo1olGjRkycOJGQkBD+9re/+bDWIiIi4k98GmbWr1/Pdddd51l+6KGHALj77ruZO3cuY8aM4fTp0zzwwAOkpKTQvn174uPjvSZ1ExERkfLNbwYAl5SLDSDSANGyTa+viIh1FWQAsN+OmRERERHJD4UZERERsTSFGREREbE0hRkRERGxNIUZuaT69eszbdo0z7LNZmPJkiWlXo+nnnqKli1blvrzioiIf1OYkQI7ePAgN954Y762VQAREZGS5re3M5DidebMGSpXrlws+8q+1YSIiIg/UM9MMUhJSWHHjh2sWbOGnTt3kpKSUuLP2bVrVx588EEefPBBwsLCqF69OuPGjSN72qD69evz7LPPMnDgQBwOB0OGDAHcN/C89tprCQ4OJjo6mhEjRnDq1CnPfg8fPszNN99McHAwMTEx/Pvf/87x3H88zfTrr7/St29fqlWrRpUqVWjbti1r1qxh7ty5PP3002zZsgWbzYbNZmPu3LkAOJ1Ohg4dSkREBHa7neuvv54tW7Z4Pc9zzz1HZGQkoaGhDBo0iLS0tGL+XxQRkbJAYaaIkpKS6Nu3L7GxsXTo0IHGjRvTt29fkpKSSvy5582bR8WKFVmzZg3Tp09n6tSpzJo1y7P+hRdeoGnTpmzYsIEnnniCn376iRtuuIHevXvz448/smDBAr7//nsefPBBz2MGDhzIvn37+Prrr1m0aBGvv/46hw8fzrMOJ0+epEuXLhw4cIClS5eyZcsWxowZQ2ZmJnfeeSf//Oc/ueqqqzh48CAHDx7kzjvvxBjDTTfdxKFDh/j000/ZsGEDrVu3plu3bhw7dgyADz/8kPHjxzNhwgTWr19P7dq1ef3110vuP1NERKzLlHFOp9MAxul05lh3+vRps23bNnP69OlC7fvYsWMmLi7OADl+4uLizLFjx4pa/Tx16dLFxMbGmszMTE/Z2LFjTWxsrDHGmHr16plbb73V6zEDBgwwQ4cO9SpbsWKFqVChgjl9+rTZuXOnAczq1as967dv324AM3XqVE8ZYBYvXmyMMeatt94yoaGh5ujRo7nWc/z48aZFixZeZV999ZWx2+0mLS3Nq/zyyy83b731ljHGmI4dO5r77rvPa3379u1z7Otiivr6ioiI71zs8/uP1DNTBMnJycTHx+e6Lj4+nuTk5BJ9/g4dOmCz2TzLHTt2ZPfu3WRkZADQtm1br+03bNjA3LlzqVq1qufnhhtuIDMzk8TERLZv307FihW9Hte4cWPCwsLyrMPmzZtp1aoV1apVy3e9N2zYwMmTJ6levbpXXRITE0lISABg+/btdOzY0etxf1wWEREBDQAuEqfTWaT1Ja1KlSpey5mZmfzjH/9gxIgRObatW7cuO3fuBPAKSJcSHBxc4HplZmZSu3Ztli9fnmPdxYKTiIhIbhRmisDhcBRpfVGtXr06x3KjRo0ICAjIdfvWrVuzdetWGjZsmOv62NhYzp07x/r162nXrh0AO3fu5Pjx43nWoXnz5syaNYtjx47l2jtTuXJlT0/RhfU4dOgQFStWpH79+nnWZfXq1dx1111e7RMREfkjnWYqgsjISOLi4nJdFxcXR2RkZIk+f1JSEg899BA7d+7kgw8+4JVXXmHkyJF5bj927FhWrVrFsGHD2Lx5M7t372bp0qUMHz4cgCuvvJKePXsyZMgQ1qxZw4YNGxg8ePBFe1/69etHrVq1uPXWW/nhhx/Yu3cvH330EatWrQLcV1UlJiayefNmjhw5Qnp6Ot27d6djx47ceuutfPHFF+zbt4+VK1cybtw41q9fD8DIkSOZPXs2s2fPZteuXYwfP56tW7cW4/+eiIiUFQozRRAeHs6sWbNyBJq4uDhmzZpFeHh4iT7/XXfdxenTp2nXrh3Dhg1j+PDhDB06NM/tmzdvzrfffsvu3bu55ppraNWqFU888QS1a9f2bDNnzhyio6Pp0qULvXv39lw+nZfKlSsTHx9PREQEf/7zn2nWrBnPPfecp3fotttuo2fPnlx33XXUrFmTDz74AJvNxqeffsq1117LvffeyxVXXEHfvn3Zt2+fJwDeeeedPPnkk4wdO5Y2bdqwf/9+7r///mL6nxMRkbLEZkzWxCRllMvlwuFw4HQ6sdvtXuvS0tJITEwkJiaGoKCgQj9HSkoKycnJOJ1OHA4HkZGRJR5kunbtSsuWLb1uMyDeiuv1FRGR0nexz+8/0piZYhAeHl7i4UVERERyp9NMIiIiYmnqmbGo3C5rFhERKY/UMyMiIiKWpjAjIiIilqYwA5TxC7rKLb2uIiLlQ7kOM5UqVQIgNTXVxzWRkpD9uma/ziIiUjaV6wHAAQEBhIWFcfjwYQBCQkIKdF8i8U/GGFJTUzl8+DBhYWF53t5BRETKhnIdZgBq1aoF4Ak0UnaEhYV5Xl8RESm7yn2Ysdls1K5dm4iICM6ePevr6kgxqVSpknpkRETKiXIfZrIFBATow09ERMSCyvUAYBEREbE+hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTS/DjPnzp1j3LhxxMTEEBwcTIMGDXjmmWfIzMz0ddVERETET1T0dQUu5vnnn+fNN99k3rx5XHXVVaxfv5577rkHh8PByJEjfV09ERER8QN+HWZWrVpFr169uOmmmwCoX78+H3zwAevXr/dxzURERMRf+PVppquvvpqvvvqKXbt2AbBlyxa+//57/vznP+f5mPT0dFwul9ePiIiIlF1+3TMzduxYnE4njRs3JiAggIyMDCZMmEC/fv3yfMykSZN4+umnS7GWIiIi4kt+3TOzYMEC3nvvPd5//302btzIvHnzePHFF5k3b16ej3nsscdwOp2en6SkpFKssYiIiJQ2mzHG+LoSeYmOjubRRx9l2LBhnrJnn32W9957jx07duRrHy6XC4fDgdPpxG63l1RVRUREpBgV5PPbr3tmUlNTqVDBu4oBAQG6NFtEREQ8/HrMzM0338yECROoW7cuV111FZs2bWLKlCnce++9vq6aiIiI+Am/Ps104sQJnnjiCRYvXszhw4epU6cO/fr148knn6Ry5cr52odOM4mIiFhPQT6//TrMFAeFGREREespM2NmRERERC5FYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsze/DzG+//cbf//53qlevTkhICC1btmTDhg2+rpaIiIj4iYq+rsDFpKSk0LlzZ6677jo+++wzIiIiSEhIICwszNdVgxQgGXACYUAEEO7LComIiJRPfh1mnn/+eaKjo5kzZ46nrH79+r6rULYkYDAQf0FZHDALiPZJjURERMotvz7NtHTpUtq2bUufPn2IiIigVatWzJw507eVSiFnkCFreXDWehERESk1fh1m9u7dyxtvvEGjRo344osvuO+++xgxYgTvvPNOno9JT0/H5XJ5/RSrZHIGmWzxWetFRESk1Pj1aabMzEzatm3LxIkTAWjVqhVbt27ljTfe4K677sr1MZMmTeLpp58uuUo5i7heREREilWhw8zatWtZvnw5hw8fJjMz02vdlClTilwxgNq1a9OkSROvstjYWD766KM8H/PYY4/x0EMPeZZdLhfR0cU4kMVRxPUiIiJSrAoVZiZOnMi4ceO48soriYyMxGazedZd+O+i6ty5Mzt37vQq27VrF/Xq1cvzMYGBgQQGBhZbHXKIxD3YN7dTTXFZ60VERKTUFCrMvPzyy8yePZuBAwcWc3W8jR49mk6dOjFx4kTuuOMO1q5dy4wZM5gxY0aJPu9FheO+aimvq5l0ebaIiEipKlSYqVChAp07dy7uuuTwpz/9icWLF/PYY4/xzDPPEBMTw7Rp0+jfv3+JP/dFRQPzOT/PjAN3j4yCjIiISKmzGWNMQR80efJkDhw4wLRp00qgSsXL5XLhcDhwOp3Y7XZfV0dERETyoSCf34XqmXn44Ye56aabuPzyy2nSpAmVKlXyWv/xxx8XZrciIiIiBVaoMDN8+HC++eYbrrvuOqpXr16sg35FRERECqJQYeadd97ho48+4qabbiru+oiIiIgUSKFmAK5WrRqXX355cddFREREpMAKFWaeeuopxo8fT2pqanHXR0RERKRACnWaafr06SQkJBAZGUn9+vVzDADeuHFjsVRORERE5FIKFWZuvfXWYq6GiIiISOEUaJ6ZXbt2ccUVV5RkfYqd5pkREREpXs40sNnAfsHdg1zpYAw4gornOQry+V2gMTOtWrUiNjaWsWPHsmrVqiJVUkRERKznSCr0WgCvrHUHGHD/nr7GXX7EB8NpCxRmjh49yuTJkzl69Ch//etfiYyMZNCgQSxdupS0tLSSqqOIiIj4AWca3L4QEo/DjI3uQHM2wx1kZm5yl9++0L1daSrU7QwAjDGsWrWKpUuXsnTpUvbv30/37t3p1asXf/nLX4iIiCjuuhaKTjOJiIgUj+wemJmbzpdFhcKvJ84vD20Nw9t5n4Iq1HOV1GmmC9lsNjp16sRzzz3Htm3b2Lx5M9deey1z584lOjqa1157rbC7FhERET9kD4QR7WFIq/NlJRFkCqrQPTMXc/ToUY4dO0ajRo2Ke9cFpp4ZERGR4nU2A7rO8w4yUaGw/G6oFFA8z1HiPTPz5s3jf//7n2d5zJgxhIWF0alTJ/bv30/16tX9IsiIiIhI8XKlw/M/eAcZcC9PXnl+UHBpKlSYmThxIsHBwQCsWrWKV199lcmTJ1OjRg1Gjx5drBUUERER/5DXmJls2YOCSzvQFCrMJCUl0bBhQwCWLFnC7bffztChQ5k0aRIrVqwo1gqKiIiIfzAGliWeXx7a2n1q6cIxNF/udW9XmgoVZqpWrcrRo0cBiI+Pp3v37gAEBQVx+vTp4qudiIiI+A1HECzqAzFh5wf7Vgo4Pyg4Jsy9vrgmzsuvQt3OoEePHgwePJhWrVqxa9cubrrpJgC2bt1K/fr1i7N+IiIi4kdqhMB/7vSeATj7Kqfh7Uo/yEAhe2Zee+01OnbsyO+//85HH31E9erVAdiwYQP9+vUr1gqKiIiIf3EE5bz82h7omyADJXRptj/RpdkiIiLWU+KXZs+ZM4eFCxfmKF+4cCHz5s0rzC5FRERECqVQYea5556jRo0aOcojIiKYOHFikSslIiIikl+FCjP79+8nJiYmR3m9evX45ZdfilwpERERkfwqVJiJiIjgxx9/zFG+ZcsWz2BgERERkdJQqDDTt29fRowYwTfffENGRgYZGRl8/fXXjBw5kr59+xZ3HUVERETyVKh5Zp599ln2799Pt27dqFjRvYuMjAzuvvtujZkRERGRUlWkS7N3797Npk2bCA4Opnnz5tSrV68461YsdGm2iIiI9RTk87tQPTMAb7/9NlOnTmX37t0ANGrUiFGjRjF48ODC7lJERESkwAoVZp544gmmTp3K8OHD6dixI+C+e/bo0aPZt28fzz77bLFWUkRERCQvhTrNVKNGDV555ZUcty744IMPGD58OEeOHCm2ChaVTjOJiIhYT4nPAJyRkUHbtm1zlLdp04Zz584VZpciIiIihVKoMPP3v/+dN954I0f5jBkz6N+/f5ErJSIiIpJfRRoAHB8fT4cOHQBYvXo1SUlJ3HXXXTz00EOe7aZMmVL0WoqIiIjkoVBh5ueff6Z169YAJCQkAFCzZk1q1qzJzz//7NnOZrMVQxVFRERE8laoMPPNN98Udz1ERERECqVQY2ZERERE/IXCjIiIiFiawoyIiIhYmsKMiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIWJqlwsykSZOw2WyMGjXK11URERERP2GZMLNu3TpmzJhB8+bNfV0VERER8SOWCDMnT56kf//+zJw5k/DwcF9XR0RERPyIJcLMsGHDuOmmm+jevbuvqyIiIiJ+pqKvK3Ap8+fPZ+PGjaxbty5f26enp5Oenu5ZdrlcJVU1ERER8QN+3TOTlJTEyJEjee+99wgKCsrXYyZNmoTD4fD8REdHl3AtRURExJdsxhjj60rkZcmSJfz1r38lICDAU5aRkYHNZqNChQqkp6d7rYPce2aio6NxOp3Y7fZSq7uIiIgUnsvlwuFw5Ovz269PM3Xr1o2ffvrJq+yee+6hcePGjB07NkeQAQgMDCQwMLC0qigiIiI+5tdhJjQ0lKZNm3qVValSherVq+coFxERkfLJr8fMiIiIiFyKX/fM5Gb58uW+roKIiIj4EfXMlGPONHCle5e50t3lIiIiVqEwU04dSYVeC+CVtecDjSsdpq9xlx9J9W39RERE8kthphxypsHtCyHxOMzY6A40ZzPcQWbmJnf57QvVQyMiItZguTEzUnQ2G3SPcQcXcAeaT3fDryfOb9OjgXs7ERERf6eemXLIHggj2sOQVufLLgwyQ1vD8Hbu7URERPydwkw5ZQ+EsZ0hKtS7PCoUxnRSkBEREetQmCmnXOnw/A/ePTLgXp68MudVTiIiIv5KYaYcyr5qKXvMDHj30GQPClagERERK1CYKYeMgWWJ55eHtobld3uPoflyr3s7ERERf6ermcohRxAs6uO+/LpHA/dg30oB7kHB4A46i/q4txMREfF3NmPK9vfvgtxCvLxxprkvv75wsK8r3d0joyAjIiK+VJDPb/XMlGO5BRZdxSQiIlajMTMiIiJiaQozIiIiYmkKMyIiImJpCjMiIiJiaQozIiIiYmkKMyIiImJpCjMiIiJiaQozIiIiYmkKMyIiImJpmgG4vEsBkgEnEAZEAOG+rJCIiEjBqGemPEsC+gKxQAegcdZyki8rJSIiUjAKM+VVCjAYiP9DeXxWeUqp10hERKRQFGbKq2RyBpls8VnrRURELEBhprxyFnG9iIiIn1CYKa8cRVwvIiLiJxRmyqtIIC6PdXFZ60VERCxAYaa8CgdmkTPQxGWV6/JsERGxCM0zU55FA/M5P8+MA3ePjIKMiIhYiMJMeReOwouIiFiaTjOJiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKX5dZiZNGkSf/rTnwgNDSUiIoJbb72VnTt3+rpaIiIi4kf8Osx8++23DBs2jNWrV/Pll19y7tw54uLiOHXqlK+rJiIiUjgpwA5gDbAza9mK/KgdNmOM8d3TF8zvv/9OREQE3377Lddee22+HuNyuXA4HDidTux2ewnXUERE5CKSgMFA/AVlccAsINonNSqcUmhHQT6//bpn5o+cTicA1apV83FNRERECiiFnAGArOXBWKeHxg/bUbH0n7JwjDE89NBDXH311TRt2jTP7dLT00lPT/csu1yu0qieiIjIxSWTMwBki89aH1561Sk0P2yHZXpmHnzwQX788Uc++OCDi243adIkHA6H5yc62kr9diIiUmY5i7jeX/hhOywRZoYPH87SpUv55ptviIqKuui2jz32GE6n0/OTlJRUSrUUERG5CEcR1/sLP2yHX59mMsYwfPhwFi9ezPLly4mJibnkYwIDAwkMDCyF2omIiBRAJO5BsrmdoonLWm8FftgOv+6ZGTZsGO+99x7vv/8+oaGhHDp0iEOHDnH69GlfV01ERKRgwnFf7RP3h/Lsq4CsMF4G/LIdfn1pts1my7V8zpw5DBw4MF/70KXZIiLiV1JwD5J14j4lE4l1gsyFSrgdBfn89vvTTCIiImVKONYML3/kR+3w69NMIiIiIpeiMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKW5tdXM0kpuPDSujAgAr8ZnS4iIpIf6pkpz5KAvkAs0AFonLWsO0CIiIiFKMyUV354C3cREZHCUJgpr/JzC3cRERELUJgpr/zwFu4iIiKFoQHA5ZUf3sJdREQsJAn3kITjuC8gCQeifVMV9cyUV9m3cM+NlW5FLyIipW8PcC/QAuiS9fverHIfUJgpr/zwFu4iImIBScD9wLI/lC/LKvfBFbE6zVSeRQPzKRu3ohcRkdKRQs4gk21Z1vpSPt2kMFPe+dEt3EVExAKOF3F9CdBpJhEREcm/sCKuLwEKMyIiIpJ/DqB7Huu645OrYXWaqbw7BBzm/L2ZagK1fFkhKRN0zy+RsisdmAqMxnvsTHdgWtb6UqYwU445U8F2FOydgFNAFXCtAWMHR4ivayeWlUTOW2VkXyXnozkoRKQYpQC34H5PPwe4ADtwALgeWFr6VdJppnLqyEnotRBeOQCuZUCE+/f0A+7yIyd9XUOxJN3zS6Tsc+Du0b8FaIs7wLTNWj6MT04zKcyUQ840uP0jSDwOM7bBKyfg7D6YfgJmbnOX3/6RezuRAtE9v0TKPj+cdFVhphyy2aB7/fPLM7ZB1w/cQSZbj/ru7UQKRPf8kpKUAuwA1gA7UU+fr/jhpKsaM1MO2QNhRAvgzPkA8+uJ8+uHNoHhLdzbiRSI7vklJUVjsfyLn026qp6ZcsqeDmOvgahQ7/KoUBhzjXu9SIH5YfezlAEai+WfwoHGQPus3z68YlFhppxyhcHza7x7ZMC9PHmte71Igflh97OUARqLJZeg00zlkCsdpq+BmZvPl0WFng82MzYBNhjeTqeapBD8rPtZygCNxZJLUM9MOWQMLEs8vzy0NSy/G4a0Ol/25V73diKF4kfdz+WdM839BeZCrnSLXa2osVhyCQoz5ZAjCBb1gZgwGNoKhjeHSpvdg4KHtHKXL+rj3k5ErOtIKvRaAK+sAZcT2OD+PX2Nu/xIqq9rmE8aiyWXYDOmbH//drlcOBwOnE4ndrvd19XxK87TYEsEezvOzwC8FkwMOIJ9XTsRKQpnmjuwJB53Lw9tAmOuhue/P38VY0wY/OdOi3xx0dVM5U5BPr81Zqa8SgHHQ8CHQPa3s1Ng/xNwBzAFnRoQsTCbDbrHwMxN7uUZ2+DTJO9B/z1iLDSflMZi+Z2UlBSSk5NxOp2EhYURERFBeLhvXhCdZiqEMnEOOhmYy/kgky01q1xXB4hYWvZ8UkOanC+z/HxSGovlN5KSkujbty+xsbF06NCBxo0b07dvX5KSknxSH4WZAvKcg157PtBkXx1kqXPQujpApMyz74GxV+cxn9TV7vUiBZWSksLgwYOJj/e+Xj4+Pp7BgweTklL6E/8ozBSAMw1uX5h1T6ON7kBzNiPrMudNWfc0WmiRHhpdHSBS5rkausfI5Dqf1Pfu9SIFlZycnCPIZIuPjyc5ufS79hVmCiD7HHS2GRuh67zz56QBejSwyDnosnZ1gO7ZIuLFlQ7Tt3jfc+3CHpoZ2+CVLTlPmYtcitN58a77S60vCQozBWAPhBHtvedj8ToH3dpCE82VoZlanafBdRD3Leg7AG3cy87TPq6YiA/lmE+qCSzv5z2G5stEzSclBedwXLzr/lLrS4LCTAHZA2Fs5zzOQXeySJDJZgNuBz4BFmb9vj2r3CKOnIReH8Irv4FrGRDh/j39N3f5kZO+rqGIb+SYT6odVNoGI9ppPikpmsjISOLicu/aj4uLIzKy9Lv2FWYKyJUOz/+QxznolRbqsk0BhgH7LyizZS0PwxKnaZxpcPtHWWOYtsErJ+DsPph+wt21nnjcvd4SY5hESkCNEPc8MsPbgv0QcA7syTCirbu8RoivayhWFB4ezqxZs3IEmri4OGbNmuWTy7M1z0wBeO5pdMEYGa97Gm10/7bEqabDwD8g5dcUkknGiZMwwoioG0F4p3D3ej8/1WSzQff65+8xles8GvUtMoZJpIQ4UoB/4O55zWK/GXgLqO2bOon1RduimX/7fJKHJ+NMc+IIchB5MJJwm28+OBRmCiC3exqN6eTuqckOOF/uhQf/5Jv6FUgmJIUkMfjDwcR/dX5Uely3OGaNm0V0pv9PqZk9jwZnzg9ytPw8GiLFKQUYSM47Tn8CpOOehM7Pv7SIH0oBBkF4fDjhfzyA4vDJcaUwUwDZ56BvX+ieOfPCexqBO+hY5Rx0SoUUBj/rHWQA4r+KZzCDmf/a/JwHqR+yH4Sx10C1wBQaVE7m9EknIaFhJKRHMKRdOJUSgTBf17IcSuH8TK1hQAT60PSFZHIGmWzxWev1upQ+q78//PC4UpgpoBoh8J87su5pdBnuWwBUgRFrYfifrHNPo+TTyTmCTLb4r+JJPp1siTDjqg27EpP4+NnBfPXl+fZ06xFHu5dncUWdaHRHrlKme+j4D02O6X/KwvvDD48rDQAuqBRwPJB1D6NTWWVZ9zRyPIAlBs4COE9eYp6AU/7/V86VDj8kpfDoSO8gA/DVl/E8OnIwP/ySYp1B2WVBCjn/UJO1PBjLvD/KjKpFXC/Fq6y8P/xw0lX1zBRU9j2N/ij7nkZjsUR3oaPaJeYJCPf/KYCNgcppyTmCTLavvoznsbRkjLHAC1JW+GH3c7lWERgCKXVSSG7rHqgZFhxGxLoIwg+E6xOgtCUDe4EQvO+LF5JVbpX3R/akq7m913006ap6ZgrKD7vXCiMy/BLzBIT7/xTAjiAIybj4f3hIhtMSY5jKjDLy/igzzsK+x5Pou6ovsTfH0qFPBxr/pTF9V/Vl3+NJcNbXFSxnMsD5A7i+AqpklVVxLzt/cK+3BD+cdFVhpqD8sHutMMJd4cwaMYu4Hn+YJ6BHHLNGzCLcZYWvBxAeevH/8Eutl2Km0xp+5bcaKQwekvsNAYcMHcxvNaxyXqNsOFIXen0Gr5z8wySfJ9zlR+r6uoYFEI37qqXtwOqs3/Px2bgfhZmCKiv3NDoO0XdGM7/dfLZ/sp3VC1ez/ZPtzG83n+g7o+G4ryuYP5EVI4nrnkcPU/c4Iita5QVxT+73x/E9rnSLTfpXEeiWx7pu6LRGKXKmwY6kvE/DLouPZ0dSsrWOLwvfg82ZBrd/nDXJ51Z3oMkxyefHFnu/pwFnsn7OZi37iMJMQflh91qhOIBTED4hnMY3N6Z9n/Y0vrkx4RPC3QObLdKhEZ4ezlszcp+J8q0Zswg/Y40X5Egq9FrgvhN7dqDJnqSx1wL3eks4AowkZ6DpllV+pNRrVG7ZbJB5+uLn9TJPO60zqWQS0BeIxX0PtsZZy0m+rFT+2WzQ7cIbFW+Frh943wi0e4yFJvlMAO4CWgDXAs2zlhN8Ux19TyqMaGAm7t6L47jnCQjDOpfVgbsH6RagGe4/DGlAMLAK+AnL9DAdiYH7l0Yz6rn5TH0+mRN7nYQ2cLDfRHL/ynDevQVq+LqSl+BMc89dlHj8/CzSYzp5zzZ9+0L39PN+P/4nFOgNKbNSSH4+GafLSZgjjIjfIggfHA5f+rqC5Yc9EC6rcfFvJZfVcFhjUslLXQVkgcn/jIGbGsHZDJj3o7vswkk+B7aAPzeyyI0/DwL3Acv+UL4sq/wdSn12aYWZQnCmwun0FI4nJeM87STsZBiO4AiCU8NxWOVeJ+HAFNwH3oQLyrsDb+L3fxjAu9v2vu/CGdoknDE3wvPfn/+2c/vH/h8CbDb3N7IvEyH5pDvQfLrb/YcuuCJEVoUeDSzyjS0CkhYk5ZiQMa5bHLMWzCI6wkqJ3/pqZw30/+OYGXD3Xta2wEB/oExcBWSzwbeJ7hsV1wrIOcnn3R3CmbkBGlbzdU3z4XdyBplsy7LWl3KYsRljiRxYaC6XC4fDgdPpxG4v+vRpR07CTwlJTHpkMF9ecC66R1wcj02eRbPLo6lhhUGOKbi7aPO6tM4C33Rc6TB99fl7M4H3vbIg627B7f3/lganzsCps5CQAvcuhdSzEFIJZt8Cl4dDlUpQpbKva3lpKQdT6Duwb54fnvPnzie8tp8fWBdKJudMrRb5/AdwpcKu/Uk55mLq1iOO516exRX1orFb4QvYVjhRC0wC2K/HfSq8Cri+BtvlEHoIuMrHdcyHlFOw55ckHsvl9Zj08iwa1YsmzAqvxwrcp5by8h1wTdGfpiCf3wozBeBMgw/Wp7Domb65Dqrr1iOO25+cT7+24X7dEwC4B9HFXmT9dtznpP2c6zhMXw8zt+ZcN/SqrLsFh5V2rQruyEkY8B8Y1iyFqArJ/JLspG6tMH49F8FrP4fzbi8sEZJ3bN1BbNO8D6ztP2+n8VUWOLCA42lAOoRdgfvGqxGQsgtsgRDm7+9vzof9f2+Fe65MoXmVZM6mOqkU4uDHU5HM2RnO35taI+wfT4XTGXDalULa7+7TyfbLw6hcI4IQezjBAfh9CHClww87U3jp4bw/P/750nw6XxHu968HP+EeI5OXH3EPYSiignx+W2IA8Ouvv05MTAxBQUG0adOGFStW+KQeNhs0r3LxSdpaVEm2xumAMjIfiD0BxnZx98hcKCoUxnRxr/d3zjR3kBkZm8S0h/vSqlksvbp3oFXTxkx7pC8jY5MY8B9rXOVw7MTFD5yUS6z3F4dPQb+P4If9KWxbvoM1361h2/KdrNyfQr+P3Ov9nTGwbJ+7l++1n8PZcKIxPTu2Z/2Jxrz2czipZ92nNv396+zJdDieDjv2JvGPe/pyVatYOtzWgSYtG3P/vX3ZsTeJ4+nu7fyZMVA5/eKfH5XTkv3+9QAgiItfteiDsO/3YWbBggWMGjWKxx9/nE2bNnHNNddw44038ssvv5R6XeyBYEu7+B9jW5rT/1M1lJn5clyN4PnvvE8tgXt58gr3en+XCTzYLIUXH839tgwvPjqYB5ul4O9/446nwemAix84qQEOd4+HHzueBncvcYfLqQ/35aomsXS4tgNXNWnM1Ifd4fLuJfh9OxxBsOg2iAnLuoN8KFSqDyNCYUgTd/mi2/x7PBnAOQOfb01hwiODWfaH98eX8fFMeGQwn29N4Zyfv0EqVoDgcxf//AjOcFLR7z+VcV/4crGrFo+Xcn2wQJiZMmUKgwYNYvDgwcTGxjJt2jSio6N54403fFKf8KoX/2Mddon1fqMMzJfjSofpm2Dmz+fLLuyhmfETvLI559wt/qYCEBVw8W9sUQHJ+HuHnwHSAiPp1iP3A6tbjzjSAv3/wDLkL1xaQY1D8J8b3UHG3h047P49ItRdXuOQr2t4aRXy0SPevEoyFfz8DXIuEzIqX/zzIaOSg3OZpVShoggF+uG+EvYTYGHW7w5Z5aF5P7Sk+HWYOXPmDBs2bMh1DpGVK1fm+pj09HRcLpfXT3EKqxFJjzxuA9AjLo6wGv7/xxooE/PlZHejZxvaBJb3c3/rzGaFbnRHEKRe4vRL6gn/vy1DeBB0ahjOpJdn5Qg02QMcOzcM9/vxJuFBEFPp4h+eMZWS/b4dABwAR2ewd8P7xrjd3OUc8GHd8ik/PeIVLNAj7giCBpdF0j2Pz4/ucXE0uCzS79/ngPvLbmfcV8LeDPTJ+j0hq1z3ZvJ25MgRMjIyiIz0/p+JjIzk0KHcv1JMmjQJh8Ph+YmOLr5LQV3pMG9POA9Nyv2P9UOTZvFOQrjf9wR4+Nl01AXlCIJFvS/Rjd7b/7vRARz2S9z48xLr/UX4Nmh5RTS9x83ns1Xb+fjL1Xy2aju9x82n5RXRhG279D78wYkjF//wvNR6vxEG7MH7cmaylvdkrbcAh+Pix7/9Euv9xWUh4cx8M/dJPme+NYvLQizwLRL88suwJeaZsf1hRK0xJkdZtscee4yHHnrIs+xyuYot0BgDn+2FuaeiuWfsfP71XDIVzjjJqOzg+5RIRq8OJ7IK/KNtsTxd6QjHEr0wealh4D83g21XVjf6qaxu9GUw/GZw+HmvDLhD8v5z7tMzeV3lsD8jkqh0/7/qJKUJTP8eZm/OeWD9bmDkn6zx+Rl6icnmLrXeb4TjnjsqtzlBumOJ974rHQLD3D3iX+ZyyX+PuDiCwiJxWeD9gR3qp0Yzv+98koe772LuCHIQ+Xsk4UHhUPTZQ0pP9pfh7KkLHLh7ZHx0TPl1z0yNGjUICAjI0Qtz+PDhHL012QIDA7Hb7V4/xcURBIv6QGQVOBsQzlVRjWn/e3uaRjXmTAV3kFnUxxo9AWWGHRzpYJ+Idzf6RHe5Ff44GAPTfwrn4edy7/F7+LlZTP8x3O9Pl6WkwfR1MHvz+bILxzDN3gwvr/P/gbMpaZB49uJjfxLPRvp9OwD3B84buIPLhbInx7RAL2xGJnxwiR7xDxLCybDCWBOAWhB+aziNGzamfXR7GjdsTPit4VDL1xUrhHDcU3i0z/rtw3Ds9/PMtG/fnjZt2vD66697ypo0aUKvXr2YNGnSJR9f3JPmgfsSWVsm2JPw3M7AFQ2mgoKMz6TgN98QCuNIKgxYDCOapVAvIJkTvzsJrelg/7lIpv8czrt/hRp+Po/G8TS4dYF7RmaAe1vC/10NE78/H3BiwmDJnf49T8vxNPdl2SNjk3IMAs4Oly9vj+aD2/y7HV6ScL9HjuPuGgvHEkEG3H9vey2A5FPu+XKurpZMQHaP+DH3fDmRVfx/pm8puDI1ad6CBQsYMGAAb775Jh07dmTGjBnMnDmTrVu3Uq9evUs+viTCjEhJcKaB7SzY9wPHgGrgqgemknX+SB8+BXcsguvqZ51S2g4pse4em2/2wYe3Q0QVX9fy0g6fcl+e/WCzFGIqJXPiiJPQGg4Sz0by6k/hzLvVGu0oK46kuu9P1r0BjGgO9u3gagwv/whfJbp7xP097EvBlakwA+5J8yZPnszBgwdp2rQpU6dO5dprLzaX8nkKMyKlK/v0y4W9FrmV+buy0o6ywpnmnrj0wnExrnT3aVqrhH0pmDIXZopCYUZERMR6ytztDERERETyojAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpZW0dcVKGnZExy7XC4f10RERETyK/tzOz83KijzYebEiRMAREdb5BaxIiIi4nHixAkcDsdFtynz92bKzMzkwIEDhIaGYrPZinXfLpeL6OhokpKSLH3fJ7XDv6gd/kXt8C9qh38pyXYYYzhx4gR16tShQoWLj4op8z0zFSpUICoqqkSfw263W/pgzKZ2+Be1w7+oHf5F7fAvJdWOS/XIZNMAYBEREbE0hRkRERGxNIWZIggMDGT8+PEEBgb6uipFonb4F7XDv6gd/kXt8C/+0o4yPwBYREREyjb1zIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIiXQ4cO0aNHD6pUqUJYWJivq3NJ5T7MHDp0iJEjR9KwYUOCgoKIjIzk6quv5s033yQ1NRWAGTNm0LVrV+x2OzabjePHj+fYz4QJE+jUqRMhISG5vvBbtmyhX79+REdHExwcTGxsLC+//LLP2nXs2DGGDx/OlVdeSUhICHXr1mXEiBE4nU7PPpYvX47NZsv1Z926dSVW94K0A+Af//gHl19+OcHBwdSsWZNevXqxY8cOr/2kpKQwYMAAHA4HDoeDAQMG5Po6+nM79u3bx6BBg4iJiSE4OJjLL7+c8ePHc+bMGb9qB8CqVau4/vrrPX8Iu3btyunTpwH/OK7y05Z9+/blWc+FCxd69mOFYyshIYG//vWv1KxZE7vdzh133EFycrLXfurXr5+jnY8++qjl2gHwv//9j/bt2xMcHEyNGjXo3bt3qdfVn+Wn/lOnTuXgwYNs3ryZXbt2+bjGl1bmZwC+mL1799K5c2fCwsKYOHEizZo149y5c+zatYvZs2dTp04dbrnlFlJTU+nZsyc9e/bksccey3VfZ86coU+fPnTs2JG33347x/oNGzZQs2ZN3nvvPaKjo1m5ciVDhw4lICCABx98sNTb1aBBAw4cOMCLL75IkyZN2L9/P/fddx8HDhxg0aJFAHTq1ImDBw967fuJJ55g2bJltG3btljrXNh23HLLLbRp04b+/ftTt25djh07xlNPPUVcXByJiYkEBAQA8Le//Y1ff/2Vzz//HIChQ4cyYMAAPvnkE8u0Y8eOHWRmZvLWW2/RsGFDfv75Z4YMGcKpU6d48cUX/aYdq1at8rxXXnnlFSpXrsyWLVs805H7+rjKb1tuuummHPWcMWMGkydP5sYbb/SU+fux1a1bN+Li4mjRogVff/014P7/vvnmm1m9erXXNPHPPPMMQ4YM8SxXrVq1xNtQ3O346KOPGDJkCBMnTuT666/HGMNPP/1UqnW95ZZbiu35ilt+65+QkECbNm1o1KhRnvs6e/YslSpVKsXaX4Qpx2644QYTFRVlTp48mev6zMxMr+VvvvnGACYlJSXPfc6ZM8c4HI58Pf8DDzxgrrvuuvxWN98K2q5sH374oalcubI5e/ZsruvPnDljIiIizDPPPFNsdb2YwrZjy5YtBjB79uwxxhizbds2A5jVq1d7tlm1apUBzI4dO4q/4n9QXO3IzeTJk01MTEyx1PNS8tuO9u3bm3HjxuV7v6V9XBlT+NekZcuW5t577/UsW+HY+uKLL0yFChWM0+n0lB87dswA5ssvv/SU1atXz0ydOrWkq5yr4mrH2bNnzWWXXWZmzZrl07oaY0xKSooZMmSIiYiIMIGBgeaqq64yn3zyiTHGmCNHjpi+ffuayy67zAQHB5umTZua999/32s/Xbp0McOGDTPDhg0zDofDVKtWzTz++ONex+Zrr71mGjZsaAIDA01ERIS57bbbiqX+9erVM4Dn5+677zbGGAOYN954w9xyyy0mJCTEPPnkk+bcuXPm3nvvNfXr1zdBQUHmiiuuMNOmTfPa59mzZ83w4cM97RgzZoy56667TK9evTzbLFy40DRt2tQEBQWZatWqmW7duuVZx9yU2zBz5MgRY7PZzKRJk/L9mOIOM/3798/XwVcQhWlXtpkzZ5oaNWrkuX7RokWmQoUK5pdffilKFfOlsO04efKkGTVqlImJiTHp6enGGGPefvvtXF8Th8NhZs+eXRzVzVNxtiM3jz/+uGnTpk1Rq3lJ+W1HcnKyAcz06dNNx44dTUREhLn22mvNihUr8nxMaR5XxhT+NVm/fr0BzA8//OAps8KxtXTpUhMQEGDS0tI8ZampqaZChQpm/PjxnrJ69eqZWrVqmWrVqpkWLVqYZ5999qLHXnEpznasWbPGAGb27NmmZcuWplatWqZnz57m559/LtW6ZmRkmA4dOpirrrrKxMfHm4SEBPPJJ5+YTz/91BhjzK+//mpeeOEFs2nTJpOQkGCmT59uAgICvEJxly5dTNWqVc3IkSPNjh07zHvvvWdCQkLMjBkzjDHGrFu3zgQEBJj333/f7Nu3z2zcuNG8/PLLxVL/w4cPm549e5o77rjDHDx40Bw/ftwY4w4zERER5u233zYJCQlm37595syZM+bJJ580a9euNXv37vXUc8GCBZ79Pfvss6ZatWrm448/Ntu3bzf33XefsdvtnjBz4MABU7FiRTNlyhSTmJhofvzxR/Paa6+ZEydOXLSeFyq3YWb16tUGMB9//LFXefXq1U2VKlVMlSpVzJgxY7zWFWeYWblypalUqZKJj48vTPXzVJh2GeM+yOvWrWsef/zxPPd94403mhtvvLFY65uXgrbjtddeM1WqVDGAady4sVdvxoQJE0yjRo1yPEejRo3MxIkTS64Rpnjb8Ud79uwxdrvdzJw5s8Tqny2/7cjulahWrZqZPXu22bhxoxk1apSpXLmy2bVrV677Ls3jypjCv0fuv/9+Exsb61VmhWPr8OHDxm63m5EjR5pTp06ZkydPmmHDhhnADB061PO4KVOmmOXLl5stW7Z4vtgMGjSoRNtQ3O344IMPDGDq1q1rFi1aZNavX2/69etnqlevbo4ePVpqdc3uRdq5c2e+9/3nP//Z/POf//Qsd+nSxcTGxnr1xIwdO9ZzDH700UfGbrcbl8tV7PU3xphevXp5emSyAWbUqFGXfJ4HHnjA64t6ZGSkeeGFFzzL586dM3Xr1vWEmQ0bNhjA7Nu3L99t+aNyPwDYZrN5La9du5bNmzdz1VVXkZ6eXiLPuXXrVnr16sWTTz5Jjx49SuQ5CtIul8vFTTfdRJMmTRg/fnyu+/v111/54osvGDRoUInUNy/5bUf//v3ZtGkT3377LY0aNeKOO+4gLS0tz/2A+/byuZWXhOJqR7YDBw7Qs2dP+vTpw+DBg0u8/tku1Y7MzEzAPZj5nnvuoVWrVkydOpUrr7yS2bNn59ifr44rKNh75PTp07z//vu51tPfj62aNWuycOFCPvnkE6pWrYrD4cDpdNK6dWvPmDKA0aNH06VLF5o3b87gwYN58803efvttzl69Khl2pF9/D3++OPcdttttGnThjlz5uQYtF3Sdd28eTNRUVFcccUVuT4+IyODCRMm0Lx5c6pXr07VqlWJj4/nl19+8dquQ4cOXs/VsWNHdu/eTUZGBj169KBevXo0aNCAAQMG8O9//zvfg4+L8rmX27i2N998k7Zt21KzZk2qVq3KzJkzPW1xOp0kJyfTrl07z/YBAQG0adPGs9yiRQu6detGs2bN6NOnDzNnziQlJSVfbclWbgcAN2zYEJvNluOqlwYNGgAQHBxcIs+7bds2rr/+eoYMGcK4ceOKff8FbdeJEyfo2bMnVatWZfHixXkO5pozZw7Vq1cvtYFtBW1H9pUkjRo1okOHDoSHh7N48WL69etHrVq1cr3i4ffffycyMrLkGkHxtiPbgQMHuO666+jYsSMzZswo0fpny287ateuDUCTJk28touNjc3xhxpK/7iCwr33Fy1aRGpqKnfddZdXuVWOrbi4OBISEjhy5AgVK1YkLCyMWrVqERMTk+f+O3ToAMCePXuoXr16CbTArTjbkdvxFxgYSIMGDXI9/kqqrpf6/HjppZeYOnUq06ZNo1mzZlSpUoVRo0YV6MrE0NBQNm7cyPLly4mPj+fJJ5/kqaeeYt26dXleSl0cn3tVqlTxWv7www8ZPXo0L730Eh07diQ0NJQXXniBNWvWeG33xwBlLriTUkBAAF9++SUrV64kPj6eV155hccff5w1a9Zc9Bi9ULntmalevTo9evTg1Vdf5dSpU6XynFu3buW6667j7rvvZsKECSXyHAVpl8vlIi4ujsqVK7N06VKCgoJy3c4Yw5w5c7jrrrtKbeR6UV8fY4znG0bHjh1xOp2sXbvWs37NmjU4nU46depUbHXOTXG2A+C3336ja9eutG7dmjlz5nhdiVKS8tuO+vXrU6dOHXbu3OlVvmvXLurVq+dV5ovjCgr3mrz99tvccsst1KxZ06vcasdWjRo1CAsL4+uvv+bw4cMXDZGbNm0CzgeEklKc7WjTpg2BgYFex9/Zs2fZt29fjuOvJOvavHlzfv311zwvaV6xYgW9evXi73//Oy1atKBBgwbs3r07x3arV6/OsdyoUSNPT1TFihXp3r07kydP5scff2Tfvn2eK72KUv+CWLFiBZ06deKBBx6gVatWNGzYkISEBM96h8NBZGSk13skIyPDc3xls9lsdO7cmaeffppNmzZRuXJlFi9enP+KFPoEVRmwZ88eExkZaRo3bmzmz59vtm3bZnbs2GHeffddExkZaR566CFjjDEHDx40mzZtMjNnzjSA+e6778ymTZu8zsHu37/fbNq0yTz99NOmatWqZtOmTWbTpk2eAUw///yzqVmzpunfv785ePCg5+fw4cM+aZfL5TLt27c3zZo1M3v27PGq07lz57z2t2zZMgOYbdu2FXtdi9qOhIQEM3HiRLN+/Xqzf/9+s3LlStOrVy9TrVo1k5yc7NlXz549TfPmzc2qVavMqlWrTLNmzcxf/vIXS7Xjt99+Mw0bNjTXX3+9+fXXX71eM39phzHGTJ061djtdrNw4UKze/duM27cOBMUFJRj/I+vjquCtMUYY3bv3m1sNpv57LPPct2Xvx9bxhgze/Zss2rVKrNnzx7z7rvvmmrVqnm1ceXKlWbKlClm06ZNZu/evWbBggWmTp065pZbbrFUO4wxZuTIkeayyy4zX3zxhdmxY4cZNGiQiYiIMMeOHSvVunbt2tU0bdrUxMfHm71795pPP/3UcwyNGjXKREdHmx9++MFs27bNDB482GtArDHnBwCPHj3a7Nixw7z//vumSpUq5s033zTGGPPJJ5+Yl19+2WzatMns27fPvP7666ZChQqXHOyc3/rnNWZm8eLFXmXTpk0zdrvdfP7552bnzp1m3Lhxxm63mxYtWni2efbZZ0316tXNkiVLzI4dO8ywYcOM3W43t956qzHGPZZnwoQJZt26dWb//v2eK2uzB0znR7kOM8a4R1E/+OCDJiYmxlSqVMlUrVrVtGvXzrzwwgvm1KlTxhhjxo8f73WZWvbPnDlzPPu5++67c93mm2++ueg+6tWr55N2ZQ9mzu0nMTHRa1/9+vUznTp1KpF6FrUdv/32m7nxxhtNRESEqVSpkomKijJ/+9vfclwWe/ToUdO/f38TGhpqQkNDTf/+/S86kNsf2zFnzpw8XzN/aUe2SZMmmaioKBMSEmI6duyY69VMvjyujMl/Wx577DETFRVlMjIyct2Pvx9bxrgHjkZGRppKlSqZRo0amZdeeslrYOmGDRtM+/btjcPhMEFBQebKK68048eP9/p/sEI7jHFf6v/Pf/7TREREmNDQUNO9e/diu5qpIHU9evSoueeee0z16tVNUFCQadq0qfnvf//rWderVy9TtWpVExERYcaNG5fjUuUuXbqYBx54wHPlT3h4uHn00Uc97V2xYoXp0qWLCQ8PN8HBwaZ58+ZeVxAVtf75DTNpaWlm4MCBxuFwmLCwMHP//febRx991CvMnD171jz44IOedowdO9b06dPH9O3b1xjjnuLghhtuMDVr1jSBgYHmiiuuMK+88kp+Xw5jjDG2rAqKiIiIn+jatSstW7Zk2rRpvq5KscvMzCQ2NpY77riDf/3rX8Wyz3I7AFhERERK3v79+4mPj6dLly6kp6fz6quvkpiYyN/+9rdie45yOwBYRERESl6FChWYO3cuf/rTn+jcuTM//fQTy5YtIzY2ttieQ6eZRERExNLUMyMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpb2/ztZJMvr05n6AAAAAElFTkSuQmCC", "application/papermill.record/text/plain": "

" }, "metadata": { @@ -2165,20 +2251,6 @@ "p_diff_predicted[\"source\"] = \"difference² of predicted\"" ] }, - { - "cell_type": "markdown", - "metadata": { - "editable": true, - "pycharm": { - "name": "#%% md\n" - }, - "slideshow": { - "slide_type": "" - }, - "tags": [] - }, - "source": [] - }, { "cell_type": "code", "execution_count": 24, @@ -2197,7 +2269,7 @@ "outputs": [ { "data": { - "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZyElEQVR4nO3dd3hURdsG8HvT+0JCKglJkID0LgakV0UJ4itSpEhRlBIEBXmlKkVBiopK+SgWFFFAQUGiCIgUgdCEACEhgUACgQCb3p/vj4V9WVJI2ezuSe7fde0FO3PO2Wd2T7JP5szMUYmIgIiIiEihLEwdABEREVF5MJkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGsTB1ARcvPz0d8fDycnZ2hUqlMHQ4RERGVgIggJSUFPj4+sLAovu+l0icz8fHx8PPzM3UYREREVAZxcXHw9fUtdptKn8w4OzsD0L4ZLi4uJo6GiIiISiI5ORl+fn667/HiVPpk5v6lJRcXFyYzREREClOSISIcAExERESKxmSGiIiIFI3JDBERESlapR8zUxIigtzcXOTl5Zk6FKJKxdLSElZWVlwWgYgqVJVPZrKzs5GQkID09HRTh0JUKTk4OMDb2xs2NjamDoWIKqkqnczk5+cjJiYGlpaW8PHxgY2NDf+CJDIQEUF2djZu3ryJmJgYBAUFPXLhKyKisqjSyUx2djby8/Ph5+cHBwcHU4dDVOnY29vD2toaly9fRnZ2Nuzs7EwdEhFVQvwzCeBfi0QViD9fRFTR+FuGiIiIFK1KX2YiIiKiMroFIBHAHQCuADwAuJkmFPbMEBERUelcAdAPQEMATwFoAOAlAHGmCYc9M0RERFRySQCGADgFYBQAX2iTm00AXgXwLYDqxg2JPTOE7OxsU4dARERKcQNAIIAvob3MtAnaS03fAqh2r8zImMw8RESQnp1r9IeIlDjG2NhYqFSqAo9OnToBAA4ePIgOHTrA3t4efn5+mDBhAtLS0nT7BwQEYO7cuRg+fDjUajVGjx4NANi8eTMaNmwIW1tbBAQEYPHixQZ9b4mIqBLIBtAawPMAtgGIALAVQAiArvfqjYyXmR6SkZOHBjN3Gf11I97rCQebkn0cfn5+SEhI0D2/fv06unXrhg4dOuDff/9Fz5498f7772PNmjW4efMmxo0bh3HjxmHdunW6fRYtWoQZM2Zg+vTpAIDw8HD0798fs2fPxksvvYSDBw/ijTfegJubG4YPH27QthIRkYLZAZhWSLkAeAfAAeOGAwAqKU2XgAIlJydDrVZDo9HAxcVFry4zMxMxMTEIDAzULeaVnp1r9snMgzIzM9GpUye4u7vj559/xvDhw2Fvb4+VK1fqtvn777/RsWNHpKWlwc7ODgEBAWjevDm2bt2q22bw4MG4efMmwsLCdGVTpkzBr7/+irNnz5avcVSlFfZzRkQKdhBAu2LqDwNoU/6XKe77+2HsmXmIvbUlIt7raZLXLYuRI0ciJSUFv//+OywsLBAeHo6oqChs2LBBt42I6G7dUL9+fQBAq1at9I5z7tw5hISE6JW1a9cOy5YtQ15eHiwtyxYfERFVMvnlrK8ATGYeolKpytRDYgpz587Fb7/9hiNHjsDZ2RmA9n5Tr732GiZMmFBg+1q1aun+7+joqFcnIgXuS1XJO+2IiKgsagBQA9AUUucO7ZozRqaMb20qYPPmzXjvvfewc+dOPPbYY7ryFi1a4OzZs6hTp06pjtegQQP8/fffemUHDx5E3bp12StDRET/4wbgEyA5PBk3ut5AclYy1LZqeIZ5wvkpZ21CY2SczaRAZ86cwdChQzF16lQ0bNgQ169fx/Xr13H79m1MnToVhw4dwtixY3Hy5ElcvHgR27Ztw/jx44s95uTJk7F79268//77iIyMxJdffonly5fjrbfeMlKriIhIEdyBa09dw6j4UXj8+cfRqn8r1Hu+Ht64+wbi28SbpGeGyYwCHTt2DOnp6Zg7dy68vb11j379+qFJkybYt28fLl68iPbt26N58+aYMWMGvL29iz1mixYtsGnTJmzcuBGNGjXCzJkz8d5773EmExER6blz5w7GhI7BDz/+gPx87QCZ/Px8fLPhG0z+72QkJycbPSbOZuIsC6IKxZ8zosrlwoULePzxxwutU6lUuHDhAoKCgsr9OqWZzcSeGSIiIiqx27dvF1knIrhz544Ro9FiMkNEREQl5uJYfC/Jo+orApMZIiIiKjEPOw+0eaLwVfG6dOoCDxsPI0fEZIaIiIhKwV3jjo3vbUTLFi31yoPbBGPdlHVwTTb+dCauM0NEREQlpwYCng7Ajmk7cGP2DdxIugGvGl7wjPCE+2B34IjxQ2IyQ0RERCXnCaA74PGWBzxUHmhs3xjIgPZGkyPv1RsZkxkiIiIqOTWAJQCqAVgLIB2ALYAx0N4129n4ITGZISIiotLxhjahmQIgFYDTvTITLSXFAcCVRKdOnTBx4kTd84CAACxbtkz3/Pr16+jevTscHR1RrVq1IstI68CBA2jcuDGsra3Rt29fo73uw5+jEigxZiIyAHsAgQAa3/vXhGtismemkjp69KjenbGXLl2KhIQEnDx5Emq1usgypYqJicGYMWOQmpqKu3fv4qOPPsLTTz9d5uNNmjQJzZo1w86dO+Hk5GTASLX27t2Lzp07486dO3qJ5JYtW2BtbW3w13tYp06d0KxZM72El4hIqUzaM/PXX3/hueeeg4+PD1QqFX766Se9ehHB7Nmz4ePjA3t7e3Tq1Alnz541TbDFyQOwF8B39/7NM2UwWu7u7nBwcNA9j46ORsuWLREUFAQPD48iy0orJyfHIPGWl6+vL3bu3IkDBw5g2rRpWL9+fbmOFx0djS5dusDX19eovVaurq5wdjbBBWciIgUzaTKTlpaGpk2bYvny5YXWL1y4EEuWLMHy5ctx9OhReHl5oXv37khJSTFypMXYAiAAQGcAg+79G3CvvIKkpaVh6NChcHJygre3NxYvXlxgmwcvMwUEBGDz5s346quvoFKpMHz48ELLAECj0eDVV1+Fh4cHXFxc0KVLF5w6dUp33NmzZ6NZs2ZYu3YtateuDVtbW4hIiff7+uuvERAQALVajQEDBuh9lvn5+fjwww9Rp04d2NraolatWpg3b56u/tq1a3jppZdQvXp1uLm5ISQkBLGxsQAAa2trWFhYIDo6GitXrsTcuXOLfP+ysrIwYcIEeHh4wM7ODk899RSOHj0KAIiNjYVKpUJSUhJGjBgBlUpVZGKUnZ2NKVOmoGbNmnB0dESbNm2wd+9eXf3ly5fx3HPPoXr16nB0dETDhg2xY8cOxMbGonPnzgCA6tWr673/hV0unDt3ru7z9vf3x88//4ybN28iJCQETk5OaNy4MY4dO6bbJykpCQMHDoSvry8cHBzQuHFjfPfdd7r64cOHY9++ffj444+hUqmgUql072NERASeeeYZODk5wdPTE0OGDMGtW7d0+5bk3CMiMjoxEwBk69atuuf5+fni5eUlH3zwga4sMzNT1Gq1rFixosTH1Wg0AkA0Gk2BuoyMDImIiJCMjIyyBb1ZRFQigoceqnuPzWU77KO8/vrr4uvrK2FhYXL69Gl59tlnxcnJSUJDQ3Xb+Pv7y9KlS0VEJDExUXr16iX9+/eXhIQEuXv3bqFl+fn50q5dO3nuuefk6NGjEhkZKZMnTxY3NzdJSkoSEZFZs2aJo6Oj9OzZU44fPy6nTp0q8X5OTk7Sr18/+ffff+Wvv/4SLy8v+e9//6uLecqUKVK9enVZv369REVFyf79+2X16tUiIpKWliZBQUEyYsQIOX36tERERMigQYOkXr16kpWVJSIi27dvl549e8rly5eLff8mTJggPj4+smPHDjl79qwMGzZMqlevLklJSZKbmysJCQni4uIiy5Ytk4SEBElPTy/0OIMGDZK2bdvKX3/9JVFRUbJo0SKxtbWVyMhIERHp3bu3dO/eXU6fPi3R0dGyfft22bdvn+Tm5srmzZsFgFy4cEH3/ouIdOzYscDn6OrqKitWrJDIyEh5/fXXxdnZWXr16iWbNm2SCxcuSN++faV+/fqSn58vIiJXr16VRYsWyYkTJyQ6Olo++eQTsbS0lMOHD4uIyN27dyU4OFhGjx4tCQkJkpCQILm5uRIfHy81atSQadOmyblz5+T48ePSvXt36dy5c6nOvYeV++eMiKqk4r6/H2a2yUx0dLQAkOPHj+tt16dPHxk6dGiRx8nMzBSNRqN7xMXFVUwykysivlIwkXkwofG7t50BpaSkiI2NjWzcuFFXlpSUJPb29kUmMyIiISEhMmzYML1jPVy2e/ducXFxkczMTL3tHnvsMVm5cqWIaJMSa2trSUxMLPV+Dg4OkpycrKt/++23pU2bNiIikpycLLa2trrk5WFr1qyRevXq6b6wRUSysrLE3t5edu3aJeHh4aJSqaRFixbSpk0bGT58eKHHSU1NFWtra9mwYYOuLDs7W3x8fGThwoW6MrVaLevWrSv0GCIiUVFRolKp5Nq1a3rlXbt2lWnTpomISOPGjWX27NmF7r9nzx4BIHfu3NErLyyZefnll3XPExISBIDMmDFDV3bo0CEBIAkJCUXG+8wzz8jkyZOLfB0RkRkzZkiPHj30yu7//Fy4cKHE597DmMwQUVmUJpkx2wHA169fBwB4euqvvuPp6YnLly8Xud+CBQswZ86cCo0NALAfwNVi6gVA3L3tOhnuZaOjo5GdnY3g4GBdmaurK+rVq1fuY4eHhyM1NRVubm565RkZGYiOjtY99/f3h7u7e6n3CwgI0BsP4u3tjcTERADAuXPnkJWVha5duxYZW1RUVIHxJJmZmYiOjkaPHj2Qn5//yDZGR0cjJycH7dq105VZW1vjiSeewLlz5x65/33Hjx+HiKBu3bp65VlZWbr3YcKECXj99dcRFhaGbt264YUXXkCTJk1K/Br3PbjP/Z+Hxo0bFyhLTEyEl5cX8vLy8MEHH+D777/HtWvXkJWVhaysLL0B4YUJDw/Hnj17Ch3wHB0djYyMjAo794iIysNsk5n7VCqV3nMRKVD2oGnTpmHSpEm658nJyfDz8zN8YAkG3q6ERMSwB3xAfn4+vL299cZ93PfgINiHvxRLut/Ds3RUKpUuAbG3t39kbC1btsSGDRsK1D2YWD3K/fevtOdVYfFYWloiPDwclpaWenX3k4FRo0ahZ8+e+PXXXxEWFoYFCxZg8eLFGD9+fIlfB9B/3+7HWFjZ/fdy8eLFWLp0KZYtW4bGjRvD0dEREydORHZ29iPb9Nxzz+HDDz8sUOft7Y2LFy+WKm4iImMx22TGy8sLgLaHxtvbW1eemJhYoLfmQba2trC1ta3w+OD96E1KtV0J1alTB9bW1jh8+DBq1aoFALhz5w4iIyPRsWPHch27RYsWuH79OqysrBAQEFDh+z0oKCgI9vb22L17N0aNGlXoa3z//fe6AcZlVadOHdjY2ODvv//GoEGDAGhnZB07dqxUa6U0b94ceXl5SExMRPv27Yvczs/PD2PGjMGYMWMwbdo0rF69GuPHj4eNjQ0AIC/P8FPf9u/fj5CQELz88ssAtEnKxYsXUb9+fd02NjY2BV67RYsW2Lx5MwICAmBlVfBXQ0Wee0RE5WG2i+YFBgbCy8sLv//+u64sOzsb+/btQ9u2bU0Y2T3tAfgCKOqPeRUAv3vbGZCTkxNGjhyJt99+G7t378aZM2cwfPhwWFiU/6Ps1q0bgoOD0bdvX+zatQuxsbE4ePAgpk+frjdbxlD7PcjOzg5Tp07FlClT8NVXXyE6OhqHDx/GmjVrAACDBw9GjRo1EBISgv379yMmJgb79u1DaGgorl4t7nqfPkdHR7z++ut4++238dtvvyEiIgKjR49Geno6Ro4cWeLj1K1bF4MHD8bQoUOxZcsWxMTE4OjRo/jwww+xY8cOAMDEiROxa9cuxMTE4Pjx4/jzzz91CYW/vz9UKhV++eUX3Lx5E6mpqSV+7UepU6cOfv/9dxw8eBDnzp3Da6+9prtse19AQAD++ecfxMbG4tatW8jPz8fYsWNx+/ZtDBw4EEeOHMGlS5cQFhaGESNGIC8vr0LPPSKi8jBpz0xqaiqioqJ0z2NiYnDy5Em4urqiVq1amDhxIubPn4+goCAEBQVh/vz5cHBw0P1FbVKWAD4G8B9oE5cHr/7cT3CW3dvOwBYtWoTU1FT06dMHzs7OmDx5MjQaTbmPq1KpsGPHDrz77rsYMWIEbt68CS8vL3To0KHY3rCy7vewGTNmwMrKCjNnzkR8fDy8vb0xZswYAICDgwP++usvTJ06Ff369UNKSgpq1qyJrl27lrqn5oMPPkB+fj6GDBmClJQUtGrVCrt27UL16tVLdZx169Zh7ty5mDx5Mq5duwY3NzcEBwfjmWeeAaDtdRk7diyuXr0KFxcX9OrVC0uXLgUA1KxZE3PmzME777yDV155BUOHDi332jj3zZgxAzExMejZsyccHBzw6quvom/fvnrnyFtvvYVhw4ahQYMGyMjIQExMDAICAnDgwAFMnToVPXv2RFZWFvz9/dGrVy9dwlJR5x4RUXmopCIHYTzC/VVQHzZs2DCsX78eIoI5c+Zg5cqVuHPnDtq0aYPPPvsMjRo1KvFrJCcnQ61WQ6PRFPjSy8zMRExMDAIDA2FnV8Z1mLcACIX+YGA/aBOZfmU7JFFlYpCfMyKqcor7/n6YSZMZY6jwZAbQrvi7H9rBvt7QXlqqgB4ZIiViMkNEZVGaZMZsBwAriiUMOv2aiIjI7MUBiABwHkADAPWhHUtqAkxmiIiIqHQiAHQBcOOBspoA/gRQt9A9KhSnIRAREVHJJQB4HvqJDABcA/AigESjR8RkhoiIiErhJoDIIupO36s3MiYzREREVHJpj6hPN0oUepjMEBERUcm5o+jswRqAWxF1FYjJDBEREZWcGsDwIurGACjd+qMGwdlMREREVHIaAE8BcAWw+t7z6tAmMv4A7sDoCQ17ZiqJTp066d0oMSAgAMuWLdM9v379Orp37w5HR0fdnawLKyOtAwcOoHHjxrC2tkbfvn1NHQ4A7W0jfvrpJwBAbGwsVCoVTp48afQ4hg8fbjbvCRGZwE0AI6Gdnv0ZgB8AfAIgHNqEJsn4IbFnppI6evQoHB0ddc+XLl2KhIQEnDx5Emq1usgypYqJicGYMWOQmpqKu3fv4qOPPsLTTz9d5uNNmjQJzZo1w86dO+Hk5GTASA3Dz88PCQkJqFGjRom2Hz58OO7evatLhoiIyswR2vsR7rj3eJiDccMBmMwYRF5eHvbv34+EhAR4e3ujffv2sLQ07f0M3N3d9Z5HR0ejZcuWCAoKKrastHJycmBtbV3m/Q3F19cXO3fuhIWFBb755husX7++XMlMdHQ0xowZA19fwy5naaj3y9LSEl5eXgaIiIiolDwA1ANwoZC6pvfqjYyXmcppy5YtCAgIQOfOnTFo0CB07twZAQEB2LJlS4W9ZlpaGoYOHQonJyd4e3tj8eLFBbZ58DJTQEAANm/ejK+++goqlQrDhw8vtAwANBoNXn31VXh4eMDFxQVdunTBqVOndMedPXs2mjVrhrVr16J27dqwtbWFiJR4v6+//hoBAQFQq9UYMGAAUlJSdNvk5+fjww8/RJ06dWBra4tatWph3rx5uvpr167hpZdeQvXq1eHm5oaQkBDExsYCAKytrWFhYYHo6GisXLkSc+fOLfL9y8rKwoQJE+Dh4QE7Ozs89dRTOHr0KID/Xb5JSkrCiBEjoFKpirybdUBAAN5//30MGjQITk5O8PHxwaeffqq3jUqlwooVKxASEgJHR0ddXNu3b0fLli1hZ2eH2rVrY86cOcjNzdXtd/HiRXTo0AF2dnZo0KABfv/9d73jFnaZ6ezZs+jduzdcXFzg7OyM9u3bIzo6GrNnz8aXX36Jn3/+GSqVCiqVCnv37n3kewpoE/VJkyahWrVqcHNzw5QpU1DJb+dGRI/iBWArtPcifJAfgE3QznYyNqnkNBqNABCNRlOgLiMjQyIiIiQjI6NMx968ebOoVCqBtsNN91CpVKJSqWTz5s3lDb9Qr7/+uvj6+kpYWJicPn1ann32WXFycpLQ0FDdNv7+/rJ06VIREUlMTJRevXpJ//79JSEhQe7evVtoWX5+vrRr106ee+45OXr0qERGRsrkyZPFzc1NkpKSRERk1qxZ4ujoKD179pTjx4/LqVOnSryfk5OT9OvXT/7991/566+/xMvLS/773//qYp4yZYpUr15d1q9fL1FRUbJ//35ZvXq1iIikpaVJUFCQjBgxQk6fPi0REREyaNAgqVevnmRlZYmIyPbt26Vnz55y+fLlYt+/CRMmiI+Pj+zYsUPOnj0rw4YNk+rVq0tSUpLk5uZKQkKCuLi4yLJlyyQhIUHS09MLPY6/v784OzvLggUL5MKFC/LJJ5+IpaWlhIWF6bYBIB4eHrJmzRqJjo6W2NhY+e2338TFxUXWr18v0dHREhYWJgEBATJ79mwREcnLy5NGjRpJp06d5MSJE7Jv3z5p3ry5AJCtW7eKiEhMTIwAkBMnToiIyNWrV8XV1VX69esnR48elQsXLsjatWvl/PnzkpKSIv3795devXpJQkKCJCQkSFZWVone0w8//FDUarX8+OOPEhERISNHjhRnZ2cJCQl5xFn6P+X9OSMiM3VFRH4XkeUisltE4gx7+OK+vx/GZKaMv2Rzc3PF19e3QCLzYELj5+cnubm5hmiGTkpKitjY2MjGjRt1ZUlJSWJvb19kMiMiEhISIsOGDdM71sNlu3fvFhcXF8nMzNTb7rHHHpOVK1eKiDYpsba2lsTExFLv5+DgIMnJybr6t99+W9q0aSMiIsnJyWJra6tLXh62Zs0aqVevnuTn5+vKsrKyxN7eXnbt2iXh4eGiUqmkRYsW0qZNGxk+fHihx0lNTRVra2vZsGGDriw7O1t8fHxk4cKFujK1Wi3r1q0r9Bj3+fv7S69evfTKXnrpJXn66ad1zwHIxIkT9bZp3769zJ8/X6/s66+/Fm9vbxER2bVrl1haWkpc3P9+M+zcubPYZGbatGkSGBgo2dnZhcY6bNiwAgnIo95TERFvb2/54IMPdPU5OTni6+vLZIaIKlxpkhmOmSmj/fv34+rVq0XWiwji4uKwf/9+dOrUyWCvGx0djezsbAQHB+vKXF1dUa9evXIfOzw8HKmpqXBz01/xKCMjA9HR0brn/v7+emNySrpfQEAAnJ2ddc+9vb2RmKi9ice5c+eQlZWFrl27FhlbVFSU3v4AkJmZiejoaPTo0QP5+fmPbGN0dDRycnLQrl07XZm1tTWeeOIJnDt37pH7P+zBz+H+8wdnkQFAq1at9J6Hh4fj6NGjepfQ8vLykJmZifT0dJw7dw61atXSG6/z8Os87OTJk2jfvn2pxuM86j3VaDRISEjQe20rKyu0atWKl5qIyKwwmSmjhIQEg25XUhX5JZKfnw9vb2/deIoHPTh1+8FZUqXZ7+EvWpVKpUtA7O3tHxlby5YtsWHDhgJ1Dw92Ls7990+lUhUof7isrB4+TmHv15w5c9CvX78C+9rZ2RX6GT8qtke9f4Ux1HtKRGRqTGbKyNv74ZFP5duupOrUqQNra2scPnwYtWrVAgDcuXMHkZGR6NixY7mO3aJFC1y/fh1WVlYICAio8P0eFBQUBHt7e+zevRujRo0q9DW+//573QDjsqpTpw5sbGzw999/Y9CgQQC0M4yOHTumt05PSR0+fLjA88cff7zYfVq0aIELFy6gTp06hdY3aNAAV65cQXx8PHx8fAAAhw4dKvaYTZo0wZdfflnkbCkbGxvk5eUViONR76m3tzcOHz6MDh06AAByc3MRHh6OFi1aFBsPEZExcTZTGbVv3x6+vr5F/sWsUqng5+eH9u3bG/R1nZycMHLkSLz99tvYvXs3zpw5g+HDh8PCovwfZbdu3RAcHIy+ffti165diI2NxcGDBzF9+nQcO3bM4Ps9yM7ODlOnTsWUKVPw1VdfITo6GocPH8aaNWsAAIMHD0aNGjUQEhKC/fv3IyYmBvv27UNoaGixl/se5ujoiNdffx1vv/02fvvtN0RERGD06NFIT0/HyJEjS3yc+w4cOICFCxciMjISn332GX744QeEhoYWu8/MmTPx1VdfYfbs2Th79izOnTuH77//HtOnTwegfT/r1auHoUOH4tSpU9i/fz/efffdYo85btw4JCcnY8CAATh27BguXryIr7/+GhcuaOdOBgQE4PTp07hw4QJu3bqFnJycEr2noaGh+OCDD7B161acP38eb7zxBu7evVvq94mIqCIxmSkjS0tLfPzxxwAKXgK4/3zZsmUVst7MokWL0KFDB/Tp0wfdunXDU089hZYtW5b7uCqVCjt27ECHDh0wYsQI1K1bFwMGDEBsbCw8PT0Nvt/DZsyYgcmTJ2PmzJmoX78+XnrpJd2YGgcHB/z111+oVasW+vXrh/r162PEiBHIyMgodU/NBx98gBdeeAFDhgxBixYtEBUVhV27dqF69dKvvz158mSEh4ejefPmeP/997F48WL07Nmz2H169uyJX375Bb///jtat26NJ598EkuWLIG/vz8AwMLCAlu3bkVWVhaeeOIJjBo1Sm98TWHc3Nzw559/IjU1FR07dkTLli2xevVqXS/N6NGjUa9ePbRq1Qru7u44cOBAid7TyZMnY+jQoRg+fDiCg4Ph7OyM559/vtTvExFRRVJJJR/Jl5ycDLVaDY1GU+BLLzMzEzExMQgMDISdnV2Zjr9ly5YCvQN+fn5YtmxZoWMiqPIICAjAxIkTy3R5qioxxM8ZEVU9xX1/P4xjZsqpX79+um56c1oBmIiIqKpgMmMAlpaWBp1+TURERCXHZIaojB5c9p+IiEyHA4CJiIhI0ZjMEBERkaIxmUHFrqpLVNXx54uIKlqVTmbur8GRnp5u4kiIKq/7P1+luW8UEVFpVOkBwJaWlqhWrZrewmyGuj8PUVUnIkhPT0diYiKqVavG5QqIqMJU6WQGALy8vABAl9AQkWFVq1ZN93NGRFQRqnwyo1Kp4O3tDQ8PD+Tk5Jg6HKJKxdramj0yRFThqnwyc5+lpSV/6RIRESlQlR4ATERERMrHZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaGadzOTm5mL69OkIDAyEvb09ateujffeew/5+fmmDo2IiIjMhJWpAyjOhx9+iBUrVuDLL79Ew4YNcezYMbzyyitQq9UIDQ01dXhERERkBsw6mTl06BBCQkLQu3dvAEBAQAC+++47HDt2zMSRERERkbkw68tMTz31FHbv3o3IyEgAwKlTp/D333/jmWeeKXKfrKwsJCcn6z2IiIio8jLrnpmpU6dCo9Hg8ccfh6WlJfLy8jBv3jwMHDiwyH0WLFiAOXPmGDFKIiIiMiWz7pn5/vvv8c033+Dbb7/F8ePH8eWXX+Kjjz7Cl19+WeQ+06ZNg0aj0T3i4uKMGDEREREZm0pExNRBFMXPzw/vvPMOxo4dqyubO3cuvvnmG5w/f75Ex0hOToZarYZGo4GLi0tFhUpEREQGVJrvb7PumUlPT4eFhX6IlpaWnJpNREREOmY9Zua5557DvHnzUKtWLTRs2BAnTpzAkiVLMGLECFOHRkRERGbCrC8zpaSkYMaMGdi6dSsSExPh4+ODgQMHYubMmbCxsSnRMXiZiYiISHlK8/1t1smMITCZISIiUp5KM2aGiIiI6FGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRTP7ZObatWt4+eWX4ebmBgcHBzRr1gzh4eGmDouIiIjMhJWpAyjOnTt30K5dO3Tu3Bk7d+6Eh4cHoqOjUa1aNVOHRkRERGbCrJOZDz/8EH5+fli3bp2uLCAgwHQBPSwLgA0AlakDISIiqrrM+jLTtm3b0KpVK7z44ovw8PBA8+bNsXr1atMGlQvgEoD5APoBmArgPIAMUwZFRERUdZl1MnPp0iV88cUXCAoKwq5duzBmzBhMmDABX331VZH7ZGVlITk5We9hUCcBNAHwLoAdABYBaARgN4Acw74UERERPZpKRMTUQRTFxsYGrVq1wsGDB3VlEyZMwNGjR3Ho0KFC95k9ezbmzJlToFyj0cDFxaV8AV0H0BFAZCF1zgDOAKhVvpcgIiIiIDk5GWq1ukTf32bdM+Pt7Y0GDRroldWvXx9Xrlwpcp9p06ZBo9HoHnFxcYYL6BYKT2QAIAXAZcO9FBEREZWMWQ8AbteuHS5cuKBXFhkZCX9//yL3sbW1ha2tbcUElPuI+qyKeVkiIiIqWpmTmSNHjmDv3r1ITExEfn6+Xt2SJUvKHRgAvPnmm2jbti3mz5+P/v3748iRI1i1ahVWrVplkOOXmhsAdwA3C6mzAlDbuOEQERFRGZOZ+fPnY/r06ahXrx48PT2hUv1vbvKD/y+v1q1bY+vWrZg2bRree+89BAYGYtmyZRg8eLDBXqNUagL4HMCLhdTNBuBp1GiIiIgIZRwA7OnpiQ8//BDDhw+vgJAMqzQDiEokBdqBvtMBnAIQCG0i8yS0PTdERERUbqX5/i5Tz4yFhQXatWtXpuAUzxlAMIDNANIA2IFJDBERkQmVaTbTm2++ic8++8zQsShLNWgvOzGRISIiMqky9cy89dZb6N27Nx577DE0aNAA1tbWevVbtmwxSHBEREREj1KmZGb8+PHYs2cPOnfuDDc3N4MO+iUiIiIqjTIlM1999RU2b96M3r17GzoeIiIiolIp05gZV1dXPPbYY4aOhYiIiKjUypTMzJ49G7NmzUJ6erqh4yEiIiIqlTJdZvrkk08QHR0NT09PBAQEFBgAfPz4cYMER0RERPQoZUpm+vbta+AwiIiIiMqmVCsAR0ZGom7duhUZj8EZfAVgIiIiqnCl+f4u1ZiZ5s2bo379+pg6dSoOHTpUriCJiIiIDKFUyUxSUhIWLlyIpKQkPP/88/D09MTIkSOxbds2ZGZmVlSMREREREUq040mAUBEcOjQIWzbtg3btm3D5cuX0a1bN4SEhODZZ5+Fh4eHoWMtE15mIiIiUp4Ku8z0IJVKhbZt2+KDDz5AREQETp48iQ4dOmD9+vXw8/PjvZuIiIjIKMrcM1OcpKQk3L59G0FBQYY+dKmxZ4aIiEh5Krxn5ssvv8Svv/6qez5lyhRUq1YNbdu2xeXLl+Hm5mYWiQwRERFVfmVKZubPnw97e3sAwKFDh7B8+XIsXLgQNWrUwJtvvmnQAImIiIiKU6ZF8+Li4lCnTh0AwE8//YT//Oc/ePXVV9GuXTt06tTJkPERERERFatMPTNOTk5ISkoCAISFhaFbt24AADs7O2RkZBguOiIiIqJHKFPPTPfu3TFq1Cg0b94ckZGR6N27NwDg7NmzCAgIMGR8RERERMUqU8/MZ599huDgYNy8eRObN2+Gm5sbACA8PBwDBw40aIBERERExamQqdnmhFOziYiIDO/q1auIjo5GVFQU6tati8ceeww+Pj4GO35pvr/LdJlp3bp1cHJywosvvqhX/sMPPyA9PR3Dhg0ry2GJiIhIAS5cuIAePXrgypUrurLatWtj165duglCxlSmy0wffPABatSoUaDcw8MD8+fPL3dQREREZJ5u3LiBfv366SUyAHDp0iW89NJLuHnzptFjKlMyc/nyZQQGBhYo9/f3L9A4IiIiqjxu3LiBiIiIQuuOHz+unGTGw8MDp0+fLlB+6tQp3WBgIiIiqnzS0tKKrU9NTTVSJP9TpmRmwIABmDBhAvbs2YO8vDzk5eXhzz//RGhoKAYMGGDoGImIiMhM1KhRAyqVqtA6Kysrk3RqlCmZmTt3Ltq0aYOuXbvC3t4e9vb26N69O7p06cIxM0RERJWYp6dnkRN9xowZAy8vLyNHVM6p2RcvXsSJEydgb2+PJk2awN/f35CxGQSnZhMRERlWQkICli1bhuXLlyM9PR1OTk6YOHEixo0bB09PT4O8Rmm+v8uczKxZswZLly7FxYsXAQBBQUGYOHEiRo0aVZbDVRgmM0RERIaXlZWF69evIy0tDY6OjvD29oaNjY3Bjl/h68zMmDEDS5cuxfjx4xEcHAxAe/fsN998E7GxsZg7d25ZDktEREQKYWtrazZXZMrUM1OjRg18+umnBW5d8N1332H8+PG4deuWwQIsL/bMEBERKU9pvr/LNAA4Ly8PrVq1KlDesmVL5ObmluWQRERERGVSpmTm5ZdfxhdffFGgfNWqVRg8eHC5gyIiIiIqqTKNmQG0A4DDwsLw5JNPAgAOHz6MuLg4DB06FJMmTdJtt2TJkvJHSURERFSEMiUzZ86cQYsWLQAA0dHRAAB3d3e4u7vjzJkzuu2KWlSHiIiIyFDKlMzs2bPH0HEQERERlUmZxswQERERmQsmM0RERKRoTGaIiIhI0ZjMEBERkaIxmSEiIiJFYzJDREREisZkhoiIiBSNyQwREREpGpMZIiIiUjQmM0RERKRoTGaIiIhI0ZjMEBERkaIxmSEiIiJFK9Nds4mIiKiKiwOQBOAmAA8AbgB8TRMKkxkiIiIqnSgAQwAcfqCsPYD1AGobPxxFXWZasGABVCoVJk6caOpQiIiIqqarAIZBP5EBgP0AXgOQYPSIlJPMHD16FKtWrUKTJk1MHQoREVHVdQvAwSLq/rhXb2SKSGZSU1MxePBgrF69GtWrVzd1OERERFXX3UfUa4wRhD5FJDNjx45F79690a1bt0dum5WVheTkZL0HERERGYhbMXUqACboczD7ZGbjxo04fvw4FixYUKLtFyxYALVarXv4+flVcIRERERViBuA7kXU9QFQw4ix3GPWyUxcXBxCQ0PxzTffwM7OrkT7TJs2DRqNRveIi4ur4CiJiIiqEB8AKwD0hrYnBvf+fR7AUgCexg9JJSJi/JctmZ9++gnPP/88LC0tdWV5eXlQqVSwsLBAVlaWXl1hkpOToVarodFo4OLiUtEhExERVQ3XoR3smwxADcAd2vVmDKQ0399mvc5M165d8e+//+qVvfLKK3j88ccxderURyYyREREVEG87j3MgFknM87OzmjUqJFemaOjI9zc3AqUExERUdVk1mNmiIiIiB7FrHtmCrN3715Th0BERERmhD0zREREpGhMZoiIiEjRmMwQERGRojGZISIiIkVjMkNERESKprjZTGRACQCiAfwDoBaAVgD8wLOCiIgUhV9bVdUVAM8CeHCBZXsAvwFoC54ZRESkGLzMVBWlAXgH+okMAGQAeAbANaNHRERESpVv6gD493fVlAhgUxF1aQBOA/A3XjhERKQw2dD28H8PIBxAGwD/gfa7wwSZBZOZqigTQF4x9QnGCoSIiBQnH9qxlt0BZN0r2wpgDoA/ATxp/JB4makqcgHgU0x9S2MFQkREihMP4EX8L5G5LwPAS/fqjYzJTFXkA2BhEXUdoJ3RREREVJgb9x6FuQLgphFjuYfJTFWkAtARwBr8L3GxAzASwDoAHiaKi4iIzF/OI+qzjRKFHo6ZqYpyAXwN4EcA7wJwBSDQXvN8FsAfKP4yFBERVV2e0P4BnFlInRNM8gcxe2aqongAC4H0Jum45H0JR3EUEXYRuNn0JnAL2oX0iIiICuMFYH4RdR8B8DZiLPcwmamK0oAbC29guu10PP6fx/FE/yfQMKQhnv7xaUR9HQXEmjpAIiIyW/YAhgH4BUBzaHtjWgHYBaA/ABvjh8TLTFVQjjoHKy+uxNKVS/XKw8PD0eP1Hvj757/hw+tMRERUFFcAvaFdXyYT2gTHzXThsGemCkrITsDilYsLrYuJicHFmxeNHBERESlSDQC+MGkiAzCZqZLS0tKQnJxcZP358+eNGA0REVH5MJmpghysHODo6Fhkfd2AukaMhoiIqHyYzFRBXtZeGPfKuELratasiaAaQUaOiIiIqOyYzFRBtvm2CO0QiuEDhkOlUunK69atiz/W/AFfK18TRkdERFQ6nM1UFVkA3re9scxzGf67/b9ITEmEk4MTPOM84bXWCxhv6gCJiIhKjslMVWQFIBJQN1FD/aYaQdFBgCOAodCuEcD+OiIiUhAmM1WRDwB3AIsBjL33PBvAJgD/BbDHdKERERGVFpOZqsgKwAho1wdwuFfmAKAdgGXgfZmIiEhRmMxUVRbQ9sZMBXAbgCWAFwAMMGVQREREpcfREVVRPoDN0F5iun2vLA/ay0x9AVw3TVhERERlwWSmKroGYEYRdScAXDZiLEREROXEZKYqSgVws5j6U8YKhIiIqPyYzFRFdij+Fu1+xgqEiIio/JjMVEVeAIYUUVcNQEPjhUJERFReTGaqInsAswF0eKi8OoDfob2dOxERkUJwanZV5QvgB2gHA5+Btrem3r1yprhERKQgTGaqMo97j+amDoSIiKjsmMxUZfkA4qGd3WQLwBP/WxGYiIhIIXhBoapKArAOQEsA9QHUBTAGQJwpgyIiIio9JjNVUT6AnwGMApB4rywXwNcA/gPghoniIiIiKgMmM1VRPIBpRdQdAVcAJiIiRWEyUxWl4H89MoU5aaQ4iIiIDIDJTFVkB8C6mPqaxgqEiIio/JjMVEWeAAYXUecCoJERYyEiIionJjNVkQOA9wE8+VC5C4AwcAVgIiJSFK4zU1X5AvgJwBVo75LtA+09mXwBWJouLCIiotJiMlOVed57tDZ1IERERGXHy0xERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKZpZJzMLFixA69at4ezsDA8PD/Tt2xcXLlwwdViVSxq0d9FOMnUgREREZWPWycy+ffswduxYHD58GL///jtyc3PRo0cPpKWlmTo05csE8C+AVwA8AaAngM0AbpoyKCIiotJTiYiYOoiSunnzJjw8PLBv3z506NChRPskJydDrVZDo9HAxcWlgiNUkIMAOgLIfah8HID3AFQ3ekREREQ6pfn+VtTtDDQaDQDA1dW1yG2ysrKQlZWle56cnFzhcSlOIoBXUTCRAYDlAMaCyQwRESmGWV9mepCIYNKkSXjqqafQqFGjIrdbsGAB1Gq17uHn52fEKBXiDoCzxdQfNFYgRERE5aeYZGbcuHE4ffo0vvvuu2K3mzZtGjQaje4RFxdnpAgV5FF3xbYzShREREQGoYjLTOPHj8e2bdvw119/wdfXt9htbW1tYWtra6TIFMoVwFMA/i6kzgJAG+OGQ0REVB5mncyICMaPH4+tW7di7969CAwMNHVIlYMrgBXQJjR3H6pbDsDT2AEREVUhN+497kL7+9YDHKdYTmadzIwdOxbffvstfv75Zzg7O+P69esAALVaDXt7exNHp3ANABwH8AOA3wHUgnYmU20ATiaMi4ioMosCEAIg4oGy56H9Q9LHJBFVCmY9NVulUhVavm7dOgwfPrxEx+DU7EcQABkAbGDmqS0RkcLFA+gAILqQulEAPgbgYNSIzFqlmZptxnlW5aECf3iIiIwhDoUnMgDwJYBp0PaOU6kpZjYTERGRol0ppi4H2tvLUJkwmSEiIjKG4uaw2IHjFcuByQwREZEx+AIoas3XNwB4GzGWSobJDBERkTF4AdgOoP0DZVYAXgPwNrhgaTmY9QBgIiKiSiUAwFYANwGkQru+jBcARxPGVAkwmSEiIjImt3sPMhheZiIiIiJFYzJDREREisZkhoiIiBSNyQwREREpGpMZIiIiUjQmM0RERKRoTGaIiIhI0ZjMEBERkaIxmSEiIiJFYzJDREREisZkhogqhubeg4iogvHeTERkWNcA/AHg/6D9c2kMgI4AfEwZFBFVZkxmiMhwrgJ4FsCpB8r+AhAM4EcwoSGiCsHLTERkOL9AP5G57xCAfUaOhYiqDCYzRGQYSQBWFVP/BYBkI8VClVMutJcxrwC4ZeJYyKwwmSEiwxAA+cXU59/bhqgs4gHMBdAIgD+AZwAcAJBqyqDIXDCZISLDcAMwvJj6UQDUxgmFKpkbAIYAmAPg7r2yowDaAzhiopjIrDCZISLDUAF4AUDdQuqaAOhu3HCoErkM4M9CygXAeGiTHarSOJuJiAzHD9pp2VsArIX2z6VXATwHoKYJ4yJlK27weASAFACeRoqFzBKTGSIyLD8AEwAMgra3poZpw6FKwK2YOmvwm4x4ChBRBVABcDd1EFRpdABgCSCvkLqXAHgYNxwyPxwzQ0RUFWRCuTN/agL4FgW/sYKgneHkYPSIyMywZ4aIqDK7CeA6gNPQ3iurJbTjSwJMGFNp2QPoDeA8gJ8AxAHoBaApOBaLADCZISKqvBIB7AHwCoCMB8oHAJgHoLYpgiojR2h7Yt42dSBkjniZiYiosroB4GXoJzIAsBHAZmgvPRFVAkxmiIgqq83Q3gKgMJ9Ce2NQokqAl5lKSwDEA3JbkJ2fDWsLa1hUs9Beg7YxdXCll5OTg+TkZNjZ2cHR0dHU4RCRIcUWU3cNvL0EVRpMZkop91IuLmsuY+OmjThw+gAaBjbEiCEjEJARAPva9op5R3NzcxEbG4uVK1diz549qFmzJt5++200bNgQ1atXN3V4RGQIHQF8CcAL2oUL7aFd/v8wgOZQ5B9gRIVRiUilzs2Tk5OhVquh0Wjg4uJSvoMlAcf+PYaOvTsiPT1dV2xpaYmfvv4JPZ/qCWs/63JGbBwnT55Eu3bt9NoBAPPmzcP48ePh7OxsosiIyGAiAYQBcAawCdq7lncF0AJAtXv/OpkqOKLileb7m8lMKVy/eB0dn+2IyMjIAnXOzs7498i/8H/cv1yvYQy3bt3C008/jWPHjhWoU6lUuHDhAoKCgkwQWTlkQXsDOmsArqYNhchsHATwfwDWPVReE8Dv0CYyfsYOiqhkSvP9zQHApXAr+VahiQwApKSk4MrVK0aOqGxu375daCIDACKCQ4cOGTmicsgHEA1gMYAPASwAsBW88RwRoF0k70sgp3cOrq29hrjv4pA8MRlIg/bnRSGXxYkehclMKeTmFTUtQCsrN8tIkVQsRXXWRQE4Ce0aFHEA7kC7lP4vAG6ZLiwis/AHcHXrVcyuPRuNJzdG7SG1MSBiAP7d8C+yr2UDOaYOkMgwmJeXgpuLG9zd3XHz5s0CdVZWVqjtp4wVqKpXr44WLVrg+PHjBepUKhWC2wSbIKoySAaQCKQeScWN9jeQ4JkABzsHeN7xhM9dH6huqHiTQ1PJA5B07//u0CaYZHTxPeLR560+OHHqhK5sZ9hO7N67G8d+OobGFo1NGB2R4bBnphRq5tbEF+9/UWjd7DdnwzNFGfegd4c7Vr2/CnZ2dgXqpk+YDk9LZbQDyUDi7UTMSZmDen3rof3A9mj5fEu0mdEG4UHhyM/KN3WEVVMcgEXQzqTpDGAZuJ6JiZxOO62XyNyXnZ2Ndz55BxrRmCAqIsNjMlMKFtYW6BHeAwd/PIiunbuiRo0aaNWqFX75v18wxmEMHJ0Usk7LbaDp/KY49dMpvDH8DTRs2BDdu3bH7q92I7RaKNT71aaOsEQkX7Dl7BZ89MVHyMv73+10r127hi4vd8GVHGWMYapU4qBNYKZBex+dCACTAPQEExoT+HHbj0XWhf0RhuTsZCNGQ1RxeJmpNNwBZz9nBJ8Nxo8Lf0SapMFOZQe3I27AZQDlnPltNJaA1QEr1H2uLpb0XYLk/yTD9o4tXKa4aG9I962pAyyZhKwEvPfpe4XWpaSkYP/x/QhoE2DcoKqyfAA/QDsg+2ER0E4RHmHUiKo8t+puRdY5OzvDwoJ/z1LlwDO5NFwBDAZwHKjWuhpqPlETbq3dgK+g/Uu0lmnDKzE3AJ0A5AC2P9jCfY47XD65l8hYAnjCpNGVWHZ+NhISEoqsP33xtBGjIdyGdoG2oqyBdvo8Gc3L/V8usm7MqDHwcPAwYjREFYfJTGmkAJgJ4OeHyv8B8BKUMx24OoDPoU1qHrYC2tVCFcDW0hb+/kWv69O6eWsjRkNQofi+XitwILCR1YqphQXvLyhQ3qxZM7zR+w1Y5yhjkU+iR+FlptJIBPBdEXUnoe3ZUMjYWTwO4BiAbQB2AQgA8BqAQGinOSuAt6M35k6biyFjhhSoc3NzQ5uWbUwQVRXmBmA4gIKT5LRGAFDGcKxKQ11PjTE1x6D3L72x4bcNuJV8C//p+B808W8Cn1QfLjBJlQaTmdJIhnZcQFGuA2hqpFjKSwVtAjMB2iTGCtpLTEqSA/Tq1AsfTv8QsxfPRkZGBgCgfv362PTFJvjbm/9qzJXKNQC1oV0i/zi051T+vUdbaHsEb0I7VZuMwwGo9mQ1VJNq+KDDB9p7M82E9rNap61XFIH292wetKsXVzNpNGRGmMyUhjO0X/h5RdR7GzEWQ7I1dQBlV2NODYROD0X/l/rj1u1bsLOzg7ujOzzPeALZ0PY0KcVtAKmAJl0DS0tLONk5aXs7lPKFkw9gLpD2WRquuVxDwo0EqFQqeHt6w/eWL+xn2QO88mdcO6C91QcA/PFQ3fsAekExl5WRAO0A84+gTYo7QLvid31okzQluQttT38atAmZF5TXBjPDZKY0vAAMAvB1IXUtoZxfCpVFLoBGgO03tghYFoCAjABt+eMAlgA4AaC7yaIrnXgg7k4cftn2Czb8ugH29vYIHRKK1m1aw9PHU5tImzsfIHFhIrb9uw0T35yItLQ0ANpZMys+X4Ge7/eEm3fRs2uoAhQ3Bj4WylkB+Ca0PcjbHygLA7AbwD4A7UwRVBldgbYtl6HtpYwD8DyAKVDOMAUzxBtNllY8tOtmbIK2yxMAngLwDQAlXtW4CSAD2rTWE8q61HQdwEYAbxZS5wpgJxQzM+vK+Svo9EwnxMTE6JX3e7YfPl/yOTyDlPFb7u+//0b79u0LlKtUKvzzzz9o3VqBXTNXoe118ob2RqZKshrAqwBcgeze2ci1z4XDPw7AKQCNoE0GlDCh6Ti0fzAC2svjagCXoJ2U0RTam2Yq4fLlDSDnnRxcfeEq9kXsw8W4i2jbpC2aOjeFb4yv9rtFwT3lhlaa72/2zJSWK4C5AMZCex8gF2h/GVQ3ZVBlkAztL4hJ0PZg1ADwFoChUM7lslwAS4uouw3gIhSRzOTE5+DzLz4vkMgAwJZftmD8a+MVkczcTrqNhQsXFlonIli2bBlWrFgBZ2cldDMBiIF2cPxqaC9Z9gcwEEAdUwZVSsHArYW3EFEzAss3L8fd63fx0oCX0H1md9SSWsq5hLkHyO6UjWuTruGf6H8QfzMebZu2ReDNQHi+4wlooIhkJjcxF4efOYweL/ZAZmamrtzPzw9//t+fqJNQR5usUelJJafRaASAaDQawxzwTxGxEhGIiKOIWNz7/zoRyTDMSxjFL6KN++FHXxG5acK4SiNG/hd3E5HMVzIl98VcEad7ZZNNGVzJXT1/VTw9PQXavj6xsrISCwsL3fOBAwdKXkaeqcN8pMvRl6V+/fq6uB9+tG7dWq5dvmbqMEvmkogMEpH1InJQRA6IyGYReUFEokwYVynd+uWWjBszrsBn4e/vLzH/xIhcMXWEJZO1NUvCvg0TW1tbvXY8+cSTErctTvu7QAEuh18WtVpd6M9Hl05d5Pa526YO0ayU5vtbEevMfP755wgMDISdnR1atmyJ/fv3myaQeABjgKRZSYj4JQK7P9uNU1tP4cbHN4BZ0F72UIIEAOOKqPvpXr0S2ABoCVzZcgVrB61Fvxv9MMpmFI6sO4Lbb98Gmpk6wBKyAPLz89G/f3/8/PPP+Prrr7Fp0yZs2LABrVq1Qm5uriIu/7k4u6Bhw4ZF1jdq1AjVXKoZL6DyiAayZmTh4hMXcSD3AP7K+guR9SOROi9V25OZ9cgjmIVY21gsX7G8QPnly5exeOViZFkpoyHXHr+G5155DllZ+vEePnIY836Zh8zqmUXsaV4uJl6ERlP4/bD+3PsnbuYWvIkxlZARkqty2bhxo1hbW8vq1aslIiJCQkNDxdHRUS5fvlyi/Q3aM3NaJG5bnHTp2EUvo27YsKFE/Ral/etNCc5J4b0y9x+rTRdaqeSLXDp+Sfz8/Ar8lTNr0iy5E33H1BGWSGZ8pmzetFn++9//io2Nja4Nrq6usmHDBjn05yGRHFNHWQK5Iv/884+oVKoCn4elpaWcOH7C1BGWjEZEc1EjP//0s7i6uura4ODgIJ98/IkkXEwQKdmvH5ObOGFikT1lTk5OEnclztQhlshXX35VZDvs7OwkNirW1CGWyMbvNhbZDgByIvyEqUM0K6X5/jb7MTNLlizByJEjMWrUKADAsmXLsGvXLnzxxRdYsKDgypYVSWOrwcT/m4g/9/0JAFBZa0dqRURG4bm3X8CvX/4Kz2zzH9sAQNurUdTQbxdoxwiYufTUDMz6eB6uXk/UfRb3vffpB3hu0Auon+1kouhKIdUSuWKJBYsWA1Dp2nInJQ2vjHoNh/cdRnpGrvkPDLwJ+ObUxtcbNmHipFAkJSUBADw9PfHZJ5/DK8sf6fG52vFZ5iwbuKCJwQsDBiIvL0/3eWTk5CH0rbdRO+hxdG5aQxE/I6nZOQV+Nu7LyVchPScP6dm5Ro6q9KIvXy2yHVl5gtspqXBXQDt8A2oX2Q43NzeorOwU8XkUxt7aEiqV6Zb4NuvZTNnZ2XBwcMAPP/yA559/XlceGhqKkydPYt++fQX2ycrK0uuKTE5Ohp+fn0FmM108dxH1GtaDiEBlbYtakzaX63hERESVQcR7PeFgY9j+kdLMZjLrMTO3bt1CXl4ePD31ezs8PT1x/XrhA1QWLFgAtVqte/j5+RksntSMVJhx7kdERFQlmf1lJgAFuq5EpMjurGnTpmHSpEm65/d7ZgxBXU0NKysr5ObmQnKycGXJC3r1R44cQYMGDQzyWkZxDdrp2XuhnQ74NICaUMxKlJp4DYaMHqK77PewPTv2onWHVkaOqvTuJN7BCwP+gyNH/im0/r2Z72HSlEmF1pmVLGiXLShquvwsaNcEMvPfOjlZOZgxawaWLy84cBYAOnfujDUr1sCjphIWaAGuX7+OnTt/w2efLUdKcgqe6d0b48aNQ2BgACwszPrvWZ24i1dxPvYcNm7ciK1btiI7Jxu1avnjrbfegpuzG3p3fAZWHmZ+YgHQxGgwc/EsxFy5hJdeegkO9g64fv061q1fh2mT/4u+XUOgqqHMu7HaW5t4lkLFDt8pn6ysLLG0tJQtW7bolU+YMEE6dOhQomMYcgBwamqqvPbaa4UO3GrXrp0kJiaW+zWodE4fOS12dnYFPo9nuj8jN2JumDq8Evsz7M9CzysHBweJOq+gucAXRMRdCg4q9xGRiyaMq5TO/HtGbzD2g4+9e/aaOrwyuXHjhsTHx0tGhpLWkNDKT8iXk3+flNDQUNm0aZNs2rRJPv/8c5k1bZZ2QLZSZIjcOHZDVi9bLYGBgWJlZSWtW7eWPT/tEc1ZAy0fUomU5vvbrJMZEZEnnnhCXn/9db2y+vXryzvvvFOi/Q29zkx8fLyMHj1arKysBICoVCrp3bu3XLmikAUbKpmcuzkScTxCBvcfLB4eHlKvXj1Z+dFKib8Ub+rQSuVO0h1Zv2a93hoUgYGBcvjAYcnJUcJUpgecE5Ehol2HyVlERoo2yVGQ1NupErYrTHx8fHSfh1qtlrVr1sqNOOUkyZVKvMjVM1flaNhR2b1pt0QeiZS7UXeVtb6XiEiqiESKxP8SL1d2XJGbv93UrpNj/ktJGV1pvr/NegAwAHz//fcYMmQIVqxYgeDgYKxatQqrV6/G2bNn4e//6PsHGPx2BgDS0tJw/fp1aDQaODs7w93dHdWqVTPIsals0hPScSf5DqysrODp7amclU0fkJubi/i4eNy6eQtW1lZwd3eHt69SlmN+SDK0t8oAtCtkK2TR3wfl5+bj0qVLSLqThLy8PLjXcEetmrVg62ju08oqMYF25fV8aGf3KfC80smDdkacHQBlXlmqcKX5/jb7ZAbQLpq3cOFCJCQkoFGjRli6dCk6dOhQon0rIpkhIiKiilXpkpnyYDJDRESkPJVmajYRERHRozCZISIiIkVjMkNERESKxmSGiIiIFI3JDBERESkakxkiIiJSNCYzREREpGhMZoiIiEjRmMwQERGRopn/PdPL6f4Cx8nJySaOhIiIiErq/vd2SW5UUOmTmZSUFACAn5+fiSMhIiKi0kpJSYFarS52m0p/b6b8/HzEx8fD2dkZKpVhb02anJwMPz8/xMXFKfq+T2yHeWE7zAvbYV7YDvNSke0QEaSkpMDHxwcWFsWPiqn0PTMWFhbw9fWt0NdwcXFR9Ml4H9thXtgO88J2mBe2w7xUVDse1SNzHwcAExERkaIxmSEiIiJFYzJTDra2tpg1axZsbW1NHUq5sB3mhe0wL2yHeWE7zIu5tKPSDwAmIiKiyo09M0RERKRoTGaIiIhI0ZjMEBERkaIxmSEiIiI9169fR/fu3eHo6Ihq1aqZOpxHqvLJzPXr1xEaGoo6derAzs4Onp6eeOqpp7BixQqkp6cDAFatWoVOnTrBxcUFKpUKd+/eLXCcefPmoW3btnBwcCj0gz916hQGDhwIPz8/2Nvbo379+vj4449N1q7bt29j/PjxqFevHhwcHFCrVi1MmDABGo1Gd4y9e/dCpVIV+jh69GiFxV6adgDAa6+9hsceewz29vZwd3dHSEgIzp8/r3ecO3fuYMiQIVCr1VCr1RgyZEihn6M5tyM2NhYjR45EYGAg7O3t8dhjj2HWrFnIzs42q3YAwKFDh9ClSxfdL8JOnTohIyMDgHmcVyVpS2xsbJFx/vDDD7rjKOHcio6OxvPPPw93d3e4uLigf//+uHHjht5xAgICCrTznXfeUVw7AODXX39FmzZtYG9vjxo1aqBfv35Gj9WclST+pUuXIiEhASdPnkRkZKSJI360Sr8CcHEuXbqEdu3aoVq1apg/fz4aN26M3NxcREZGYu3atfDx8UGfPn2Qnp6OXr16oVevXpg2bVqhx8rOzsaLL76I4OBgrFmzpkB9eHg43N3d8c0338DPzw8HDx7Eq6++CktLS4wbN87o7apduzbi4+Px0UcfoUGDBrh8+TLGjBmD+Ph4/PjjjwCAtm3bIiEhQe/YM2bMwB9//IFWrVoZNOaytqNPnz5o2bIlBg8ejFq1auH27duYPXs2evTogZiYGFhaWgIABg0ahKtXr+K3334DALz66qsYMmQItm/frph2nD9/Hvn5+Vi5ciXq1KmDM2fOYPTo0UhLS8NHH31kNu04dOiQ7mfl008/hY2NDU6dOqVbjtzU51VJ29K7d+8Cca5atQoLFy7E008/rSsz93Ora9eu6NGjB5o2bYo///wTgPb9fu6553D48GG9ZeLfe+89jB49Wvfcycmpwttg6HZs3rwZo0ePxvz589GlSxeICP7991+jxtqnTx+DvZ6hlTT+6OhotGzZEkFBQUUeKycnB9bW1kaMvhhShfXs2VN8fX0lNTW10Pr8/Hy953v27BEAcufOnSKPuW7dOlGr1SV6/TfeeEM6d+5c0nBLrLTtum/Tpk1iY2MjOTk5hdZnZ2eLh4eHvPfeewaLtThlbcepU6cEgERFRYmISEREhACQw4cP67Y5dOiQAJDz588bPvCHGKodhVm4cKEEBgYaJM5HKWk72rRpI9OnTy/xcY19XomU/TNp1qyZjBgxQvdcCefWrl27xMLCQjQaja789u3bAkB+//13XZm/v78sXbq0okMulKHakZOTIzVr1pT/+7//M2msIiJ37tyR0aNHi4eHh9ja2krDhg1l+/btIiJy69YtGTBggNSsWVPs7e2lUaNG8u233+odp2PHjjJ27FgZO3asqNVqcXV1lXfffVfv3Pzss8+kTp06YmtrKx4eHvLCCy8YJH5/f38BoHsMGzZMREQAyBdffCF9+vQRBwcHmTlzpuTm5sqIESMkICBA7OzspG7durJs2TK9Y+bk5Mj48eN17ZgyZYoMHTpUQkJCdNv88MMP0qhRI7GzsxNXV1fp2rVrkTEWpsomM7du3RKVSiULFiwo8T6GTmYGDx5copOvNMrSrvtWr14tNWrUKLL+xx9/FAsLC7ly5Up5QiyRsrYjNTVVJk6cKIGBgZKVlSUiImvWrCn0M1Gr1bJ27VpDhFskQ7ajMO+++660bNmyvGE+UknbcePGDQEgn3zyiQQHB4uHh4d06NBB9u/fX+Q+xjyvRMr+mRw7dkwAyIEDB3RlSji3tm3bJpaWlpKZmakrS09PFwsLC5k1a5auzN/fX7y8vMTV1VWaNm0qc+fOLfbcMxRDtuOff/4RALJ27Vpp1qyZeHl5Sa9eveTMmTNGjTUvL0+efPJJadiwoYSFhUl0dLRs375dduzYISIiV69elUWLFsmJEyckOjpaPvnkE7G0tNRLijt27ChOTk4SGhoq58+fl2+++UYcHBxk1apVIiJy9OhRsbS0lG+//VZiY2Pl+PHj8vHHHxsk/sTEROnVq5f0799fEhIS5O7duyKiTWY8PDxkzZo1Eh0dLbGxsZKdnS0zZ86UI0eOyKVLl3Rxfv/997rjzZ07V1xdXWXLli1y7tw5GTNmjLi4uOiSmfj4eLGyspIlS5ZITEyMnD59Wj777DNJSUkpNs4HVdlk5vDhwwJAtmzZolfu5uYmjo6O4ujoKFOmTNGrM2Qyc/DgQbG2tpawsLCyhF+ksrRLRHuS16pVS959990ij/3000/L008/bdB4i1Ladnz22Wfi6OgoAOTxxx/X682YN2+eBAUFFXiNoKAgmT9/fsU1QgzbjodFRUWJi4uLrF69usLiv6+k7bjfK+Hq6ipr166V48ePy8SJE8XGxkYiIyMLPbYxzyuRsv+MvP7661K/fn29MiWcW4mJieLi4iKhoaGSlpYmqampMnbsWAEgr776qm6/JUuWyN69e+XUqVO6P2xGjhxZoW0wdDu+++47ASC1atWSH3/8UY4dOyYDBw4UNzc3SUpKMlqs93uRLly4UOJjP/PMMzJ58mTd844dO0r9+vX1emKmTp2qOwc3b94sLi4ukpycbPD4RURCQkJ0PTL3AZCJEyc+8nXeeOMNvT/UPT09ZdGiRbrnubm5UqtWLV0yEx4eLgAkNja2xG15WJUfAKxSqfSeHzlyBCdPnkTDhg2RlZVVIa959uxZhISEYObMmejevXuFvEZp2pWcnIzevXujQYMGmDVrVqHHu3r1Knbt2oWRI0dWSLxFKWk7Bg8ejBMnTmDfvn0ICgpC//79kZmZWeRxAO3t5QsrrwiGasd98fHx6NWrF1588UWMGjWqwuO/71HtyM/PB6AdzPzKK6+gefPmWLp0KerVq4e1a9cWOJ6pziugdD8jGRkZ+PbbbwuN09zPLXd3d/zwww/Yvn07nJycoFarodFo0KJFC92YMgB488030bFjRzRp0gSjRo3CihUrsGbNGiQlJSmmHffPv3fffRcvvPACWrZsiXXr1hUYtF3RsZ48eRK+vr6oW7duofvn5eVh3rx5aNKkCdzc3ODk5ISwsDBcuXJFb7snn3xS77WCg4Nx8eJF5OXloXv37vD390ft2rUxZMgQbNiwocSDj8vzvVfYuLYVK1agVatWcHd3h5OTE1avXq1ri0ajwY0bN/DEE0/otre0tETLli11z5s2bYquXbuicePGePHFF7F69WrcuXOnRG25r8oOAK5Tpw5UKlWBWS+1a9cGANjb21fI60ZERKBLly4YPXo0pk+fbvDjl7ZdKSkp6NWrF5ycnLB169YiB3OtW7cObm5uRhvYVtp23J9JEhQUhCeffBLVq1fH1q1bMXDgQHh5eRU64+HmzZvw9PSsuEbAsO24Lz4+Hp07d0ZwcDBWrVpVofHfV9J2eHt7AwAaNGigt139+vUL/KIGjH9eAWX72f/xxx+Rnp6OoUOH6pUr5dzq0aMHoqOjcevWLVhZWaFatWrw8vJCYGBgkcd/8sknAQBRUVFwc3OrgBZoGbIdhZ1/tra2qF27dqHnX0XF+qjvj8WLF2Pp0qVYtmwZGjduDEdHR0ycOLFUMxOdnZ1x/Phx7N27F2FhYZg5cyZmz56No0ePFjmV2hDfe46OjnrPN23ahDfffBOLFy9GcHAwnJ2dsWjRIvzzzz962z2cQMkDd1KytLTE77//joMHDyIsLAyffvop3n33Xfzzzz/FnqMPqrI9M25ubujevTuWL1+OtLQ0o7zm2bNn0blzZwwbNgzz5s2rkNcoTbuSk5PRo0cP2NjYYNu2bbCzsyt0OxHBunXrMHToUKONXC/v5yMiur8wgoODodFocOTIEV39P//8A41Gg7Zt2xos5sIYsh0AcO3aNXTq1AktWrTAunXr9GaiVKSStiMgIAA+Pj64cOGCXnlkZCT8/f31ykxxXgFl+0zWrFmDPn36wN3dXa9caedWjRo1UK1aNfz5559ITEwsNok8ceIEgP8lCBXFkO1o2bIlbG1t9c6/nJwcxMbGFjj/KjLWJk2a4OrVq0VOad6/fz9CQkLw8ssvo2nTpqhduzYuXrxYYLvDhw8XeB4UFKTribKyskK3bt2wcOFCnD59GrGxsbqZXuWJvzT279+Ptm3b4o033kDz5s1Rp04dREdH6+rVajU8PT31fkby8vJ059d9KpUK7dq1w5w5c3DixAnY2Nhg69atJQ+kzBeoKoGoqCjx9PSUxx9/XDZu3CgRERFy/vx5+frrr8XT01MmTZokIiIJCQly4sQJWb16tQCQv/76S06cOKF3Dfby5cty4sQJmTNnjjg5OcmJEyfkxIkTugFMZ86cEXd3dxk8eLAkJCToHomJiSZpV3JysrRp00YaN24sUVFRejHl5ubqHe+PP/4QABIREWHwWMvbjujoaJk/f74cO3ZMLl++LAcPHpSQkBBxdXWVGzdu6I7Vq1cvadKkiRw6dEgOHTokjRs3lmeffVZR7bh27ZrUqVNHunTpIlevXtX7zMylHSIiS5cuFRcXF/nhhx/k4sWLMn36dLGzsysw/sdU51Vp2iIicvHiRVGpVLJz585Cj2Xu55aIyNq1a+XQoUMSFRUlX3/9tbi6uuq18eDBg7JkyRI5ceKEXLp0Sb7//nvx8fGRPn36KKodIiKhoaFSs2ZN2bVrl5w/f15GjhwpHh4ecvv2baPG2qlTJ2nUqJGEhYXJpUuXZMeOHbpzaOLEieLn5ycHDhyQiIgIGTVqlN6AWJH/DQB+88035fz58/Ltt9+Ko6OjrFixQkREtm/fLh9//LGcOHFCYmNj5fPPPxcLC4tHDnYuafxFjZnZunWrXtmyZcvExcVFfvvtN7lw4YJMnz5dXFxcpGnTprpt5s6dK25ubvLTTz/J+fPnZezYseLi4iJ9+/YVEe1Ynnnz5snRo0fl8uXLupm19wdMl0SVTmZEtKOox40bJ4GBgWJtbS1OTk7yxBNPyKJFiyQtLU1ERGbNmqU3Te3+Y926dbrjDBs2rNBt9uzZU+wx/P39TdKu+4OZC3vExMToHWvgwIHStm3bComzvO24du2aPP300+Lh4SHW1tbi6+srgwYNKjAtNikpSQYPHizOzs7i7OwsgwcPLnYgtzm2Y926dUV+ZubSjvsWLFggvr6+4uDgIMHBwYXOZjLleSVS8rZMmzZNfH19JS8vr9DjmPu5JaIdOOrp6SnW1tYSFBQkixcv1htYGh4eLm3atBG1Wi12dnZSr149mTVrlt77oIR2iGin+k+ePFk8PDzE2dlZunXrZrDZTKWJNSkpSV555RVxc3MTOzs7adSokfzyyy+6upCQEHFychIPDw+ZPn16ganKHTt2lDfeeEM386d69eryzjvv6Nq7f/9+6dixo1SvXl3s7e2lSZMmejOIyht/SZOZzMxMGT58uKjVaqlWrZq8/vrr8s477+glMzk5OTJu3DhdO6ZOnSovvviiDBgwQES0Sxz07NlT3N3dxdbWVurWrSuffvppST8OERFR3QuQiIiIzESnTp3QrFkzLFu2zNShGFx+fj7q16+P/v374/333zfIMavsAGAiIiKqeJcvX0ZYWBg6duyIrKwsLF++HDExMRg0aJDBXqPKDgAmIiKiimdhYYH169ejdevWaNeuHf7991/88ccfqF+/vsFeg5eZiIiISNHYM0NERESKxmSGiIiIFI3JDBERESkakxkiIiJSNCYzREREpGhMZoiIiEjRmMwQERGRojGZISIiIkVjMkNERESK9v9M2sjlP34lcgAAAABJRU5ErkJggg==", + "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZ00lEQVR4nO3dd3hUxf7H8fcmpDcgJCEhIaFLFUFFRJqIoChYrg2kSPGqKCBcQa6IoAiKBaxX5YfYO+JVrwpYQBSQFkA6xIQaDERIAoGEJPP7Y2ElpJCy2c1JPq/n2Qd2Zs/Z7+yezX53zswcmzHGICIiImJRHu4OQERERKQ8lMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmk13B1ARcvLy+PAgQMEBQVhs9ncHY6IiIiUgDGGjIwMoqKi8PAovu+lyiczBw4cICYmxt1hiIiISBns3buX6OjoYh9T5ZOZoKAgwP5iBAcHuzkaERERKYn09HRiYmIc3+PFqfLJzJlTS8HBwUpmRERELKYkQ0Q0AFhEREQsTcmMiIiIWJqSGREREbG0Kj9mpiSMMeTk5JCbm+vuUESqFE9PT2rUqKFlEUSkQlX7ZCY7O5vk5GQyMzPdHYpIleTv709kZCTe3t7uDkVEqqhqnczk5eWRmJiIp6cnUVFReHt76xekiJMYY8jOzubQoUMkJibSpEmT8y58JSJSFtU6mcnOziYvL4+YmBj8/f3dHY5IlePn54eXlxe7d+8mOzsbX19fd4ckIlWQfiaBfi2KVCB9vkSkoumvjIiIiFhatT7NJCIiImV0GEgBjgC1gXAg1D2hqGdGRERESmcPcBPQErgCaAHcBux1TzjqmREREZGSSwUGAhuA4UA09uTmE+Bu4AOglmtDUs+MkJ2d7e4QRETEKv4EGgBvYz/N9An2U00fADVPl7mYkplzGGPIzM5x+c0YU+IYk5KSsNlsBW7dunUDYPny5XTp0gU/Pz9iYmIYNWoUx48fd2wfFxfHtGnTGDJkCCEhIYwYMQKA+fPn07JlS3x8fIiLi+O5555z6msrIiJVQDZwCXAj8CWwBVgA9AN6nK53MZ1mOseJU7m0mLzQ5c+75fFe+HuX7O2IiYkhOTnZcf/gwYNcddVVdOnShd9//51evXrxxBNPMHfuXA4dOsT999/P/fffz7x58xzbPPPMMzz66KNMmjQJgLVr13LrrbcyZcoUbrvtNpYvX859991HaGgoQ4YMcWpbRUTEwnyBiYWUG+Bh4FfXhgNgM6XpErCg9PR0QkJCSEtLIzg4OF/dyZMnSUxMpEGDBo7FvDKzcyp9MnO2kydP0q1bN8LCwvjvf//LkCFD8PPz4/XXX3c85pdffqFr164cP34cX19f4uLiuOiii1iwYIHjMQMGDODQoUMsWrTIUTZ+/Hj+97//sXnz5vI1Tqq1wj5nImJhy4FOxdSvBDqU/2mK+/4+l3pmzuHn5cmWx3u55XnLYtiwYWRkZLB48WI8PDxYu3Ytu3bt4v3333c8xhjjuHRD8+bNAbj44ovz7Wfr1q3069cvX1mnTp2YPXs2ubm5eHqWLT4REali8spZXwGUzJzDZrOVqYfEHaZNm8Z3333HqlWrCAoKAuzXm/rnP//JqFGjCjy+fv36jv8HBATkqzPGFLguVRXvtBMRkbKoA4QAaYXUhWFfc8bFrPGtLQXMnz+fxx9/nG+//ZZGjRo5ytu1a8fmzZtp3LhxqfbXokULfvnll3xly5cvp2nTpuqVERGRv4UCs4Bh2MfJnOEBzMae0LiYkhkL2rRpE4MGDWLChAm0bNmSgwcPAuDt7c2ECRO47LLLGDlyJCNGjCAgIICtW7eyePFiXnrppSL3OW7cOC655BKeeOIJbrvtNlasWMHLL7/Mq6++6qpmiYiIFYQB3YBvsE/P3glcAAwGmqKeGSmZNWvWkJmZybRp05g2bZqjvGvXrixZsoSlS5fyyCOP0LlzZ4wxNGrUiNtuu63YfbZr145PPvmEyZMn88QTTxAZGcnjjz+umUwiIlJQA8APaAikA0HYTz3VdU84ms2kWRYiFUqfM5Eq6gD2yxfsBuKAGCDSebvXbCYRERGpOLuAa7GfYjqjOfA/7L02LqYVgEVERKTkUoCbyZ/IAGwF7sB+NW0XUzIjIiIiJZcCbCyi7jd0bSYRERGp5DLOU3/MJVHko2RGRERESi4UsBVR54FbpmYrmREREZGSiwCKWu3jrtP1LqbZTCIiIlJyIcDzQAP4y+svTkSewH+fP7U8asF92NeccTH1zIiIiEipHPE9wvfdv6fPoj60fbQtfZf2ZcmVSzjqe9Qt8SiZqSK6devGmDFjHPfj4uKYPXu24/7Bgwfp2bMnAQEB1KxZs8gysfv1119p3bo1Xl5e3HDDDS573nPfRyuwYswiUnZZWVl88MEH9Ly6JytXruTw4cP88ssvdO/enQULFnDq1CmXx6TTTFXU6tWr810Ze9asWSQnJ7N+/XpCQkKKLLOqxMRE7rnnHo4dO8bRo0d59tlnueaaa8q8v7Fjx9K2bVu+/fZbAgMDnRip3ZIlS+jevTtHjhzJl0h+/vnneHl5Of35ztWtWzfatm2bL+EVESmJ5ORkHnrooULrxowZQ48ePahfv75LY3Jrz8zPP//M9ddfT1RUFDabjS+++CJfvTGGKVOmEBUVhZ+fH926dWPz5s3uCbY4ucAS4MPT/+a6Mxi7sLAw/P39HfcTEhJo3749TZo0ITw8vMiy0nJHBl6Y6Ohovv32W3799VcmTpzIW2+9Va79JSQkcOWVVxIdHe3SXqvatWsTFOSGE84iIiV08OBBTpw4UWhdeno6KSmuX2jGrcnM8ePHufDCC3n55ZcLrZ85cybPP/88L7/8MqtXr6Zu3br07NmTjIzzTXJ3oc+xX5OiO9D/9L9xp8sryPHjxxk0aBCBgYFERkby3HPPFXjM2aeZ4uLimD9/Pu+88w42m40hQ4YUWgaQlpbG3XffTXh4OMHBwVx55ZVs2LDBsd8pU6bQtm1b3nzzTRo2bIiPjw/GmBJv9+677xIXF0dISAi33357vvcyLy+Pp59+msaNG+Pj40P9+vV58sknHfX79+/ntttuo1atWoSGhtKvXz+SkpIA8PLywsPDg4SEBF5//fV8F+A8V1ZWFqNGjSI8PBxfX1+uuOIKVq9eDUBSUhI2m43U1FSGDh2KzWYrMjHKzs5m/Pjx1KtXj4CAADp06MCSJUsc9bt37+b666+nVq1aBAQE0LJlS7755huSkpLo3r07ALVq1cr3+hd2unDatGmO9zs2Npb//ve/HDp0iH79+hEYGEjr1q1Zs2aNY5vU1FTuuOMOoqOj8ff3p3Xr1nz44YeO+iFDhrB06VJeeOEFbDYbNpvN8Tpu2bKFa6+9lsDAQCIiIhg4cCCHD/+9nGdJjj0RqdrO13tco4YbTvqYSgIwCxYscNzPy8szdevWNU899ZSj7OTJkyYkJMS89tprJd5vWlqaAUxaWlqBuhMnTpgtW7aYEydOlC3o+cYYmzGGc26207f5Zdvt+dx7770mOjraLFq0yGzcuNFcd911JjAw0IwePdrxmNjYWDNr1ixjjDEpKSmmd+/e5tZbbzXJycnm6NGjhZbl5eWZTp06meuvv96sXr3a7Nixw4wbN86Ehoaa1NRUY4wxjz32mAkICDC9evUy69atMxs2bCjxdoGBgeamm24yv//+u/n5559N3bp1zb///W9HzOPHjze1atUyb731ltm1a5dZtmyZmTNnjjHGmOPHj5smTZqYoUOHmo0bN5otW7aY/v37m2bNmpmsrCxjjDFfffWV6dWrl9m9e3exr9+oUaNMVFSU+eabb8zmzZvN4MGDTa1atUxqaqrJyckxycnJJjg42MyePdskJyebzMzMQvfTv39/c/nll5uff/7Z7Nq1yzzzzDPGx8fH7NixwxhjTJ8+fUzPnj3Nxo0bTUJCgvnqq6/M0qVLTU5Ojpk/f74BzPbt2x2vvzHGdO3atcD7WLt2bfPaa6+ZHTt2mHvvvdcEBQWZ3r17m08++cRs377d3HDDDaZ58+YmLy/PGGPMvn37zDPPPGPi4+NNQkKCefHFF42np6dZuXKlMcaYo0ePmo4dO5oRI0aY5ORkk5ycbHJycsyBAwdMnTp1zMSJE83WrVvNunXrTM+ePU337t1Ldeydq9yfMxGpVPbs2WPCwsIMUOBWr149s2/fPqc8T3Hf3+eqtMlMQkKCAcy6devyPa5v375m0KBBRe7n5MmTJi0tzXHbu3dvxSQzOcaYaFMwkTk7oYk5/TgnysjIMN7e3uajjz5ylKWmpho/P78ikxljjOnXr58ZPHhwvn2dW/bDDz+Y4OBgc/LkyXyPa9SokXn99deNMfakxMvLy6SkpJR6O39/f5Oenu6of+ihh0yHDh2MMcakp6cbHx8fR/Jyrrlz55pmzZo5vrCNMSYrK8v4+fmZhQsXmrVr1xqbzWbatWtnOnToYIYMGVLofo4dO2a8vLzM+++/7yjLzs42UVFRZubMmY6ykJAQM2/evEL3YYwxu3btMjabzezfvz9feY8ePczEiRONMca0bt3aTJkypdDtf/rpJwOYI0eO5CsvLJm58847HfeTk5MNYB599FFH2YoVKwxgkpOTi4z32muvNePGjSvyeYwx5tFHHzVXX311vrIzn5/t27eX+Ng7l5IZkaolJyfH/PDDD8bLyytfIuPj42OWLVuW7+90eZQmmam0A4APHjwIQERE/tV3IiIi2L17d5HbzZgxg6lTp1ZobAAsA/YVU2+wXxp9GdDNeU+bkJBAdnY2HTt2dJTVrl2bZs2alXvfa9eu5dixY4SGhuYrP3HiBAkJCY77sbGxhIWFlXq7uLi4fONBIiMjHedWt27dSlZWFj169Cgytl27dhUYT3Ly5EkSEhK4+uqrycvLO28bExISOHXqFJ06dXKUeXl5cemll7J169bzbn/GunXrMMbQtGnTfOVZWVmO12HUqFHce++9LFq0iKuuuoqbb76ZNm3alPg5zjh7mzOfh9atWxcoS0lJoW7duuTm5vLUU0/x8ccfs3//frKyssjKyso3ILwwa9eu5aeffip0wHNCQgInTpyosGNPRKzD09OTK664gk2bNvHOO+8QHx/PJZdcwoABA4iLi8NmK2p54IpTaZOZM859UYwxxb5QEydOZOzYsY776enpxMTEOD+wZCc/roSMMc7d4Vny8vKIjIzMN+7jjLMHwZ77pVjS7c49z2qz2RwJiJ+f33lja9++Pe+//36BurMTq/M58/qV9rgqLB5PT0/Wrl2Lp6dnvrozycDw4cPp1asX//vf/1i0aBEzZszgueee44EHHijx80D+1+1MjIWVnXktn3vuOWbNmsXs2bNp3bo1AQEBjBkzhuzs7PO26frrr+fpp58uUBcZGcnOnedeIldEqitvb2+aNm3KE088QXZ2Nt7e3m5JYs6otMlM3bp1AXsPTWRkpKM8JSWlQG/N2Xx8fPDx8anw+Ig8/0NK9bgSaty4MV5eXqxcudIx9e3IkSPs2LGDrl27lmvf7dq14+DBg9SoUYO4uLgK3+5sTZo0wc/Pjx9++IHhw4cX+hwff/yxY4BxWTVu3Bhvb29++eUX+vfvD9hnZK1Zs6ZUa6VcdNFF5ObmkpKSQufOnYt8XExMDPfccw/33HMPEydOZM6cOTzwwAN4e3sDkJvr/Klvy5Yto1+/ftx5552APUnZuXMnzZs3dzzG29u7wHO3a9eO+fPnExcXV+gAvoo89kTEmmw2m2u+c8+j0i6a16BBA+rWrcvixYsdZdnZ2SxdupTLL7/cjZGd1hmIpuiLbdmAmNOPc6LAwECGDRvGQw89xA8//MCmTZsYMmQIHh7lfyuvuuoqOnbsyA033MDChQtJSkpi+fLlTJo0Kd9sGWdtdzZfX18mTJjA+PHjeeedd0hISGDlypXMnTsXgAEDBlCnTh369evHsmXLSExMZOnSpYwePZp9+4o735dfQEAA9957Lw899BDfffcdW7ZsYcSIEWRmZjJs2LAS76dp06YMGDCAQYMG8fnnn5OYmMjq1at5+umn+eabbwD7egsLFy4kMTGRdevW8eOPPzoSitjYWGw2G19//TWHDh3i2DHnXWa2cePGLF68mOXLl7N161b++c9/Ok7bnhEXF8dvv/1GUlIShw8fJi8vj5EjR/LXX39xxx13sGrVKv744w8WLVrE0KFDyc3NrdBjT0SkPNzaM3Ps2DF27drluJ+YmMj69eupXbs29evXZ8yYMUyfPp0mTZrQpEkTpk+fjr+/v+MXtVt5Ai8A/8CeuJx99udMgjP79OOc7JlnnuHYsWP07duXoKAgxo0bR1paWrn3a7PZ+Oabb3jkkUcYOnQohw4dom7dunTp0qXY3rCybneuRx99lBo1ajB58mQOHDhAZGQk99xzDwD+/v78/PPPTJgwgZtuuomMjAzq1atHjx49St1T89RTT5GXl8fAgQPJyMjg4osvZuHChdSqVatU+5k3bx7Tpk1j3Lhx7N+/n9DQUDp27Mi1114L2HtdRo4cyb59+wgODqZ3797MmjULgHr16jF16lQefvhh7rrrLgYNGlTutXHOePTRR0lMTKRXr174+/tz9913c8MNN+Q7Rv71r38xePBgWrRowYkTJ0hMTCQuLo5ff/2VCRMm0KtXL7KysoiNjaV3796OhKWijj0RkfKwmYochHEeZ1ZBPdfgwYN56623MMYwdepUXn/9dY4cOUKHDh145ZVXaNWqVYmfIz09nZCQENLS0gp86Z08eZLExEQaNGiAr69v2RrxOTCa/IOBY7AnMjeVbZciVYlTPmciUu0U9/19LrcmM65Q4ckM2Ff8XYZ9sG8k9lNLFdAjI2JFSmZEpCxKk8xU2gHAluKJU6dfi4iIVHp7gS3ANqAF0Bz7WFI3UDIjIiIipbMFuBL486yyesCPQNNCt6hQmoYgIiIiJZcM3Ej+RAZgP3AL4PrrTCqZERERkVI4BOwoom7j6XoXUzIjIiIiJXf8PPWZLokiHyUzIiIiUnJhFJ09eAGhRdRVICUzIiIiUnIhwJAi6u4BSrf+qFNoNpOIiIiUXBpwBVAbmHP6fi3siUwscASXJzTqmakiunXrlu9CiXFxccyePdtx/+DBg/Ts2ZOAgADHlawLKxO7X3/9ldatW+Pl5cUNN9zg7nAA+2UjvvjiCwCSkpKw2WysX7/e5XEMGTKk0rwmIuIGh4Bh2KdnvwJ8CrwIrMWe0KS6PiT1zFRRq1evJiAgwHF/1qxZJCcns379ekJCQooss6rExETuuecejh07xtGjR3n22We55ppryry/sWPH0rZtW7799lsCAwOdGKlzxMTEkJycTJ06dUr0+CFDhnD06FFHMiQiUmYB2K9H+M3p27n8XRsOKJlxitzcXJYtW0ZycjKRkZF07twZT0/3Xs8gLCws3/2EhATat29PkyZNii0rrVOnTuHl5VXm7Z0lOjqab7/9Fg8PD9577z3eeuutciUzCQkJ3HPPPURHO3c5S2e9Xp6entStW9cJEYmIlFI40AzYXkjdhafrXUynmcrp888/Jy4uju7du9O/f3+6d+9OXFwcn3/+eYU95/Hjxxk0aBCBgYFERkby3HPPFXjM2aeZ4uLimD9/Pu+88w42m40hQ4YUWgaQlpbG3XffTXh4OMHBwVx55ZVs2LDBsd8pU6bQtm1b3nzzTRo2bIiPjw/GmBJv9+677xIXF0dISAi33347GRkZjsfk5eXx9NNP07hxY3x8fKhfvz5PPvmko37//v3cdttt1KpVi9DQUPr160dSUhIAXl5eeHh4kJCQwOuvv860adOKfP2ysrIYNWoU4eHh+Pr6csUVV7B69Wrg79M3qampDB06FJvNVuTVrOPi4njiiSfo378/gYGBREVF8dJLL+V7jM1m47XXXqNfv34EBAQ44vrqq69o3749vr6+NGzYkKlTp5KTk+PYbufOnXTp0gVfX19atGjB4sWL8+23sNNMmzdvpk+fPgQHBxMUFETnzp1JSEhgypQpvP322/z3v//FZrNhs9lYsmTJeV9TsCfqY8eOpWbNmoSGhjJ+/Hiq+OXcROR86gILsF+L8GwxwCfYZzu5mqni0tLSDGDS0tIK1J04ccJs2bLFnDhxokz7nj9/vrHZbAZ7h5vjZrPZjM1mM/Pnzy9v+IW69957TXR0tFm0aJHZuHGjue6660xgYKAZPXq04zGxsbFm1qxZxhhjUlJSTO/evc2tt95qkpOTzdGjRwsty8vLM506dTLXX3+9Wb16tdmxY4cZN26cCQ0NNampqcYYYx577DETEBBgevXqZdatW2c2bNhQ4u0CAwPNTTfdZH7//Xfz888/m7p165p///vfjpjHjx9vatWqZd566y2za9cus2zZMjNnzhxjjDHHjx83TZo0MUOHDjUbN240W7ZsMf379zfNmjUzWVlZxhhjvvrqK9OrVy+ze/fuYl+/UaNGmaioKPPNN9+YzZs3m8GDB5tatWqZ1NRUk5OTY5KTk01wcLCZPXu2SU5ONpmZmYXuJzY21gQFBZkZM2aY7du3mxdffNF4enqaRYsWOR4DmPDwcDN37lyTkJBgkpKSzHfffWeCg4PNW2+9ZRISEsyiRYtMXFycmTJlijHGmNzcXNOqVSvTrVs3Ex8fb5YuXWouuugiA5gFCxYYY4xJTEw0gImPjzfGGLNv3z5Tu3Ztc9NNN5nVq1eb7du3mzfffNNs27bNZGRkmFtvvdX07t3bJCcnm+TkZJOVlVWi1/Tpp582ISEh5rPPPjNbtmwxw4YNM0FBQaZfv37nOUr/Vt7PmYhUUnuMMYuNMS8bY34wxux17u6L+/4+l5KZMv6RzcnJMdHR0QUSmbMTmpiYGJOTk+OMZjhkZGQYb29v89FHHznKUlNTjZ+fX5HJjDHG9OvXzwwePDjfvs4t++GHH0xwcLA5efJkvsc1atTIvP7668YYe1Li5eVlUlJSSr2dv7+/SU9Pd9Q/9NBDpkOHDsYYY9LT042Pj48jeTnX3LlzTbNmzUxeXp6jLCsry/j5+ZmFCxeatWvXGpvNZtq1a2c6dOhghgwZUuh+jh07Zry8vMz777/vKMvOzjZRUVFm5syZjrKQkBAzb968QvdxRmxsrOndu3e+sttuu81cc801jvuAGTNmTL7HdO7c2UyfPj1f2bvvvmsiIyONMcYsXLjQeHp6mr17//7L8O233xabzEycONE0aNDAZGdnFxrr4MGDCyQg53tNjTEmMjLSPPXUU476U6dOmejoaCUzIlLhSpPMaMxMGS1btox9+/YVWW+MYe/evSxbtoxu3bo57XkTEhLIzs6mY8eOjrLatWvTrFmzcu977dq1HDt2jNDQ/CsenThxgoSEBMf92NjYfGNySrpdXFwcQUFBjvuRkZGkpNgv4rF161aysrLo0aNHkbHt2rUr3/YAJ0+eJCEhgauvvpq8vLzztjEhIYFTp07RqVMnR5mXlxeXXnopW7duPe/25zr7fThz/+xZZAAXX3xxvvtr165l9erV+U6h5ebmcvLkSTIzM9m6dSv169fPN17n3Oc51/r16+ncuXOpxuOc7zVNS0sjOTk533PXqFGDiy++WKeaRKRSUTJTRsnJyU59XElV5JdIXl4ekZGRjvEUZzt76vbZs6RKs925X7Q2m82RgPj5+Z03tvbt2/P+++8XqDt3sHNxzrx+NputQPm5ZWV17n4Ke72mTp3KTTfdVGBbX1/fQt/j88V2vtevMM56TUVE3E3JTBlFRp478ql8jyupxo0b4+XlxcqVK6lfvz4AR44cYceOHXTt2rVc+27Xrh0HDx6kRo0axMXFVfh2Z2vSpAl+fn788MMPDB8+vNDn+Pjjjx0DjMuqcePGeHt788svv9C/f3/APsNozZo1+dbpKamVK1cWuH/BBRcUu027du3Yvn07jRs3LrS+RYsW7NmzhwMHDhAVFQXAihUrit1nmzZtePvtt4ucLeXt7U1ubm6BOM73mkZGRrJy5Uq6dOkCQE5ODmvXrqVdu3bFxiMi4kqazVRGnTt3Jjo6ushfzDabjZiYGDp37uzU5w0MDGTYsGE89NBD/PDDD2zatIkhQ4bg4VH+t/Kqq66iY8eO3HDDDSxcuJCkpCSWL1/OpEmTWLNmjdO3O5uvry8TJkxg/PjxvPPOOyQkJLBy5Urmzp0LwIABA6hTpw79+vVj2bJlJCYmsnTpUkaPHl3s6b5zBQQEcO+99/LQQw/x3XffsWXLFkaMGEFmZibDhg0r8X7O+PXXX5k5cyY7duzglVde4dNPP2X06NHFbjN58mTeeecdpkyZwubNm9m6dSsff/wxkyZNAuyvZ7NmzRg0aBAbNmxg2bJlPPLII8Xu8/777yc9PZ3bb7+dNWvWsHPnTt599122b7fPnYyLi2Pjxo1s376dw4cPc+rUqRK9pqNHj+app55iwYIFbNu2jfvuu4+jR4+W+nUSEalISmbKyNPTkxdeeAEoeArgzP3Zs2dXyHozzzzzDF26dKFv375cddVVXHHFFbRv377c+7XZbHzzzTd06dKFoUOH0rRpU26//XaSkpKIiIhw+nbnevTRRxk3bhyTJ0+mefPm3HbbbY4xNf7+/vz888/Ur1+fm266iebNmzN06FBOnDhR6p6ap556iptvvpmBAwfSrl07du3axcKFC6lVq/Trb48bN461a9dy0UUX8cQTT/Dcc8/Rq1evYrfp1asXX3/9NYsXL+aSSy7hsssu4/nnnyc2NhYADw8PFixYQFZWFpdeeinDhw/PN76mMKGhofz4448cO3aMrl270r59e+bMmePopRkxYgTNmjXj4osvJiwsjF9//bVEr+m4ceMYNGgQQ4YMoWPHjgQFBXHjjTeW+nUSEalINlPFR/Klp6cTEhJCWlpagS+9kydPkpiYSIMGDfD19S3T/j///PMCvQMxMTHMnj270DERUnXExcUxZsyYMp2eqk6c8TkTkeqnuO/vc2nMTDnddNNNjm76yrQCsIiISHWhZMYJPD09nTr9WkREREpOyYxIGZ297L+IiLiPBgCLiIiIpSmZEREREUtTMkPFrqorUt3p8yUiFa1aJzNn1uDIzMx0cyQiVdeZz1dprhslIlIa1XoAsKenJzVr1sy3MJuzrs8jUt0ZY8jMzCQlJYWaNWtquQIRqTDVOpkBqFu3LoAjoRER56pZs6bjcyYiUhGqfTJjs9mIjIwkPDycU6dOuTsckSrFy8tLPTIiUuGqfTJzhqenp/7oioiIWFC1HgAsIiIi1qdkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJpSmZERETE0pTMiIiIiKUpmRERERFLUzIjIiIilqZkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJpSmZERETE0pTMiIiIiKUpmRERERFLUzIjIiIilqZkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJplTqZycnJYdKkSTRo0AA/Pz8aNmzI448/Tl5enrtDExERkUqihrsDKM7TTz/Na6+9xttvv03Lli1Zs2YNd911FyEhIYwePdrd4YmIiEglUKmTmRUrVtCvXz/69OkDQFxcHB9++CFr1qxxc2QiIiJSWVTq00xXXHEFP/zwAzt27ABgw4YN/PLLL1x77bVFbpOVlUV6enq+m4iIiFRdlbpnZsKECaSlpXHBBRfg6elJbm4uTz75JHfccUeR28yYMYOpU6e6MEoRERFxp0rdM/Pxxx/z3nvv8cEHH7Bu3Trefvttnn32Wd5+++0it5k4cSJpaWmO2969e10YsYiIiLiazRhj3B1EUWJiYnj44YcZOXKko2zatGm89957bNu2rUT7SE9PJyQkhLS0NIKDgysqVBEREXGi0nx/V+qemczMTDw88ofo6empqdkiIiLiUKnHzFx//fU8+eST1K9fn5YtWxIfH8/zzz/P0KFD3R2aiIiIVBKV+jRTRkYGjz76KAsWLCAlJYWoqCjuuOMOJk+ejLe3d4n2odNMIiIi1lOa7+9Kncw4g5IZERER66kyY2ZEREREzkfJjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxtEqfzOzfv58777yT0NBQ/P39adu2LWvXrnV3WCIiIlJJ1HB3AMU5cuQInTp1onv37nz77beEh4eTkJBAzZo13R2aiIiIVBKVOpl5+umniYmJYd68eY6yuLg49wV0rizAG7C5OxAREZHqq1KfZvryyy+5+OKLueWWWwgPD+eiiy5izpw57g0qB/gDmA7cBEwAtgEn3BmUiIhI9VWpk5k//viD//znPzRp0oSFCxdyzz33MGrUKN55550it8nKyiI9PT3fzanWA22AR4BvgGeAVsAPwCnnPpWIiIicn80YY9wdRFG8vb25+OKLWb58uaNs1KhRrF69mhUrVhS6zZQpU5g6dWqB8rS0NIKDg8sX0EGgK7CjkLogYBNQv3xPISIiIpCenk5ISEiJvr8rdc9MZGQkLVq0yFfWvHlz9uzZU+Q2EydOJC0tzXHbu3ev8wI6TOGJDEAGsNt5TyUiIiIlU6kHAHfq1Int27fnK9uxYwexsbFFbuPj44OPj0/FBJRznvqsinlaERERKVqZk5lVq1axZMkSUlJSyMvLy1f3/PPPlzswgAcffJDLL7+c6dOnc+utt7Jq1SreeOMN3njjDafsv9RCgTDgUCF1NYCGrg1HREREypjMTJ8+nUmTJtGsWTMiIiKw2f6em3z2/8vrkksuYcGCBUycOJHHH3+cBg0aMHv2bAYMGOC05yiVesCrwC2F1E0BIlwajYiIiFDGAcARERE8/fTTDBkypAJCcq7SDCAqkQzsA30nARuABtgTmcuw99yIiIhIuZXm+7tMPTMeHh506tSpTMFZXhDQEZgPHAd8URIjIiLiRmWazfTggw/yyiuvODsWa6mJ/bSTEhkRERG3KlPPzL/+9S/69OlDo0aNaNGiBV5eXvnqP//8c6cEJyIiInI+ZUpmHnjgAX766Se6d+9OaGioUwf9ioiIiJRGmZKZd955h/nz59OnTx9nxyMiIiJSKmUaM1O7dm0aNWrk7FhERERESq1MycyUKVN47LHHyMzMdHY8IiIiIqVSptNML774IgkJCURERBAXF1dgAPC6deucEpyIiIjI+ZQpmbnhhhucHIaIiIhI2ZRqBeAdO3bQtGnTiozH6Zy+ArCIiIhUuNJ8f5dqzMxFF11E8+bNmTBhAitWrChXkCIiIiLOUKpkJjU1lZkzZ5KamsqNN95IREQEw4YN48svv+TkyZMVFaOIiIhIkcp0oUkAYwwrVqzgyy+/5Msvv2T37t1cddVV9OvXj+uuu47w8HBnx1omOs0kIiJiPRV2mulsNpuNyy+/nKeeeootW7awfv16unTpwltvvUVMTIyu3SQiIiIuUeaemeKkpqby119/0aRJE2fvutTUMyMiImI9Fd4z8/bbb/O///3PcX/8+PHUrFmTyy+/nN27dxMaGlopEhkRERGp+sqUzEyfPh0/Pz8AVqxYwcsvv8zMmTOpU6cODz74oFMDFBERESlOmRbN27t3L40bNwbgiy++4B//+Ad33303nTp1olu3bs6MT0RERKRYZeqZCQwMJDU1FYBFixZx1VVXAeDr68uJEyecF52IiIjIeZSpZ6Znz54MHz6ciy66iB07dtCnTx8ANm/eTFxcnDPjExERESlWmXpmXnnlFTp27MihQ4eYP38+oaGhAKxdu5Y77rjDqQGKiIiIFKdCpmZXJpqaLSIiYj0VPjV73rx5fPrppwXKP/30U95+++2y7FJERESkTMqUzDz11FPUqVOnQHl4eDjTp08vd1AiIiIiJVWmZGb37t00aNCgQHlsbCx79uwpd1AiIiIiJVWmZCY8PJyNGzcWKN+wYYNjMLCIiIiIK5Qpmbn99tsZNWoUP/30E7m5ueTm5vLjjz8yevRobr/9dmfHKCIiIlKkMq0zM23aNHbv3k2PHj2oUcO+i9zcXAYPHqwxMyIiIuJS5ZqavXPnTuLj4/Hz86NNmzbExsY6Mzan0NRsERER6ynN93eZemYA5s6dy6xZs9i5cycATZo0YcyYMQwfPrysuxQREREptTIlM48++iizZs3igQceoGPHjoD96tkPPvggSUlJTJs2zalBioiIiBSlTKeZ6tSpw0svvVTg0gUffvghDzzwAIcPH3ZagOWl00wiIiLOl52dTXJyMpmZmfj7+xMVFYWXl5fT9l/hKwDn5uZy8cUXFyhv3749OTk5ZdmliIiIWMTBgweZOnUqLVu2pEWLFrRu3Zrp06fz559/uiWeMiUzd955J//5z38KlL/xxhsMGDCg3EGJiIhI5ZSens6kSZOYPn06x48fByAjI4MpU6bkK3OlMp1meuCBB3jnnXeIiYnhsssuA2DlypXs3buXQYMG5etmev75550XbRnoNJOIiIjz7Nq1i2bNmpGXl1egrkaNGmzbto1GjRqV+3kqfDbTpk2baNeuHQAJCQkAhIWFERYWxqZNmxyPs9lsZdm9iIiIVFKHDh0qNJEByMnJ4a+//nJKMlMaZUpmfvrpJ2fHISIiIhYQEBBQbL2/v7+LIvlbmcbMiIiISPUUHh7OBRdcUGjdRRddRHh4uIsjUjIjIiIipVC3bl2++OILoqOj85XHxcXxySefEBYW5vKYyrwCsIiIiFRPzZo1Y8WKFezcuZMdO3ZwwQUX0LhxY+rVq+eWeMp1bSYr0GwmERER66nwRfNEREREKgslMyIiImJpSmZERETE0pTMiIiIiKUpmRERERFLUzIjIiIilqZkRkRERCxNyYyIiIhYmpIZERERsTRdzkBERERKby+QChwCwoFQILrYLSqMkhkREREpnV3AQGDlWWWdgbeAhq4Px1KnmWbMmIHNZmPMmDHuDkVERKR62gcMJn8iA7AM+CeQ7PKIrJPMrF69mjfeeIM2bdq4OxQREZHq6zCwvIi670/Xu5glkpljx44xYMAA5syZQ61atdwdjoiISPV19Dz1aa4IIj9LJDMjR46kT58+XHXVVed9bFZWFunp6fluIiIi4iShxdTZADf0OVT6ZOajjz5i3bp1zJgxo0SPnzFjBiEhIY5bTExMBUcoIiJSjYQCPYuo6wvUcWEsp1XqZGbv3r2MHj2a9957D19f3xJtM3HiRNLS0hy3vXv3VnCUIiIi1UgU8BrQB3tPDKf/vRGYBUS4PiSbMca4/mlL5osvvuDGG2/E09PTUZabm4vNZsPDw4OsrKx8dYVJT08nJCSEtLQ0goODKzpkERGR6uEg9sG+6UAIEIZ9vRknKc33d6VeZ6ZHjx78/vvv+cruuusuLrjgAiZMmHDeREZEREQqSN3Tt0qgUiczQUFBtGrVKl9ZQEAAoaGhBcpFRESkeqrUY2ZEREREzqdS98wUZsmSJe4OQURERCoR9cyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFia5WYziRMlAwnAb0B94GIgBh0VIiJiKfraqq72ANcBZy+w7Ad8B1yOjgwREbEMnWaqjo4DD5M/kQE4AVwL7Hd5RCIiYlV57g5Av7+rpxTgkyLqjgMbgVjXhSMiIhaTjb2H/2NgLdAB+Af27w43ZBZKZqqjk0BuMfXJrgpEREQsJw/7WMueQNbpsgXAVOBH4DLXh6TTTNVRMBBVTH17VwUiIiKWcwC4hb8TmTNOALedrncxJTPVURQws4i6LthnNImIiBTmz9O3wuwBDrkwltOUzFRHNqArMJe/ExdfYBgwDwh3U1wiIlL5nTpPfbZLoshHY2aqoxzgXeAz4BGgNmCwn/O8Dvie4k9DiYhI9RWB/QfwyULqAnHLD2IlM9XRAeBpIA14CPuCeUf4+zxnAkpmRESkcHWB6cDYQuqeBSJdGw4omamejgMGDr5ykKTwJNZuX0t0eDRt67Sl3lP1qLGlBnR2d5AiIlIp+QGDgabAo8BO4ALgSeASwNv1ISmZqY4CYO+ne7lx4o2sXbfWURwYGMjCDxZyadil1NChISIiRakN9MG+vsxJ7AlOqPvC0QDgauh4zeP8+51/50tkAI4dO0bvAb3ZH6olgEVEpATqANG4NZEBJTPVUkpKCh99/FGhdRkZGfy+5dzrHIiIiFReSmaqoZPHT5KTk1Nk/YG9bljxSEREpIyUzFRDQb5B1K1bt8j6i1pe5MJoREREykfJTDUU5RfFUxOeKrSu46UdiY3QVSZFRMQ6lMxUQx45Hlzf5nrefv5tIiPtCwJ4e3sz/M7hfDLjE8KPaglgERGxDs2/rY5qQO3/1WZg14H0eK4Hx7yO4ePpQ8SRCPzS/OwrO4qIiFiEkpnqKAoIA9tEG/Xurme/nwn8F9gG/OTW6EREREpFyUx1VAMYin19AP/TZf5AJ2A2upSBiIhYipKZ6soD+5VNJwB/AZ7AzcDt7gxKRESk9DQAuDrKA+YDI7EnMgC5wCfADcBB94QlIiJSFkpmqqP92C8OVph4YLcLYxERESknJTPV0THgUDH1G1wViIiISPkpmamOfCn+Eu0xrgpERESk/JTMVEd1gYFF1NUEWrouFBERkfJSMlMd+QFTgC7nlNcCFmO/nLuIiIhFaGp2dRUNfIp9MPAm7L01zU6XK8UVERELUTJTnYWfvuki2SIiYmFKZqqzPOAA9tlNPkAEf68ILCIiYhE6oVBdpQLzgPZAc6ApcA+w151BiYiIlJ6SmeooD/tFJYcDKafLcoB3gX8Af7opLhERkTJQMlMdHQAmFlG3Cq0ALCIilqJkpjrK4O8emcKsd1EcIiIiTqBkpjryBbyKqa/nqkBERETKT8lMdRQBDCiiLhho5cJYREREyknJTHXkDzwBXHZOeTCwCK0ALCIilqJ1ZqqraOALYA/2q2RHYb8mUzTg6b6wRERESkvJTHUWcfp2ibsDERERKTudZhIRERFLUzIjIiIilqZkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJpSmZERETE0ip1MjNjxgwuueQSgoKCCA8P54YbbmD79u3uDqtqOY79Ktqp7g5ERESkbCp1MrN06VJGjhzJypUrWbx4MTk5OVx99dUcP37c3aFZ30ngd+Au4FKgFzAfOOTOoERERErPZowx7g6ipA4dOkR4eDhLly6lS5cuJdomPT2dkJAQ0tLSCA4OruAILWQ50BXIOaf8fuBxoJbLIxIREXEozfe3pS5nkJaWBkDt2rWLfExWVhZZWVmO++np6RUel+WkAHdTMJEBeBkYiZIZERGxjEp9mulsxhjGjh3LFVdcQatWrYp83IwZMwgJCXHcYmJiXBilRRwBNhdTv9xVgYiIiJSfZZKZ+++/n40bN/Lhhx8W+7iJEyeSlpbmuO3du9dFEVrI+a6K7euSKERERJzCEqeZHnjgAb788kt+/vlnoqOji32sj48PPj4+LorMomoDVwC/FFLnAXRwbTgiIiLlUamTGWMMDzzwAAsWLGDJkiU0aNDA3SFVDbWB17AnNEfPqXsZiHB1QCIi1cifp29Hsf+9DUfjFMupUiczI0eO5IMPPuC///0vQUFBHDx4EICQkBD8/PzcHJ3FtQDWAZ8Ci4H62GcyNQQC3RiXiEhVtgvoB2w5q+xG7D8ko9wSUZVQqadm22y2QsvnzZvHkCFDSrQPTc0+DwOcALyp5KmtiIjFHQC6AAmF1A0HXgD8XRpRpVZlpmZX4jyr6rChD4+IiCvspfBEBuBtYCL23nEpNcvMZhIREbG0PcXUncJ+eRkpEyUzIiIirlDcHBZfNF6xHJTMiIiIuEI0UNSar/cBkS6MpYpRMiMiIuIKdYGvgM5nldUA/gk8hBYsLYdKPQBYRESkSokDFgCHgGPY15epCwS4MaYqQMmMiIiIK4WevonT6DSTiIiIWJqSGREREbE0JTMiIiJiaUpmRERExNKUzIiIiIilKZkRERERS1MyIyIiIpamZEZEREQsTcmMiIiIWJqSGREREbE0JTMiUjHSTt9ERCqYrs0kIs61H/ge+D/sP5fuAboCUe4MSkSqMiUzIuI8+4DrgA1nlf0MdAQ+QwmNiFQInWYSEef5mvyJzBkrgKUujkVEqg0lMyLiHKnAG8XU/wdId1EsUjXlYD+NuQc47OZYpFJRMiMizmGAvGLq804/RqQsDgDTgFZALHAt8CtwzJ1BSWWhZEZEnCMUGFJM/XAgxDWhSBXzJzAQmAocPV22GugMrHJTTFKpKJkREeewATcDTQupawP0dG04UoXsBn4spNwAD2BPdqRa02wmEXGeGOzTsj8H3sT+c+lu4HqgnhvjEmsrbvD4FiADiHBRLFIpKZkREeeKAUYB/bH31tRxbzhSBYQWU+eFvslEh4CIVAAbEObuIKTK6AJ4ArmF1N0GhLs2HKl8NGZGRKQ6OIl1Z/7UAz6g4DdWE+wznPxdHpFUMuqZERGpyg4BB4GN2K+V1R77+JI4N8ZUWn5AH2Ab8AWwF+gNXIjGYgmgZEZEpOpKAX4C7gJOnFV+O/Ak0NAdQZVRAPaemIfcHYhURjrNJCJSVf0J3En+RAbgI2A+9lNPIlWAkhkRkapqPvZLABTmJewXBhWpAnSaqbQM9mW1k4As7NMC47Cfg/Z2W1QiIgUlFVO3H11eQqoMJTOltR37FYBnYV+oyRv7Mu3XABdguVf08OHDZGZmUqNGDSIiIvD09HR3SCLiLF2Bt4G62Bcu9MO+/P9K4CL0A0yqDIt99brZIWApHMw7yJ4pe9i+Zzv169an0alGRH8cbU9qYt0dZMmkp6ezbt06xo4dS3x8PHXq1OFf//oXgwYNIjIy0t3hiYgzdMJ+OikI+AT7Vct7AROBmhS/GJ2IhSiZKY002N1kN9eNvo5NmzY5iuvVq8eitxfRIquFG4MrnWXLlnHdddc57h8+fJiHH36YlStXMmfOHOrUsdiyrVnYL0DnBdR2bygilcZhYB0w76yyX7BPZ14MHAEC3RCXiJNpAHApHMk5wvAZw/MlMgD79++nz/A+HDh5wE2RlU5ycjL3339/oXVffPEFycnJLo6oHPKABOA54GlgBrAAXXhOBOyL5L0Np/qcYv+b+9n74V7Sx6TDceyfF/2clSpCyUwpHDp1iO+//77QuqSkJJKPWyMJSEtLIykpqcj63377zXXBlNcuYD32NSh2Y/+laQO+xv6rVKQ6+x72LdjHlIZTaD2uNQ0HNuT2Lbfz+/u/k70/G065O0AR51BeXgrHM48XW3/4sDW+Pb28vLDZbBhT+FSGWiG1XBxRGaVjXxTsISDxrPK5wMPYe2csdrasysgFUk//Pwx7gikud+DqA/T9V1/iN8Q7yr5d9C0/LPmBNV+sobVHazdGJ+I86pkphZqBNfH19S2yvn5UfRdGU3ZhfmFc1/u6Quu8vb1p17qdiyMqo3TgdfInMmc8hX0MjbjeXuAZ7DNpugOz0XombrLx+MZ8icwZ2dnZPPziw6SZNDdEJeJ8SmZKIdI/ktHDRxdad12v6wgPssalW4OPBzN79GxiY/NPvfL09OSz/3xG5E6LzGY6AXxaTP2PrgpEHPZiT2AmYr+OzhZgLPYZNEpoXO6zLz8rsm7R94tIz053YTQiFUenmUrBN8SXsbeMxS/Ij2dfepZjx47h7e3NkDuHMHnwZEJ9LTLP0QYNhzbkl+d/Yc1fa/hh7Q80qNuAvp36Uu+VevgOKLr3qVKxYZ/FVJQMVwUigH0w9qfYB2SfawuwCBjq0oiqvdBaRf9NCgoKwsNDv2elarCZogZOVBHp6emEhISQlpZGcHBw+Xf4B5z68BQHGh/gmMcx/D38qbuxLn4D/KBp+XfvEkeAm4Al2NfFueB02WrsfXXbgUbuCq4U/sD+5bi0iPpvsV9ZV1zjMNAD+9WZC3M58D/s65uIS/y+6nfadGhTaN3EhyYyddxUvCK8XByVSMmU5vtbPTOlkQFMBq/3vYg9d3W8L4HvsF/WoLKrBbwKdMY+A2j3WXWvYV8t1AoM9sG/R+DgsINkRGXghRdh34URsDdAJ1FdzUbxf1FqoIHALlY/sT4znpjBxEcn5itv27Yt9/W5D69TSmSkalAyUxopwIdF1K0HDmKNZAbsvTFrsCdhC7FfX+qfQAPs05ytoAZkHMlgxbQVPPCvB9ixYwc1atTg9ltuZ9qz04g9aZHlmKuKUGAI9kXaCjMUCHFZNAKENAvhnnr30OfrPrz/3fscTj/MP7r+gzaxbYg6FqUFJqXK0Gmm0ogHipvo8x32gY5Wk4U9rbXaZZn2w0+bf+LKXlcWqGratCk/ff0TUU2i3BBYNbUfe1I/GXtCUwP7OJo87KeYJgAdsU/VFtfYAbTB3ovZBfu1mdZhf6/mYU8+rcRg/9GYi33l4ppujUYqmE4zVZQg7F/4uUXUW2QSUAE+7g6gbFKyU3hw/IOF1u3YsYNNWzdZK5n5CzgGaZlpeHp6EugbaO/t8Hd3YCWUB0yD468cZ3/wfpL/TMZmsxEZEUn04Wj8HvODS9wdZDXzDX8Pkj93vc8nsI8ps8pp5WTsA8yfxX6dvC7YV/xujj1Js5Kj2D/v2dhjD8d6bahklMyURl2gP/BuIXXtsc4fhSoiMzuTDRs2FFn//U/fc3Xfq10YUTkcgL1H9vL1l1/z/v/ex8/Pj9EDR3NJh0uIiIqwJ9KVXRSkzEzhy9+/ZMyDYzh+3L7IZFBQEK+9+hq9nuhFaKRFZvxVFUUNxgZIwjorAB/Cfhr8q7PKFgE/YJ8A0MkdQZVN7v5c9m3dx/pd60ncl0i75u1oHNmYqFZR9qRGykTJTGkEYl+MLRv7FWjPnKC7AngPax6Ih7Cv11ID+3gfC51qquFdg+DgYNLTC18ro15sPRdHVHZ70vfQ7fpuJCb+vQLg999/z03X3cSrz79KRJAFBmN5wg7bDkbcPSJfcUZGBncOupPffvuNUCtepnkf9l6nSOwXMrWSjthPJ9WG7D7Z5Pjl4P+bP2wAWmCdXtm95E9kzsgFRmK/aKYFTl/mHcojfmM8PW7vke/vVrNmzfju3e+IC4mzzntSyWi+R2nVBqYBK4CfT//7OvYZQlaSjn1qdi/s07MvxN59a43LSwHg4+XDXXfdVWidp6cnXbt0dXFEZXPqwCle/c+r+RKZMz7/+nO2bt/qhqhK76/Uv5g5c2ahdcYYZs+eTUaGhRb/ScQ+u68f0Af7D5ldbo2o9DrC4ZmH+fmln7nz+J3ckHgDc2+fy575e2AK1jmF+VMxdRsAiyxkvP/QfnoP7F3gB9j27dsZ+ehI0pIt0pBKSD0zpbUO9u7Zy8aMjazdupYL4i7g0vqXUn9nfTx6eYBF1ptjGXD2FQ0OY7+e0UpgDpa4ptHx48fp3Lkza9eu5ZdffnGU16hRg1dffZVVK1bRtl1b9wVYQikZKbz18VuO+zVq1CAvL4+8vDwA3vjgDbpc1QUP38r92+NY2jF27Sr6237nzp1kHMkgKMgC58wSgUlAX+CL02XbsH9GnsYa6zABqbtTmfrHVF4e/7KjbPHixcTGxrLkkyXEHYmz9zhXdqcPmdx/5rLnzj3k+uYStCeIiH9H2BNMi3yTJexNIDU1tdC6bxd9y6FjhwjRlL8yscQh8Oqrr/LMM8+QnJxMy5YtmT17Np07d3Z9IAdh54mddP9Xd/bv3+8oDg4O5of3fqD94fbYoi2wkEYycH8RdV8Aj2OJZMbLy4sxY8YwduxYRo8eTXx8PLVq1eKCCy7glVde4eY+N7s7xJLxgLy8PG699VYGDBhAZmYmXl5eZGVlMWvWLHJycixx+i84KJiWLVuydWvhPUmtWrWiZnBN1wZVVgmwb/I+klKSeHfau2RlZXHbrbfRfHpz4n6Pg2gscTogySeJl197uUD57t27ee7153h22rP4WKEhXWB3/G4++/4zXh74MocOHaJTp048Me8Jmv3RjJA61kgADqYeLLLOGMOxrGMujKaKMZXcRx99ZLy8vMycOXPMli1bzOjRo01AQIDZvXt3ibZPS0szgElLSyt3LIe2HTKXXnqpwT5aJt8tIiLC7N24t9zP4RJbjTEUc5vjvtBKIycnx8ycNtMAJiAgwLRt29Y0btzYAMbX19ckbEtwd4glcvLASTP/k/nm3//+t/H29nYcU7Vr1zbvv/++WfHjCmNOuTvKEsgx5rfffjM2m63A58PT09PEr4t3d4Qlk2bM7h27zeDBgwu0o0uXLiZxV6IxJfvz43ZjRo0p9O8VYAIDA83ePdb4m7V7127Tp0+fQo+rn376yZhD7o6wZFb9tqrI96NmzZpm29Zt7g6xUinN93el75l5/vnnGTZsGMOHDwdg9uzZLFy4kP/85z/MmDHDpbEcOnGIVatWOe7bvP7+RZPy11ESUvZRO9siU5q8+XsA87mCsQ9yruxy4B99+rN+yxY+/PRDNmy29wiEhIbz6XufEOoVSWZ2jpuDLIFjnuQYT2Y88xxgcxxXRzKOc9fwf7Jy6UoyT+RU/p6AQxB9qiHvvv8JY8aOdnSnR0RE8MqLr1I3K5bMAzmVv9cvBzbs3Mo7H3yU7zMOsGzFb8z/8ivuHXCvJT4jx7JPFWjDGafybGSeyrXEZyQx+QDfLPq+QFvygAcfmsBH735MTHC0e4IrhRMn8+jR6xp+/LHgVXBHjX2IrCws8X4Uxs/LE5vNfWcmKvWiednZ2fj7+/Ppp59y4403OspHjx7N+vXrWbq04EV5srKyyMr6++qD6enpxMTEOGXRvPjV8bS71L5qns3Lh/pj55drfyIiIlXBlsd74e/t3P6R0iyaV6lHFB4+fJjc3FwiIvJPS42IiODgwcLPPc6YMYOQkBDHLSYmxmnx1A6vTWCgFUbLiYiIVB+V/jQTUKDryhhTZHfWxIkTGTt2rOP+mZ4ZZ4iKimLKlCn861//wpzKYs/zfw8wvXPAnTw9cyYhIU64Mrer7Me+tPkS7Ndmugaoh3VWojyEfUbW5iLqFwA9XRdOWR1JOcLNt/+DVat+K7T+8cmPM3b82ELrKpUs7MsWzCqi/jHgQSr/X51TMGfe//Hg2DGFVg+9axjTJ08nMMwaFzE7ePAg3377Ha+88jIZ6Rlc26cP999/Pw0axOHhUal/zzps27KNSzpcQmEnEq677npenfUKtSMtcKGpBPgz60/en/8+s+fM5q+//qJRo8ZM//d0OkVfTs1GNS27+Kqfl5tnKVTw+J1yycrKMp6enubzzz/PVz5q1CjTpUuXEu3DmQOAjTHm8OHDZt68eaZevXoGMLVq1TLTp083ycnJTtm/lNJiU/gg5ibGmH1ujKuUflz0Y6GDAv39/c2ubbvcHV7JbTfGhJmC70eUMWanG+MqpV07dpkGDRoUeD9CQkLM1i1b3R1emfz555/mwIED5sSJE+4OpdQO7z5sXnzxxQLvR3R0tLUGzZ4wxnxoTM4LOWbv2r0mcW2iSV6VbMx4Y8wadwdX+ZTm+7tSj5kB6NChA+3bt+fVV191lLVo0YJ+/fqVaACwUy80eZoxhuTkZE6cOIGPjw+RkZF4elpg7mxVlA78AowCErBPYf4H9gXO4twXVmkd/eso//3iv4weO5q0NPvCWQ0aNODD9z6k/aXtqVGjsndnnGUbMB34HPuJ7FuB8UBTdwZVSpmwa/8uZs2exfvvv092djbXX389j01+jKaRTalR20LvRxVxaPch9h7ey7y35nHw4EF69+pNt67daBTTyDrrewEcx/636nXsa+R0xf4ZaUglH/jheqX5/q70yczHH3/MwIEDee211+jYsSNvvPEGc+bMYfPmzcTGxp53+4pIZqQSSsae2HhjX9bcgkObcnJyOLD3AIcPHaaGVw3CwsKIjLbo1UvTsZ8GBPtlPiywTl4BeXA85TjJ6clgoE5gHWrWqVn5Z5VVZQY4AXkmDw+bh3VWMC5MLvYZcb6ABZYnc4cqddXs2267jdTUVB5//HGSk5Np1aoV33zzTYkSGalGIrHuVctPq1GjBvUb1Kd+g/ruDqX8gk/frMwDAuoG0LhuY3dHImfYAH/wqApdGJ5YZ3yiBVT6npnyUs+MiIiI9VSZqdkiIiIi56NkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJpSmZERETE0pTMiIiIiKUpmRERERFLUzIjIiIillbpL2dQXmcWOE5PT3dzJCIiIlJSZ763S3KhgiqfzGRkZAAQExPj5khERESktDIyMggJCSn2MVX+2kx5eXkcOHCAoKAgbDbnXpo0PT2dmJgY9u7da+nrPqkdlYvaUbmoHZWL2lG5VGQ7jDFkZGQQFRWFh0fxo2KqfM+Mh4cH0dHRFfocwcHBlj4Yz1A7Khe1o3JROyoXtaNyqah2nK9H5gwNABYRERFLUzIjIiIilqZkphx8fHx47LHH8PHxcXco5aJ2VC5qR+WidlQuakflUlnaUeUHAIuIiEjVpp4ZERERsTQlMyIiImJpSmZERETE0pTMiIiISD4HDx6kZ8+eBAQEULNmTXeHc17VPpk5ePAgo0ePpnHjxvj6+hIREcEVV1zBa6+9RmZmJgBvvPEG3bp1Izg4GJvNxtGjRwvs58knn+Tyyy/H39+/0Dd+w4YN3HHHHcTExODn50fz5s154YUX3Nauv/76iwceeIBmzZrh7+9P/fr1GTVqFGlpaY59LFmyBJvNVuht9erVFRZ7adoB8M9//pNGjRrh5+dHWFgY/fr1Y9u2bfn2c+TIEQYOHEhISAghISEMHDiw0PexMrcjKSmJYcOG0aBBA/z8/GjUqBGPPfYY2dnZlaodACtWrODKK690/CHs1q0bJ06cACrHcVWStiQlJRUZ56effurYjxWOrYSEBG688UbCwsIIDg7m1ltv5c8//8y3n7i4uALtfPjhhy3XDoD//e9/dOjQAT8/P+rUqcNNN93k8lgrs5LEP2vWLJKTk1m/fj07duxwc8TnV+VXAC7OH3/8QadOnahZsybTp0+ndevW5OTksGPHDt58802ioqLo27cvmZmZ9O7dm969ezNx4sRC95Wdnc0tt9xCx44dmTt3boH6tWvXEhYWxnvvvUdMTAzLly/n7rvvxtPTk/vvv9/l7WrYsCEHDhzg2WefpUWLFuzevZt77rmHAwcO8NlnnwFw+eWXk5ycnG/fjz76KN9//z0XX3yxU2Muazv69u1L+/btGTBgAPXr1+evv/5iypQpXH311SQmJuLp6QlA//792bdvH9999x0Ad999NwMHDuSrr76yTDu2bdtGXl4er7/+Oo0bN2bTpk2MGDGC48eP8+yzz1aadqxYscLxWXnppZfw9vZmw4YNjuXI3X1clbQtffr0KRDnG2+8wcyZM7nmmmscZZX92OrRowdXX301F154IT/++CNgf72vv/56Vq5cmW+Z+Mcff5wRI0Y47gcGBlZ4G5zdjvnz5zNixAimT5/OlVdeiTGG33//3aWx9u3b12nP52wljT8hIYH27dvTpEmTIvd16tQpvLy8XBh9MUw11qtXLxMdHW2OHTtWaH1eXl6++z/99JMBzJEjR4rc57x580xISEiJnv++++4z3bt3L2m4JVbadp3xySefGG9vb3Pq1KlC67Ozs014eLh5/PHHnRZrccrajg0bNhjA7Nq1yxhjzJYtWwxgVq5c6XjMihUrDGC2bdvm/MDP4ax2FGbmzJmmQYMGTonzfErajg4dOphJkyaVeL+uPq6MKft70rZtWzN06FDHfSscWwsXLjQeHh4mLS3NUf7XX38ZwCxevNhRFhsba2bNmlXRIRfKWe04deqUqVevnvm///s/t8ZqjDFHjhwxI0aMMOHh4cbHx8e0bNnSfPXVV8YYYw4fPmxuv/12U69ePePn52datWplPvjgg3z76dq1qxk5cqQZOXKkCQkJMbVr1zaPPPJIvmPzlVdeMY0bNzY+Pj4mPDzc3HzzzU6JPzY21gCO2+DBg40xxgDmP//5j+nbt6/x9/c3kydPNjk5OWbo0KEmLi7O+Pr6mqZNm5rZs2fn2+epU6fMAw884GjH+PHjzaBBg0y/fv0cj/n0009Nq1atjK+vr6ldu7bp0aNHkTEWptomM4cPHzY2m83MmDGjxNs4O5kZMGBAiQ6+0ihLu86YM2eOqVOnTpH1n332mfHw8DB79uwpT4glUtZ2HDt2zIwZM8Y0aNDAZGVlGWOMmTt3bqHvSUhIiHnzzTedEW6RnNmOwjzyyCOmffv25Q3zvErajj///NMA5sUXXzQdO3Y04eHhpkuXLmbZsmVFbuPK48qYsr8na9asMYD59ddfHWVWOLa+/PJL4+npaU6ePOkoy8zMNB4eHuaxxx5zlMXGxpq6deua2rVrmwsvvNBMmzat2GPPWZzZjt9++80A5s033zRt27Y1devWNb179zabNm1yaay5ubnmsssuMy1btjSLFi0yCQkJ5quvvjLffPONMcaYffv2mWeeecbEx8ebhIQE8+KLLxpPT898SXHXrl1NYGCgGT16tNm2bZt57733jL+/v3njjTeMMcasXr3aeHp6mg8++MAkJSWZdevWmRdeeMEp8aekpJjevXubW2+91SQnJ5ujR48aY+zJTHh4uJk7d65JSEgwSUlJJjs720yePNmsWrXK/PHHH444P/74Y8f+pk2bZmrXrm0+//xzs3XrVnPPPfeY4OBgRzJz4MABU6NGDfP888+bxMREs3HjRvPKK6+YjIyMYuM8W7VNZlauXGkA8/nnn+crDw0NNQEBASYgIMCMHz8+X50zk5nly5cbLy8vs2jRorKEX6SytMsY+0Fev35988gjjxS572uuucZcc801To23KKVtxyuvvGICAgIMYC644IJ8vRlPPvmkadKkSYHnaNKkiZk+fXrFNcI4tx3n2rVrlwkODjZz5sypsPjPKGk7zvRK1K5d27z55ptm3bp1ZsyYMcbb29vs2LGj0H278rgypuyfkXvvvdc0b948X5kVjq2UlBQTHBxsRo8ebY4fP26OHTtmRo4caQBz9913O7Z7/vnnzZIlS8yGDRscP2yGDRtWoW1wdjs+/PBDA5j69eubzz77zKxZs8bccccdJjQ01KSmpros1jO9SNu3by/xvq+99lozbtw4x/2uXbua5s2b5+uJmTBhguMYnD9/vgkODjbp6elOj98YY/r16+fokTkDMGPGjDnv89x33335fqhHRESYZ555xnE/JyfH1K9f35HMrF271gAmKSmpxG05V7UfAGyz2fLdX7VqFevXr6dly5ZkZWVVyHNu3ryZfv36MXnyZHr27Fkhz1GadqWnp9OnTx9atGjBY489Vuj+9u3bx8KFCxk2bFiFxFuUkrZjwIABxMfHs3TpUpo0acKtt97KyZMni9wP2C8vX1h5RXBWO844cOAAvXv35pZbbmH48OEVHv8Z52tHXl4eYB/MfNddd3HRRRcxa9YsmjVrxptvvllgf+46rqB0n5ETJ07wwQcfFBpnZT+2wsLC+PTTT/nqq68IDAwkJCSEtLQ02rVr5xhTBvDggw/StWtX2rRpw/Dhw3nttdeYO3cuqamplmnHmePvkUce4eabb6Z9+/bMmzevwKDtio51/fr1REdH07Rp00K3z83N5cknn6RNmzaEhoYSGBjIokWL2LNnT77HXXbZZfmeq2PHjuzcuZPc3Fx69uxJbGwsDRs2ZODAgbz//vslHnxcnu+9wsa1vfbaa1x88cWEhYURGBjInDlzHG1JS0vjzz//5NJLL3U83tPTk/bt2zvuX3jhhfTo0YPWrVtzyy23MGfOHI4cOVKitpxRbQcAN27cGJvNVmDWS8OGDQHw8/OrkOfdsmULV155JSNGjGDSpElO339p25WRkUHv3r0JDAxkwYIFRQ7mmjdvHqGhoS4b2FbadpyZSdKkSRMuu+wyatWqxYIFC7jjjjuoW7duoTMeDh06RERERMU1Aue244wDBw7QvXt3OnbsyBtvvFGh8Z9R0nZERkYC0KJFi3yPa968eYE/1OD64wrK9tn/7LPPyMzMZNCgQfnKrXJsXX311SQkJHD48GFq1KhBzZo1qVu3Lg0aNChy/5dddhkAu3btIjQ0tAJaYOfMdhR2/Pn4+NCwYcNCj7+KivV83x/PPfccs2bNYvbs2bRu3ZqAgADGjBlTqpmJQUFBrFu3jiVLlrBo0SImT57MlClTWL16dZFTqZ3xvRcQEJDv/ieffMKDDz7Ic889R8eOHQkKCuKZZ57ht99+y/e4cxMoc9aVlDw9PVm8eDHLly9n0aJFvPTSSzzyyCP89ttvxR6jZ6u2PTOhoaH07NmTl19+mePHj7vkOTdv3kz37t0ZPHgwTz75ZIU8R2nalZ6eztVXX423tzdffvklvr6+hT7OGMO8efMYNGiQy0aul/f9McY4fmF07NiRtLQ0Vq1a5aj/7bffSEtL4/LLL3dazIVxZjsA9u/fT7du3WjXrh3z5s3LNxOlIpW0HXFxcURFRbF9+/Z85Tt27CA2NjZfmTuOKyjbezJ37lz69u1LWFhYvnKrHVt16tShZs2a/Pjjj6SkpBSbRMbHxwN/JwgVxZntaN++PT4+PvmOv1OnTpGUlFTg+KvIWNu0acO+ffuKnNK8bNky+vXrx5133smFF15Iw4YN2blzZ4HHrVy5ssD9Jk2aOHqiatSowVVXXcXMmTPZuHEjSUlJjple5Ym/NJYtW8bll1/Offfdx0UXXUTjxo1JSEhw1IeEhBAREZHvM5Kbm+s4vs6w2Wx06tSJqVOnEh8fj7e3NwsWLCh5IGU+QVUF7Nq1y0RERJgLLrjAfPTRR2bLli1m27Zt5t133zURERFm7NixxhhjkpOTTXx8vJkzZ44BzM8//2zi4+PznYPdvXu3iY+PN1OnTjWBgYEmPj7exMfHOwYwbdq0yYSFhZkBAwaY5ORkxy0lJcUt7UpPTzcdOnQwrVu3Nrt27coXU05OTr79ff/99wYwW7ZscXqs5W1HQkKCmT59ulmzZo3ZvXu3Wb58uenXr5+pXbu2+fPPPx376t27t2nTpo1ZsWKFWbFihWndurW57rrrLNWO/fv3m8aNG5srr7zS7Nu3L997VlnaYYwxs2bNMsHBwebTTz81O3fuNJMmTTK+vr4Fxv+467gqTVuMMWbnzp3GZrOZb7/9ttB9VfZjyxhj3nzzTbNixQqza9cu8+6775ratWvna+Py5cvN888/b+Lj480ff/xhPv74YxMVFWX69u1rqXYYY8zo0aNNvXr1zMKFC822bdvMsGHDTHh4uPnrr79cGmu3bt1Mq1atzKJFi8wff/xhvvnmG8cxNGbMGBMTE2N+/fVXs2XLFjN8+PB8A2KN+XsA8IMPPmi2bdtmPvjgAxMQEGBee+01Y4wxX331lXnhhRdMfHy8SUpKMq+++qrx8PA472DnksZf1JiZBQsW5CubPXu2CQ4ONt99953Zvn27mTRpkgkODjYXXnih4zHTpk0zoaGh5osvvjDbtm0zI0eONMHBweaGG24wxtjH8jz55JNm9erVZvfu3Y6ZtWcGTJdEtU5mjLGPor7//vtNgwYNjJeXlwkMDDSXXnqpeeaZZ8zx48eNMcY89thj+aapnbnNmzfPsZ/BgwcX+piffvqp2H3Exsa6pV1nBjMXdktMTMy3rzvuuMNcfvnlFRJneduxf/9+c80115jw8HDj5eVloqOjTf/+/QtMi01NTTUDBgwwQUFBJigoyAwYMKDYgdyVsR3z5s0r8j2rLO04Y8aMGSY6Otr4+/ubjh07FjqbyZ3HlTElb8vEiRNNdHS0yc3NLXQ/lf3YMsY+cDQiIsJ4eXmZJk2amOeeey7fwNK1a9eaDh06mJCQEOPr62uaNWtmHnvssXyvgxXaYYx9qv+4ceNMeHi4CQoKMldddZXTZjOVJtbU1FRz1113mdDQUOPr62tatWplvv76a0ddv379TGBgoAkPDzeTJk0qMFW5a9eu5r777nPM/KlVq5Z5+OGHHe1dtmyZ6dq1q6lVq5bx8/Mzbdq0yTeDqLzxlzSZOXnypBkyZIgJCQkxNWvWNPfee695+OGH8yUzp06dMvfff7+jHRMmTDC33HKLuf32240x9iUOevXqZcLCwoyPj49p2rSpeemll0r6dhhjjLGdDlBEREQqiW7dutG2bVtmz57t7lCcLi8vj+bNm3PrrbfyxBNPOGWf1XYAsIiIiFS83bt3s2jRIrp27UpWVhYvv/wyiYmJ9O/f32nPUW0HAIuIiEjF8/Dw4K233uKSSy6hU6dO/P7773z//fc0b97cac+h00wiIiJiaeqZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUv7f9rDV16R+2NWAAAAAElFTkSuQmCC", "application/papermill.record/text/plain": "
" }, "metadata": { @@ -2262,21 +2334,21 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 7: The average difference between what was found and the estimates of the participants and what was predicted using the empirical Bayes method
 averageaverage
sourcedifference² of estimateddifference² of predicteddifference² of estimateddifference² of predicted
G1121.070.29G1121.070.29
G272.321.89G272.321.87
G300.310.21G300.310.20
G320.110.07G320.110.07
G670.260.16G670.260.16
G700.030.00G700.030.01
G950.520.27G950.520.27
G960.150.05G960.150.02
Gcaps0.260.07Gcaps0.260.10
Gfrags8.117.71Gfrags8.117.38
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 25, @@ -2495,21 +2567,21 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 8: Whether the observed value fell within the predicted interval
 objectwithin 96% HDIwithin 50% HDIobjectwithin 96% HDIwithin 50% HDI
0G112TrueFalse0G112TrueTrue
1G27FalseFalse1G27FalseFalse
2G30TrueFalse2G30TrueTrue
3G32FalseFalse3G32FalseFalse
4G67TrueFalse4G67TrueFalse
5G70TrueFalse5G70TrueFalse
6G95TrueFalse6G95TrueFalse
7G96TrueTrue7G96TrueTrue
8GcapsTrueTrue8GcapsTrueTrue
9GfragsFalseFalse9GfragsFalseFalse
0G112TrueTrue0G112TrueTrue
1G27TrueFalse1G27TrueFalse
2G30TrueTrue2G30TrueTrue
3G32TrueTrue3G32TrueTrue
4G67TrueFalse4G67TrueFalse
5G70TrueFalse5G70TrueFalse
6G95TrueTrue6G95TrueTrue
7G96TrueTrue7G96TrueTrue
8GcapsTrueFalse8GcapsTrueFalse
9GfragsFalseFalse9GfragsFalseFalse
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 27, @@ -2685,7 +2757,7 @@ "data": { "text/plain": [ "within 96% HDI 0.80\n", - "within 50% HDI 0.35\n", + "within 50% HDI 0.45\n", "dtype: float64" ] }, @@ -2719,7 +2791,7 @@ "data": { "text/plain": [ "within 96% HDI 16\n", - "within 50% HDI 7\n", + "within 50% HDI 9\n", "dtype: int64" ] }, @@ -2802,12 +2874,12 @@ "text": [ "Git repo: https://github.com/hammerdirt-analyst/solid-waste-team.git\n", "\n", - "Git branch: review\n", + "Git branch: main\n", "\n", "pandas : 2.0.3\n", + "numpy : 1.25.2\n", "matplotlib: 3.7.1\n", "seaborn : 0.12.2\n", - "numpy : 1.25.2\n", "\n" ] } diff --git a/docs/_sources/plastic_shotgun_wadding.ipynb b/docs/_sources/plastic_shotgun_wadding.ipynb index d590d80..d7a79bb 100644 --- a/docs/_sources/plastic_shotgun_wadding.ipynb +++ b/docs/_sources/plastic_shotgun_wadding.ipynb @@ -216,8 +216,8 @@ "outputs": [ { "data": { - "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Percent of samples collected with the designated land-use feature and category.
 orchardsvineyardsbuildingsforestundefinedpublic_services
191%92%11%72%63%68%
26%7%6%14%25%7%
30%0%1%0%1%7%
41%0%20%9%2%8%
51%1%62%5%9%10%
\n", - "application/papermill.record/text/plain": "" + "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Percent of samples collected with the designated land-use feature and category.
 orchardsvineyardsbuildingsforestundefinedpublic_services
191%92%11%72%63%68%
26%7%6%14%25%7%
30%0%1%0%1%7%
41%0%20%9%2%8%
51%1%62%5%9%10%
\n", + "application/papermill.record/text/plain": "" }, "metadata": { "scrapbook": { @@ -289,8 +289,8 @@ "outputs": [ { "data": { - "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The average number of shotgun shells per linear meter of shoreline by feature and category.
 buildingsforestorchardspublic_servicesundefinedvineyards
10.030.080.110.130.090.10
20.590.060.010.120.180.08
30.00-0.000.010.08-
40.040.000.010.030.090.00
50.090.680.140.030.000.12
\n", - "application/papermill.record/text/plain": "" + "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The average number of shotgun shells per linear meter of shoreline by feature and category.
 buildingsforestorchardspublic_servicesundefinedvineyards
10.030.080.110.130.090.10
20.590.060.010.120.180.08
30.00-0.000.010.08-
40.040.000.010.030.090.00
50.090.680.140.030.000.12
\n", + "application/papermill.record/text/plain": "" }, "metadata": { "scrapbook": { @@ -462,8 +462,8 @@ "outputs": [ { "data": { - "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The distribution of the total number of plastic shotgun wadding found per sample for each region
 nsamplesmeanstdmin25%50%75%max
Grand lac581200018
Haut lac137610002751
Petit lac5514000022
\n", - "application/papermill.record/text/plain": "" + "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The distribution of the total number of plastic shotgun wadding found per sample for each region
 nsamplesmeanstdmin25%50%75%max
Grand lac581200018
Haut lac137610002751
Petit lac5514000022
\n", + "application/papermill.record/text/plain": "" }, "metadata": { "scrapbook": { @@ -475,8 +475,8 @@ }, { "data": { - "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The distribution of the number of shotgun wadding found per meter of shoreline
 nsamplesmeanstdmin25%50%75%max
Grand lac58.000.030.050.000.000.000.030.22
Haut lac137.000.170.310.000.000.050.171.64
Petit lac55.000.020.050.000.000.000.010.30
\n", - "application/papermill.record/text/plain": "" + "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The distribution of the number of shotgun wadding found per meter of shoreline
 nsamplesmeanstdmin25%50%75%max
Grand lac58.000.030.050.000.000.000.030.22
Haut lac137.000.170.310.000.000.050.171.64
Petit lac55.000.020.050.000.000.000.010.30
\n", + "application/papermill.record/text/plain": "" }, "metadata": { "scrapbook": { @@ -612,20 +612,20 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 pcs/mnsamplespcs/mnsamples
Saint-Gingolph0.6813Saint-Gingolph0.6813
Allaman0.143Allaman0.143
Bourg-en-Lavaux0.122Bourg-en-Lavaux0.122
La Tour-de-Peilz0.1225La Tour-de-Peilz0.1225
Montreux0.1153Montreux0.1153
Vevey0.1144Vevey0.1144
Saint-Sulpice (VD)0.0615Saint-Sulpice (VD)0.0615
Versoix0.054Versoix0.054
Genève0.0329Genève0.0329
Préverenges0.0115Préverenges0.0115
Tolochenaz0.013Tolochenaz0.013
Lausanne0.0120Lausanne0.0120
Gland0.0022Gland0.0022
Morges0.001Morges0.001
Rolle0.001Rolle0.001
\n" ], "text/plain": [ - "" + "" ] }, "metadata": { @@ -743,6 +743,71 @@ "cp = cpm.style.set_table_styles(table_css_styles).format(precision=2)\n", "glue('city_rankings', cp, display=True)" ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "989efbdc-f400-4894-8424-a5c4856595ca", + "metadata": { + "editable": true, + "pycharm": { + "name": "#%%\n" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] + }, + "outputs": [ + { + "data": { + "text/markdown": [ + "\n", + "\n", + "This script updated 21/03/2024 in Biel, CH\n", + "\n", + "❤️ __what you do everyday:__ *analyst at hammerdirt*\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import datetime as dt\n", + "from IPython.display import Markdown as md\n", + "today = dt.datetime.now().date().strftime(\"%d/%m/%Y\")\n", + "where = \"Biel, CH\"\n", + "\n", + "my_block = f\"\"\"\n", + "\n", + "This script updated {today} in {where}\n", + "\n", + "\\u2764\\ufe0f __what you do everyday:__ *analyst at hammerdirt*\n", + "\"\"\"\n", + "\n", + "md(my_block)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "11d8473e-9271-4828-b1fc-ecbcf2f28765", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/docs/grids_2023.html b/docs/grids_2023.html index b58b44f..8122853 100644 --- a/docs/grids_2023.html +++ b/docs/grids_2023.html @@ -476,21 +476,21 @@

3.1.3. Reducing dimensionality: find the
- +
- - - - + + + + @@ -520,100 +520,100 @@

3.1.3. Reducing dimensionality: find the

- - - - - - + + + + + + - - - - - - + + + + + + - - - - - - + + + + + + - - - - - - + + + + + + - - - - - - + + + + + + - - - - - - + + + + + + - - - - - - + + + + + + - - - - - - + + + + + + - - - - - - + + + + + + - - - - - - + + + + + + - - - - - - + + + + + + - - - - - - + + + + + +
Table 1: The objects of interest. The average pcs/m per sample for each object. The fail rate is the % of all samples that the object appeared in.
   pcs/mquantityfail rate% of totalpcs/mquantityfail rate% of total
code
G112Industrial pellets (nurdles)0.1626860.220.02G112Industrial pellets (nurdles)0.1626860.220.02
G27Cigarette filters1.12164580.850.15G27Cigarette filters1.12164580.850.15
G30Food wrappers; candy, snacks0.5467670.860.06G30Food wrappers; candy, snacks0.5467670.860.06
G32Toys and party favors0.056060.480.01G32Toys and party favors0.056060.480.01
G67Industrial sheeting0.3033560.570.03G67Industrial sheeting0.3033560.570.03
G70Shotgun cartridges0.0810300.480.01G70Shotgun cartridges0.0810300.480.01
G89Plastic construction waste0.1419700.510.02G89Plastic construction waste0.1419700.510.02
G95Cotton bud/swab sticks0.3947770.740.04G95Cotton bud/swab sticks0.3947770.740.04
G96Sanitary pads /panty liners/tampons and applicators0.043730.290.00G96Sanitary pads /panty liners/tampons and applicators0.043730.290.00
GcapsPlastic bottle lids0.3139530.840.04GcapsPlastic bottle lids0.3139530.840.04
GfoamExpanded polystyrene1.02128710.810.12GfoamExpanded polystyrene1.02128710.810.12
GfragsFragmented plastics1.34174790.930.16GfragsFragmented plastics1.34174790.930.16
@@ -650,96 +650,13 @@

3.1.5. Semester project

Fig. 3.1 Previous survey results from Lake Geneva#

-
-
-
summ_data = cbd.copy()
-
-summ_data["use group"] = summ_data.code.map(lambda x: use_groups_i[x])
-
-summ_data["ug"] = summ_data["use group"].apply(lambda x: abbrev_use_g[x])
-summ_data[summ_data["use group"] == 'Personal consumption'].code.unique()
-summ_data["date"] = pd.to_datetime(summ_data["date"], format="%Y-%m-%d")
-
-sd_x = summ_data.groupby(["loc_date", "date", "city", "Project", "doy"], as_index=False).agg({"pcs/m": 'sum', 'quantity':'sum'})
-sd_x_sp = sd_x[sd_x.city == 'Saint-Sulpice (VD)'].groupby(["loc_date", "date", "city", "Project", "doy"], as_index=False).agg({"pcs/m": 'sum', 'quantity':'sum'})
-
-trg = summ_data[summ_data.Project == "before may 2021"].copy()
-tst = summ_data[summ_data.Project == "after may 2021"].copy()
-trg_c, tst_c = trg.city.nunique(), tst.city.nunique()
-trg_lc, tst_lc = trg.slug.nunique(), tst.slug.nunique()
-trg_q, tst_q = trg.quantity.sum(), tst.quantity.sum()
-
-data_magnitude = [
-    {"before may 2021":trg_c, "after may 2021":tst_c},
-    {"before may 2021":trg_lc, "after may 2021":tst_lc},
-    {"before may 2021":trg_q, "after may 2021":tst_q}
-    
-]
-
-cities_set = list(set([*trg.city.unique(), *tst.city.unique()]))
-n_ind_cities = len(cities_set)
-
-caption = f'The number of different locations and cities for the data. Note that there are {n_ind_cities} different municipalitites in all.'
-
-data_summ_q = pd.DataFrame(data_magnitude, index=["Number of cities", "Number of locations", "Total objects"]).astype('int')
-data_summ_q = data_summ_q.style.format(formatter="{:,}").set_table_styles(table_large_font).set_caption(caption)
-styled = data_summ_q.format(formatter="{:,}", subset=pd.IndexSlice[['Total objects'], :])
-glue("data-summ-q3", styled, display=False)
-
-
-
-
-
-
-
# all the data by date
-the_99th_percentile = np.quantile(sd_x['pcs/m'].values, .99)
-px = 1/plt.rcParams['figure.dpi']  # pixel in inches
-fig, ax = plt.subplots(figsize=(600*px,500*px))
-
-sns.scatterplot(data=sd_x, x='date', y='pcs/m',ax=ax, color="dodgerblue", alpha=0.6,label="lac léman")
-sns.scatterplot(data=sd_x_sp, x='date', y='pcs/m', color="magenta", label="solid-waste-team", ax=ax)
-
-ax.set_ylim(-1, the_99th_percentile)
-ax.legend(loc="upper left")
-ax.set_xlabel("")
-glue("testing_training_chrono_2", fig, display=False)
-plt.close()
-
-
-
-
-
-
-
# all the data day of year
-fig, ax = plt.subplots(figsize=(600*px, 500*px))
-
-sns.scatterplot(data=sd_x, x='doy', y='pcs/m', ax=ax, color="dodgerblue", alpha=0.6,label="lac léman")
-sns.scatterplot(data=sd_x_sp, x='doy', y='pcs/m', color="magenta", label="solid-waste-team", ax=ax)
-ax.set_ylim(-1, the_99th_percentile)
-ax.set_xlabel("Day of the year")
-glue('testing_training_doy_2', fig, display=False)
-plt.close()
-
-
-
+
-
-
-
testing_vals= sd_x[sd_x.Project == "after may 2021"]['pcs/m'].values
-training_vals = sd_x[sd_x.Project == "before may 2021"]['pcs/m'].values
-
-
-train_quantiles = np.quantile(training_vals, some_quants)
-test_quantiles = np.quantile(testing_vals, some_quants)
-
-training_testing_summary = training_testing_compare(testing_vals, training_vals, test_quantiles, train_quantiles)
-caption = "The observed values from the training and testing data. Remark that the testing data is only 22% of all the data. This is because we are only in the first year of a six year sampling period"
-sum_table = training_testing_summary.set_caption(caption)
-sum_table.format(formatter="{:.0f}", subset=pd.IndexSlice[['Number of samples'], :])
-glue("data-summary_2", sum_table, display=False)
-
+
+
+
@@ -750,21 +667,21 @@

3.1.5. Semester project

- + @@ -1682,7 +1309,7 @@

3.6. Results: Estimated, found and predi

- + @@ -1691,21 +1318,21 @@

3.6. Results: Estimated, found and predi
-

_images/7ab4e526755b1bd0c125af402f84168bdfa710d48fd34fff7e3f01fe1588fb3b.png

- +
- - + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + +
The observed values from the training and testing data. Remark that the testing data is only 22% of all the data. This is because we are only in the first year of a six year sampling period
 before may 2021after may 2021before may 2021after may 2021
weight all samples0.780.22weight all samples0.780.22
Number of samples26373Number of samples26373
Median3.472.28Median3.472.28
Average6.133.25Average6.133.25
25th percentile1.520.7825th percentile1.520.78
75th percentile6.694.3175th percentile6.694.31

- +
- - + + - - - + + + - - - + + + - - - + + +
The number of different locations and cities for the data. Note that there are 31 different municipalitites in all.
 before may 2021after may 2021before may 2021after may 2021
Number of cities2119Number of cities2119
Number of locations4823Number of locations4823
Total objects57,62314,703Total objects57,62314,703
@@ -871,135 +788,11 @@

3.1.5. Semester project -
-
def sampler_from_multinomial(normed, xrange, nsamples):
-    
-    choose = np.random.default_rng()
-    nunique = np.unique(normed)
-    norm_nunique = nunique/np.sum(nunique)
-    found = choose.multinomial(1, pvals=norm_nunique, size=nsamples)
-    ft = found.sum(axis=0)
-    samples = []
-    for i, asum in enumerate(ft):
-        if asum == 0:
-            samples += [0]
-        else:
-            choices = np.where(normed == nunique[i])
-            samps = choose.choice(choices[0], size=asum)
-            samples.extend(xrange[samps])
-
-    return samples, nunique, norm_nunique, ft
-
-def period_pieces(start, end, data):
-    # the results in pieces per meter for one code from a subset of data
-    date_mask = (data["date"] >= start) & (data["date"] <= end)
-    period_one = data[date_mask]
-    pone_pcs = period_one.pcs_m.values
-
-    return pone_pcs
-
-def period_k_and_n(data, xrange, add_one=False):
-
-    pone_k = [(data >= x).sum() for x in xrange]
-    pone_notk = [(data < x).sum() for x in xrange]
-
-    if add_one:
-        # if the use is for beta dist. This is the same
-        # as mulitplying the likelihood * uninform prior (0.5) or beta(1,1)
-        pone_k_n_minus_k = [(x+1, len(data) - x+1) for x in pone_k]
-    else:
-        pone_k_n_minus_k = [(x, len(data) - x) for x in pone_k]
-        
-    
-
-    return np.array(pone_k), np.array(pone_notk), np.array(pone_k_n_minus_k)
-
-def period_beta(k):
-    
-         
-    return beta(*k)
-        
-
-def current_possible_prior_locations(landuse, locations, attribute):    
-
-    # indentify the magnitude(s) of the attribute of interest from the
-    # locations in the current data there may be more than one, in this 
-    # example we use all the possible magnitudes for the attribute
-    # locations = data[data.city == city].location.unique()
-
-    # magnitudes for the attribute from all the locations in the municipality
-    moa = magnitude_of_attribute = landuse.loc[locations][attribute].unique().astype('int')
-
-    # identify locations that have the same attribute by magnitude of attribute
-    possible_locations = landuse[landuse[attribute].isin(moa)].index
-
-    # remove the locations that are in the likelihood function
-    prior_locations = [x for x in possible_locations if x not in locations]
-
-    return locations, possible_locations, prior_locations
-
-
-def make_expected(lh_tuple, prior_tuple, xrange):
-    res = []
-    betas=[]
-    # print(lh_tuple, prior_tuple)
-    for i in np.arange(len(xrange)):
-        alpha = prior_tuple[i][0]
-        betai = prior_tuple[i][1]
-        success = lh_tuple[i][0]
-        n = lh_tuple[i][1] + lh_tuple[i][0] 
-        numerator = alpha + success
-        denominator = alpha + betai + n
-        if numerator == 0:
-            numerator = 1
-        abeta = beta(numerator, (betai + lh_tuple[i][1] + lh_tuple[i][0])).mean()
-        betas.append(abeta)
-        # print(alpha, betai, success, numerator, n, denominator)
-        if numerator >= denominator:
-            numerator = denominator-1
-            
-        expected = numerator/denominator
-        res.append(expected)
-    return np.array(res), np.array(betas) 
-
-
-
- -
-
-
an_xrange = np.arange(0, 11)
-
-
-
-
-
-
-
comb_lu_agg = pd.read_csv("resources/data/u_comb_lu_cover_street_rivers.csv")
-
-lu_scaled = comb_lu_agg.pivot(columns="use", values="scaled", index="slug").fillna(0)
-
-lu_magnitude = comb_lu_agg.pivot(columns="use", values="magnitude", index="slug").fillna(0)
-
-lu_binned = comb_lu_agg.pivot(columns="use", values="binned", index="slug").fillna(0)
-
-# not_these = ['amphion', 'anthy', 'excenevex', 'lugrin', 'meillerie', 'saint-disdille', 'tougues']
-merge_locations = cbd.slug.unique()
-cbdu = cbd[~cbd.slug.isin(not_these)].merge(lu_scaled[lu_scaled.index.isin(merge_locations )], left_on="slug", right_index=True, validate="many_to_one", how="outer")
-
-cbdu["use group"] = cbdu.code.map(lambda x: use_groups_i[x])
-
-cbdu["ug"] = cbdu["use group"].apply(lambda x: abbrev_use_g[x])
-cbdu[cbdu["use group"] == 'Personal consumption'].code.unique()
-cbdu["date"] = pd.to_datetime(cbdu["date"], format="%Y-%m-%d")
-
-attribute_columns = [x for x in lu_scaled.columns if x not in ["Geroell", "Stausee", "See", "Sumpf", "Stadtzentr", "Fels"]]
-work_columns = [x for x in cbdu.columns if x not in ["Geroell", "Stausee", "See", "Sumpf", "Stadtzentr", "Fels"]]
-cbdu = cbdu[work_columns].copy()
-cbdu.rename(columns={"pcs/m":"pcs_m"}, inplace=True)
-
+
+
+
@@ -1011,122 +804,26 @@

3.3.1. Predicted values using empirical |:------------------------:|:----------------------------:| |{glue:}`ssp-outlook-2024` | {glue:}`ssp-2024-meds`| |{glue:}`ssp-summary` | {glue:}`ssp-predicted_samples`| --> -
-
-
city =  'Saint-Sulpice (VD)'
-start, end = "2015-11-15", "2021-05-31"
-index_range = (0.0, 10)
-xrange =  np.arange(*index_range, step=.01)
-uninformed_tuple = np.array([(1,1) for x in xrange])
-
-
-g_resa = cbdu.copy()
-g_resa = g_resa.groupby(['loc_date', 'date','slug', 'city', 'Project', 'code'], as_index=False).agg({'pcs_m':'sum', 'quantity':'sum'})
-g_resadt = g_resa.groupby(['loc_date', 'date','slug', 'city', 'Project'], as_index=False).agg({'pcs_m':'sum', 'quantity':'sum'})
-
-# define the prior, likelihood data and likelihood locations
-posterior_df = pd.DataFrame(index=xrange)
-predictions = {}
-
-for code in toi:
-    
-    # code_index = 1
-    city_index = 0
-    attribute_index = 2
-    
-    this_code =  code
-    this_attribute = attribute_columns[attribute_index]
-    this_city = cois[city_index]
-    
-    prior_data = g_resa[(g_resa.code == this_code)&(g_resa.city != city)&(g_resa.Project =="before may 2021")]
-    lh_data = g_resa[(g_resa.code == this_code)&(g_resa.city == city)]
-
-    # here the locations from Saint Sulpice are indentified
-    lh_locations = lh_data.slug.unique()
-
-    # remove any location with no land-use data
-    regions = lac_leman_regions[~lac_leman_regions.slug.isin(not_these)].copy()
-    # identify the region of interest
-    lh_regions = regions[regions.slug.isin(lh_locations)].alabel.unique()
-    # retireve any other survey locations in the region
-    regional_locations = regions[regions.alabel.isin(lh_regions)].slug.unique()
-    # retrieve the land use values of all locations in the region
-    land_use_data_of_interest = lu_binned.loc[regional_locations]
-
-    # the locations from Saint Sulpice as well as regional locations are passed
-    # to the current_possible_prior_locations method. The land use values are
-    # compared and the locations with similar land use values are identified.
-    locations, possible_locations, prior_locations = current_possible_prior_locations(land_use_data_of_interest, lh_locations, this_attribute)
-    
-    prior_args = {
-        'prior_data':prior_data[prior_data.slug.isin(prior_locations)],
-        'start': start,
-        'end': end,
-        'xrange':xrange,
-        'uninformed_prior': uninformed_tuple,
-    }
-    # grid approximation of the prior
-    grid_prior, beta_prior, prior_k_n, prior_df, pcs = prior_distributions(**prior_args)
-    
-    posterior_args = {
-        'lh_data':lh_data,
-        'start': start,
-        'end': "2022-12-31",
-        'un_informed': uninformed_tuple,
-        'informed_prior': prior_k_n
-    }
-    
-    # grid approximation of posterior
-    informed, uninformed, beta_p, lh_pcs = posterior_distribution(**posterior_args)
-    
-    # the quantiles from the observed data
-    prior_quants = np.quantile(pcs, some_quants)
-    post_quants = np.quantile(lh_pcs, some_quants)
-    
-    # data frame with normalized results
-    post_df = make_results_df(prior_df.copy(), informed, source="Informed post", source_norm="Ip_n")
-    post_df = make_results_df(post_df, uninformed, source="Uninformed post", source_norm="Un_n")
-    
-    # samples from posterior 
-    sim_2024 = sampler_from_multinomial(post_df["Ip_n"].values, xrange, len(pcs) + len(lh_pcs))
-    sim_quants = np.quantile(sim_2024[0], some_quants)
-    
-    
-    predictions.update({this_code:sim_quants})
-    posterior_df[this_code]=informed
-
-index = ['{:.0%}'.format(x) for x in some_quants]
-pred_quants = pd.DataFrame(predictions, index=index)
-
-
-
-
-
-
-
objects = ["G112", "G27", "G30", "G32", "G67", "G70", "G95", "G96", "Gcaps", "Gfrags"]
-pred_quants = pred_quants[objects]
-caption = "Table 4: The 94% probability interval of the objects of interest for Saint Sulpice. The median value is used for the predictions"
-pred_quants.style.format(precision=2).set_table_styles(table_large_font).set_caption(caption)
-
-
+
+
- +
- - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 4: The 94% probability interval of the objects of interest for Saint Sulpice. The median value is used for the predictions
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
3%0.000.000.000.000.000.000.000.000.000.00
25%0.000.000.000.010.010.000.000.010.030.00
48%0.030.420.130.040.140.000.300.080.120.35
50%0.080.450.130.040.160.000.320.090.140.41
52%0.100.460.130.040.170.000.340.090.140.50
75%0.540.660.480.060.310.040.520.120.230.82
97%1.391.290.910.112.830.091.000.220.412.753%0.000.000.000.000.000.000.000.000.000.00
25%0.000.050.030.000.050.000.010.000.040.00
48%0.080.460.350.030.160.000.320.040.110.68
50%0.120.470.390.040.160.010.320.040.110.74
52%0.220.480.430.040.220.020.340.050.120.74
75%0.680.930.570.080.330.050.520.080.231.24
97%1.461.471.210.110.645.581.110.200.505.05
@@ -1252,87 +949,28 @@

3.3.1. Predicted values using empirical

3.3.2. Estimates from participants#

After a classroom discusion and review of the previous years results (but not the predicted results) the participants made an estimate of how many they expect to find of each item of interest.

-
-
-
length_p = 49.3
-
-estimated_p =[
-    [.16, 1.12, .54, .05, .30, .08, .39, .04, .31, 1.34],
-    [6, 3, .6, .1, .4, .03, .8, 1, 2, 1.34],
-    [.4, 1.5, .3, .1, 1.1, .01, .5, .2, .4, 2]    
-]
-
-def make_rows(estimated, objects):
-    rows = []
-    for row in estimated:
-        row = {objects[i]: x for i,x in enumerate(row)}
-        rows.append(row)
-    return rows
-
-found_p = [4, 51, 7, 2, 0, 0, 12, 1, 12, 266]
-found_pm = [x/length_p for x in found_p]
-
-pierrette_rows = make_rows(estimated_p, objects)
-pierrette = pd.DataFrame(pierrette_rows)
-
-
-
-
-
-
-
found_pel = [4, 51, 7, 2, 0, 0, 12, 1, 12, 266]
-found_pelm = [x/length_p for x in found_p]
-
-
-
-
-
-
-
estimated_td = [
-    [.16, 1.12, .54, .05, .30, .08, .39, .04, .31, 1.34],
-    [.15, .57,.24,.08,.05,.05,.16,.1,.14, .22],
-    [.05, .8, .2, .02, .15, .04, .3, .01, .25, 1.2],
-    [.1,.35,.15,.03, .05, .01, .06, .1, .15, .5],
-    [.07, .15, .05, .02, .01, 0, .04, .01, .08, .12],
-    [.15, .5, .3, .03, .01, 0, .05, .05, .2, .2]
-]
-
-length_td=16.5
-
-found_td = [11, 60, 9, 3, 0, 0,13, 1, 3, 179]
-found_tdm = np.array([x/length_td for x in found_td])
-
-tiger_duck_rows = make_rows(estimated_td, objects)
-tiger_duck = pd.DataFrame(tiger_duck_rows)
-
-found = pd.DataFrame([found_tdm, found_pm], columns=objects)
-fmelted = pd.melt(found, value_vars=found.columns)
-fmelted["source"] = "found"
-
-combined = pd.concat([tiger_duck, pierrette])
-caption = "Table 5: The estimated amount in pcs/meter for each object that the participants expected to find."
-combined.reset_index(inplace=True, drop=True)
-combined.style.format(precision=2).set_table_styles(table_large_font).set_caption(caption)
-
+
+
+
- +
- - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 5: The estimated amount in pcs/meter for each object that the participants expected to find.
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
00.161.120.540.050.300.080.390.040.311.34
10.150.570.240.080.050.050.160.100.140.22
20.050.800.200.020.150.040.300.010.251.20
30.100.350.150.030.050.010.060.100.150.50
40.070.150.050.020.010.000.040.010.080.12
50.150.500.300.030.010.000.050.050.200.20
60.161.120.540.050.300.080.390.040.311.34
76.003.000.600.100.400.030.801.002.001.34
80.401.500.300.101.100.010.500.200.402.0000.161.120.540.050.300.080.390.040.311.34
10.150.570.240.080.050.050.160.100.140.22
20.050.800.200.020.150.040.300.010.251.20
30.100.350.150.030.050.010.060.100.150.50
40.070.150.050.020.010.000.040.010.080.12
50.150.500.300.030.010.000.050.050.200.20
60.161.120.540.050.300.080.390.040.311.34
76.003.000.600.100.400.030.801.002.001.34
80.401.500.300.101.100.010.500.200.402.00
@@ -1484,35 +1122,24 @@

3.3.2. Estimates from participants

3.4. Survey results October 5, 2023 Saint Sulpice#

After the particpants completed the forms, surveys were conducted at three beaches within the city limits of Saint Sulpice. Only the forms for two beaches were returned.

-
-
-
caption="Table 6: The survey results of the objects of interest on October 5, 2023 in pieces per meter"
-found_display = found.copy()
-found_display.loc[0, "beach"] = "tiger-duck-beach"
-found_display.loc[1, "beach"] = "parc-des-pierrettes"
-found_display.set_index("beach", inplace=True, drop=True)
-found_display.index.name = None
-found_display.style.format(precision=2).set_table_styles(table_large_font).set_caption(caption)
-
-
-
+
- +
- - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + +
Table 6: The survey results of the objects of interest on October 5, 2023 in pieces per meter
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40
@@ -1575,21 +1202,21 @@

3.5. Survey results October 5, 2023 Sain
- +
- - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + +
Table 6: The survey results of the objects of interest on October 5, 2023 in pieces per meter
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40
@@ -1657,7 +1284,7 @@

3.6. Results: Estimated, found and predi

_images/5f56302bedbd28c12ef38d5cf2f3c7abb0bd6ee7496fb1c9f71718a65c2dfa91.png

_images/3b10867ba4b3bf65b1dee903696e5accfa2c51ba007dd2cfe381a0658d975cc4.png

Figure 3: The Estimated, observed and predicted results for the objects of interest, Saint Sulpice October 5, 2023

_images/a17b221991c8fe26eb7f6c3320065aff20d9460441e62fe8c1e0623ccdeb4808.png

_images/44661da8d7b6632d7323190eded41307ef7514e245c37c044cb00987aa2adae3.png

Figure 4: The root of the squared difference between observed estimated and predicted, Saint Sulpice October 5, 2023

+
- + - - + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + +
Table 7: The average difference between what was found and the estimates of the participants and what was predicted using the empirical Bayes method
 averageaverage
sourcedifference² of estimateddifference² of predicteddifference² of estimateddifference² of predicted
G1121.070.29G1121.070.29
G272.321.89G272.321.87
G300.310.21G300.310.20
G320.110.07G320.110.07
G670.260.16G670.260.16
G700.030.00G700.030.01
G950.520.27G950.520.27
G960.150.05G960.150.02
Gcaps0.260.07Gcaps0.260.10
Gfrags8.117.71Gfrags8.117.38
@@ -1804,21 +1431,21 @@

3.9.1. The accuracy of the predictions i
- +
- - - + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + + - - - - + + + +
Table 8: Whether the observed value fell within the predicted interval
 objectwithin 96% HDIwithin 50% HDIobjectwithin 96% HDIwithin 50% HDI
0G112TrueFalse0G112TrueTrue
1G27FalseFalse1G27FalseFalse
2G30TrueFalse2G30TrueTrue
3G32FalseFalse3G32FalseFalse
4G67TrueFalse4G67TrueFalse
5G70TrueFalse5G70TrueFalse
6G95TrueFalse6G95TrueFalse
7G96TrueTrue7G96TrueTrue
8GcapsTrueTrue8GcapsTrueTrue
9GfragsFalseFalse9GfragsFalseFalse
0G112TrueTrue0G112TrueTrue
1G27TrueFalse1G27TrueFalse
2G30TrueTrue2G30TrueTrue
3G32TrueTrue3G32TrueTrue
4G67TrueFalse4G67TrueFalse
5G70TrueFalse5G70TrueFalse
6G95TrueTrue6G95TrueTrue
7G96TrueTrue7G96TrueTrue
8GcapsTrueFalse8GcapsTrueFalse
9GfragsFalseFalse9GfragsFalseFalse
@@ -1964,7 +1591,7 @@

3.9.1. The accuracy of the predictions i
within 96% HDI    0.80
-within 50% HDI    0.35
+within 50% HDI    0.45
 dtype: float64
 
@@ -1973,7 +1600,7 @@

3.9.1. The accuracy of the predictions i
within 96% HDI    16
-within 50% HDI     7
+within 50% HDI     9
 dtype: int64
 
@@ -1989,12 +1616,12 @@

3.9.1. The accuracy of the predictions i
Git repo: https://github.com/hammerdirt-analyst/solid-waste-team.git
 
-Git branch: review
+Git branch: main
 
 pandas    : 2.0.3
+numpy     : 1.25.2
 matplotlib: 3.7.1
 seaborn   : 0.12.2
-numpy     : 1.25.2
 
diff --git a/docs/plastic_shotgun_wadding.html b/docs/plastic_shotgun_wadding.html index f4adc3d..cc86e6c 100644 --- a/docs/plastic_shotgun_wadding.html +++ b/docs/plastic_shotgun_wadding.html @@ -359,20 +359,20 @@

4.1. Characteristics and weight of sampl

- +
- - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Percent of samples collected with the designated land-use feature and category.
 orchardsvineyardsbuildingsforestundefinedpublic_servicesorchardsvineyardsbuildingsforestundefinedpublic_services
191%92%11%72%63%68%
26%7%6%14%25%7%
30%0%1%0%1%7%
41%0%20%9%2%8%
51%1%62%5%9%10%191%92%11%72%63%68%
26%7%6%14%25%7%
30%0%1%0%1%7%
41%0%20%9%2%8%
51%1%62%5%9%10%
@@ -445,20 +445,20 @@

4.1. Characteristics and weight of sampl

- +
- - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
The average number of shotgun shells per linear meter of shoreline by feature and category.
 buildingsforestorchardspublic_servicesundefinedvineyardsbuildingsforestorchardspublic_servicesundefinedvineyards
10.030.080.110.130.090.10
20.590.060.010.120.180.08
30.00-0.000.010.08-
40.040.000.010.030.090.00
50.090.680.140.030.000.1210.030.080.110.130.090.10
20.590.060.010.120.180.08
30.00-0.000.010.08-
40.040.000.010.030.090.00
50.090.680.140.030.000.12
@@ -559,20 +559,20 @@

4.2. Regional results

- +
- - - - - - - - + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
The distribution of the number of shotgun wadding found per meter of shoreline
 nsamplesmeanstdmin25%50%75%maxnsamplesmeanstdmin25%50%75%max
Grand lac58.000.030.050.000.000.000.030.22
Haut lac137.000.170.310.000.000.050.171.64
Petit lac55.000.020.050.000.000.000.010.30Grand lac58.000.030.050.000.000.000.030.22
Haut lac137.000.170.310.000.000.050.171.64
Petit lac55.000.020.050.000.000.000.010.30
@@ -652,20 +652,20 @@

4.3. Municipal results
- +
- - + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + +
 pcs/mnsamplespcs/mnsamples
Saint-Gingolph0.6813Saint-Gingolph0.6813
Allaman0.143Allaman0.143
Bourg-en-Lavaux0.122Bourg-en-Lavaux0.122
La Tour-de-Peilz0.1225La Tour-de-Peilz0.1225
Montreux0.1153Montreux0.1153
Vevey0.1144Vevey0.1144
Saint-Sulpice (VD)0.0615Saint-Sulpice (VD)0.0615
Versoix0.054Versoix0.054
Genève0.0329Genève0.0329
Préverenges0.0115Préverenges0.0115
Tolochenaz0.013Tolochenaz0.013
Lausanne0.0120Lausanne0.0120
Gland0.0022Gland0.0022
Morges0.001Morges0.001
Rolle0.001Rolle0.001

+
+
+

This script updated 21/03/2024 in Biel, CH

+

❤️ what you do everyday: analyst at hammerdirt

+
+

diff --git a/docs/searchindex.js b/docs/searchindex.js index cfbbeac..0fd0a39 100644 --- a/docs/searchindex.js +++ b/docs/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["grid_approximation", "grids_2023", "plastic_shotgun_wadding", "summary_2015_2021", "titlepage"], "filenames": ["grid_approximation.ipynb", "grids_2023.ipynb", "plastic_shotgun_wadding.ipynb", "summary_2015_2021.ipynb", "titlepage.md"], "titles": ["2. Empirical Bayes: grid approximations", "3. Testing 2023 predictions", "4. Plastic shotgun shell wadding", "1. Results 2015 - 2021", "The solid waste experience"], "terms": {"note": [0, 1, 3], "colleagu": 0, "concern": [0, 1], "feder": [0, 2, 3], "report": [0, 1, 2, 3], "subset": [0, 1], "gather": [0, 1], "sinc": [0, 3, 4], "puplic": 0, "iqaasl": [0, 2], "decemb": 0, "ha": [0, 1, 2, 3, 4], "been": [0, 1, 3, 4], "addtion": 0, "collect": [0, 1, 2, 3], "event": 0, "lac": [0, 1, 2, 3], "l\u00e9man": [0, 1, 2, 3], "swe": [0, 3], "team": [0, 1, 3], "associ": [0, 2, 3], "sauvegard": [0, 3], "du": [0, 3], "asl": [0, 3], "complet": [0, 1], "100": [0, 1, 2, 4], "beach": [0, 1, 2, 3, 4], "litter": [0, 1, 2, 3, 4], "work": [0, 3], "gener": [0, 1, 3, 4], "guidanc": [0, 1], "big": 0, "pictur": 0, "common": [0, 3], "sens": 0, "consid": [0, 1, 2, 3, 4], "reason": [0, 1, 3], "minimum": 0, "amount": [0, 1], "trash": [0, 1, 4], "ground": [0, 2], "time": [0, 1, 2], "shorelin": [0, 1, 2, 3], "point": 0, "where": [0, 1, 2, 3], "abandon": 0, "enter": 0, "water": [0, 2, 3, 4], "get": [0, 4], "deposit": 0, "It": [0, 1, 2, 3], "necessari": 0, "whole": 0, "There": [0, 1, 2, 3], "mani": [0, 1], "sourc": [0, 1, 3], "varianc": [0, 3], "have": [0, 1, 2, 3, 4], "treat": 0, "densiti": [0, 1, 2, 4], "between": [0, 1, 2], "sampl": [0, 1, 3, 4], "group": [0, 1], "covari": 0, "topograph": [0, 1, 2], "featur": [0, 2], "differ": [0, 1, 2, 3], "locat": [0, 1, 2, 3, 4], "detect": 0, "abil": 0, "appear": [0, 1, 3], "item": [0, 1, 3], "same": [0, 1, 2, 3], "code": [0, 1, 3], "due": [0, 1, 2], "effect": [0, 1, 2], "decomposit": 0, "surveyor": 0, "volunt": [0, 1], "level": [0, 2, 3], "experi": 0, "physic": [0, 3], "limit": [0, 1, 4], "actual": [0, 1], "count": [0, 1, 3], "much": [0, 1, 3], "like": [0, 1], "find": [0, 2], "most": [0, 2, 3], "honest": [0, 1], "can": [0, 1, 2, 3, 4], "deriv": [0, 1, 2], "well": [0, 1, 3], "perform": [0, 2], "over": [0, 4], "part": [0, 1, 2, 3], "here": [0, 1, 2, 3], "assess": [0, 3, 4], "fit": 0, "process": [0, 1, 4], "clear": [0, 1], "For": [0, 1, 2, 3, 4], "exampl": [0, 1], "when": [0, 1, 2, 3], "health": [0, 1], "alongsid": 0, "bath": 0, "qualiti": 0, "eu": [0, 1, 3, 4], "adopt": 0, "principl": [0, 1, 4], "precaut": [0, 1, 4], "suggest": [0, 1, 3], "threshold": [0, 1, 3], "wa": [0, 3], "set": [0, 1, 3, 4], "20": [0, 1, 2, 3, 4], "piec": [0, 1, 3, 4], "meter": [0, 1, 2, 3, 4], "stakehold": 0, "impact": 0, "despit": 0, "section": [0, 1, 3], "one": [0, 1, 3], "see": [0, 1, 2], "greatest": 0, "rang": [0, 2, 3], "iqr": [0, 3], "howev": [0, 1, 3], "still": [0, 1], "close": [0, 1, 3], "other": [0, 1, 2, 3, 4], "indic": [0, 1], "yet": [0, 1], "found": [0, 2, 4], "maximum": [0, 3], "some": [0, 1, 3], "consensu": 0, "might": [0, 1], "paramet": [0, 3], "consider": 0, "effort": [0, 4], "put": [0, 1], "explor": 0, "posit": 0, "among": 0, "Near": [0, 1, 2], "far": [0, 1, 2], "certain": 0, "mai": [0, 1, 3], "construct": [0, 1, 2, 3], "model": [0, 1, 3, 4], "hypothesi": 0, "predict": [0, 4], "municip": [0, 1, 3, 4], "strategi": [0, 1], "consist": [0, 1, 2], "1": [0, 1, 2, 3], "context": [0, 2], "which": [0, 1, 3], "were": [0, 1, 2, 3], "becaus": [0, 1, 2, 3], "2": [0, 1, 2, 3], "3": [0, 1, 2, 3], "benefit": 0, "uncertainti": 0, "about": [0, 1], "base": [0, 1, 3, 4], "spread": 0, "statist": [0, 2], "geograph": 0, "student": [0, 3, 4], "demonstr": [0, 1, 4], "import": [0, 3], "small": [0, 1, 2], "action": 0, "On": [0, 1], "own": 0, "thei": [0, 1, 2, 3, 4], "sai": 0, "relat": 0, "combin": [0, 1, 3], "observ": [0, 2, 3, 4], "better": 0, "idea": 0, "specif": [0, 1, 2], "saint": [0, 2, 4], "sulpic": [0, 2, 4], "six": [0, 1, 3], "year": [0, 1], "period": [0, 1, 3], "newest": 0, "seven": [0, 1, 3], "after": [0, 1, 2], "first": [0, 1, 3], "record": [0, 1, 3, 4], "could": [0, 1, 3], "interpret": [0, 2, 4], "begin": 0, "new": [0, 1], "start": [0, 1, 4], "januari": 0, "joint": 0, "center": [0, 2, 3], "jrc": 0, "prefer": 0, "40": [0, 1, 3], "each": [0, 1, 3], "being": 0, "monitor": [0, 1], "met": 0, "baselin": [0, 3], "establish": [0, 1, 4], "250": [0, 2, 4], "38": [0, 2, 3], "initi": [0, 1], "therefor": [0, 1], "describ": [0, 1, 3], "previous": [0, 1, 3], "would": [0, 1, 3], "appropri": 0, "ani": [0, 1, 2], "singl": 0, "more": [0, 1, 2, 3], "than": [0, 1, 3], "enough": 0, "invest": 0, "made": [0, 1], "either": [0, 1], "prevent": [0, 1, 4], "remov": [0, 1], "public": [0, 1, 2, 4], "space": [0, 2, 4], "intent": 0, "reduc": [0, 4], "environ": 0, "help": [0, 2, 3], "evalu": 0, "return": [0, 1], "roi": 0, "project": 0, "provid": [0, 1, 2], "insight": [0, 3], "did": 0, "net": 0, "declin": [0, 3], "particularli": 0, "doe": [0, 2], "municp": 0, "compar": [0, 1, 3], "rest": 0, "area": [0, 1, 2, 3], "need": [0, 1], "must": [0, 4], "produc": [0, 1], "directli": 0, "immediatlei": 0, "requir": [0, 2], "check": 0, "integr": 0, "anoth": 0, "basic": [0, 2], "calcul": 0, "simpl": [0, 1], "possibl": [0, 1, 3], "By": 0, "mean": [0, 1, 2, 3], "text": [0, 3], "book": [0, 3], "similar": [0, 1], "maturit\u00e9": 0, "calculu": 0, "execut": 0, "sheet": [0, 1, 3], "scalabl": 0, "path": 0, "backend": 0, "server": 0, "oper": 0, "output": [0, 3], "format": [0, 1, 2, 3], "take": [0, 3, 4], "ml": 0, "discard": [0, 1], "disregard": 0, "highli": 0, "discourag": 0, "per": [0, 1, 2, 3, 4], "A": [0, 2], "float": 0, "0": [0, 1, 2, 3], "9": [0, 1, 2, 3], "99": [0, 1, 3], "repres": [0, 1, 3, 4], "999": 0, "everi": [0, 2], "individu": [0, 1, 4], "rare": 0, "exceed": 0, "connect": 0, "categori": [0, 1, 2], "contain": [0, 3], "materi": [0, 3], "type": [0, 1, 2, 3], "intend": 0, "defin": [0, 1, 2, 3], "orgin": 0, "frequenc": 0, "number": [0, 1, 2, 3, 4], "k": [0, 1], "divid": [0, 2], "taken": 0, "n": [0, 1], "bound": 0, "hex": 0, "hexagon": 0, "inscrib": 0, "circl": 0, "r": [0, 1], "1500": 0, "m": [0, 1, 2, 3], "dry": [0, 2], "portion": [0, 1], "cover": 0, "within": [0, 1, 2, 3], "occupi": 0, "op": 0, "avail": [0, 3], "least": [0, 1, 3], "superimpos": 0, "10": [0, 1, 2, 3], "pick": 0, "up": [0, 2], "indentifi": [0, 1], "them": 0, "theta": 0, "under": [0, 1, 3], "yield": 0, "exchang": 0, "bodi": [0, 2], "follow": [0, 1, 2, 3], "two": [0, 1, 2, 3, 4], "recov": 0, "assum": [0, 2], "activ": [0, 2, 3], "adjac": 0, "four": [0, 1], "three": [0, 1, 2, 3], "local": 0, "contribut": 0, "mix": 0, "accur": [0, 1], "misidentifi": 0, "Not": 0, "all": [0, 1, 2, 3], "inaccuraci": 0, "entri": 0, "through": [0, 2, 3], "6": [0, 1, 2, 3], "present": [0, 1, 3], "inculd": 0, "french": 0, "side": [0, 3], "becasu": 0, "done": [0, 1], "swiss": 0, "geo": 0, "admin": 0, "To": 0, "includ": [0, 2, 3], "region": [0, 1, 3, 4], "authorit": 0, "expert": 0, "map": [0, 1, 2, 3], "layer": 0, "franc": 0, "correspond": [0, 3], "befor": [0, 1], "31": [0, 1, 2, 3], "s": [0, 1, 2, 3], "further": [0, 1, 3], "request": 0, "identifi": [0, 1, 3], "switzerland": [0, 1, 3], "protocol": [0, 1, 3], "guid": 0, "marin": [0, 1], "european": [0, 1], "sea": [0, 1], "delimit": 0, "length": 0, "surfac": [0, 2], "border": 0, "standard": [0, 1, 2], "encourag": 0, "criteria": 0, "exclus": 0, "5": [0, 2, 3], "18": [0, 1, 2, 3], "width": [0, 2, 3], "line": [0, 1, 2, 3], "high": [0, 3], "mark": 0, "itself": 0, "purpos": [0, 1], "studi": 0, "onli": [0, 1, 2, 3], "valid": [0, 1], "impos": 0, "varieti": 0, "organ": [0, 3], "In": [0, 1, 3, 4], "campaign": 0, "mcbp": 0, "2016": [0, 1, 3, 4], "primarili": [0, 3], "south": [0, 2], "peopl": [0, 1], "resid": [0, 3], "know": [0, 1], "haut": [0, 2, 3], "come": [0, 2], "riviera": 0, "agglomerm": 0, "vevei": [0, 2], "la": [0, 2], "tour": [0, 2], "de": [0, 1, 2], "peilz": [0, 2], "montreux": [0, 2], "second": 0, "slr": [0, 3], "2017": [0, 3], "2018": [0, 3], "wwf": 0, "extend": [0, 1], "gland": [0, 2], "lausann": [0, 2], "last": [0, 3], "2020": [0, 3], "major": [0, 3], "monthli": 0, "fix": 0, "ad": [0, 1, 4], "spontan": 0, "food": [0, 1, 3], "tobacco": 0, "unclear": 0, "pandem": 0, "restrict": 0, "v": 0, "plastock": 0, "run": 0, "conduct": [0, 1, 3], "95": [0, 2, 3], "liter": 0, "25": [0, 1, 2, 3], "analyz": 0, "partnership": 0, "manag": [0, 3, 4], "determin": [0, 1, 3], "suitabl": 0, "off": 0, "nation": [0, 2, 3], "identif": [0, 1], "dimens": 0, "averag": [0, 1, 2], "longer": 0, "69": [0, 1, 3], "48": [0, 1, 3], "wider": 0, "430": 0, "m\u00b2": 0, "209": 0, "245": 0, "4": [0, 1, 2, 3, 4], "column": [0, 1, 3], "loc_dat": [0, 1, 3], "date": [0, 1, 2, 3], "dai": [0, 1, 3], "doi": [0, 1], "pc": [0, 1, 2, 3], "230": [0, 4], "384": 0, "onc": [0, 2], "paint": 0, "brush": 0, "g166": 0, "87": [0, 3], "cigarett": [0, 1, 3], "end": [0, 1, 3], "g27": [0, 1, 3], "15": [0, 1, 2, 3], "abund": 0, "account": [0, 1, 3], "75": [0, 1, 2, 3], "tabl": [0, 1, 3], "except": [0, 1], "elimin": 0, "explain": [0, 1], "nurdl": [0, 1], "inject": 0, "mold": 0, "pellet": [0, 1], "focuss": 0, "select": 0, "AND": [0, 1], "less": [0, 2, 3], "often": 0, "relativelei": 0, "easi": [0, 1, 4], "furthermor": 0, "also": [0, 3], "encount": 0, "variou": [0, 2], "state": 0, "place": [0, 1], "correct": 0, "immedi": 0, "recogniz": 0, "otherwis": 0, "degrad": 0, "objest": 0, "challeng": 0, "wether": 0, "bottl": [0, 1, 3], "cap": 0, "beverag": 0, "chemic": [0, 3], "difficult": [0, 1], "label": [0, 1, 3], "erod": 0, "origin": [0, 1, 3], "aggreg": [0, 1], "gfoam": [0, 1, 3], "expand": [0, 1, 3], "polystyren": [0, 1, 3], "g81": 0, "g82": 0, "g83": 0, "gfrag": [0, 1, 3], "g78": 0, "g79": 0, "g80": 0, "g75": 0, "g76": 0, "g77": 0, "gcap": [0, 1, 3], "lid": [0, 1, 3], "ring": 0, "g21": 0, "g23": 0, "g24": 0, "sup": 0, "dispos": [0, 2], "fish": 0, "gear": 0, "16": [0, 1, 3], "These": 0, "case": [0, 3], "hygien": 0, "ph": 0, "spatial": 0, "diffus": 0, "toilet": 0, "treatment": 0, "facil": 0, "g95": [0, 1, 3], "cotton": [0, 1, 3], "swab": [0, 1, 3], "500": [0, 1, 2], "g30": [0, 1, 3], "snack": [0, 1, 3], "wrapper": [0, 1, 3], "drink": [0, 3], "g10": [0, 1], "g25": 0, "cigartett": 0, "g35": 0, "straw": 0, "stirrer": 0, "g31": 0, "lollypop": 0, "stick": [0, 1, 3], "g32": [0, 1], "toi": [0, 1], "parti": [0, 1], "favor": [0, 1], "g33": 0, "industri": [0, 1, 3, 4], "profession": 0, "ip": 0, "transport": 0, "g67": [0, 1, 3], "g89": [0, 1, 3], "unknown": [0, 1], "unk": 0, "recreat": [0, 3], "sport": [0, 2], "rc": 0, "illeg": 0, "discharg": 0, "firearm": 0, "lakeshor": 0, "g70": [0, 1], "shotgun": [0, 1], "shell": 0, "wai": [0, 1, 2, 4], "look": [0, 1], "framework": 0, "ensur": [0, 2], "pathwai": 0, "manner": 0, "nor": 0, "analysi": [0, 3], "those": [0, 1], "easili": 0, "leverag": 0, "occur": [0, 1], "domain": 0, "figur": [0, 1, 3], "remark": [0, 1], "22": [0, 1, 2, 3], "nbsp": [0, 1, 2, 3], "weight": [0, 1], "78": [0, 1], "263": [0, 1], "73": [0, 1, 3], "62": [0, 2, 3], "34": [0, 1, 3], "35": [0, 1, 3], "25th": [0, 1, 3], "percentil": [0, 1, 3], "63": [0, 2, 3], "75th": [0, 1, 3], "citi": [0, 1, 2], "municipalitit": [0, 1], "21": [0, 1, 3], "19": [0, 1, 3], "23": [0, 1, 2, 3], "59": [0, 2, 3], "839": 0, "13": [0, 1, 2, 3], "804": 0, "inquir": 0, "entir": 0, "neg": [0, 3], "binomi": [0, 3], "distribut": [0, 1, 2], "river": [0, 1], "bassin": 0, "particular": [0, 1], "shape": 0, "solv": 0, "interv": [0, 1, 3], "01": [0, 1, 2, 3], "our": [0, 1, 4], "trend": [0, 3], "conservationist": [0, 1], "wildlif": [0, 2], "biologist": [0, 1], "both": [0, 1, 3], "field": [0, 2], "rich": [0, 4], "histori": 0, "citizen": 0, "scienc": [0, 1], "program": 0, "summar": 0, "bird": 0, "ag": 0, "surviv": 0, "tick": 0, "magnitud": [0, 1, 3], "variabl": 0, "error": 0, "appli": [0, 1, 3], "best": 0, "classifi": 0, "bayesian": 0, "filter": [0, 1, 3], "smooth": 0, "classic": 0, "infer": 0, "share": [0, 1], "davidson": 0, "pillon": 0, "hacker": 0, "doubl": [0, 4], "formul": 0, "dur": 0, "basi": 0, "again": 0, "rigor": 0, "analyt": 0, "understood": 0, "build": [0, 2], "probabilist": 0, "exist": 0, "seri": 0, "theorem": 0, "condtion": 0, "make": [0, 1, 2, 3, 4], "long": [0, 1], "quantifi": 0, "underli": 0, "relationship": [0, 2], "realtionship": 0, "notat": 0, "b": 0, "p": [0, 3], "machin": 0, "learn": 0, "proababl": 0, "propos": [0, 1], "demand": 0, "whether": [0, 1], "binari": 0, "therfor": 0, "think": [0, 1], "rule": [0, 3], "introduct": 0, "introduc": 0, "conjug": 0, "rel": [0, 3], "1000": 0, "real": 0, "hierarch": [0, 1], "awai": 0, "without": 0, "overhead": 0, "develop": [0, 1], "full": 0, "compromis": 0, "wikepedia": [0, 2], "formal": [0, 1], "let": 0, "align": [0, 3], "frac": 0, "lt": 0, "tag": 0, "10pt": 0, "final": 0, "evid": [0, 2], "prime": 0, "11pt": 0, "posterior": [0, 1], "likelihood": [0, 1, 4], "7": [0, 1, 2, 3], "tell": [0, 1], "sum": [0, 1, 3], "complement": 0, "y": [0, 1, 3], "ge": 0, "x": [0, 1, 3], "assign": 0, "cari": 0, "out": [0, 3], "math": [0, 3], "gamma": 0, "n_": 0, "pr": 0, "beta": [0, 1], "8": [0, 1, 2, 3], "12pt": 0, "choos": [0, 1], "c": 0, "int_": 0, "i": [0, 1, 3], "d": [0, 1], "11": [0, 1, 2, 3], "recogn": 0, "write": 0, "abov": [0, 3], "solut": [0, 4], "sim": 0, "12": [0, 1, 2, 3], "subject": 0, "subjecitv": 0, "bia": 0, "caus": 0, "carri": 0, "omit": 0, "instead": 0, "reli": 0, "configur": 0, "spearman": [0, 1], "rho": 0, "distanc": [0, 3], "compon": 0, "captur": 0, "closest": 0, "denomin": [0, 1], "smilar": 0, "even": [0, 3], "explicit": 0, "basin": [0, 2], "scale": [0, 1], "lowest": [0, 3], "rank": [0, 1], "infrastructur": 0, "benfici": 0, "satisfi": 0, "testabl": 0, "though": [0, 1], "exactli": [0, 2], "moment": 0, "give": 0, "accru": 0, "elsewher": 0, "remain": [0, 1, 3], "choic": [0, 1], "statement": [0, 1, 3], "refer": [0, 1, 3], "multipl": [0, 3], "gelman": 0, "whch": 0, "you": [0, 1, 3], "anyth": 0, "equal": 0, "50": [0, 1, 2, 3], "form": [0, 1, 2], "coefici": 0, "analag": 0, "problem": 0, "angl": 0, "slight": 0, "handl": [0, 3], "respect": [0, 3], "notabl": 0, "infrastrutur": 0, "separ": [0, 1, 3], "detail": [0, 1, 2, 3], "descript": [0, 2, 3], "issu": 0, "themselv": 0, "system": [0, 1], "control": 0, "varaibl": 0, "certainli": 0, "assembl": 0, "illustr": 0, "depth": 0, "earli": 0, "version": 0, "swisstlmregio": 0, "extract": [0, 2], "boundari": 0, "polygon": 0, "landcov": 0, "product": [0, 3], "vector": 0, "overlai": [0, 1], "techniqu": [0, 1], "qgi": [0, 1], "3000m": 0, "circumcscrib": 0, "1500m": 0, "undefin": [0, 2], "built": 0, "urban": [0, 3], "wood": [0, 2, 3], "park": 0, "harvest": 0, "tree": 0, "vineyard": [0, 2], "agricultur": 0, "orchard": [0, 2], "predefin": 0, "labl": 0, "freizeitar": 0, "nutzungsar": 0, "hospit": [0, 2], "cemeteri": 0, "histor": [0, 2], "site": 0, "inciner": 0, "plant": 0, "As": [0, 2, 3], "ratio": 0, "meters\u00b2": 0, "thu": [0, 3], "size": [0, 1, 3], "attract": [0, 3], "school": [0, 2], "powerpl": 0, "street": 0, "road": 0, "polylin": 0, "tlm": 0, "strass": 0, "polyin": 0, "merg": [0, 1], "disolv": 0, "command": 0, "coeffici": [0, 1], "covarainc": 0, "__combin": 0, "daili": [0, 3], "total__": 0, "list": [0, 1, 4], "2024": [0, 1], "reduct": [0, 3], "minim": 0, "readili": 0, "veri": [0, 1], "unkown": 0, "85": [0, 1, 3], "42": [0, 1, 3], "94": [0, 1, 3], "86": [0, 1, 3], "53": [0, 2, 3], "45": [0, 1, 3], "46": [0, 1, 3], "43": [0, 3], "noth": 0, "hypothesis": 0, "lend": 0, "support": [0, 2, 3], "52": [0, 1, 3], "56": [0, 3], "41": [0, 1], "246": 0, "36": [0, 3], "24": [0, 1, 3], "29": [0, 1, 2, 3], "08": [0, 1, 2, 3], "visitor": 0, "tobaco": 0, "notic": 0, "commun": 0, "39": [0, 1, 3], "72": [0, 2, 3], "82": [0, 1, 3], "66": [0, 1, 3], "27": [0, 1, 3], "With": 0, "lower": [0, 3], "improv": [0, 1], "comparison": 0, "main": [0, 3], "focu": 0, "anti": 0, "low": 0, "mistaken": 0, "ident": 0, "fact": 0, "rose": 0, "usual": 0, "inexperienc": 0, "tend": [0, 1], "differenti": [0, 1], "sever": 0, "profesion": 0, "conduit": 0, "pvc": 0, "ab": 0, "concret": 0, "stop": 0, "saftei": 0, "barrier": 0, "pallett": 0, "heavi": 0, "guag": 0, "pheromon": 0, "bait": 0, "unawar": [0, 1], "sale": 0, "ban": 0, "tampon": [0, 1], "lack": [0, 1], "percent": [0, 2, 3], "58": [0, 2], "00": [0, 1, 2, 3], "06": [0, 1, 2, 3], "14": [0, 1, 2, 3], "57": [0, 1, 3], "49": [0, 1, 3], "90": [0, 3], "30": [0, 1, 2, 3], "91": [0, 1, 2], "legend": [0, 1, 3], "greater": [0, 3], "potenti": [0, 3], "show": [0, 3], "came": 0, "hisotr": 0, "around": 0, "why": [0, 1], "anticip": 0, "presenc": [0, 1], "hydrolog": 0, "mechan": 0, "function": [0, 1], "flat": 0, "curv": 0, "comprehens": 0, "hdi": [0, 1], "80": [0, 1, 3], "script": [0, 1, 3, 4], "updat": [0, 1, 3], "03": [0, 1, 2], "biel": [0, 1, 3], "ch": [0, 1, 3, 4], "everydai": [0, 1, 3], "analyst": [0, 1, 3, 4], "hammerdirt": [0, 1, 3, 4], "git": [0, 1, 3], "repo": [0, 1, 3], "http": [0, 1, 3], "github": [0, 1, 3], "com": [0, 1, 3], "solid": [0, 3], "wast": [0, 3], "branch": [0, 1, 3], "review": [0, 1, 4], "panda": [0, 1, 3], "seaborn": [0, 1, 3], "matplotlib": [0, 1, 3], "numpi": [0, 1, 3], "thi": [1, 2, 3, 4], "seventh": 1, "epfl": 1, "maritim": 1, "measur": [1, 3, 4], "decad": 1, "good": [1, 4], "environment": 1, "stand": 1, "we": [1, 2, 4], "2015": [1, 2], "obviou": 1, "prof": 1, "ludwig": 1, "interest": [1, 3, 4], "realiz": 1, "flow": [1, 3], "lake": [1, 2, 3, 4], "ocean": 1, "while": [1, 4], "rais": 1, "plastic": [1, 3, 4], "diminsh": 1, "biodivers": 1, "ar": [1, 2, 3, 4], "prudent": 1, "contact": 1, "quantiti": [1, 3], "object": [1, 2, 3, 4], "numer": [1, 2], "inform": [1, 4], "condit": 1, "term": 1, "attribut": [1, 2, 3], "correl": [1, 2], "quickli": 1, "specfic": 1, "accumul": [1, 3], "wrote": 1, "an": [1, 2, 3, 4], "articl": 1, "how": [1, 2, 3], "becom": 1, "accid": 1, "creat": 1, "increas": 1, "chanc": 1, "lifecycl": 1, "evad": 1, "recoveri": 1, "resourc": [1, 3, 4], "emploi": 1, "chang": 1, "behavior": 1, "lifcycl": 1, "approri": 1, "servic": [1, 2], "dedic": 1, "inappropri": 1, "indiffer": 1, "reliant": 1, "orntithologist": 1, "botanist": 1, "data": [1, 2, 3, 4], "answer": 1, "336": 1, "000": [1, 4], "145km": 1, "shore": [1, 3, 4], "geneva": [1, 2, 3, 4], "although": 1, "stretch": 1, "coastlin": 1, "anywher": 1, "world": 1, "opinion": 1, "5th": 1, "philosoph": 1, "realiti": 1, "hard": 1, "distinct": 1, "228": 1, "search": 1, "OR": 1, "74": [1, 3], "ssp": 1, "head": 1, "slug": [1, 2, 3], "water_name_slug": 1, "29392": 1, "parc": 1, "pierrett": [1, 3], "vd": [1, 2, 3], "leman": [1, 3], "287": 1, "train": 1, "g1": 1, "29393": 1, "02": [1, 2, 3], "29394": 1, "g100": [1, 3], "79": 1, "29395": 1, "g101": 1, "29396": 1, "g102": 1, "fail": 1, "rate": 1, "total": [1, 2], "g112": [1, 3], "2686": 1, "16458": 1, "candi": [1, 3], "54": [1, 2, 3], "6767": 1, "05": [1, 2, 3], "606": 1, "3356": 1, "cartridg": 1, "1030": 1, "1970": 1, "51": 1, "bud": [1, 3], "4777": 1, "04": [1, 2], "g96": 1, "sanitari": 1, "pad": [1, 3], "panti": 1, "liner": 1, "applic": 1, "373": 1, "3953": 1, "84": [1, 3], "12871": 1, "81": 1, "fragment": [1, 3], "17479": 1, "93": [1, 3], "download": 1, "goal": 1, "todai": 1, "excercis": 1, "your": 1, "current": [1, 4], "understand": 1, "consult": 1, "200": 1, "100m": 1, "red": [1, 3], "ink": 1, "name": [1, 3], "At": [1, 3], "do": [1, 3], "document": [1, 3, 4], "access": 1, "narrat": 1, "screencast": 1, "someth": 1, "class": 1, "who": 1, "python": 1, "annaconda": 1, "reult": 1, "plage": 1, "p\u00e9lican": 1, "cours": 1, "allow": 1, "skill": 1, "creativ": 1, "fairli": 1, "given": [1, 3], "2021": [1, 2], "summ_data": 1, "cbd": 1, "copi": [1, 3], "lambda": [1, 3], "use_groups_i": 1, "ug": 1, "abbrev_use_g": 1, "person": 1, "consumpt": 1, "pd": [1, 3], "to_datetim": [1, 3], "sd_x": 1, "groupbi": [1, 3], "as_index": [1, 3], "fals": [1, 3], "agg": [1, 3], "sd_x_sp": 1, "trg": 1, "tst": 1, "trg_c": 1, "tst_c": 1, "nuniqu": [1, 3], "trg_lc": 1, "tst_lc": 1, "trg_q": 1, "tst_q": 1, "data_magnitud": 1, "cities_set": 1, "n_ind_citi": 1, "len": 1, "caption": [1, 3], "f": [1, 3], "data_summ_q": 1, "datafram": 1, "index": [1, 3], "astyp": [1, 3], "int": [1, 3], "style": [1, 3], "formatt": 1, "set_table_styl": [1, 3], "table_large_font": 1, "set_capt": [1, 3], "indexslic": 1, "glue": [1, 3], "summ": 1, "q3": 1, "displai": [1, 3], "the_99th_percentil": 1, "np": [1, 3], "quantil": [1, 3], "px": 1, "plt": [1, 3], "rcparam": 1, "dpi": 1, "pixel": 1, "inch": 1, "fig": [1, 3], "ax": [1, 3], "subplot": [1, 3], "figsiz": [1, 3], "600": 1, "sn": [1, 3], "scatterplot": [1, 3], "color": [1, 3], "dodgerblu": [1, 3], "alpha": [1, 3], "magenta": [1, 3], "set_ylim": [1, 3], "loc": [1, 3], "upper": [1, 2, 3], "left": [1, 2, 3], "set_xlabel": [1, 3], "testing_training_chrono_2": 1, "testing_training_doy_2": 1, "testing_v": 1, "training_v": 1, "train_quantil": 1, "some_qu": 1, "test_quantil": 1, "training_testing_summari": 1, "training_testing_compar": 1, "sum_tabl": 1, "0f": 1, "summary_2": 1, "median": [1, 2, 3], "47": 1, "28": [1, 3], "623": 1, "703": 1, "def": [1, 3], "sampler_from_multinomi": 1, "norm": 1, "xrang": 1, "nsampl": [1, 2], "random": 1, "default_rng": 1, "norm_nuniqu": 1, "multinomi": 1, "pval": 1, "ft": 1, "axi": [1, 3], "asum": 1, "enumer": [1, 3], "els": [1, 3], "samp": 1, "period_piec": 1, "date_mask": 1, "period_on": 1, "pone_pc": 1, "pcs_m": 1, "period_k_and_n": 1, "add_on": 1, "pone_k": 1, "pone_notk": 1, "dist": 1, "mulitpli": 1, "uninform": 1, "prior": [1, 4], "pone_k_n_minus_k": 1, "arrai": 1, "period_beta": 1, "current_possible_prior_loc": 1, "landus": 1, "moa": 1, "magnitude_of_attribut": 1, "possible_loc": 1, "isin": [1, 3], "prior_loc": 1, "make_expect": 1, "lh_tupl": 1, "prior_tupl": 1, "re": 1, "print": 1, "arang": 1, "betai": 1, "success": 1, "abeta": 1, "append": [1, 3], "an_xrang": 1, "comb_lu_agg": 1, "read_csv": [1, 3], "u_comb_lu_cover_street_riv": 1, "csv": [1, 3], "lu_scal": 1, "pivot": [1, 3], "fillna": [1, 3], "lu_magnitud": 1, "lu_bin": 1, "bin": 1, "not_thes": 1, "amphion": 1, "anthi": 1, "excenevex": 1, "lugrin": 1, "meilleri": [1, 2], "disdil": 1, "tougu": 1, "merge_loc": 1, "cbdu": 1, "left_on": 1, "right_index": 1, "true": [1, 3], "many_to_on": 1, "outer": 1, "attribute_column": 1, "geroel": 1, "stause": 1, "sumpf": 1, "stadtzentr": 1, "fel": 1, "work_column": 1, "renam": [1, 3], "inplac": [1, 3], "chapter": 1, "index_rang": 1, "uninformed_tupl": 1, "g_resa": 1, "g_resadt": 1, "posterior_df": 1, "code_index": 1, "city_index": 1, "attribute_index": 1, "this_cod": 1, "this_attribut": 1, "this_citi": 1, "coi": [1, 3], "prior_data": 1, "lh_data": 1, "lh_locat": 1, "land": [1, 2], "lac_leman_region": 1, "lh_region": 1, "alabel": 1, "retirev": 1, "regional_loc": 1, "retriev": 1, "land_use_data_of_interest": 1, "pass": [1, 3], "prior_arg": 1, "uninformed_prior": 1, "grid": [1, 4], "approxim": [1, 3, 4], "grid_prior": 1, "beta_prior": 1, "prior_k_n": 1, "prior_df": 1, "prior_distribut": 1, "posterior_arg": 1, "2022": 1, "un_inform": 1, "informed_prior": 1, "beta_p": 1, "lh_pc": 1, "posterior_distribut": 1, "prior_quant": 1, "post_quant": 1, "frame": 1, "normal": 1, "post_df": 1, "make_results_df": 1, "post": 1, "source_norm": 1, "ip_n": 1, "un_n": 1, "sim_2024": 1, "sim_quant": 1, "pred_quant": 1, "probabl": [1, 3], "precis": [1, 3], "32": [1, 3], "09": [1, 2, 3], "17": [1, 2, 3], "97": [1, 3], "83": [1, 3], "recal": [1, 3], "characterist": [1, 4], "classroom": 1, "discus": 1, "length_p": 1, "estimated_p": 1, "make_row": 1, "row": 1, "found_p": 1, "266": 1, "found_pm": 1, "pierrette_row": 1, "found_pel": 1, "found_pelm": 1, "estimated_td": 1, "07": [1, 3], "length_td": 1, "found_td": 1, "60": [1, 3], "179": 1, "found_tdm": 1, "tiger_duck_row": 1, "tiger_duck": 1, "fmelt": 1, "melt": 1, "value_var": 1, "concat": 1, "reset_index": 1, "drop": [1, 3], "particp": 1, "found_displai": 1, "tiger": [1, 3], "duck": [1, 3], "set_index": [1, 3], "none": [1, 2, 3], "67": 1, "64": [1, 2], "55": [1, 2], "underestim": 1, "cumul": 1, "closer": 1, "oserv": 1, "fell": 1, "96": 1, "Of": [1, 3], "root": 1, "squar": 1, "difference\u00b2": 1, "89": [1, 3], "26": [1, 3], "71": 1, "reflect": 1, "neither": 1, "third": [1, 3], "shown": [1, 3], "foam": [1, 3], "constraint": 1, "unidentifi": [1, 3], "certainti": 1, "paritcip": 1, "simpli": 1, "question": 1, "serv": 1, "correctli": 1, "past": 1, "conclud": 1, "dtype": 1, "float64": 1, "int64": 1, "summari": 2, "commonli": 2, "us": [2, 3, 4], "modern": 2, "its": 2, "durabl": 2, "cushion": 2, "shot": 2, "move": 2, "down": 2, "barrel": 2, "stai": 2, "proper": 2, "seal": 2, "maxim": 2, "energi": 2, "transfer": 2, "upon": [2, 3], "fire": 2, "cup": 2, "design": 2, "depend": [2, 3], "desir": 2, "behind": 2, "shoot": 2, "improperli": 2, "eventu": 2, "wash": 2, "pose": 2, "risk": 2, "ingest": 2, "entangl": 2, "essenti": 2, "from": [2, 3, 4], "949": 2, "uniqu": [2, 3], "The": [2, 3], "what": [2, 3], "archeaologist": 2, "anthropologist": 2, "assumpt": 2, "undertak": 2, "excav": 2, "discuss": 2, "strong": 2, "isol": 2, "survei": 2, "forest": 2, "etc": 2, "grow": 2, "grape": 2, "wine": 2, "valu": [2, 3], "public_servic": 2, "92": [2, 3], "68": [2, 3], "linear": [2, 4], "sediment": 2, "tecton": 2, "fold": 2, "glacial": 2, "eros": 2, "eastern": 2, "rh\u00f4ne": 2, "estuari": 2, "rivaz": 2, "grand": [2, 3], "larg": 2, "largest": 2, "deepest": 2, "petit": 2, "west": 2, "narrow": 2, "deep": 2, "yvoir": 2, "promenthoux": 2, "next": 2, "prangin": 2, "exit": 2, "brief": [2, 3], "geographi": 2, "std": [2, 3], "min": [2, 3], "max": [2, 3], "137": 2, "nummber": 2, "morg": 2, "roll": [2, 3], "descend": 2, "order": [2, 3], "gingolph": 2, "allaman": 2, "bourg": 2, "en": 2, "lavaux": 2, "44": 2, "versoix": [2, 3], "gen\u00e8v": 2, "pr\u00e9vereng": 2, "tolochenaz": 2, "msfd": 3, "mlwguidanc": 3, "novemb": 3, "accord": 3, "www": 3, "plagespropr": 3, "visibl": 3, "along": 3, "edg": 3, "terrain": 3, "strand": 3, "nearest": 3, "structur": 3, "pour": 3, "le": 3, "ecol": 3, "polytechniqu": 3, "intern": 3, "genev": 3, "preciou": 3, "open": 3, "notebook": 3, "repositori": 3, "load_ext": 3, "watermark": 3, "os": 3, "datetim": 3, "dt": 3, "packag": 3, "scipi": 3, "stat": 3, "statsmodel": 3, "empirical_distribut": 3, "ecdf": 3, "percentileofscor": 3, "chart": 3, "mpl": 3, "pyplot": 3, "mdate": 3, "ticker": 3, "gridspec": 3, "ipython": 3, "html": 3, "markdown": 3, "md": 3, "myst_nb": 3, "blank_capt": 3, "survey_data": 3, "u_pstk_iqaasl_al": 3, "g216": 3, "dfcode": 3, "u_cod": 3, "dfbeach": 3, "u_beach": 3, "decript": 3, "group_map": 3, "groupnam": 3, "st": 3, "fd": 3, "werr": 3, "respons": 3, "t_name": 3, "eint": 3, "hd": 3, "teams_y1_4": 3, "prevereng": 3, "babi": 3, "lacleman_vidy_santi": 3, "lacleman_gland_lecoanet": 3, "lacleman_gland_kubela": 3, "teams_y5_6": 3, "maladair": 3, "vidi": 3, "ruin": 3, "ii": 3, "rocki": 3, "n_hd_y_1_4": 3, "n_hd_y_5_6": 3, "hd_y_1_4": 3, "hd_y_5_5": 3, "css": 3, "header_row": 3, "selector": 3, "th": 3, "nth": 3, "child": 3, "prop": 3, "background": 3, "fff": 3, "right": 3, "even_row": 3, "tr": 3, "rgba": 3, "139": 3, "odd_row": 3, "odd": 3, "table_font": 3, "font": 3, "12px": 3, "table_data": 3, "td": 3, "6px": 3, "table_capt": 3, "14px": 3, "ital": 3, "bottom": 3, "margin": 3, "10px": 3, "table_css_styl": 3, "start_dat": 3, "end_dat": 3, "year_on": 3, "year_two": 3, "year_thre": 3, "year_four": 3, "2019": 3, "year_fiv": 3, "year_six": 3, "year_nam": 3, "yx": 3, "assign_a_survey_period": 3, "start_end": 3, "slice": 3, "these_arg": 3, "asamp": 3, "to_csv": 3, "table_1": 3, "33": 3, "aqti": 3, "table_2": 3, "28007": 3, "2721": 3, "30728": 3, "1490": 3, "10188": 3, "2526": 3, "1006": 3, "15210": 3, "2164": 3, "203": 3, "1591": 3, "1534": 3, "5492": 3, "306": 3, "2719": 3, "167": 3, "9582": 3, "4701": 3, "1536": 3, "18705": 3, "556": 3, "6130": 3, "2072": 3, "971": 3, "9749": 3, "qs": 3, "aq": 3, "table_3": 3, "t": 3, "318": 3, "350": 3, "129": 3, "127": 3, "443": 3, "previou": 3, "termin": 3, "below": 3, "fall": 3, "a_l": 3, "a_l_summari": 3, "var": 3, "dispers": 3, "round": 3, "table_4": 3, "77": 3, "98": 3, "88": 3, "249": 3, "145": 3, "101": 3, "prohibit": 3, "poisson": 3, "decis": [3, 4], "outlier": 3, "eubaselein": 3, "iq": 3, "to_numpi": 3, "twenty_f": 3, "seventy_f": 3, "figure_1": 3, "histplot": 3, "hue": 3, "zorder": 3, "stack": 3, "vline": 3, "ymin": 3, "ymax": 3, "linestyl": 3, "dash": 3, "linewidth": 3, "fill_between": 3, "y1": 3, "y2": 3, "h": 3, "l": 3, "get_legend_handles_label": 3, "hs": 3, "nl": 3, "frameon": 3, "set_ylabel": 3, "fontsiz": 3, "tight_layout": 3, "figure_2": 3, "a_locd": 3, "figure_3": 3, "ylimit": 3, "dayloc": 3, "tick_param": 3, "fancybox": 3, "facecolor": 3, "white": 3, "edgecolor": 3, "framealpha": 3, "get_fram": 3, "set_linewidth": 3, "267": 3, "figure_4": 3, "boxprop": 3, "boxplot": 3, "showflier": 3, "stripplot": 3, "jitter": 3, "axis_limit": 3, "99th": 3, "highest": 3, "77pc": 3, "regular": 3, "occurr": 3, "publish": 3, "guidelin": 3, "eubaselin": 3, "set_styl": 3, "whitegrid": 3, "set_xlim": 3, "somdata": 3, "lower25": 3, "upper25": 3, "dashdot": 3, "lineplot": 3, "n_handl": 3, "n_label": 3, "bbox_to_anchor": 3, "titl": 3, "innerquartil": 3, "cluster": 3, "saddlebrown": 3, "iqrs_by_group": 3, "black": 3, "aproxim": 3, "had": 3, "p_total_yoi": 3, "table_6": 3, "g200": 3, "70": [3, 4], "ten_yoi": 3, "lake_top_ten": 3, "p_yoi": 3, "sort_valu": 3, "ascend": 3, "table_7": 3, "6298": 3, "1442": 3, "536": 3, "2318": 3, "1271": 3, "6152": 3, "4068": 3, "579": 3, "2392": 3, "777": 3, "3985": 3, "1243": 3, "1151": 3, "65": 3, "2923": 3, "1297": 3, "1913": 3, "1119": 3, "509": 3, "1069": 3, "668": 3, "1498": 3, "1174": 3, "362": 3, "754": 3, "358": 3, "1421": 3, "686": 3, "236": 3, "640": 3, "410": 3, "1246": 3, "713": 3, "174": 3, "658": 3, "542": 3, "1234": 3, "533": 3, "183": 3, "261": 3, "293": 3, "524": 3, "247": 3, "190": 3, "366": 3, "248": 3, "1091": 3, "296": 3, "24271": 3, "11225": 3, "3920": 3, "217": 3, "12472": 3, "6160": 3, "mention": 3, "short": 3, "walk": 3, "residenti": 3, "neighborhood": 3, "ps": 3, "pp": 3, "If": 3, "diff": 3, "dif": 3, "693": 3, "2028": 3, "258": 3, "748": 3, "160": 3, "464": 3, "326": 3, "sort": 3, "input": 3, "databas": 3, "mlw": 3, "classif": 3, "appendix": 3, "segment": 3, "scrutin": 3, "seen": 3, "compos": 3, "cloth": 3, "glass": 3, "metal": 3, "paper": 3, "76": 3, "rubber": 3, "via": 3, "categoris": 3, "al": 3, "predominantli": 3, "polymer": 3, "volum": 3, "season": 3, "fluctuat": 3, "direct": 3, "affect": 3, "instanc": 3, "somewhat": 3, "shelter": 3, "higher": 3, "debri": 3, "mostli": 3, "parallel": 3, "quantit": 3, "gain": 3, "healthi": 3, "code_summari": 3, "fdsp": 3, "code_d": 3, "mat_d": 3, "c_sum": 3, "each_beach": 3, "boi": 3, "tten": 3, "mat": 3, "274": 3, "737": 3, "351": 3, "475": 3, "289": 3, "341": 3, "279": 3, "343": 3, "252": 3, "142": 3, "349": 3, "325": 3, "334": 3, "tape": 3, "mask": 3, "duct": 3, "pack": 3, "178": 3, "medic": 3, "tube": 3, "tdata": 3, "matdata": 3, "gdata": 3, "sharei": 3, "plot": 3, "bar": 3, "colormap": 3, "tab10": 3, "labelbottom": 3, "labels": 3, "ls": 3, "new_label": 3, "ncol": 3, "set_titl": 3, "ylabel": 3, "capit": 3, "333": 3, "175": 3, "195": 3, "113": 3, "169": 3, "117": 3, "155": 3, "insul": 3, "polyurethan": 3, "broken": 3, "moder": 3, "dens": 3, "circumst": 3, "2023": [3, 4], "octob": 4, "colect": 4, "Their": 4, "result": 4, "manuscript": 4, "peer": 4, "mass": 4, "That": 4, "300": 4, "catalog": 4, "empir": 4, "bay": 4, "approach": 4, "avoid": 4, "util": 4, "appilc": 4, "envrironment": 4, "chosen": 4, "beacus": 4, "independ": 4, "anthropolgist": 4, "should": 4, "delight": 4, "toxic": 4, "perist": 4, "topic": 4, "seem": 4, "shake": 4, "regard": 4, "opt": 4, "recomend": 4, "tool": 4, "aid": 4, "evidenv": 4, "replic": 4, "unfund": 4, "author": 4, "roger": 4, "erismann": 4, "bhavish": 4, "patel": 4, "content": 4, "conata": 4}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"empir": [0, 1], "bay": [0, 1], "grid": 0, "approxim": 0, "If": 0, "we": 0, "ar": 0, "us": [0, 1], "data": 0, "estim": [0, 1], "environment": 0, "condit": [0, 2], "respons": 0, "should": 0, "answer": 0, "question": 0, "research": 0, "practic": 0, "applic": 0, "constraint": 0, "definit": 0, "assumpt": 0, "test": [0, 1], "train": 0, "object": 0, "interest": 0, "The": [0, 1, 4], "summari": [0, 1, 3], "method": [0, 1], "probabl": 0, "prior": 0, "inform": 0, "uninform": 0, "measur": 0, "land": 0, "attribut": 0, "result": [0, 1, 2, 3], "lake": 0, "geneva": 0, "given": 0, "from": [0, 1], "2022": 0, "Is": 0, "an": 0, "increas": 0, "decreas": 0, "chang": 0, "expect": [0, 1], "survei": [0, 1, 3], "consolid": 0, "2015": [0, 3], "2021": [0, 3], "previou": [0, 1], "total": [0, 3], "median": 0, "valu": [0, 1], "what": [0, 1], "chanc": 0, "exce": 0, "thi": 0, "fragment": 0, "plastic": [0, 2], "person": 0, "consumpt": 0, "how": 0, "do": 0, "go": 0, "forward": 0, "discuss": [0, 1], "conclus": [0, 1], "next": [0, 1], "step": [0, 1], "2023": 1, "predict": 1, "solid": [1, 4], "wast": [1, 4], "experi": [1, 4], "observ": 1, "interpret": 1, "A": 1, "uniqu": 1, "problem": 1, "solut": 1, "asess": 1, "environ": 1, "reduc": 1, "dimension": 1, "find": 1, "most": 1, "common": 1, "assess": 1, "semest": 1, "project": 1, "saint": [1, 3], "sulpic": [1, 3], "particip": 1, "octob": 1, "5": 1, "found": 1, "annex": 1, "accuraci": 1, "relat": 1, "wa": 1, "shotgun": 2, "shell": 2, "wad": 2, "characterist": 2, "weight": 2, "sampl": 2, "region": 2, "municip": 2, "variat": 3, "trash": 3, "over": 3, "time": 3, "year": 3, "statist": 3, "cumul": 3, "distribut": 3, "comparison": 3, "between": 3, "group": 3, "composit": 3, "site": 3, "specif": 3, "plage": 3, "de": 3, "parc": 3, "pierett": 3, "top": 3, "ten": 3, "purpos": 4, "financi": 4, "disclosur": 4}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["grid_approximation", "grids_2023", "plastic_shotgun_wadding", "summary_2015_2021", "titlepage"], "filenames": ["grid_approximation.ipynb", "grids_2023.ipynb", "plastic_shotgun_wadding.ipynb", "summary_2015_2021.ipynb", "titlepage.md"], "titles": ["2. Empirical Bayes: grid approximations", "3. Testing 2023 predictions", "4. Plastic shotgun shell wadding", "1. Results 2015 - 2021", "The solid waste experience"], "terms": {"note": [0, 1, 3], "colleagu": 0, "concern": [0, 1], "feder": [0, 2, 3], "report": [0, 1, 2, 3], "subset": 0, "gather": [0, 1], "sinc": [0, 3, 4], "puplic": 0, "iqaasl": [0, 2], "decemb": 0, "ha": [0, 1, 2, 3, 4], "been": [0, 1, 3, 4], "addtion": 0, "collect": [0, 1, 2, 3], "event": 0, "lac": [0, 1, 2, 3], "l\u00e9man": [0, 2, 3], "swe": [0, 3], "team": [0, 1, 3], "associ": [0, 2, 3], "sauvegard": [0, 3], "du": [0, 3], "asl": [0, 3], "complet": [0, 1], "100": [0, 1, 2, 4], "beach": [0, 1, 2, 3, 4], "litter": [0, 1, 2, 3, 4], "work": [0, 3], "gener": [0, 1, 3, 4], "guidanc": [0, 1], "big": 0, "pictur": 0, "common": [0, 3], "sens": 0, "consid": [0, 1, 2, 3, 4], "reason": [0, 1, 3], "minimum": 0, "amount": [0, 1], "trash": [0, 1, 4], "ground": [0, 2], "time": [0, 1, 2], "shorelin": [0, 1, 2, 3], "point": 0, "where": [0, 1, 2, 3], "abandon": 0, "enter": 0, "water": [0, 2, 3, 4], "get": [0, 4], "deposit": 0, "It": [0, 1, 2, 3], "necessari": 0, "whole": 0, "There": [0, 1, 2, 3], "mani": [0, 1], "sourc": [0, 1, 3], "varianc": [0, 3], "have": [0, 1, 2, 3, 4], "treat": 0, "densiti": [0, 1, 2, 4], "between": [0, 1, 2], "sampl": [0, 1, 3, 4], "group": [0, 1], "covari": 0, "topograph": [0, 1, 2], "featur": [0, 2], "differ": [0, 1, 2, 3], "locat": [0, 1, 2, 3, 4], "detect": 0, "abil": 0, "appear": [0, 1, 3], "item": [0, 1, 3], "same": [0, 1, 2, 3], "code": [0, 1, 3], "due": [0, 1, 2], "effect": [0, 1, 2], "decomposit": 0, "surveyor": 0, "volunt": [0, 1], "level": [0, 2, 3], "experi": 0, "physic": [0, 3], "limit": [0, 1, 4], "actual": [0, 1], "count": [0, 1, 3], "much": [0, 1, 3], "like": [0, 1], "find": [0, 2], "most": [0, 2, 3], "honest": [0, 1], "can": [0, 1, 2, 3, 4], "deriv": [0, 1, 2], "well": [0, 1, 3], "perform": [0, 2], "over": [0, 4], "part": [0, 1, 2, 3], "here": [0, 1, 2, 3], "assess": [0, 3, 4], "fit": 0, "process": [0, 1, 4], "clear": [0, 1], "For": [0, 1, 2, 3, 4], "exampl": [0, 1], "when": [0, 1, 2, 3], "health": [0, 1], "alongsid": 0, "bath": 0, "qualiti": 0, "eu": [0, 1, 3, 4], "adopt": 0, "principl": [0, 1, 4], "precaut": [0, 1, 4], "suggest": [0, 1, 3], "threshold": [0, 1, 3], "wa": [0, 3], "set": [0, 3, 4], "20": [0, 1, 2, 3, 4], "piec": [0, 1, 3, 4], "meter": [0, 1, 2, 3, 4], "stakehold": 0, "impact": 0, "despit": 0, "section": [0, 1, 3], "one": [0, 1, 3], "see": [0, 1, 2], "greatest": 0, "rang": [0, 2, 3], "iqr": [0, 3], "howev": [0, 1, 3], "still": [0, 1], "close": [0, 1, 3], "other": [0, 1, 2, 3, 4], "indic": [0, 1], "yet": [0, 1], "found": [0, 2, 4], "maximum": [0, 3], "some": [0, 1, 3], "consensu": 0, "might": [0, 1], "paramet": [0, 3], "consider": 0, "effort": [0, 4], "put": [0, 1], "explor": 0, "posit": 0, "among": 0, "Near": [0, 1, 2], "far": [0, 1, 2], "certain": 0, "mai": [0, 1, 3], "construct": [0, 1, 2, 3], "model": [0, 1, 3, 4], "hypothesi": 0, "predict": [0, 4], "municip": [0, 3, 4], "strategi": [0, 1], "consist": [0, 1, 2], "1": [0, 1, 2, 3], "context": [0, 2], "which": [0, 1, 3], "were": [0, 1, 2, 3], "becaus": [0, 1, 2, 3], "2": [0, 1, 2, 3], "3": [0, 1, 2, 3], "benefit": 0, "uncertainti": 0, "about": [0, 1], "base": [0, 1, 3, 4], "spread": 0, "statist": [0, 2], "geograph": 0, "student": [0, 3, 4], "demonstr": [0, 1, 4], "import": [0, 3], "small": [0, 1, 2], "action": 0, "On": [0, 1], "own": 0, "thei": [0, 1, 2, 3, 4], "sai": 0, "relat": 0, "combin": [0, 3], "observ": [0, 2, 3, 4], "better": 0, "idea": 0, "specif": [0, 1, 2], "saint": [0, 2, 4], "sulpic": [0, 2, 4], "six": [0, 1, 3], "year": [0, 1], "period": [0, 1, 3], "newest": 0, "seven": [0, 1, 3], "after": [0, 1, 2], "first": [0, 1, 3], "record": [0, 1, 3, 4], "could": [0, 1, 3], "interpret": [0, 2, 4], "begin": 0, "new": [0, 1], "start": [0, 1, 4], "januari": 0, "joint": 0, "center": [0, 2, 3], "jrc": 0, "prefer": 0, "40": [0, 1, 3], "each": [0, 1, 3], "being": 0, "monitor": [0, 1], "met": 0, "baselin": [0, 3], "establish": [0, 1, 4], "250": [0, 2, 4], "38": [0, 1, 2, 3], "initi": [0, 1], "therefor": [0, 1], "describ": [0, 1, 3], "previous": [0, 1, 3], "would": [0, 1, 3], "appropri": 0, "ani": [0, 2], "singl": 0, "more": [0, 1, 2, 3], "than": [0, 1, 3], "enough": 0, "invest": 0, "made": [0, 1], "either": [0, 1], "prevent": [0, 1, 4], "remov": 0, "public": [0, 1, 2, 4], "space": [0, 2, 4], "intent": 0, "reduc": [0, 4], "environ": 0, "help": [0, 2, 3], "evalu": 0, "return": [0, 1], "roi": 0, "project": 0, "provid": [0, 1, 2], "insight": [0, 3], "did": 0, "net": 0, "declin": [0, 3], "particularli": 0, "doe": [0, 2], "municp": 0, "compar": [0, 1, 3], "rest": 0, "area": [0, 1, 2, 3], "need": [0, 1], "must": [0, 4], "produc": [0, 1], "directli": 0, "immediatlei": 0, "requir": [0, 2], "check": 0, "integr": 0, "anoth": 0, "basic": [0, 2], "calcul": 0, "simpl": [0, 1], "possibl": [0, 1, 3], "By": 0, "mean": [0, 2, 3], "text": [0, 3], "book": [0, 3], "similar": [0, 1], "maturit\u00e9": 0, "calculu": 0, "execut": 0, "sheet": [0, 1, 3], "scalabl": 0, "path": 0, "backend": 0, "server": 0, "oper": 0, "output": [0, 3], "format": [0, 2, 3], "take": [0, 3, 4], "ml": 0, "discard": [0, 1], "disregard": 0, "highli": 0, "discourag": 0, "per": [0, 1, 2, 3, 4], "A": [0, 2], "float": 0, "0": [0, 1, 2, 3], "9": [0, 1, 2, 3], "99": [0, 3], "repres": [0, 1, 3, 4], "999": 0, "everi": [0, 2], "individu": [0, 1, 4], "rare": 0, "exceed": 0, "connect": 0, "categori": [0, 1, 2], "contain": [0, 3], "materi": [0, 3], "type": [0, 1, 2, 3], "intend": 0, "defin": [0, 1, 2, 3], "orgin": 0, "frequenc": 0, "number": [0, 1, 2, 3, 4], "k": 0, "divid": [0, 2], "taken": 0, "n": 0, "bound": 0, "hex": 0, "hexagon": 0, "inscrib": 0, "circl": 0, "r": [0, 1], "1500": 0, "m": [0, 1, 2, 3], "dry": [0, 2], "portion": [0, 1], "cover": 0, "within": [0, 1, 2, 3], "occupi": 0, "op": 0, "avail": [0, 3], "least": [0, 1, 3], "superimpos": 0, "10": [0, 1, 2, 3], "pick": 0, "up": [0, 2], "indentifi": 0, "them": 0, "theta": 0, "under": [0, 1, 3], "yield": 0, "exchang": 0, "bodi": [0, 2], "follow": [0, 1, 2, 3], "two": [0, 1, 2, 3, 4], "recov": 0, "assum": [0, 2], "activ": [0, 2, 3], "adjac": 0, "four": [0, 1], "three": [0, 1, 2, 3], "local": 0, "contribut": 0, "mix": 0, "accur": [0, 1], "misidentifi": 0, "Not": 0, "all": [0, 1, 2, 3], "inaccuraci": 0, "entri": 0, "through": [0, 2, 3], "6": [0, 1, 2, 3], "present": [0, 1, 3], "inculd": 0, "french": 0, "side": [0, 3], "becasu": 0, "done": [0, 1], "swiss": 0, "geo": 0, "admin": 0, "To": 0, "includ": [0, 2, 3], "region": [0, 1, 3, 4], "authorit": 0, "expert": 0, "map": [0, 1, 2, 3], "layer": 0, "franc": 0, "correspond": [0, 3], "befor": [0, 1], "31": [0, 1, 2, 3], "s": [0, 2, 3], "further": [0, 1, 3], "request": 0, "identifi": [0, 1, 3], "switzerland": [0, 1, 3], "protocol": [0, 1, 3], "guid": 0, "marin": [0, 1], "european": [0, 1], "sea": [0, 1], "delimit": 0, "length": 0, "surfac": [0, 2], "border": 0, "standard": [0, 1, 2], "encourag": 0, "criteria": 0, "exclus": 0, "5": [0, 2, 3], "18": [0, 1, 2, 3], "width": [0, 2, 3], "line": [0, 1, 2, 3], "high": [0, 3], "mark": 0, "itself": 0, "purpos": [0, 1], "studi": 0, "onli": [0, 1, 2, 3], "valid": 0, "impos": 0, "varieti": 0, "organ": [0, 3], "In": [0, 1, 3, 4], "campaign": 0, "mcbp": 0, "2016": [0, 1, 3, 4], "primarili": [0, 3], "south": [0, 2], "peopl": [0, 1], "resid": [0, 3], "know": [0, 1], "haut": [0, 2, 3], "come": [0, 2], "riviera": 0, "agglomerm": 0, "vevei": [0, 2], "la": [0, 2], "tour": [0, 2], "de": [0, 1, 2], "peilz": [0, 2], "montreux": [0, 2], "second": 0, "slr": [0, 3], "2017": [0, 3], "2018": [0, 3], "wwf": 0, "extend": 0, "gland": [0, 2], "lausann": [0, 2], "last": [0, 3], "2020": [0, 3], "major": [0, 3], "monthli": 0, "fix": 0, "ad": [0, 1, 4], "spontan": 0, "food": [0, 1, 3], "tobacco": 0, "unclear": 0, "pandem": 0, "restrict": 0, "v": 0, "plastock": 0, "run": 0, "conduct": [0, 1, 3], "95": [0, 2, 3], "liter": 0, "25": [0, 1, 2, 3], "analyz": 0, "partnership": 0, "manag": [0, 3, 4], "determin": [0, 1, 3], "suitabl": 0, "off": 0, "nation": [0, 2, 3], "identif": [0, 1], "dimens": 0, "averag": [0, 1, 2], "longer": 0, "69": [0, 1, 3], "48": [0, 1, 3], "wider": 0, "430": 0, "m\u00b2": 0, "209": 0, "245": 0, "4": [0, 1, 2, 3, 4], "column": [0, 3], "loc_dat": [0, 1, 3], "date": [0, 1, 2, 3], "dai": [0, 3], "doi": [0, 1], "pc": [0, 1, 2, 3], "230": [0, 4], "384": 0, "onc": [0, 2], "paint": 0, "brush": 0, "g166": 0, "87": [0, 1, 3], "cigarett": [0, 1, 3], "end": [0, 1, 3], "g27": [0, 1, 3], "15": [0, 1, 2, 3], "abund": 0, "account": [0, 1, 3], "75": [0, 1, 2, 3], "tabl": [0, 1, 3], "except": [0, 1], "elimin": 0, "explain": [0, 1], "nurdl": [0, 1], "inject": 0, "mold": 0, "pellet": [0, 1], "focuss": 0, "select": 0, "AND": [0, 1], "less": [0, 2, 3], "often": 0, "relativelei": 0, "easi": [0, 1, 4], "furthermor": 0, "also": [0, 3], "encount": 0, "variou": [0, 2], "state": 0, "place": [0, 1], "correct": 0, "immedi": 0, "recogniz": 0, "otherwis": 0, "degrad": 0, "objest": 0, "challeng": 0, "wether": 0, "bottl": [0, 1, 3], "cap": 0, "beverag": 0, "chemic": [0, 3], "difficult": [0, 1], "label": [0, 3], "erod": 0, "origin": [0, 1, 3], "aggreg": [0, 1], "gfoam": [0, 1, 3], "expand": [0, 1, 3], "polystyren": [0, 1, 3], "g81": 0, "g82": 0, "g83": 0, "gfrag": [0, 1, 3], "g78": 0, "g79": 0, "g80": 0, "g75": 0, "g76": 0, "g77": 0, "gcap": [0, 1, 3], "lid": [0, 1, 3], "ring": 0, "g21": 0, "g23": 0, "g24": 0, "sup": 0, "dispos": [0, 2], "fish": 0, "gear": 0, "16": [0, 1, 3], "These": 0, "case": [0, 3], "hygien": 0, "ph": 0, "spatial": 0, "diffus": 0, "toilet": 0, "treatment": 0, "facil": 0, "g95": [0, 1, 3], "cotton": [0, 1, 3], "swab": [0, 1, 3], "500": [0, 2], "g30": [0, 1, 3], "snack": [0, 1, 3], "wrapper": [0, 1, 3], "drink": [0, 3], "g10": [0, 1], "g25": 0, "cigartett": 0, "g35": 0, "straw": 0, "stirrer": 0, "g31": 0, "lollypop": 0, "stick": [0, 1, 3], "g32": [0, 1], "toi": [0, 1], "parti": [0, 1], "favor": [0, 1], "g33": 0, "industri": [0, 1, 3, 4], "profession": 0, "ip": 0, "transport": 0, "g67": [0, 1, 3], "g89": [0, 1, 3], "unknown": [0, 1], "unk": 0, "recreat": [0, 3], "sport": [0, 2], "rc": 0, "illeg": 0, "discharg": 0, "firearm": 0, "lakeshor": 0, "g70": [0, 1], "shotgun": [0, 1], "shell": 0, "wai": [0, 1, 2, 4], "look": [0, 1], "framework": 0, "ensur": [0, 2], "pathwai": 0, "manner": 0, "nor": 0, "analysi": [0, 3], "those": [0, 1], "easili": 0, "leverag": 0, "occur": [0, 1], "domain": 0, "figur": [0, 1, 3], "remark": [0, 1], "22": [0, 1, 2, 3], "nbsp": [0, 1, 2, 3], "weight": [0, 1], "78": [0, 1], "263": [0, 1], "73": [0, 1, 3], "62": [0, 2, 3], "34": [0, 1, 3], "35": [0, 1, 3], "25th": [0, 1, 3], "percentil": [0, 1, 3], "63": [0, 2, 3], "75th": [0, 1, 3], "citi": [0, 1, 2], "municipalitit": [0, 1], "21": [0, 1, 2, 3], "19": [0, 1, 3], "23": [0, 1, 2, 3], "59": [0, 2, 3], "839": 0, "13": [0, 1, 2, 3], "804": 0, "inquir": 0, "entir": 0, "neg": [0, 3], "binomi": [0, 3], "distribut": [0, 1, 2], "river": [0, 1], "bassin": 0, "particular": [0, 1], "shape": 0, "solv": 0, "interv": [0, 1, 3], "01": [0, 1, 2, 3], "our": [0, 1, 4], "trend": [0, 3], "conservationist": [0, 1], "wildlif": [0, 2], "biologist": [0, 1], "both": [0, 1, 3], "field": [0, 2], "rich": [0, 4], "histori": 0, "citizen": 0, "scienc": [0, 1], "program": 0, "summar": 0, "bird": 0, "ag": 0, "surviv": 0, "tick": 0, "magnitud": [0, 3], "variabl": 0, "error": 0, "appli": [0, 3], "best": 0, "classifi": 0, "bayesian": 0, "filter": [0, 1, 3], "smooth": 0, "classic": 0, "infer": 0, "share": [0, 1], "davidson": 0, "pillon": 0, "hacker": 0, "doubl": [0, 4], "formul": 0, "dur": 0, "basi": 0, "again": 0, "rigor": 0, "analyt": 0, "understood": 0, "build": [0, 2], "probabilist": 0, "exist": 0, "seri": 0, "theorem": 0, "condtion": 0, "make": [0, 1, 2, 3, 4], "long": [0, 1], "quantifi": 0, "underli": 0, "relationship": [0, 2], "realtionship": 0, "notat": 0, "b": 0, "p": [0, 3], "machin": 0, "learn": 0, "proababl": 0, "propos": [0, 1], "demand": 0, "whether": [0, 1], "binari": 0, "therfor": 0, "think": [0, 1], "rule": [0, 3], "introduct": 0, "introduc": 0, "conjug": 0, "rel": [0, 3], "1000": 0, "real": 0, "hierarch": [0, 1], "awai": 0, "without": 0, "overhead": 0, "develop": [0, 1], "full": 0, "compromis": 0, "wikepedia": [0, 2], "formal": [0, 1], "let": 0, "align": [0, 3], "frac": 0, "lt": 0, "tag": 0, "10pt": 0, "final": 0, "evid": [0, 2], "prime": 0, "11pt": 0, "posterior": 0, "likelihood": [0, 4], "7": [0, 1, 2, 3], "tell": [0, 1], "sum": [0, 3], "complement": 0, "y": [0, 3], "ge": 0, "x": [0, 3], "assign": 0, "cari": 0, "out": [0, 3], "math": [0, 3], "gamma": 0, "n_": 0, "pr": 0, "beta": 0, "8": [0, 1, 2, 3], "12pt": 0, "choos": [0, 1], "c": 0, "int_": 0, "i": [0, 3], "d": 0, "11": [0, 1, 2, 3], "recogn": 0, "write": 0, "abov": [0, 3], "solut": [0, 4], "sim": 0, "12": [0, 1, 2, 3], "subject": 0, "subjecitv": 0, "bia": 0, "caus": 0, "carri": 0, "omit": 0, "instead": 0, "reli": 0, "configur": 0, "spearman": [0, 1], "rho": 0, "distanc": [0, 3], "compon": 0, "captur": 0, "closest": 0, "denomin": 0, "smilar": 0, "even": [0, 3], "explicit": 0, "basin": [0, 2], "scale": 0, "lowest": [0, 3], "rank": [0, 1], "infrastructur": 0, "benfici": 0, "satisfi": 0, "testabl": 0, "though": [0, 1], "exactli": [0, 2], "moment": 0, "give": 0, "accru": 0, "elsewher": 0, "remain": [0, 1, 3], "choic": 0, "statement": [0, 1, 3], "refer": [0, 1, 3], "multipl": [0, 3], "gelman": 0, "whch": 0, "you": [0, 1, 2, 3], "anyth": 0, "equal": 0, "50": [0, 1, 2, 3], "form": [0, 1, 2], "coefici": 0, "analag": 0, "problem": 0, "angl": 0, "slight": 0, "handl": [0, 3], "respect": [0, 3], "notabl": 0, "infrastrutur": 0, "separ": [0, 1, 3], "detail": [0, 1, 2, 3], "descript": [0, 2, 3], "issu": 0, "themselv": 0, "system": [0, 1], "control": 0, "varaibl": 0, "certainli": 0, "assembl": 0, "illustr": 0, "depth": 0, "earli": 0, "version": 0, "swisstlmregio": 0, "extract": [0, 2], "boundari": 0, "polygon": 0, "landcov": 0, "product": [0, 3], "vector": 0, "overlai": [0, 1], "techniqu": [0, 1], "qgi": [0, 1], "3000m": 0, "circumcscrib": 0, "1500m": 0, "undefin": [0, 2], "built": 0, "urban": [0, 3], "wood": [0, 2, 3], "park": 0, "harvest": 0, "tree": 0, "vineyard": [0, 2], "agricultur": 0, "orchard": [0, 2], "predefin": 0, "labl": 0, "freizeitar": 0, "nutzungsar": 0, "hospit": [0, 2], "cemeteri": 0, "histor": [0, 2], "site": 0, "inciner": 0, "plant": 0, "As": [0, 2, 3], "ratio": 0, "meters\u00b2": 0, "thu": [0, 3], "size": [0, 3], "attract": [0, 3], "school": [0, 2], "powerpl": 0, "street": 0, "road": 0, "polylin": 0, "tlm": 0, "strass": 0, "polyin": 0, "merg": 0, "disolv": 0, "command": 0, "coeffici": [0, 1], "covarainc": 0, "__combin": 0, "daili": [0, 3], "total__": 0, "list": [0, 4], "2024": [0, 1, 2], "reduct": [0, 3], "minim": 0, "readili": 0, "veri": [0, 1], "unkown": 0, "85": [0, 1, 3], "42": [0, 3], "94": [0, 1, 3], "86": [0, 1, 3], "53": [0, 2, 3], "45": [0, 1, 3], "46": [0, 1, 3], "43": [0, 1, 3], "noth": 0, "hypothesis": 0, "lend": 0, "support": [0, 2, 3], "52": [0, 1, 3], "56": [0, 3], "41": 0, "246": 0, "36": [0, 3], "24": [0, 1, 3], "29": [0, 1, 2, 3], "08": [0, 1, 2, 3], "visitor": 0, "tobaco": 0, "notic": 0, "commun": 0, "39": [0, 1, 3], "72": [0, 2, 3], "82": [0, 3], "66": [0, 1, 3], "27": [0, 1, 3], "With": 0, "lower": [0, 3], "improv": [0, 1], "comparison": 0, "main": [0, 1, 3], "focu": 0, "anti": 0, "low": 0, "mistaken": 0, "ident": 0, "fact": 0, "rose": 0, "usual": 0, "inexperienc": 0, "tend": [0, 1], "differenti": [0, 1], "sever": 0, "profesion": 0, "conduit": 0, "pvc": 0, "ab": 0, "concret": 0, "stop": 0, "saftei": 0, "barrier": 0, "pallett": 0, "heavi": 0, "guag": 0, "pheromon": 0, "bait": 0, "unawar": [0, 1], "sale": 0, "ban": 0, "tampon": [0, 1], "lack": [0, 1], "percent": [0, 2, 3], "58": [0, 1, 2], "00": [0, 1, 2, 3], "06": [0, 1, 2, 3], "14": [0, 1, 2, 3], "57": [0, 1, 3], "49": [0, 3], "90": [0, 3], "30": [0, 1, 2, 3], "91": [0, 2], "legend": [0, 3], "greater": [0, 3], "potenti": [0, 3], "show": [0, 3], "came": 0, "hisotr": 0, "around": 0, "why": [0, 1], "anticip": 0, "presenc": [0, 1], "hydrolog": 0, "mechan": 0, "function": 0, "flat": 0, "curv": 0, "comprehens": 0, "hdi": [0, 1], "80": [0, 1, 3], "script": [0, 1, 2, 3, 4], "updat": [0, 1, 2, 3], "03": [0, 1, 2], "biel": [0, 1, 2, 3], "ch": [0, 1, 2, 3, 4], "everydai": [0, 1, 2, 3], "analyst": [0, 1, 2, 3, 4], "hammerdirt": [0, 1, 2, 3, 4], "git": [0, 1, 3], "repo": [0, 1, 3], "http": [0, 1, 3], "github": [0, 1, 3], "com": [0, 1, 3], "solid": [0, 3], "wast": [0, 3], "branch": [0, 1, 3], "review": [0, 1, 4], "panda": [0, 1, 3], "seaborn": [0, 1, 3], "matplotlib": [0, 1, 3], "numpi": [0, 1, 3], "thi": [1, 2, 3, 4], "seventh": 1, "epfl": 1, "maritim": 1, "measur": [1, 3, 4], "decad": 1, "good": [1, 4], "environment": 1, "stand": 1, "we": [1, 2, 4], "2015": [1, 2], "obviou": 1, "prof": 1, "ludwig": 1, "interest": [1, 3, 4], "realiz": 1, "flow": [1, 3], "lake": [1, 2, 3, 4], "ocean": 1, "while": [1, 4], "rais": 1, "plastic": [1, 3, 4], "diminsh": 1, "biodivers": 1, "ar": [1, 2, 3, 4], "prudent": 1, "contact": 1, "quantiti": [1, 3], "object": [1, 2, 3, 4], "numer": [1, 2], "inform": [1, 4], "condit": 1, "term": 1, "attribut": [1, 2, 3], "correl": [1, 2], "quickli": 1, "specfic": 1, "accumul": [1, 3], "wrote": 1, "an": [1, 2, 3, 4], "articl": 1, "how": [1, 2, 3], "becom": 1, "accid": 1, "creat": 1, "increas": 1, "chanc": 1, "lifecycl": 1, "evad": 1, "recoveri": 1, "resourc": [1, 3, 4], "emploi": 1, "chang": 1, "behavior": 1, "lifcycl": 1, "approri": 1, "servic": [1, 2], "dedic": 1, "inappropri": 1, "indiffer": 1, "reliant": 1, "orntithologist": 1, "botanist": 1, "data": [1, 2, 3, 4], "answer": 1, "336": 1, "000": [1, 4], "145km": 1, "shore": [1, 3, 4], "geneva": [1, 2, 3, 4], "although": 1, "stretch": 1, "coastlin": 1, "anywher": 1, "world": 1, "opinion": 1, "5th": 1, "philosoph": 1, "realiti": 1, "hard": 1, "distinct": 1, "228": 1, "search": 1, "OR": 1, "74": [1, 3], "ssp": 1, "head": 1, "slug": [1, 2, 3], "water_name_slug": 1, "29392": 1, "parc": 1, "pierrett": [1, 3], "vd": [1, 2, 3], "leman": [1, 3], "287": 1, "train": 1, "g1": 1, "29393": 1, "02": [1, 2, 3], "29394": 1, "g100": [1, 3], "79": 1, "29395": 1, "g101": 1, "29396": 1, "g102": 1, "fail": 1, "rate": 1, "total": [1, 2], "g112": [1, 3], "2686": 1, "16458": 1, "candi": [1, 3], "54": [1, 2, 3], "6767": 1, "05": [1, 2, 3], "606": 1, "3356": 1, "cartridg": 1, "1030": 1, "1970": 1, "51": 1, "bud": [1, 3], "4777": 1, "04": [1, 2], "g96": 1, "sanitari": 1, "pad": [1, 3], "panti": 1, "liner": 1, "applic": 1, "373": 1, "3953": 1, "84": [1, 3], "12871": 1, "81": 1, "fragment": [1, 3], "17479": 1, "93": [1, 3], "download": 1, "goal": 1, "todai": 1, "excercis": 1, "your": 1, "current": [1, 4], "understand": 1, "consult": 1, "200": 1, "100m": 1, "red": [1, 3], "ink": 1, "name": [1, 3], "At": [1, 3], "do": [1, 2, 3], "document": [1, 3, 4], "access": 1, "narrat": 1, "screencast": 1, "someth": 1, "class": 1, "who": 1, "python": 1, "annaconda": 1, "reult": 1, "plage": 1, "p\u00e9lican": 1, "cours": 1, "allow": 1, "skill": 1, "creativ": 1, "fairli": 1, "given": [1, 3], "2021": [1, 2], "median": [1, 2, 3], "47": 1, "28": [1, 3], "623": 1, "703": 1, "chapter": 1, "probabl": [1, 3], "32": [1, 3], "68": [1, 2, 3], "33": [1, 3], "97": [1, 3], "64": [1, 2], "recal": [1, 3], "land": [1, 2], "characterist": [1, 4], "classroom": 1, "discus": 1, "07": [1, 3], "60": [1, 3], "particp": 1, "tiger": [1, 3], "duck": [1, 3], "67": 1, "55": [1, 2], "underestim": 1, "cumul": 1, "closer": 1, "17": [1, 2, 3], "oserv": 1, "fell": 1, "96": 1, "Of": [1, 3], "root": 1, "squar": 1, "difference\u00b2": 1, "26": [1, 3], "reflect": 1, "neither": 1, "third": [1, 3], "shown": [1, 3], "foam": [1, 3], "constraint": 1, "unidentifi": [1, 3], "precis": [1, 3], "certainti": 1, "paritcip": 1, "simpli": 1, "question": 1, "serv": 1, "correctli": 1, "past": 1, "conclud": 1, "true": [1, 3], "fals": [1, 3], "dtype": 1, "float64": 1, "int64": 1, "summari": 2, "commonli": 2, "us": [2, 3, 4], "modern": 2, "its": 2, "durabl": 2, "cushion": 2, "shot": 2, "move": 2, "down": 2, "barrel": 2, "stai": 2, "proper": 2, "seal": 2, "maxim": 2, "energi": 2, "transfer": 2, "upon": [2, 3], "fire": 2, "cup": 2, "design": 2, "depend": [2, 3], "desir": 2, "left": [2, 3], "behind": 2, "shoot": 2, "improperli": 2, "eventu": 2, "wash": 2, "pose": 2, "risk": 2, "ingest": 2, "entangl": 2, "essenti": 2, "from": [2, 3, 4], "949": 2, "uniqu": [2, 3], "The": [2, 3], "what": [2, 3], "archeaologist": 2, "anthropologist": 2, "assumpt": 2, "undertak": 2, "excav": 2, "discuss": 2, "strong": 2, "isol": 2, "survei": 2, "forest": 2, "etc": 2, "grow": 2, "grape": 2, "wine": 2, "valu": [2, 3], "public_servic": 2, "92": [2, 3], "linear": [2, 4], "09": [2, 3], "sediment": 2, "tecton": 2, "fold": 2, "glacial": 2, "eros": 2, "upper": [2, 3], "eastern": 2, "rh\u00f4ne": 2, "estuari": 2, "meilleri": 2, "rivaz": 2, "grand": [2, 3], "larg": 2, "largest": 2, "deepest": 2, "petit": 2, "west": 2, "narrow": 2, "deep": 2, "yvoir": 2, "promenthoux": 2, "next": 2, "prangin": 2, "exit": 2, "brief": [2, 3], "geographi": 2, "nsampl": 2, "std": [2, 3], "min": [2, 3], "max": [2, 3], "137": 2, "nummber": 2, "none": [2, 3], "morg": 2, "roll": [2, 3], "descend": 2, "order": [2, 3], "gingolph": 2, "allaman": 2, "bourg": 2, "en": 2, "lavaux": 2, "44": 2, "versoix": [2, 3], "gen\u00e8v": 2, "pr\u00e9vereng": 2, "tolochenaz": 2, "msfd": 3, "mlwguidanc": 3, "novemb": 3, "accord": 3, "www": 3, "plagespropr": 3, "visibl": 3, "along": 3, "edg": 3, "terrain": 3, "strand": 3, "nearest": 3, "structur": 3, "pour": 3, "le": 3, "ecol": 3, "polytechniqu": 3, "intern": 3, "genev": 3, "preciou": 3, "open": 3, "notebook": 3, "repositori": 3, "load_ext": 3, "watermark": 3, "os": 3, "datetim": 3, "dt": 3, "packag": 3, "pd": 3, "np": 3, "scipi": 3, "stat": 3, "statsmodel": 3, "empirical_distribut": 3, "ecdf": 3, "percentileofscor": 3, "chart": 3, "mpl": 3, "pyplot": 3, "plt": 3, "mdate": 3, "ticker": 3, "sn": 3, "gridspec": 3, "ipython": 3, "displai": 3, "html": 3, "markdown": 3, "md": 3, "myst_nb": 3, "glue": 3, "blank_capt": 3, "survey_data": 3, "read_csv": 3, "u_pstk_iqaasl_al": 3, "csv": 3, "to_datetim": 3, "g216": 3, "copi": 3, "dfcode": 3, "u_cod": 3, "dfbeach": 3, "u_beach": 3, "decript": 3, "set_index": 3, "inplac": 3, "group_map": 3, "groupnam": 3, "lambda": 3, "loc": 3, "st": 3, "coi": 3, "fd": 3, "werr": 3, "respons": 3, "t_name": 3, "eint": 3, "hd": 3, "teams_y1_4": 3, "prevereng": 3, "babi": 3, "lacleman_vidy_santi": 3, "lacleman_gland_lecoanet": 3, "lacleman_gland_kubela": 3, "teams_y5_6": 3, "maladair": 3, "vidi": 3, "ruin": 3, "ii": 3, "rocki": 3, "n_hd_y_1_4": 3, "n_hd_y_5_6": 3, "hd_y_1_4": 3, "hd_y_5_5": 3, "css": 3, "header_row": 3, "selector": 3, "th": 3, "nth": 3, "child": 3, "prop": 3, "f": 3, "background": 3, "color": 3, "fff": 3, "right": 3, "even_row": 3, "tr": 3, "rgba": 3, "139": 3, "odd_row": 3, "odd": 3, "table_font": 3, "font": 3, "12px": 3, "table_data": 3, "td": 3, "6px": 3, "table_capt": 3, "caption": 3, "14px": 3, "style": 3, "ital": 3, "bottom": 3, "margin": 3, "10px": 3, "table_css_styl": 3, "start_dat": 3, "end_dat": 3, "year_on": 3, "year_two": 3, "year_thre": 3, "year_four": 3, "2019": 3, "year_fiv": 3, "year_six": 3, "year_nam": 3, "yx": 3, "def": 3, "assign_a_survey_period": 3, "start_end": 3, "slice": 3, "these_arg": 3, "isin": 3, "enumer": 3, "groupbi": 3, "as_index": 3, "agg": 3, "nuniqu": 3, "asamp": 3, "pivot": 3, "index": 3, "fillna": 3, "astyp": 3, "int": 3, "axi": 3, "to_csv": 3, "table_1": 3, "set_capt": 3, "set_table_styl": 3, "aqti": 3, "table_2": 3, "28007": 3, "2721": 3, "30728": 3, "1490": 3, "10188": 3, "2526": 3, "1006": 3, "15210": 3, "2164": 3, "203": 3, "1591": 3, "1534": 3, "5492": 3, "306": 3, "2719": 3, "167": 3, "9582": 3, "4701": 3, "1536": 3, "18705": 3, "556": 3, "6130": 3, "2072": 3, "971": 3, "9749": 3, "qs": 3, "aq": 3, "table_3": 3, "t": 3, "renam": 3, "drop": 3, "318": 3, "83": 3, "350": 3, "129": 3, "127": 3, "443": 3, "previou": 3, "termin": 3, "below": 3, "fall": 3, "a_l": 3, "a_l_summari": 3, "var": 3, "dispers": 3, "round": 3, "table_4": 3, "77": 3, "98": 3, "88": 3, "249": 3, "145": 3, "101": 3, "prohibit": 3, "poisson": 3, "decis": [3, 4], "outlier": 3, "eubaselein": 3, "fig": 3, "ax": 3, "subplot": 3, "figsiz": 3, "iq": 3, "to_numpi": 3, "twenty_f": 3, "seventy_f": 3, "figure_1": 3, "histplot": 3, "hue": 3, "zorder": 3, "stack": 3, "vline": 3, "ymin": 3, "ymax": 3, "linestyl": 3, "dash": 3, "dodgerblu": 3, "linewidth": 3, "fill_between": 3, "y1": 3, "y2": 3, "alpha": 3, "h": 3, "l": 3, "get_legend_handles_label": 3, "hs": 3, "nl": 3, "frameon": 3, "set_ylabel": 3, "fontsiz": 3, "set_xlabel": 3, "tight_layout": 3, "figure_2": 3, "a_locd": 3, "figure_3": 3, "ylimit": 3, "scatterplot": 3, "dayloc": 3, "tick_param": 3, "set_ylim": 3, "fancybox": 3, "facecolor": 3, "white": 3, "edgecolor": 3, "framealpha": 3, "get_fram": 3, "set_linewidth": 3, "267": 3, "figure_4": 3, "boxprop": 3, "boxplot": 3, "showflier": 3, "stripplot": 3, "jitter": 3, "quantil": 3, "axis_limit": 3, "99th": 3, "highest": 3, "77pc": 3, "regular": 3, "occurr": 3, "publish": 3, "guidelin": 3, "eubaselin": 3, "set_styl": 3, "whitegrid": 3, "set_xlim": 3, "somdata": 3, "lower25": 3, "upper25": 3, "dashdot": 3, "lineplot": 3, "els": 3, "pass": 3, "n_handl": 3, "n_label": 3, "bbox_to_anchor": 3, "titl": 3, "innerquartil": 3, "cluster": 3, "magenta": 3, "saddlebrown": 3, "iqrs_by_group": 3, "append": 3, "black": 3, "aproxim": 3, "had": 3, "p_total_yoi": 3, "table_6": 3, "g200": 3, "70": [3, 4], "ten_yoi": 3, "lake_top_ten": 3, "p_yoi": 3, "sort_valu": 3, "ascend": 3, "table_7": 3, "6298": 3, "1442": 3, "536": 3, "2318": 3, "1271": 3, "6152": 3, "4068": 3, "579": 3, "2392": 3, "777": 3, "3985": 3, "1243": 3, "1151": 3, "65": 3, "2923": 3, "1297": 3, "1913": 3, "1119": 3, "509": 3, "1069": 3, "668": 3, "1498": 3, "1174": 3, "362": 3, "754": 3, "358": 3, "1421": 3, "686": 3, "236": 3, "640": 3, "410": 3, "1246": 3, "713": 3, "174": 3, "658": 3, "542": 3, "1234": 3, "533": 3, "183": 3, "261": 3, "293": 3, "524": 3, "247": 3, "190": 3, "366": 3, "248": 3, "1091": 3, "296": 3, "24271": 3, "11225": 3, "3920": 3, "217": 3, "12472": 3, "6160": 3, "mention": 3, "short": 3, "walk": 3, "residenti": 3, "neighborhood": 3, "ps": 3, "pp": 3, "If": 3, "diff": 3, "dif": 3, "693": 3, "2028": 3, "258": 3, "748": 3, "160": 3, "464": 3, "326": 3, "sort": 3, "input": 3, "databas": 3, "mlw": 3, "classif": 3, "appendix": 3, "segment": 3, "scrutin": 3, "seen": 3, "compos": 3, "approxim": [3, 4], "cloth": 3, "glass": 3, "89": 3, "metal": 3, "paper": 3, "76": 3, "rubber": 3, "via": 3, "categoris": 3, "al": 3, "predominantli": 3, "polymer": 3, "volum": 3, "season": 3, "fluctuat": 3, "direct": 3, "affect": 3, "instanc": 3, "somewhat": 3, "shelter": 3, "higher": 3, "debri": 3, "mostli": 3, "parallel": 3, "quantit": 3, "gain": 3, "healthi": 3, "code_summari": 3, "fdsp": 3, "code_d": 3, "mat_d": 3, "c_sum": 3, "each_beach": 3, "boi": 3, "tten": 3, "mat": 3, "274": 3, "737": 3, "351": 3, "475": 3, "289": 3, "341": 3, "279": 3, "343": 3, "252": 3, "142": 3, "349": 3, "325": 3, "334": 3, "tape": 3, "mask": 3, "duct": 3, "pack": 3, "178": 3, "medic": 3, "tube": 3, "tdata": 3, "matdata": 3, "gdata": 3, "sharei": 3, "plot": 3, "bar": 3, "colormap": 3, "tab10": 3, "labelbottom": 3, "labels": 3, "ls": 3, "new_label": 3, "ncol": 3, "set_titl": 3, "ylabel": 3, "capit": 3, "333": 3, "175": 3, "195": 3, "113": 3, "169": 3, "117": 3, "155": 3, "insul": 3, "polyurethan": 3, "broken": 3, "moder": 3, "dens": 3, "circumst": 3, "2023": [3, 4], "octob": 4, "colect": 4, "Their": 4, "result": 4, "manuscript": 4, "peer": 4, "mass": 4, "That": 4, "300": 4, "catalog": 4, "empir": 4, "bay": 4, "approach": 4, "avoid": 4, "prior": 4, "grid": 4, "util": 4, "appilc": 4, "envrironment": 4, "chosen": 4, "beacus": 4, "independ": 4, "anthropolgist": 4, "should": 4, "delight": 4, "toxic": 4, "perist": 4, "topic": 4, "seem": 4, "shake": 4, "regard": 4, "opt": 4, "recomend": 4, "tool": 4, "aid": 4, "evidenv": 4, "replic": 4, "unfund": 4, "author": 4, "roger": 4, "erismann": 4, "bhavish": 4, "patel": 4, "content": 4, "conata": 4}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"empir": [0, 1], "bay": [0, 1], "grid": 0, "approxim": 0, "If": 0, "we": 0, "ar": 0, "us": [0, 1], "data": 0, "estim": [0, 1], "environment": 0, "condit": [0, 2], "respons": 0, "should": 0, "answer": 0, "question": 0, "research": 0, "practic": 0, "applic": 0, "constraint": 0, "definit": 0, "assumpt": 0, "test": [0, 1], "train": 0, "object": 0, "interest": 0, "The": [0, 1, 4], "summari": [0, 1, 3], "method": [0, 1], "probabl": 0, "prior": 0, "inform": 0, "uninform": 0, "measur": 0, "land": 0, "attribut": 0, "result": [0, 1, 2, 3], "lake": 0, "geneva": 0, "given": 0, "from": [0, 1], "2022": 0, "Is": 0, "an": 0, "increas": 0, "decreas": 0, "chang": 0, "expect": [0, 1], "survei": [0, 1, 3], "consolid": 0, "2015": [0, 3], "2021": [0, 3], "previou": [0, 1], "total": [0, 3], "median": 0, "valu": [0, 1], "what": [0, 1], "chanc": 0, "exce": 0, "thi": 0, "fragment": 0, "plastic": [0, 2], "person": 0, "consumpt": 0, "how": 0, "do": 0, "go": 0, "forward": 0, "discuss": [0, 1], "conclus": [0, 1], "next": [0, 1], "step": [0, 1], "2023": 1, "predict": 1, "solid": [1, 4], "wast": [1, 4], "experi": [1, 4], "observ": 1, "interpret": 1, "A": 1, "uniqu": 1, "problem": 1, "solut": 1, "asess": 1, "environ": 1, "reduc": 1, "dimension": 1, "find": 1, "most": 1, "common": 1, "assess": 1, "semest": 1, "project": 1, "saint": [1, 3], "sulpic": [1, 3], "particip": 1, "octob": 1, "5": 1, "found": 1, "annex": 1, "accuraci": 1, "relat": 1, "wa": 1, "shotgun": 2, "shell": 2, "wad": 2, "characterist": 2, "weight": 2, "sampl": 2, "region": 2, "municip": 2, "variat": 3, "trash": 3, "over": 3, "time": 3, "year": 3, "statist": 3, "cumul": 3, "distribut": 3, "comparison": 3, "between": 3, "group": 3, "composit": 3, "site": 3, "specif": 3, "plage": 3, "de": 3, "parc": 3, "pierett": 3, "top": 3, "ten": 3, "purpos": 4, "financi": 4, "disclosur": 4}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx": 56}}) \ No newline at end of file diff --git a/grids_2023.ipynb b/grids_2023.ipynb index 62b2e8b..7047ecf 100644 --- a/grids_2023.ipynb +++ b/grids_2023.ipynb @@ -496,21 +496,21 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -540,106 +540,106 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 1: The objects of interest. The average pcs/m per sample for each object. The fail rate is the % of all samples that the object appeared in.
  pcs/mquantityfail rate% of totalpcs/mquantityfail rate% of total
code
G112Industrial pellets (nurdles)0.1626860.220.02G112Industrial pellets (nurdles)0.1626860.220.02
G27Cigarette filters1.12164580.850.15G27Cigarette filters1.12164580.850.15
G30Food wrappers; candy, snacks0.5467670.860.06G30Food wrappers; candy, snacks0.5467670.860.06
G32Toys and party favors0.056060.480.01G32Toys and party favors0.056060.480.01
G67Industrial sheeting0.3033560.570.03G67Industrial sheeting0.3033560.570.03
G70Shotgun cartridges0.0810300.480.01G70Shotgun cartridges0.0810300.480.01
G89Plastic construction waste0.1419700.510.02G89Plastic construction waste0.1419700.510.02
G95Cotton bud/swab sticks0.3947770.740.04G95Cotton bud/swab sticks0.3947770.740.04
G96Sanitary pads /panty liners/tampons and applicators0.043730.290.00G96Sanitary pads /panty liners/tampons and applicators0.043730.290.00
GcapsPlastic bottle lids0.3139530.840.04GcapsPlastic bottle lids0.3139530.840.04
GfoamExpanded polystyrene1.02128710.810.12GfoamExpanded polystyrene1.02128710.810.12
GfragsFragmented plastics1.34174790.930.16GfragsFragmented plastics1.34174790.930.16
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -759,18 +759,25 @@ "execution_count": 7, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { "data": { - "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The number of different locations and cities for the data. Note that there are 31 different municipalitites in all.
 before may 2021after may 2021
Number of cities2119
Number of locations4823
Total objects57,62314,703
\n", - "application/papermill.record/text/plain": "" + "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The number of different locations and cities for the data. Note that there are 31 different municipalitites in all.
 before may 2021after may 2021
Number of cities2119
Number of locations4823
Total objects57,62314,703
\n", + "application/papermill.record/text/plain": "" }, "metadata": { "scrapbook": { @@ -832,7 +839,9 @@ "slideshow": { "slide_type": "" }, - "tags": [] + "tags": [ + "remove-input" + ] }, "outputs": [ { @@ -870,12 +879,19 @@ "execution_count": 9, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { @@ -909,18 +925,25 @@ "execution_count": 10, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { "data": { - "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The observed values from the training and testing data. Remark that the testing data is only 22% of all the data. This is because we are only in the first year of a six year sampling period
 before may 2021after may 2021
weight all samples0.780.22
Number of samples26373
Median3.472.28
Average6.133.25
25th percentile1.520.78
75th percentile6.694.31
\n", - "application/papermill.record/text/plain": "" + "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The observed values from the training and testing data. Remark that the testing data is only 22% of all the data. This is because we are only in the first year of a six year sampling period
 before may 2021after may 2021
weight all samples0.780.22
Number of samples26373
Median3.472.28
Average6.133.25
25th percentile1.520.78
75th percentile6.694.31
\n", + "application/papermill.record/text/plain": "" }, "metadata": { "scrapbook": { @@ -974,12 +997,19 @@ "execution_count": 11, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1079,12 +1109,19 @@ "execution_count": 12, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1096,12 +1133,19 @@ "execution_count": 13, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1172,12 +1216,19 @@ "execution_count": 14, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1272,33 +1323,40 @@ "execution_count": 15, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 4: The 94% probability interval of the objects of interest for Saint Sulpice. The median value is used for the predictions
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
3%0.000.000.000.000.000.000.000.000.000.00
25%0.000.000.000.010.010.000.000.010.030.00
48%0.030.420.130.040.140.000.300.080.120.35
50%0.080.450.130.040.160.000.320.090.140.41
52%0.100.460.130.040.170.000.340.090.140.50
75%0.540.660.480.060.310.040.520.120.230.82
97%1.391.290.910.112.830.091.000.220.412.753%0.000.000.000.000.000.000.000.000.000.00
25%0.000.050.030.000.050.000.010.000.040.00
48%0.080.460.350.030.160.000.320.040.110.68
50%0.120.470.390.040.160.010.320.040.110.74
52%0.220.480.430.040.220.020.340.050.120.74
75%0.680.930.570.080.330.050.520.080.231.24
97%1.461.471.210.110.645.581.110.200.505.05
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 15, @@ -1471,12 +1529,19 @@ "execution_count": 16, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1507,12 +1572,19 @@ "execution_count": 17, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [], "source": [ @@ -1525,33 +1597,40 @@ "execution_count": 18, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 5: The estimated amount in pcs/meter for each object that the participants expected to find.
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
00.161.120.540.050.300.080.390.040.311.34
10.150.570.240.080.050.050.160.100.140.22
20.050.800.200.020.150.040.300.010.251.20
30.100.350.150.030.050.010.060.100.150.50
40.070.150.050.020.010.000.040.010.080.12
50.150.500.300.030.010.000.050.050.200.20
60.161.120.540.050.300.080.390.040.311.34
76.003.000.600.100.400.030.801.002.001.34
80.401.500.300.101.100.010.500.200.402.0000.161.120.540.050.300.080.390.040.311.34
10.150.570.240.080.050.050.160.100.140.22
20.050.800.200.020.150.040.300.010.251.20
30.100.350.150.030.050.010.060.100.150.50
40.070.150.050.020.010.000.040.010.080.12
50.150.500.300.030.010.000.050.050.200.20
60.161.120.540.050.300.080.390.040.311.34
76.003.000.600.100.400.030.801.002.001.34
80.401.500.300.101.100.010.500.200.402.00
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 18, @@ -1756,33 +1835,40 @@ "execution_count": 19, "metadata": { "collapsed": false, + "editable": true, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] }, "outputs": [ { "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 6: The survey results of the objects of interest on October 5, 2023 in pieces per meter
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 19, @@ -1894,21 +1980,21 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 6: The survey results of the objects of interest on October 5, 2023 in pieces per meter
 G112G27G30G32G67G70G95G96GcapsGfragsG112G27G30G32G67G70G95G96GcapsGfrags
tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40tiger-duck-beach0.673.640.550.180.000.000.790.060.1810.85
parc-des-pierrettes0.081.030.140.040.000.000.240.020.245.40
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 20, @@ -2018,7 +2104,7 @@ "outputs": [ { "data": { - "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNfklEQVR4nO3deVyU1eLH8c+ICqgwIAhqoGJaYu56cyu1VLLbLdvT69Usl1uZW4vWL8vqlpaVW7uaS3VLs9Jr3Raysmu5r5W7hEqpmIozKoIK5/fHwOgIyM7MA9/3ffHyPud55plzmoH5znnOOY/NGGMQERERsahK3q6AiIiISHEozIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilVfZ2BUpbZmYm+/fvJygoCJvN5u3qiIiISAEYYzh+/Dh169alUqWL972U+zCzf/9+oqOjvV0NERERKYKkpCSioqIueky5DzNBQUGA6z9GcHCwl2sjIiIiBeF0OomOjnZ/jl9MuQ8z2ZeWgoODFWZEREQspiBDRDQAWERERCxNYUZEREQsTWFGRERELK3cj5kpCGMMZ8+eJSMjw9tVkRLi5+dH5cqVNR1fRKQCqPBh5vTp0xw4cIDU1FRvV0VKWLVq1ahTpw5Vq1b1dlVERKQUVegwk5mZSWJiIn5+ftStW5eqVavqm3w5YIzh9OnT/PnnnyQmJtK4ceN8F1wSERHrqtBh5vTp02RmZhIdHU21atW8XR0pQYGBgVSpUoW9e/dy+vRpAgICvF0lEREpJfq6CvrWXk7pdRURqRj0115EREQKxZEGznTPMme6q9wbFGZERESkwA6nQu8F8Oqac4HGmQ7TV7vKD3thPo3CjAAwcOBAbr75Zm9Xo1CsWGcREStzpMHtCyHxGMzY4Ao0ZzJcQWbmRlf57QvLvoemQg8Aroj27NlDTEwMGzdupFWrVu7yadOmYYwp9ecfOHAgx44dY/HixaX+XCIiUrJsNugR4wou4Ao0X+yC34+fO6ZnQ9dxZUlhRgCw2+3eroKIiPi4YH8Y0d71/7MDzflBZmgbGH6l67iypMtMJSEF2A6sBnZkbZcyYwyTJk2iYcOGBAYG0rJlSz7++GNXdVJS6NevH7Vq1SIwMJDGjRszZ84cAGJiYgBo3bo1NpuNbt26ATkv2XTr1o3hw4czatQoQkNDiYyMZMaMGZw8eZJ77rmHoKAgLr30Ur788kv3YzIyMhg0aBAxMTEEBgZy+eWXM23aNPf+p59+mnnz5vGf//wHm82GzWZj2bJlAPzxxx/cddddhIaGEhYWRu/evdmzZ4/HuR966CFCQkIICwtjzJgxZdKTJCIinoL9YWxniAryLI8KgjGdyj7IgMJM8SUBfYBYoAPQJGs7qXSfdty4ccyZM4c333yTLVu2MHr0aP7xj3/www8/8OSTT7J161a+/PJLtm3bxptvvkl4eDgAa9asAWDp0qUcOHCATz/9NM/nmDdvHuHh4axZs4bhw4dz//33c8cdd9CpUyc2bNjAddddR//+/d2rJ2dmZhIVFcVHH33E1q1beeqpp/i///s/PvroIwAeeeQR7rzzTnr16sWBAwc4cOAAnTp1IjU1lWuuuYYaNWrwv//9jx9//JEaNWrQq1cvTp8+DcArr7zC7Nmzeeedd/jxxx85evQoixYtKs3/xCIikgtnOrz4k2ePDLi2J63IOcupLNhMOf9663Q6sdvtOBwOgoODPfalpaWRmJhITExM0RZVS8EVXOJz2RcHzAdCC3/a/Jw8eZLw8HC+++47Onbs6C4fPHgwqampnDhxgvDwcGbPnp3jsXmNmblwLEu3bt3IyMhg+fLlgKtnxG63c+utt/Luu+8CcPDgQerUqcPKlSvp0KFDrnUdNmwYycnJ7l6j3MbMzJ49m0mTJrFt2zb3CsynT58mJCSExYsXExcXR926dRk5ciRjx44F4OzZs8TExNC2bds8x98U+/UVEREP2bOWsi8xgatHpjQuNV3s8/tC6pkpjmRyDzJklSeXztNu3bqVtLQ0evbsSY0aNdw/7777LgkJCdx///3Mnz+fVq1aMWbMGFasWFGk52nRooX7//v5+REWFkbz5s3dZZGRkQAcOnTIXfbWW2/Rrl07atWqRY0aNZg5cyb79u276POsX7+e3bt3ExQU5G5LzZo1SUtLIyEhAYfDwYEDBzyCW+XKlWnXrl2R2iUiIkVjDCxNPLc9tA0suxuGtD5X9s1vruPKkgYAF4ejmPuLKDMzE4D//ve/XHLJJR77/P39iY6OZu/evfz3v/9l6dKldO/enWHDhvHyyy8X6nmqVKnisW2z2TzKsntRsuvz0UcfMXr0aF555RU6duxIUFAQL730EqtXr863PW3btuXf//53jn21atUqVJ1FRKT02APg4ztc0697NnT1wFTxOzcoeGmia7+9jDvDFWaKI78JQKU0Qahp06b4+/uzb98+unbtmusxtWrVYuDAgQwcOJCrr76aRx99lJdfftl9B+mMjIwSr9fy5cvp1KkTDzzwgLssISHB45iqVavmeO42bdqwYMECIiIi8uxKrFOnDqtWraJLly6A6zLT+vXradOmTQm3QkRELia8GvznLtf06+xLSdmznIZfWfZBBhRmiicS19iYvMbMRJbO0wYFBfHII48wevRoMjMzueqqq3A6naxYsYIaNWqQkJBA27ZtueKKK0hPT+fzzz8nNjYWgIiICAIDA/nqq6+IiooiICCgxKZlN2rUiHfffZevv/6amJgY3nvvPdauXeueQQXQoEEDvv76a3bs2EFYWBh2u51+/frx0ksv0bt3b5599lmioqLYt28fn376KY8++ihRUVGMHDmSF154gcaNGxMbG8vkyZM5duxYidRbREQKJ7fA4o1ZTNk0ZqY4QoFZuILL+eKyykth8G+2f/3rXzz11FNMnDiR2NhYrrvuOj777DNiYmKoWrUqjz/+OC1atKBLly74+fkxf/58wDXWZPr06bz99tvUrVuX3r17l1id7rvvPm699Vbuuusu2rdvz5EjRzx6aQCGDBnC5Zdf7h5X89NPP1GtWjX+97//Ua9ePW699VZiY2O59957OXXqlLun5uGHH2bAgAEMHDjQfQnrlltuKbG6i4iIdWk2U0nMdknBNdjXgevSUiSlGmSkYDSbSUTEugozm0mXmUpCKAovIiIiXqLLTCIiImJpCjMiIiJiaQozIiIiYmkKMyIiImJpCjMiIiJiaQozIiIiYmkKMyIiImJpCjMWZYxh6NCh1KxZE5vNxqZNm7xWl27dujFq1CivPb+IiFRsWjTPor766ivmzp3LsmXLaNiwIeHh4d6ukoiIiFcozBSTI83zzqEAznQwpnTvHJqQkECdOnXo1KlT6T2JiIiIBegyUzEcToXeC+DVNa4AA65/p692lR9OLZ3nHThwIMOHD2ffvn3YbDYaNGhAeno6I0aMICIigoCAAK666irWrl3rfszcuXMJCQnxOM/ixYux2Wzu7aeffppWrVrx3nvv0aBBA+x2O3369OH48ePuY06ePMmAAQOoUaMGderU4ZVXXimdRoqIiBSQwkwROdLg9oWQeAxmbHAFmjMZriAzc6Or/PaFruNK2rRp03j22WeJioriwIEDrF27ljFjxvDJJ58wb948NmzYQKNGjbjuuus4evRooc6dkJDA4sWL+fzzz/n888/54YcfeOGFF9z7H330Ub7//nsWLVpEfHw8y5YtY/369SXdRBERkQJTmCkimw16xJzbnrEBus1zBZlsPRu6jitpdrudoKAg/Pz8qF27NtWqVePNN9/kpZde4vrrr6dp06bMnDmTwMBA3nnnnUKdOzMzk7lz59KsWTOuvvpq+vfvz7fffgvAiRMneOedd3j55Zfp2bMnzZs3Z968eWRkZJR8I0VERArIq2Hmf//7HzfeeCN169bFZrOxePFij/3GGJ5++mnq1q1LYGAg3bp1Y8uWLd6p7AWC/WFEexjS+lzZ7+euxjC0DQy/0nMsTWlJSEjgzJkzdO7c2V1WpUoVrrzySrZt21aoczVo0ICgoCD3dp06dTh06JD7eU6fPk3Hjh3d+2vWrMnll19ezBaIiIgUnVfDzMmTJ2nZsiWvvfZarvsnTZrE5MmTee2111i7di21a9emZ8+eHmM4vCnYH8Z2hqggz/KoIBjTqWyCDLhCH+Ax/iW7PLusUqVK7uOynTlzJse5qlSp4rFts9nIzMz0eB4RERFf4tUwc/311/Pcc89x66235thnjGHq1Kk88cQT3HrrrTRr1ox58+aRmprKBx984IXa5uRMhxd/8uyRAdf2pBXnBgWXtkaNGlG1alV+/PFHd9mZM2dYt24dsbGxANSqVYvjx49z8uRJ9zGFXZumUaNGVKlShVWrVrnLUlJS2LlzZ/EaICIiUgw+O2YmMTGRgwcPEhcX5y7z9/ena9eurFixIs/Hpaen43Q6PX5KQ/aspfPHyJzfQ5M9KLgsAk316tW5//77efTRR/nqq6/YunUrQ4YMITU1lUGDBgHQvn17qlWrxv/93/+xe/duPvjgA+bOnVuo56lRowaDBg3i0Ucf5dtvv+XXX39l4MCBVKrks28jERGpAHz2U+jgwYMAREZGepRHRka69+Vm4sSJ2O129090dHSp1M8YWJp4bntoG1h2t+cYmm9+cx1XFl544QVuu+02+vfvT5s2bdi9ezdff/01oaGhgGtsy/vvv88XX3xB8+bN+fDDD3n66acL/TwvvfQSXbp04aabbqJHjx5cddVVtG3btoRbIyIiUnA24yMDIWw2G4sWLeLmm28GYMWKFXTu3Jn9+/dTp04d93FDhgwhKSmJr776KtfzpKenk55+rjvE6XQSHR2Nw+EgODjY49i0tDQSExOJiYkhIKDwK9wdTnVNv+7Z8Nxg3+wem6WJ8PEdEF6t0KeVElLc11dERLzH6XRit9tz/fy+kM+uAFy7dm3A1UNzfpg5dOhQjt6a8/n7++PvXzYjb8OrwX/u8lwBOHuW0/ArS3cFYBEREXHx2ctMMTEx1K5dm2+++cZddvr0aX744QefWsLfHpBz1lKwv4KMiIhIWfFqz8yJEyfYvXu3ezsxMZFNmzZRs2ZN6tWrx6hRo5gwYQKNGzemcePGTJgwgWrVqvH3v//di7UWERERX+LVMLNu3TquueYa9/ZDDz0EwN13383cuXMZM2YMp06d4oEHHiAlJYX27dsTHx/vsaibiIiIVGw+MwC4tFxsAJEGiJZven1FRKyrMAOAfXbMjIiIiEhBKMyIiIiIpSnMiIiIiKUpzIiIiIilKcxIvho0aMDUqVPd2zabjcWLF5d5PZ5++mlatWpV5s8rIiK+TWFGCu3AgQNcf/31BTpWAUREREqbz97OQErW6dOnqVq1aomcK/tWEyIiIr5APTMlICUlhe3bt7N69Wp27NhBSkpKqT9nt27dePDBB3nwwQcJCQkhLCyMcePGkb1sUIMGDXjuuecYOHAgdrudIUOGAK4beHbp0oXAwECio6MZMWIEJ0+edJ/30KFD3HjjjQQGBhITE8O///3vHM994WWm33//nT59+lCzZk2qV69Ou3btWL16NXPnzuWZZ55h8+bN2Gw2bDYbc+fOBcDhcDB06FAiIiIIDg7m2muvZfPmzR7P88ILLxAZGUlQUBCDBg0iLS2thP8riohIeaAwU0xJSUn06dOH2NhYOnToQJMmTejTpw9JSUml/tzz5s2jcuXKrF69munTpzNlyhRmzZrl3v/SSy/RrFkz1q9fz5NPPskvv/zCddddx6233srPP//MggUL+PHHH3nwwQfdjxk4cCB79uzhu+++4+OPP+aNN97g0KFDedbhxIkTdO3alf3797NkyRI2b97MmDFjyMzM5K677uLhhx/miiuu4MCBAxw4cIC77roLYww33HADBw8e5IsvvmD9+vW0adOG7t27c/ToUQA++ugjxo8fz/PPP8+6deuoU6cOb7zxRun9xxQREesy5ZzD4TCAcTgcOfadOnXKbN261Zw6dapI5z569KiJi4szQI6fuLg4c/To0eJWP09du3Y1sbGxJjMz0102duxYExsba4wxpn79+ubmm2/2eEz//v3N0KFDPcqWL19uKlWqZE6dOmV27NhhALNq1Sr3/m3bthnATJkyxV0GmEWLFhljjHn77bdNUFCQOXLkSK71HD9+vGnZsqVH2bfffmuCg4NNWlqaR/mll15q3n77bWOMMR07djT33Xefx/727dvnONfFFPf1FRER77nY5/eF1DNTDMnJycTHx+e6Lz4+nuTk5FJ9/g4dOmCz2dzbHTt2ZNeuXWRkZADQrl07j+PXr1/P3LlzqVGjhvvnuuuuIzMzk8TERLZt20blypU9HtekSRNCQkLyrMOmTZto3bo1NWvWLHC9169fz4kTJwgLC/OoS2JiIgkJCQBs27aNjh07ejzuwm0RERHQAOBicTgcxdpf2qpXr+6xnZmZyT//+U9GjBiR49h69eqxY8cOAI+AlJ/AwMBC1yszM5M6deqwbNmyHPsuFpxERERyozBTDHa7vVj7i2vVqlU5ths3boyfn1+ux7dp04YtW7bQqFGjXPfHxsZy9uxZ1q1bx5VXXgnAjh07OHbsWJ51aNGiBbNmzeLo0aO59s5UrVrV3VN0fj0OHjxI5cqVadCgQZ51WbVqFQMGDPBon4iIyIV0makYIiMjiYuLy3VfXFwckZGRpfr8SUlJPPTQQ+zYsYMPP/yQV199lZEjR+Z5/NixY1m5ciXDhg1j06ZN7Nq1iyVLljB8+HAALr/8cnr16sWQIUNYvXo169evZ/DgwRftfenbty+1a9fm5ptv5qeffuK3337jk08+YeXKlYBrVlViYiKbNm3i8OHDpKen06NHDzp27MjNN9/M119/zZ49e1ixYgXjxo1j3bp1AIwcOZLZs2cze/Zsdu7cyfjx49myZUsJ/tcTEZHyQmGmGEJDQ5k1a1aOQBMXF8esWbMIDQ0t1ecfMGAAp06d4sorr2TYsGEMHz6coUOH5nl8ixYt+OGHH9i1axdXX301rVu35sknn6ROnTruY+bMmUN0dDRdu3bl1ltvdU+fzkvVqlWJj48nIiKCv/71rzRv3pwXXnjB3Tt022230atXL6655hpq1arFhx9+iM1m44svvqBLly7ce++9XHbZZfTp04c9e/a4A+Bdd93FU089xdixY2nbti179+7l/vvvL6H/ciIiUp7YjMlamKSccjqd2O12HA4HwcHBHvvS0tJITEwkJiaGgICAIj9HSkoKycnJOBwO7HY7kZGRpR5kunXrRqtWrTxuMyCeSur1FRGRsnexz+8LacxMCQgNDS318CIiIiK502UmERERsTT1zFhUbtOaRUREKiL1zIiIiIilKcyIiIiIpSnMAOV8QleFpddVRKRiqNBhpkqVKgCkpqZ6uSZSGrJf1+zXWUREyqcKPQDYz8+PkJAQDh06BEC1atUKdV8i8U3GGFJTUzl06BAhISF53t5BRETKhwodZgBq164N4A40Un6EhIS4X18RESm/KnyYsdls1KlTh4iICM6cOePt6kgJqVKlinpkREQqiAofZrL5+fnpw09ERMSCKvQAYBEREbE+hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSfDjNnz55l3LhxxMTEEBgYSMOGDXn22WfJzMz0dtVERETER1T2dgUu5sUXX+Stt95i3rx5XHHFFaxbt4577rkHu93OyJEjvV09ERER8QE+HWZWrlxJ7969ueGGGwBo0KABH374IevWrfNyzURERMRX+PRlpquuuopvv/2WnTt3ArB582Z+/PFH/vrXv+b5mPT0dJxOp8ePiIiIlF8+3TMzduxYHA4HTZo0wc/Pj4yMDJ5//nn69u2b52MmTpzIM888U4a1FBEREW/y6Z6ZBQsW8P777/PBBx+wYcMG5s2bx8svv8y8efPyfMzjjz+Ow+Fw/yQlJZVhjUVERKSs2YwxxtuVyEt0dDSPPfYYw4YNc5c999xzvP/++2zfvr1A53A6ndjtdhwOB8HBwaVVVRERESlBhfn89umemdTUVCpV8qyin5+fpmaLiIiIm0+Pmbnxxht5/vnnqVevHldccQUbN25k8uTJ3Hvvvd6umoiIiPgIn77MdPz4cZ588kkWLVrEoUOHqFu3Ln379uWpp56iatWqBTqHLjOJiIhYT2E+v306zJQEhRkRERHrKTdjZkRERETyozAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilubzYeaPP/7gH//4B2FhYVSrVo1WrVqxfv16b1dLREREfERlb1fgYlJSUujcuTPXXHMNX375JRERESQkJBASEuLtqkEKkAw4gBAgAgj1ZoVEREQqJp8OMy+++CLR0dHMmTPHXdagQQPvVShbEjAYiD+vLA6YBUR7pUYiIiIVlk9fZlqyZAnt2rXjjjvuICIigtatWzNz5kzvViqFnEGGrO3BWftFRESkzPh0mPntt9948803ady4MV9//TX33XcfI0aM4N13383zMenp6TidTo+fEpVMziCTLT5rv4iIiJQZn77MlJmZSbt27ZgwYQIArVu3ZsuWLbz55psMGDAg18dMnDiRZ555pvQq5SjmfhERESlRRQ4za9asYdmyZRw6dIjMzEyPfZMnTy52xQDq1KlD06ZNPcpiY2P55JNP8nzM448/zkMPPeTedjqdREeX4EAWezH3i4iISIkqUpiZMGEC48aN4/LLLycyMhKbzebed/7/L67OnTuzY8cOj7KdO3dSv379PB/j7++Pv79/idUhh0hcg31zu9QUl7VfREREykyRwsy0adOYPXs2AwcOLOHqeBo9ejSdOnViwoQJ3HnnnaxZs4YZM2YwY8aMUn3eiwrFNWspr9lMmp4tIiJSpooUZipVqkTnzp1Lui45/OUvf2HRokU8/vjjPPvss8TExDB16lT69etX6s99UdHAfM6tM2PH1SOjICMiIlLmbMYYU9gHTZo0if379zN16tRSqFLJcjqd2O12HA4HwcHB3q6OiIiIFEBhPr+L1DPzyCOPcMMNN3DppZfStGlTqlSp4rH/008/LcppRURERAqtSGFm+PDhfP/991xzzTWEhYWV6KBfERERkcIoUph59913+eSTT7jhhhtKuj4iIiIihVKkFYBr1qzJpZdeWtJ1ERERESm0IoWZp59+mvHjx5OamlrS9REREREplCJdZpo+fToJCQlERkbSoEGDHAOAN2zYUCKVExEREclPkcLMzTffXMLVEBERESmaQq0zs3PnTi677LLSrE+J0zozIiIiJcuRBjYbBJ939yBnOhgD9oCSeY7CfH4XasxM69atiY2NZezYsaxcubJYlRQRERHrOZwKvRfAq2tcAQZc/05f7So/7IXhtIUKM0eOHGHSpEkcOXKEW265hcjISAYNGsSSJUtIS0srrTqKiIiID3Ckwe0LIfEYzNjgCjRnMlxBZuZGV/ntC13HlaUi3c4AwBjDypUrWbJkCUuWLGHv3r306NGD3r1787e//Y2IiIiSrmuR6DKTiIhIycjugZm58VxZVBD8fvzc9tA2MPxKz0tQRXqu0rrMdD6bzUanTp144YUX2Lp1K5s2baJLly7MnTuX6OhoXn/99aKeWkRERHxQsD+MaA9DWp8rK40gU1hF7pm5mCNHjnD06FEaN25c0qcuNPXMiIiIlKwzGdBtnmeQiQqCZXdDFb+SeY5S75mZN28e//3vf93bY8aMISQkhE6dOrF3717CwsJ8IsiIiIhIyXKmw4s/eQYZcG1PWnFuUHBZKlKYmTBhAoGBgQCsXLmS1157jUmTJhEeHs7o0aNLtIIiIiLiG/IaM5Mte1BwWQeaIoWZpKQkGjVqBMDixYu5/fbbGTp0KBMnTmT58uUlWkERERHxDcbA0sRz20PbuC4tnT+G5pvfXMeVpSKFmRo1anDkyBEA4uPj6dGjBwABAQGcOnWq5GonIiIiPsMeAB/fATEh5wb7VvE7Nyg4JsS1v6QWziuoIt3OoGfPngwePJjWrVuzc+dObrjhBgC2bNlCgwYNSrJ+IiIi4kPCq8F/7vJcATh7ltPwK8s+yEARe2Zef/11OnbsyJ9//sknn3xCWFgYAOvXr6dv374lWkERERHxLfaAnNOvg/29E2SglKZm+xJNzRYREbGeUp+aPWfOHBYuXJijfOHChcybN68opxQREREpkiKFmRdeeIHw8PAc5REREUyYMKHYlRIREREpqCKFmb179xITE5OjvH79+uzbt6/YlRIREREpqCKFmYiICH7++ecc5Zs3b3YPBhYREREpC0UKM3369GHEiBF8//33ZGRkkJGRwXfffcfIkSPp06dPSddRREREJE9FWmfmueeeY+/evXTv3p3KlV2nyMjI4O6779aYGRERESlTxZqavWvXLjZu3EhgYCAtWrSgfv36JVm3EqGp2SIiItZTmM/vIvXMALzzzjtMmTKFXbt2AdC4cWNGjRrF4MGDi3pKERERkUIrUph58sknmTJlCsOHD6djx46A6+7Zo0ePZs+ePTz33HMlWkkRERGRvBTpMlN4eDivvvpqjlsXfPjhhwwfPpzDhw+XWAWLS5eZRERErKfUVwDOyMigXbt2Ocrbtm3L2bNni3JKERERkSIpUpj5xz/+wZtvvpmjfMaMGfTr16/YlRIREREpqGINAI6Pj6dDhw4ArFq1iqSkJAYMGMBDDz3kPm7y5MnFr6WIiIhIHooUZn799VfatGkDQEJCAgC1atWiVq1a/Prrr+7jbDZbCVRRREREJG9FCjPff/99SddDREREpEiKNGZGRERExFcozIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKVZKsxMnDgRm83GqFGjvF0VERER8RGWCTNr165lxowZtGjRwttVERERER9iiTBz4sQJ+vXrx8yZMwkNDfV2dURERMSHWCLMDBs2jBtuuIEePXp4uyoiIiLiYyp7uwL5mT9/Phs2bGDt2rUFOj49PZ309HT3ttPpLK2qiYiIiA/w6Z6ZpKQkRo4cyfvvv09AQECBHjNx4kTsdrv7Jzo6upRrKSIiIt5kM8YYb1ciL4sXL+aWW27Bz8/PXZaRkYHNZqNSpUqkp6d77IPce2aio6NxOBwEBweXWd1FRESk6JxOJ3a7vUCf3z59mal79+788ssvHmX33HMPTZo0YezYsTmCDIC/vz/+/v5lVUURERHxMp8OM0FBQTRr1syjrHr16oSFheUoFxERkYrJp8fMiIiIiOTHp3tmcrNs2TJvV0FERER8iHpmKjBHGjjTPcuc6a5yERERq1CYqaAOp0LvBfDqmnOBxpkO01e7yg+nerd+IiIiBaUwUwE50uD2hZB4DGZscAWaMxmuIDNzo6v89oXqoREREWuw3JgZKT6bDXrEuIILuALNF7vg9+PnjunZ0HWciIiIr1PPTAUU7A8j2sOQ1ufKzg8yQ9vA8Ctdx4mIiPg6hZkKKtgfxnaGqCDP8qggGNNJQUZERKxDYaaCcqbDiz959siAa3vSipyznERERHyVwkwFlD1rKXvMDHj20GQPClagERERK1CYqYCMgaWJ57aHtoFld3uOofnmN9dxIiIivk6zmSogewB8fIdr+nXPhq7BvlX8XIOCwRV0Pr7DdZyIiIivsxlTvr9/F+YW4hWNI801/fr8wb7OdFePjIKMiIh4U2E+v9UzU4HlFlg0i0lERKxGY2ZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTStAJwRZcCJAMOIASIAEK9WSEREZHCUc9MRZYE9AFigQ5Ak6ztJG9WSkREpHAUZiqqFGAwEH9BeXxWeUqZ10hERKRIFGYqqmRyBpls8Vn7RURELEBhpqJyFHO/iIiIj1CYqajsxdwvIiLiIxRmKqpIIC6PfXFZ+0VERCxAYaaiCgVmkTPQxGWVa3q2iIhYhNaZqciigfmcW2fGjqtHRkFGREQsRGGmogtF4UVERCxNl5lERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNIUZkRERMTSFGZERETE0hRmRERExNJ8OsxMnDiRv/zlLwQFBREREcHNN9/Mjh07vF0tERER8SE+HWZ++OEHhg0bxqpVq/jmm284e/YscXFxnDx50ttVExERKZoUYDuwGtiRtW1FPtQOmzHGeO/pC+fPP/8kIiKCH374gS5duhToMU6nE7vdjsPhIDg4uJRrKCIichFJwGAg/ryyOGAWEO2VGhVNGbSjMJ/fPt0zcyGHwwFAzZo1vVwTERGRQkohZwAga3sw1umh8cF2VC77pywaYwwPPfQQV111Fc2aNcvzuPT0dNLT093bTqezLKonIiJyccnkDADZ4rP2h5ZddYrMB9thmZ6ZBx98kJ9//pkPP/zwosdNnDgRu93u/omOtlK/nYiIlFuOYu73FT7YDkuEmeHDh7NkyRK+//57oqKiLnrs448/jsPhcP8kJSWVUS1FREQuwl7M/b7CB9vh05eZjDEMHz6cRYsWsWzZMmJiYvJ9jL+/P/7+/mVQOxERkUKIxDVINrdLNHFZ+63AB9vh0z0zw4YN4/333+eDDz4gKCiIgwcPcvDgQU6dOuXtqomIiBROKK7ZPnEXlGfPArLCeBnwyXb49NRsm82Wa/mcOXMYOHBggc6hqdkiIuJTUnANknXguiQTiXWCzPlKuR2F+fz2+ctMIiIi5Uoo1gwvF/Khdvj0ZSYRERGR/CjMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKX59GwmKQPnT60LASLwmdHpIiIiBaGemYosCegDxAIdgCZZ27oDhIiIWIjCTEXlg7dwFxERKQqFmYqqILdwFxERsQCFmYrKB2/hLiIiUhQaAFxR+eAt3EVExEKScA1JOIZrAkkoEO2dqqhnpqLKvoV7bqx0K3oRESl7u4F7gZZA16x/780q9wKFmYrKB2/hLiIiFpAE3A8svaB8aVa5F2bE6jJTRRYNzKd83IpeRETKRgo5g0y2pVn7y/hyk8JMRedDt3AXERELOFbM/aVAl5lERESk4EKKub8UKMyIiIhIwdmBHnns64FXZsPqMlNFdxA4xLl7M9UCanuzQlIu6J5fIuVXOjAFGI3n2JkewNSs/WVMYaYCc6SC7QgEdwJOAtXBuRpMMNirebt2YllJ5LxVRvYsOS+tQSEiJSgFuAnX7/QLgBMIBvYD1wJLyr5KusxUQR0+Ab0Xwqv7wbkUiHD9O32/q/zwCW/XUCxJ9/wSKf/suHr0bwLa4Qow7bK2D+GVy0wKMxWQIw1u/wQSj8GMrfDqcTizB6Yfh5lbXeW3f+I6TqRQdM8vkfLPBxddVZipgGw26NHg3PaMrdDtQ1eQydazges4kULRPb+kNKUA24HVwA7U0+ctPrjoqsbMVEDB/jCiJXD6XID5/fi5/UObwvCWruNECkX3/JLSorFYvsXHFl1Vz0wFFZwOY6+GqCDP8qggGHO1a79Ioflg97OUAxqL5ZtCgSZA+6x/vThjUWGmgnKGwIurPXtkwLU9aY1rv0ih+WD3s5QDGosl+dBlpgrImQ7TV8PMTefKooLOBZsZGwEbDL9Sl5qkCHys+1nKAY3FknyoZ6YCMgaWJp7bHtoGlt0NQ1qfK/vmN9dxIkXiQ93PFZ0jzfUF5nzOdIvNVtRYLMmHwkwFZA+Aj++AmBAY2hqGt4Aqm1yDgoe0dpV/fIfrOBGxrsOp0HsBvLoanA5gvevf6atd5YdTvV3DAtJYLMmHzZjy/f3b6XRit9txOBwEBwd7uzo+xXEKbIkQfCXnVgBeAyYG7IHerp2IFIcjzRVYEo+5toc2hTFXwYs/npvFGBMC/7nLIl9cNJupwinM57fGzFRUKWB/CPgIyP52dhKC/wLcCUxGlwZELMxmgx4xMHOja3vGVvgiyXPQf88YC60npbFYchEKM0XgSHP9ATh/cKwz3TXGxBLfcMD1B2FuLuWpWeVj0R8JEQtzryeVXo7WkwpFf5ckVxozU0jua9Brzg2qy54dZKlr0JodIFLuBe+GsVflsZ7UVa79IuWBwkwhONLg9oVZ9zTa4Ao0ZzKypjlvzLqn0UKLzBLQ7ACRcs/ZyDVGJtf1pH507RcpDxRmCiH7GnS2GRug27xz16QBeja0yDXo8jY7QPdsEfHgTIfpmz3vuXZ+D82MrfDq5pzTtkWsSGGmEIL9YUR7z/VYPK5Bt7HQQnPlaKVWxylwHsB1C/oOQFvXtuOUlysm4kU51pNqCsv6wpCm58q+SdR6UlI+KMwUUrA/jO2cxzXoThYJMtlswO3AZ8DCrH9vzyq3iMMnoPdH8Oof4FwKRLj+nf6Hq/zwCW/XUMQ7cqwndSVU2QojrtR6UlL+KMwUkjMdXvwpj2vQKyzUZZsCDAP2nldmy9oehiUu0zjS4PZPssYwbYVXj8OZPTD9uKtrPfGYa78lxjCJlILwaq51ZIa3g+CDwFkIToYR7Vzl4dW8XUOxNB+6vK8wUwjuexqdN0bG4xr0Bs9ZTj7tEK4FqFYBNwJ3AH/L2h6ctd/H2WzQo8G57RlboduHnmMEejawyBgmkVJiT4HgPrhuK9EBuNy1bbfAFxbxYUlAHyAW1/uqSdZ2kneqozBTCOXqnkYZwNuQ0iGF7Z9tZ/XC1ez4fAcpHVLg7az9Pi57HY3zxwBYfh0NkZKUAgzEdQn5fJ9llSvQSFGkkHM1ZrK2B+OV95UWzSuE7GvQty90rZx5/j2NwBV0LHMNOhOS/pnE4GmDiX/+3Dsyrnscs0bOIjrTGuuDBx+AsVfDlxesbBoVBGOuhiqJQIi3aleBpXBupdYQIAJLDSovN5LJ+YGTLT5rv16Xsmf1349k4CdIeSKF5A7JONIchASGELEygtCpoV55X6lnppDCq8F/7oTh4RB8CdDO9e+IcFe5Va5Bp9hSXEHmW8+/dPHfxjN42mBSbNb4yuasAy+uymMM0ypw1vVOvSo0H+t+rtC0OKbvKQ+/H8ch6cMk+qzqQ+yNsXS4owNN/taEPqv6kPRhEhzP/xQlTWGmsFLA/kDWPYxOZpVl3dPI/gCW6bZNzkjOEWSyxX8bT3JGchnXqPCc6TD9Z5i5+VyZxximzVpHo8z5YPdzhVajmPulZJWT34+Umvl8Ga5Z9g1RmCms7HsaXXjbgux7Gvl+BgDAcfLiX8ny2+8LcoxhagnL+sOQlufKtI5GGSvIZQ0pO5WBIZAy/oKxceNTYAgaaFDWkoHfgAt78KtllVvk9yM5PZ8vw+ll3xCFmcIqJ922dvvF71eQ335f4LGORnMYHgBVomBEAAxppnU0vKKc/H6UG2dgzxNJ9Fl5weWAlX3Y80QSnPF2BSuYDHD8BM5vgepZZdVd246fsMTECwDH8Xy+DOezvzQozBRWObmnUaR/JHHdc7+fQVz3OCL9rXE/g/BU+M+NMLwaBPcADrn+HVHdVR5ulRt/lhe6rOFT/ghPYfCQwcTHX3A5ID6eIUMH80e4Ra5rlBOH60HvL+HVExcs8nncVX64nrdrWDC++GVYYaawysk9jUKPhjJr5KwcgSZ7NlPoUYsMrd8P9jsh+EY8xzDd6CpnvxfrVkiOtJzje5zpFlv0rzLQPY993dFljTLkSIPtScl8+03ulwOWxsezPSnZWu8vH1qkrbAcaXD7p1mLfG5xBZoci3x+ao3f98jISOLi8vgyHBdHZGTZfxAqzBRWebmnURBE941mfof5bPtsG6sWrmLbZ9uY32E+0X2jISj/U/iETHB8AM7P8Oy2/cxVjkXGyxxOhd4LPBddzF6ksfcC135LOAyMJGeg6Z5VfrjMa1Rh2WyQeeri3f2ZpxzWWVTS4rOAbDbofv6NirfkXOSzR4w1FvkMDQ1l1uuziOtxwZfhHnHMemMWoaFl/0Go70lFEQ3MBI5l/YRk/VhjaRaXSKA7hGb9Dzh3T6buWKaH6fCl0H8JjGiaQv0fkzn+m4PgS0PYkxnB9G9Cee8mCPd2JfPhSHOtXZR4zLWKNLju83X+atO3L3QtP+/z43+CgFshZVYKyS8m43A6CLGHEPFHBKGDQ+Ebb1ew4gj2h0vCL97df0m43RqLSuY3C2g+Pv9F0hi4obHrz2zVMym0qJ7MqRMOqgWFsPlEBGeqhnJ9I4tMWDgA0aOjmd9+PskjXevM2APsRK6KJHRUKMwA6pRtlRRmisCRCrbjENwJ16WN6uBcDSYV7BZZZ4ZQYDJwH/D8eeU9gLfw+T8M4AoB/ZfAyNgkXh472KM7vXvPOB55YRb9l0Qz/zbfDgE2m+sb2TeJkHzCFWi+2OVaKyewMkTWgJ4NrfGNjQhIWpDE4Oc8p23GdY9j1oJZREdYKfFbX51Q1+WAC8fMgOtyQJ1Qi3xrOX8W0Pm9lOfPAvLxv1k2G6zYC/0bJDFo8GDGnvf3qkdcHLNmzuLzfdE0qunFShbUn8DnEPr5eV+GL9xfxmHGZowlcmCROZ1O7HY7DoeD4ODgYp/v8Ano/5+sngDbBT0BW0N5rzeEW2GQYwquLtrcLqfHYYlvOs50+GlHCq880ifXcQHde8bx8Cvz6XxZqM9/+zx5Gk6egYQUuHcJpJ6BalVg9k1waShUrwLVq3q7lvlLOZBCn4F98vzwnD93PqF1fPyNdb5kcq7UapHPfwBnKuzcm8RjI3OG/RemzeKy+tEEW+EL2BY4XhtOJqdwLDEZxykHIdVCsDeIoHpkKEEHgSu8Xcn8HUhOYUD/PizN5e9Vz7g45r03nzoRFvj9WA50ucj+/wFXF/9pCvP5rTBTCI406PNJVk/AY7n3BEzb5vs9AYBrEF3sRfZvw3VN2sdt3bqdK67IuyFbtmyjaVPfb0h2SB7WPIWoSsnsS3ZQr3YIv5+N4PVfrROSt2/ZTmyzvF+Pbb9uo8kVvv96ABxLA9Ih5DJcN16NgJSdYPOHEF///SZrzNUq+PcWuOdy12WNM6kOqlSz8/PJSObsCOUfzWB4e9+/f9mxVDh6KIn7/+k5MysuLo43355FzYhoQnw8lDnT4det2+ncJu/fjxUbtnFF0yY+/3rwC9DiIvt/BpoX/2kK8/ltiQHAb7zxBjExMQQEBNC2bVuWL1/ulXrYbDCieUqOIAPw7TfxvPzYYEY0T7HG5YBysh7I8SMXr2h++32BI80VZEbGJjH1kT60bh5L7x4daN2sCVMf7cPI2CT6/8casxyO5rO+RIoX1p8oikMnoe8n8NPeFLYu287q/61m67IdrNibQt9PXPt9nTGwdI+rl+/1X0NZf7wJvTq2Z93xJrz+ayipZ6yxqOSJdDjmSGHo0NynmP/zn4M55kjhhI+v9G0MHEm5+Pv/cIrD518PAAK4+KxFL4R9nw8zCxYsYNSoUTzxxBNs3LiRq6++muuvv559+/aVeV2C/aF+5bynOn77TTz1Kyf7fqqGcrNeTlDYxSua335fkAk8mE9IfrB5is9PzDqWBqf8Lv7fO9XP7urx8GHH0uDuxa5wOeWRPlzRNJYOXTpwRdMmTHnEFS7vXozPt8MeAB/flrWoZFMYHgRVGsCIINed5mNCXPt9vRf5rIGE3y8+xTzh92TO+vgvSOVKEFP74r8fMbXtVPb5T2VcE18uNmvxWBnXBwuEmcmTJzNo0CAGDx5MbGwsU6dOJTo6mjfffNMr9TmeT7LOb7/PKAfr5TjTYe/ZSLr3zL0h3XvGsTcj0ufvzVQJiPK7eEiO8kvG1zv8DJDmf/HXI80CizEaChYurSD8IPzneleQ8VhUMshVHn7Q2zXMX6UCTjGv5OO/IGczYfupi6/Psv1UJGczy7hiRREE9MU1Rf4zYGHWvx2yyr2xtIfxYenp6cbPz898+umnHuUjRowwXbp0yfUxaWlpxuFwuH+SkpIMYBwOR4nUacuWbQbX37tcf7Zs2VYiz1Mm9hlj4owxnPcTl1VuAcdOGdPrfWO+XL/PdO8Z5/E6dO8ZZ75cv8/0et91nK9bsXLVRd9XK1au8nYVC+ToSWPWbM399VizdZ9JOentGhbMlq35/J5vtcjv+Q/GmEbGmGrG8/e8Wlb5D96rWmFs+TWf1+NXa7wefzqNWf7zPtMzzvP3o2dcnFn+yz7zp9PbNSygoybnZ8f5nyFHS+ZpHA5HgT+/fXpq9uHDh8nIyMixmmBkZCQHD+b+lWLixIk888wzpVKf83sC8po9szcjkqh03x9QB7jWxZnPudkadlw9MhYYTA+u7vH3boL+S6J5+MX5TJ/kml0W1NDOXhPJtK2udWZ8vRsdwB6cz/Lg+ez3FaFboVXraG4dN59HnnWtoxFYw85vpyNpdVkoVTYC7bxdy/wdP5xPD2w++31GCLA7l/LUrPKQsqxM0dWsefEp5jVr+n6PH0C4geaXRPPu5Pkc2+OalWUPtBPSIJLAOqHYffxSmVv24rEXrv3jxcVjfTrMZLNdMKLWGJOjLNvjjz/OQw895N52Op1ER5fM2hbGwPRfQnnkBdermOtspp9D6dS4RJ6ubIRimfCSm3AD868H285QgnuEutf9iVoKna7HEn8cylNITmkK03+E2ZtyvrH+NDDyL9b4/AzKZ7G5/Pb7jFBca0ctzWVfDyzxu+9Mh+NVQ/nX1Flk5DLF/LmpszhRNRSnBX4/CAb7AbA/Hkrtz877j38j8DZghTVmsvnYl2GfDjPh4eH4+fnl6IU5dOhQnvd+8Pf3x9+/dN7R9gB47xbovyiah1+ez3S/ZI7/6SColp29ZyOZ9mso791ijZ6AciPrjwMT8Lw30wQs88ehvITklDSYvhZmbzpXFhXkWvwPzpWPbO/bU5tT0iDxzMXDZeKZSOqm+XY7ANcHzpvA/XgGmuzFMS2whmFGJrz3MyzcFs09Y109fudPMR/wfSh3NoVR7b1d0wKqA8zDZ0JAsfjQl2GfX2emffv2tG3bljfeeMNd1rRpU3r37s3EiRPzfXxJL5oHrimytkwITsJ9OwNnNJhKCjJek4Kl/zgcToX+i1xT/+tfEJKnZ4XkcB9fR+NYGty8wHVbBoB7W8H/XQUTfjwXZGJCYPFdvh0CjqW5pmXnt57Uh7f5djs8JOH6HTmGq2ssFEsEGXD9ve193vtqSGsY2wleWAGzsm73ERNikdt9SKGUq0XzFixYQP/+/Xnrrbfo2LEjM2bMYObMmWzZsoX69evn+/jSCDMipcGRBrYzELwXOArUBGd9MFWs80f60Em482O4pkHWJaVtkBLr6rH5fg98dDtEVM/vLN536KRrevaDzVOIqZLM8cMOgsLtJJ6J5LVfQpl3szXaUV4cTnXdn6xHQxjRAoK3gbMJTPsZvk2Ej+/w/bAvhVeuwgy4Fs2bNGkSBw4coFmzZkyZMoUuXS62lvI5CjMiZSt7/ZXzey1yK/N15aUd5YUjzbVw6fnjYpzprsu0Vgn7UjjlLswUh8KMiIiI9ZS72xmIiIiI5EVhRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQszafvml0Sshc4djqdXq6JiIiIFFT253ZBblRQ7sPM8ePHAYiOtsgtYkVERMTt+PHj2O32ix5T7u/NlJmZyf79+wkKCsJms5XouZ1OJ9HR0SQlJVn6vk9qh29RO3yL2uFb1A7fUprtMMZw/Phx6tatS6VKFx8VU+57ZipVqkRUVFSpPkdwcLCl34zZ1A7fonb4FrXDt6gdvqW02pFfj0w2DQAWERERS1OYEREREUtTmCkGf39/xo8fj7+/v7erUixqh29RO3yL2uFb1A7f4ivtKPcDgEVERKR8U8+MiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIeDh48CA9e/akevXqhISEeLs6+arwYebgwYOMHDmSRo0aERAQQGRkJFdddRVvvfUWqampAMyYMYNu3boRHByMzWbj2LFjOc7z/PPP06lTJ6pVq5brC79582b69u1LdHQ0gYGBxMbGMm3aNK+16+jRowwfPpzLL7+catWqUa9ePUaMGIHD4XCfY9myZdhstlx/1q5dW2p1L0w7AP75z39y6aWXEhgYSK1atejduzfbt2/3OE9KSgr9+/fHbrdjt9vp379/rq+jL7djz549DBo0iJiYGAIDA7n00ksZP348p0+f9ql2AKxcuZJrr73W/YewW7dunDp1CvCN91VB2rJnz54867lw4UL3eazw3kpISOCWW26hVq1aBAcHc+edd5KcnOxxngYNGuRo52OPPWa5dgD897//pX379gQGBhIeHs6tt95a5nX1ZQWp/5QpUzhw4ACbNm1i586dXq5x/sr9CsAX89tvv9G5c2dCQkKYMGECzZs35+zZs+zcuZPZs2dTt25dbrrpJlJTU+nVqxe9evXi8ccfz/Vcp0+f5o477qBjx4688847OfavX7+eWrVq8f777xMdHc2KFSsYOnQofn5+PPjgg2XeroYNG7J//35efvllmjZtyt69e7nvvvvYv38/H3/8MQCdOnXiwIEDHud+8sknWbp0Ke3atSvROhe1HTfddBNt27alX79+1KtXj6NHj/L0008TFxdHYmIifn5+APz973/n999/56uvvgJg6NCh9O/fn88++8wy7di+fTuZmZm8/fbbNGrUiF9//ZUhQ4Zw8uRJXn75ZZ9px8qVK92/K6+++ipVq1Zl8+bN7uXIvf2+Kmhbbrjhhhz1nDFjBpMmTeL66693l/n6e6t79+7ExcXRsmVLvvvuO8D13/vGG29k1apVHsvEP/vsswwZMsS9XaNGjVJvQ0m345NPPmHIkCFMmDCBa6+9FmMMv/zyS5nW9aabbiqx5ytpBa1/QkICbdu2pXHjxnme68yZM1SpUqUMa38RpgK77rrrTFRUlDlx4kSu+zMzMz22v//+ewOYlJSUPM85Z84cY7fbC/T8DzzwgLnmmmsKWt0CK2y7sn300UematWq5syZM7nuP336tImIiDDPPvtsidX1Yorajs2bNxvA7N692xhjzNatWw1gVq1a5T5m5cqVBjDbt28v+YpfoKTakZtJkyaZmJiYEqlnfgrajvbt25tx48YV+Lxl/b4ypuivSatWrcy9997r3rbCe+vrr782lSpVMg6Hw11+9OhRA5hvvvnGXVa/fn0zZcqU0q5yrkqqHWfOnDGXXHKJmTVrllfraowxKSkpZsiQISYiIsL4+/ubK664wnz22WfGGGMOHz5s+vTpYy655BITGBhomjVrZj744AOP83Tt2tUMGzbMDBs2zNjtdlOzZk3zxBNPeLw3X3/9ddOoUSPj7+9vIiIizG233VYi9a9fv74B3D933323McYYwLz55pvmpptuMtWqVTNPPfWUOXv2rLn33ntNgwYNTEBAgLnsssvM1KlTPc555swZM3z4cHc7xowZYwYMGGB69+7tPmbhwoWmWbNmJiAgwNSsWdN07949zzrmpsKGmcOHDxubzWYmTpxY4MeUdJjp169fgd58hVGUdmWbOXOmCQ8Pz3P/xx9/bCpVqmT27dtXnCoWSFHbceLECTNq1CgTExNj0tPTjTHGvPPOO7m+Jna73cyePbskqpunkmxHbp544gnTtm3b4lYzXwVtR3JysgHM9OnTTceOHU1ERITp0qWLWb58eZ6PKcv3lTFFf03WrVtnAPPTTz+5y6zw3lqyZInx8/MzaWlp7rLU1FRTqVIlM378eHdZ/fr1Te3atU3NmjVNy5YtzXPPPXfR915JKcl2rF692gBm9uzZplWrVqZ27dqmV69e5tdffy3TumZkZJgOHTqYK664wsTHx5uEhATz2WefmS+++MIYY8zvv/9uXnrpJbNx40aTkJBgpk+fbvz8/DxCcdeuXU2NGjXMyJEjzfbt2837779vqlWrZmbMmGGMMWbt2rXGz8/PfPDBB2bPnj1mw4YNZtq0aSVS/0OHDplevXqZO++80xw4cMAcO3bMGOMKMxEREeadd94xCQkJZs+ePeb06dPmqaeeMmvWrDG//fabu54LFixwn++5554zNWvWNJ9++qnZtm2bue+++0xwcLA7zOzfv99UrlzZTJ482SQmJpqff/7ZvP766+b48eMXref5KmyYWbVqlQHMp59+6lEeFhZmqlevbqpXr27GjBnjsa8kw8yKFStMlSpVTHx8fFGqn6eitMsY15u8Xr165oknnsjz3Ndff725/vrrS7S+eSlsO15//XVTvXp1A5gmTZp49GY8//zzpnHjxjmeo3HjxmbChAml1whTsu240O7du01wcLCZOXNmqdU/W0Hbkd0rUbNmTTN79myzYcMGM2rUKFO1alWzc+fOXM9dlu8rY4r+O3L//feb2NhYjzIrvLcOHTpkgoODzciRI83JkyfNiRMnzLBhwwxghg4d6n7c5MmTzbJly8zmzZvdX2wGDRpUqm0o6XZ8+OGHBjD16tUzH3/8sVm3bp3p27evCQsLM0eOHCmzumb3Iu3YsaPA5/7rX/9qHn74Yfd2165dTWxsrEdPzNixY93vwU8++cQEBwcbp9NZ4vU3xpjevXu7e2SyAWbUqFH5Ps8DDzzg8UU9MjLSvPTSS+7ts2fPmnr16rnDzPr16w1g9uzZU+C2XKjCDwC22Wwe22vWrGHTpk1cccUVpKenl8pzbtmyhd69e/PUU0/Rs2fPUnmOwrTL6XRyww030LRpU8aPH5/r+X7//Xe+/vprBg0aVCr1zUtB29GvXz82btzIDz/8QOPGjbnzzjtJS0vL8zzgur18buWloaTakW3//v306tWLO+64g8GDB5d6/bPl147MzEzANZj5nnvuoXXr1kyZMoXLL7+c2bNn5zift95XULjfkVOnTvHBBx/kWk9ff2/VqlWLhQsX8tlnn1GjRg3sdjsOh4M2bdq4x5QBjB49mq5du9KiRQsGDx7MW2+9xTvvvMORI0cs047s998TTzzBbbfdRtu2bZkzZ06OQdulXddNmzYRFRXFZZddluvjMzIyeP7552nRogVhYWHUqFGD+Ph49u3b53Fchw4dPJ6rY8eO7Nq1i4yMDHr27En9+vVp2LAh/fv359///neBBx8X53Mvt3Ftb731Fu3ataNWrVrUqFGDmTNnutvicDhITk7myiuvdB/v5+dH27Zt3dstW7ake/fuNG/enDvuuIOZM2eSkpJSoLZkq7ADgBs1aoTNZssx66Vhw4YABAYGlsrzbt26lWuvvZYhQ4Ywbty4Ej9/Ydt1/PhxevXqRY0aNVi0aFGeg7nmzJlDWFhYmQ1sK2w7smeSNG7cmA4dOhAaGsqiRYvo27cvtWvXznXGw59//klkZGTpNYKSbUe2/fv3c80119CxY0dmzJhRqvXPVtB21KlTB4CmTZt6HBcbG5vjDzWU/fsKiva7//HHH5OamsqAAQM8yq3y3oqLiyMhIYHDhw9TuXJlQkJCqF27NjExMXmev0OHDgDs3r2bsLCwUmiBS0m2I7f3n7+/Pw0bNsz1/Vdadc3v8+OVV15hypQpTJ06lebNm1O9enVGjRpVqJmJQUFBbNiwgWXLlhEfH89TTz3F008/zdq1a/OcSl0Sn3vVq1f32P7oo48YPXo0r7zyCh07diQoKIiXXnqJ1atXexx3YYAy591Jyc/Pj2+++YYVK1YQHx/Pq6++yhNPPMHq1asv+h49X4XtmQkLC6Nnz5689tprnDx5skyec8uWLVxzzTXcfffdPP/886XyHIVpl9PpJC4ujqpVq7JkyRICAgJyPc4Yw5w5cxgwYECZjVwv7utjjHF/w+jYsSMOh4M1a9a4969evRqHw0GnTp1KrM65Kcl2APzxxx9069aNNm3aMGfOHI+ZKKWpoO1o0KABdevWZceOHR7lO3fupH79+h5l3nhfQdFek3feeYebbrqJWrVqeZRb7b0VHh5OSEgI3333HYcOHbpoiNy4cSNwLiCUlpJsR9u2bfH39/d4/505c4Y9e/bkeP+VZl1btGjB77//nueU5uXLl9O7d2/+8Y9/0LJlSxo2bMiuXbtyHLdq1aoc240bN3b3RFWuXJkePXowadIkfv75Z/bs2eOe6VWc+hfG8uXL6dSpEw888ACtW7emUaNGJCQkuPfb7XYiIyM9fkcyMjLc769sNpuNzp0788wzz7Bx40aqVq3KokWLCl6RIl+gKgd2795tIiMjTZMmTcz8+fPN1q1bzfbt2817771nIiMjzUMPPWSMMebAgQNm48aNZubMmQYw//vf/8zGjRs9rsHu3bvXbNy40TzzzDOmRo0aZuPGjWbjxo3uAUy//vqrqVWrlunXr585cOCA++fQoUNeaZfT6TTt27c3zZs3N7t37/ao09mzZz3Ot3TpUgOYrVu3lnhdi9uOhIQEM2HCBLNu3Tqzd+9es2LFCtO7d29Ts2ZNk5yc7D5Xr169TIsWLczKlSvNypUrTfPmzc3f/vY3S7Xjjz/+MI0aNTLXXnut+f333z1eM19phzHGTJkyxQQHB5uFCxeaXbt2mXHjxpmAgIAc43+89b4qTFuMMWbXrl3GZrOZL7/8Mtdz+fp7yxhjZs+ebVauXGl2795t3nvvPVOzZk2PNq5YscJMnjzZbNy40fz2229mwYIFpm7duuamm26yVDuMMWbkyJHmkksuMV9//bXZvn27GTRokImIiDBHjx4t07p269bNNGvWzMTHx5vffvvNfPHFF+730KhRo0x0dLT56aefzNatW83gwYM9BsQac24A8OjRo8327dvNBx98YKpXr27eeustY4wxn332mZk2bZrZuHGj2bNnj3njjTdMpUqV8h3sXND65zVmZtGiRR5lU6dONcHBwearr74yO3bsMOPGjTPBwcGmZcuW7mOee+45ExYWZhYvXmy2b99uhg0bZoKDg83NN99sjHGN5Xn++efN2rVrzd69e90za7MHTBdEhQ4zxrhGUT/44IMmJibGVKlSxdSoUcNceeWV5qWXXjInT540xhgzfvx4j2lq2T9z5sxxn+fuu+/O9Zjvv//+oueoX7++V9qVPZg5t5/ExESPc/Xt29d06tSpVOpZ3Hb88ccf5vrrrzcRERGmSpUqJioqyvz973/PMS32yJEjpl+/fiYoKMgEBQWZfv36XXQgty+2Y86cOXm+Zr7SjmwTJ040UVFRplq1aqZjx465zmby5vvKmIK35fHHHzdRUVEmIyMj1/P4+nvLGNfA0cjISFOlShXTuHFj88orr3gMLF2/fr1p3769sdvtJiAgwFx++eVm/PjxHv8drNAOY1xT/R9++GETERFhgoKCTI8ePUpsNlNh6nrkyBFzzz33mLCwMBMQEGCaNWtmPv/8c/e+3r17mxo1apiIiAgzbty4HFOVu3btah544AH3zJ/Q0FDz2GOPudu7fPly07VrVxMaGmoCAwNNixYtPGYQFbf+BQ0zaWlpZuDAgcZut5uQkBBz//33m8cee8wjzJw5c8Y8+OCD7naMHTvW3HHHHaZPnz7GGNcSB9ddd52pVauW8ff3N5dddpl59dVXC/pyGGOMsWVVUERERHxEt27daNWqFVOnTvV2VUpcZmYmsbGx3HnnnfzrX/8qkXNW2AHAIiIiUvr27t1LfHw8Xbt2JT09nddee43ExET+/ve/l9hzVNgBwCIiIlL6KlWqxNy5c/nLX/5C586d+eWXX1i6dCmxsbEl9hy6zCQiIiKWpp4ZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxtP8H5Rj6JA7k71QAAAAASUVORK5CYII=", + "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOSElEQVR4nO3deXgUReLG8e8QIAdkJuFIABMgCEqQG5ZTBQUirqu4KArLoijHqsjlKuhPFHUFFBUQb0AOdRUEhcVdj4iKotynyk0IGAWCQJgBQgIk9ftjkoExCeSe6eT9PE+e0NU9PVVMT+ad6upqmzHGICIiImJRFXxdAREREZGiUJgRERERS1OYEREREUtTmBERERFLU5gRERERS1OYEREREUtTmBERERFLU5gRERERS6vo6wqUtMzMTA4cOEBoaCg2m83X1REREZF8MMZw4sQJ6tSpQ4UKF+97KfNh5sCBA0RHR/u6GiIiIlIISUlJREVFXXSbMh9mQkNDAfd/ht1u93FtREREJD9cLhfR0dGez/GLKfNhJvvUkt1uV5gRERGxmPwMEdEAYBEREbE0hRkRERGxNIUZERERsbQyP2YmP4wxnDt3joyMDF9XRYpJQEAAFStW1OX4IiLlQLkPM2fOnOHgwYOkpqb6uipSzEJCQqhduzaVK1f2dVVERKQEleswk5mZSWJiIgEBAdSpU4fKlSvrm3wZYIzhzJkz/P777yQmJtKoUaNLTrgkIiLWVa7DzJkzZ8jMzCQ6OpqQkBBfV0eKUXBwMJUqVWL//v2cOXOGoKAgX1dJRERKiL6ugr61l1F6XUVEygf9tRcREZECcaaBK927zJXuLvcFhRkRERHJtyOp0GsBvLL2fKBxpcP0Ne7yIz64nkZhRgAYOHAgt956q6+rUSBWrLOIiJU50+D2hZB4HGZsdAeasxnuIDNzk7v89oWl30NTrgcAl0f79u0jJiaGTZs20bJlS0/5yy+/jDGmxJ9/4MCBHD9+nCVLlpT4c4mISPGy2aB7jDu4gDvQfLobfj1xfpseDdzblSaFGQHA4XD4ugoiIuLn7IEwor3739mB5sIgM7Q1DG/n3q406TRTcUgBdgBrgJ1ZyyXMGMPkyZNp0KABwcHBtGjRgkWLFrmrk5JC//79qVmzJsHBwTRq1Ig5c+YAEBMTA0CrVq2w2Wx07doVyHnKpmvXrgwfPpxRo0YRHh5OZGQkM2bM4NSpU9xzzz2EhoZy+eWX89lnn3kek5GRwaBBg4iJiSE4OJgrr7ySl19+2bP+qaeeYt68efznP//BZrNhs9lYvnw5AL/99ht33nkn4eHhVK9enV69erFv3z6vfT/00EOEhYVRvXp1xowZUyo9SSIi4s0eCGM7Q1Sod3lUKIzpVPpBBhRmii4J6AvEAh2AxlnLSSX7tOPGjWPOnDm88cYbbN26ldGjR/P3v/+db7/9lieeeIJt27bx2WefsX37dt544w1q1KgBwNq1awFYtmwZBw8e5OOPP87zOebNm0eNGjVYu3Ytw4cP5/7776dPnz506tSJjRs3csMNNzBgwADP7MmZmZlERUXx4Ycfsm3bNp588kn+7//+jw8//BCAhx9+mDvuuIOePXty8OBBDh48SKdOnUhNTeW6666jatWqfPfdd3z//fdUrVqVnj17cubMGQBeeuklZs+ezdtvv83333/PsWPHWLx4cUn+F4uISC5c6fD8D949MuBenrwy51VOpcFmyvjXW5fLhcPhwOl0YrfbvdalpaWRmJhITExM4SZVS8EdXOJzWRcHzAfCC77bSzl16hQ1atTg66+/pmPHjp7ywYMHk5qaysmTJ6lRowazZ8/O8di8xsz8cSxL165dycjIYMWKFYC7Z8ThcNC7d2/eeecdAA4dOkTt2rVZtWoVHTp0yLWuw4YNIzk52dNrlNuYmdmzZzN58mS2b9/umYH5zJkzhIWFsWTJEuLi4qhTpw4jR45k7NixAJw7d46YmBjatGmT5/ibIr++IiLiJfuqpexTTODukSmJU00X+/z+I/XMFEUyuQcZssqTS+Zpt23bRlpaGj169KBq1aqen3feeYeEhATuv/9+5s+fT8uWLRkzZgwrV64s1PM0b97c8++AgACqV69Os2bNPGWRkZEAHD582FP25ptv0rZtW2rWrEnVqlWZOXMmv/zyy0WfZ8OGDezZs4fQ0FBPW6pVq0ZaWhoJCQk4nU4OHjzoFdwqVqxI27ZtC9UuEREpHGNgWeL55aGtYfndMKTV+bIv97q3K00aAFwUziKuL6TMzEwA/ve//3HZZZd5rQsMDCQ6Opr9+/fzv//9j2XLltGtWzeGDRvGiy++WKDnqVSpkteyzWbzKsvuRcmuz4cffsjo0aN56aWX6NixI6GhobzwwgusWbPmku1p06YN//73v3Osq1mzZoHqLCIiJccRBIv6uC+/7tHA3QNTKeD8oOBlie71jlLuDFeYKYpLXQBUQhcINWnShMDAQH755Re6dOmS6zY1a9Zk4MCBDBw4kGuuuYZHHnmEF1980XMH6YyMjGKv14oVK+jUqRMPPPCApywhIcFrm8qVK+d47tatW7NgwQIiIiLy7EqsXbs2q1ev5tprrwXcp5k2bNhA69ati7kVIiJyMTVC4D93ui+/zj6VlH2V0/B2pR9kQGGmaCJxj43Ja8xMZMk8bWhoKA8//DCjR48mMzOTq6++GpfLxcqVK6latSoJCQm0adOGq666ivT0dP773/8SGxsLQEREBMHBwXz++edERUURFBRUbJdlN2zYkHfeeYcvvviCmJgY3n33XdatW+e5ggqgfv36fPHFF+zcuZPq1avjcDjo378/L7zwAr169eKZZ54hKiqKX375hY8//phHHnmEqKgoRo4cyXPPPUejRo2IjY1lypQpHD9+vFjqLSIiBZNbYPHFVUzZNGamKMKBWbiDy4XisspLYPBvtn/96188+eSTTJo0idjYWG644QY++eQTYmJiqFy5Mo899hjNmzfn2muvJSAggPnz5wPusSbTp0/nrbfeok6dOvTq1avY6nTffffRu3dv7rzzTtq3b8/Ro0e9emkAhgwZwpVXXukZV/PDDz8QEhLCd999R926denduzexsbHce++9nD592tNT889//pO77rqLgQMHek5h/fWvfy22uouIiHXpaqbiuNolBfdgXyfuU0uRlGiQkfzR1UwiItZVkKuZdJqpOISj8CIiIuIjOs0kIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwY1HGGIYOHUq1atWw2Wxs3rzZZ3Xp2rUro0aN8tnzi4hI+aZJ8yzq888/Z+7cuSxfvpwGDRpQo0YNX1dJRETEJxRmisiZ5n3nUABXOhhTsncOTUhIoHbt2nTq1KnknkRERMQCdJqpCI6kQq8F8Mpad4AB9+/pa9zlR1JL5nkHDhzI8OHD+eWXX7DZbNSvX5/09HRGjBhBREQEQUFBXH311axbt87zmLlz5xIWFua1nyVLlmCz2TzLTz31FC1btuTdd9+lfv36OBwO+vbty4kTJzzbnDp1irvuuouqVatSu3ZtXnrppZJppIiISD4pzBSSMw1uXwiJx2HGRnegOZvhDjIzN7nLb1/o3q64vfzyyzzzzDNERUVx8OBB1q1bx5gxY/joo4+YN28eGzdupGHDhtxwww0cO3asQPtOSEhgyZIl/Pe//+W///0v3377Lc8995xn/SOPPMI333zD4sWLiY+PZ/ny5WzYsKG4mygiIpJvCjOFZLNB95jzyzM2Qtd57iCTrUcD93bFzeFwEBoaSkBAALVq1SIkJIQ33niDF154gRtvvJEmTZowc+ZMgoODefvttwu078zMTObOnUvTpk255pprGDBgAF999RUAJ0+e5O233+bFF1+kR48eNGvWjHnz5pGRkVH8jRQREcknn4aZ7777jptvvpk6depgs9lYsmSJ13pjDE899RR16tQhODiYrl27snXrVt9U9g/sgTCiPQxpdb7s1/NnYxjaGoa38x5LU1ISEhI4e/YsnTt39pRVqlSJdu3asX379gLtq379+oSGhnqWa9euzeHDhz3Pc+bMGTp27OhZX61aNa688soitkBERKTwfBpmTp06RYsWLXj11VdzXT958mSmTJnCq6++yrp166hVqxY9evTwGsPhS/ZAGNsZokK9y6NCYUyn0gky4A59gNf4l+zy7LIKFSp4tst29uzZHPuqVKmS17LNZiMzM9PreURERPyJT8PMjTfeyLPPPkvv3r1zrDPGMG3aNB5//HF69+5N06ZNmTdvHqmpqbz//vs+qG1OrnR4/gfvHhlwL09eeX5QcElr2LAhlStX5vvvv/eUnT17lvXr1xMbGwtAzZo1OXHiBKdOnfJsU9C5aRo2bEilSpVYvXq1pywlJYVdu3YVrQEiIiJF4LdjZhITEzl06BBxcXGessDAQLp06cLKlSvzfFx6ejoul8vrpyRkX7V04RiZC3tosgcFl0agqVKlCvfffz+PPPIIn3/+Odu2bWPIkCGkpqYyaNAgANq3b09ISAj/93//x549e3j//feZO3dugZ6natWqDBo0iEceeYSvvvqKn3/+mYEDB1Khgt8eRiIiUg747afQoUOHAIiMjPQqj4yM9KzLzaRJk3A4HJ6f6OjoEqmfMbAs8fzy0Naw/G7vMTRf7nVvVxqee+45brvtNgYMGEDr1q3Zs2cPX3zxBeHh4YB7bMt7773Hp59+SrNmzfjggw946qmnCvw8L7zwAtdeey233HIL3bt35+qrr6ZNmzbF3BoREZH8sxk/GQhhs9lYvHgxt956KwArV66kc+fOHDhwgNq1a3u2GzJkCElJSXz++ee57ic9PZ309PPdIS6Xi+joaJxOJ3a73WvbtLQ0EhMTiYmJISio4DPcHUl1X37do8H5wb7ZPTbLEmFRH6gRUuDdSjEp6usrIiK+43K5cDgcuX5+/5HfzgBcq1YtwN1Dc2GYOXz4cI7emgsFBgYSGFg6I29rhMB/7vSeATj7Kqfh7Up2BmARERFx89vTTDExMdSqVYsvv/zSU3bmzBm+/fZbv5rC3xGU86ole6CCjIiISGnxac/MyZMn2bNnj2c5MTGRzZs3U61aNerWrcuoUaOYOHEijRo1olGjRkycOJGQkBD+9re/+bDWIiIi4k98GmbWr1/Pdddd51l+6KGHALj77ruZO3cuY8aM4fTp0zzwwAOkpKTQvn174uPjvSZ1ExERkfLNbwYAl5SLDSDSANGyTa+viIh1FWQAsN+OmRERERHJD4UZERERsTSFGREREbE0hRkRERGxNIUZuaT69eszbdo0z7LNZmPJkiWlXo+nnnqKli1blvrzioiIf1OYkQI7ePAgN954Y762VQAREZGS5re3M5DidebMGSpXrlws+8q+1YSIiIg/UM9MMUhJSWHHjh2sWbOGnTt3kpKSUuLP2bVrVx588EEefPBBwsLCqF69OuPGjSN72qD69evz7LPPMnDgQBwOB0OGDAHcN/C89tprCQ4OJjo6mhEjRnDq1CnPfg8fPszNN99McHAwMTEx/Pvf/87x3H88zfTrr7/St29fqlWrRpUqVWjbti1r1qxh7ty5PP3002zZsgWbzYbNZmPu3LkAOJ1Ohg4dSkREBHa7neuvv54tW7Z4Pc9zzz1HZGQkoaGhDBo0iLS0tGL+XxQRkbJAYaaIkpKS6Nu3L7GxsXTo0IHGjRvTt29fkpKSSvy5582bR8WKFVmzZg3Tp09n6tSpzJo1y7P+hRdeoGnTpmzYsIEnnniCn376iRtuuIHevXvz448/smDBAr7//nsefPBBz2MGDhzIvn37+Prrr1m0aBGvv/46hw8fzrMOJ0+epEuXLhw4cIClS5eyZcsWxowZQ2ZmJnfeeSf//Oc/ueqqqzh48CAHDx7kzjvvxBjDTTfdxKFDh/j000/ZsGEDrVu3plu3bhw7dgyADz/8kPHjxzNhwgTWr19P7dq1ef3110vuP1NERKzLlHFOp9MAxul05lh3+vRps23bNnP69OlC7fvYsWMmLi7OADl+4uLizLFjx4pa/Tx16dLFxMbGmszMTE/Z2LFjTWxsrDHGmHr16plbb73V6zEDBgwwQ4cO9SpbsWKFqVChgjl9+rTZuXOnAczq1as967dv324AM3XqVE8ZYBYvXmyMMeatt94yoaGh5ujRo7nWc/z48aZFixZeZV999ZWx2+0mLS3Nq/zyyy83b731ljHGmI4dO5r77rvPa3379u1z7Otiivr6ioiI71zs8/uP1DNTBMnJycTHx+e6Lj4+nuTk5BJ9/g4dOmCz2TzLHTt2ZPfu3WRkZADQtm1br+03bNjA3LlzqVq1qufnhhtuIDMzk8TERLZv307FihW9Hte4cWPCwsLyrMPmzZtp1aoV1apVy3e9N2zYwMmTJ6levbpXXRITE0lISABg+/btdOzY0etxf1wWEREBDQAuEqfTWaT1Ja1KlSpey5mZmfzjH/9gxIgRObatW7cuO3fuBPAKSJcSHBxc4HplZmZSu3Ztli9fnmPdxYKTiIhIbhRmisDhcBRpfVGtXr06x3KjRo0ICAjIdfvWrVuzdetWGjZsmOv62NhYzp07x/r162nXrh0AO3fu5Pjx43nWoXnz5syaNYtjx47l2jtTuXJlT0/RhfU4dOgQFStWpH79+nnWZfXq1dx1111e7RMREfkjnWYqgsjISOLi4nJdFxcXR2RkZIk+f1JSEg899BA7d+7kgw8+4JVXXmHkyJF5bj927FhWrVrFsGHD2Lx5M7t372bp0qUMHz4cgCuvvJKePXsyZMgQ1qxZw4YNGxg8ePBFe1/69etHrVq1uPXWW/nhhx/Yu3cvH330EatWrQLcV1UlJiayefNmjhw5Qnp6Ot27d6djx47ceuutfPHFF+zbt4+VK1cybtw41q9fD8DIkSOZPXs2s2fPZteuXYwfP56tW7cW4/+eiIiUFQozRRAeHs6sWbNyBJq4uDhmzZpFeHh4iT7/XXfdxenTp2nXrh3Dhg1j+PDhDB06NM/tmzdvzrfffsvu3bu55ppraNWqFU888QS1a9f2bDNnzhyio6Pp0qULvXv39lw+nZfKlSsTHx9PREQEf/7zn2nWrBnPPfecp3fotttuo2fPnlx33XXUrFmTDz74AJvNxqeffsq1117LvffeyxVXXEHfvn3Zt2+fJwDeeeedPPnkk4wdO5Y2bdqwf/9+7r///mL6nxMRkbLEZkzWxCRllMvlwuFw4HQ6sdvtXuvS0tJITEwkJiaGoKCgQj9HSkoKycnJOJ1OHA4HkZGRJR5kunbtSsuWLb1uMyDeiuv1FRGR0nexz+8/0piZYhAeHl7i4UVERERyp9NMIiIiYmnqmbGo3C5rFhERKY/UMyMiIiKWpjAjIiIilqYwA5TxC7rKLb2uIiLlQ7kOM5UqVQIgNTXVxzWRkpD9uma/ziIiUjaV6wHAAQEBhIWFcfjwYQBCQkIKdF8i8U/GGFJTUzl8+DBhYWF53t5BRETKhnIdZgBq1aoF4Ak0UnaEhYV5Xl8RESm7yn2Ysdls1K5dm4iICM6ePevr6kgxqVSpknpkRETKiXIfZrIFBATow09ERMSCyvUAYBEREbE+hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTSFGREREbE0hRkRERGxNIUZERERsTS/DjPnzp1j3LhxxMTEEBwcTIMGDXjmmWfIzMz0ddVERETET1T0dQUu5vnnn+fNN99k3rx5XHXVVaxfv5577rkHh8PByJEjfV09ERER8QN+HWZWrVpFr169uOmmmwCoX78+H3zwAevXr/dxzURERMRf+PVppquvvpqvvvqKXbt2AbBlyxa+//57/vznP+f5mPT0dFwul9ePiIiIlF1+3TMzduxYnE4njRs3JiAggIyMDCZMmEC/fv3yfMykSZN4+umnS7GWIiIi4kt+3TOzYMEC3nvvPd5//302btzIvHnzePHFF5k3b16ej3nsscdwOp2en6SkpFKssYiIiJQ2mzHG+LoSeYmOjubRRx9l2LBhnrJnn32W9957jx07duRrHy6XC4fDgdPpxG63l1RVRUREpBgV5PPbr3tmUlNTqVDBu4oBAQG6NFtEREQ8/HrMzM0338yECROoW7cuV111FZs2bWLKlCnce++9vq6aiIiI+Am/Ps104sQJnnjiCRYvXszhw4epU6cO/fr148knn6Ry5cr52odOM4mIiFhPQT6//TrMFAeFGREREespM2NmRERERC5FYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsTWFGRERELE1hRkRERCxNYUZEREQsze/DzG+//cbf//53qlevTkhICC1btmTDhg2+rpaIiIj4iYq+rsDFpKSk0LlzZ6677jo+++wzIiIiSEhIICwszNdVgxQgGXACYUAEEO7LComIiJRPfh1mnn/+eaKjo5kzZ46nrH79+r6rULYkYDAQf0FZHDALiPZJjURERMotvz7NtHTpUtq2bUufPn2IiIigVatWzJw507eVSiFnkCFreXDWehERESk1fh1m9u7dyxtvvEGjRo344osvuO+++xgxYgTvvPNOno9JT0/H5XJ5/RSrZHIGmWzxWetFRESk1Pj1aabMzEzatm3LxIkTAWjVqhVbt27ljTfe4K677sr1MZMmTeLpp58uuUo5i7heREREilWhw8zatWtZvnw5hw8fJjMz02vdlClTilwxgNq1a9OkSROvstjYWD766KM8H/PYY4/x0EMPeZZdLhfR0cU4kMVRxPUiIiJSrAoVZiZOnMi4ceO48soriYyMxGazedZd+O+i6ty5Mzt37vQq27VrF/Xq1cvzMYGBgQQGBhZbHXKIxD3YN7dTTXFZ60VERKTUFCrMvPzyy8yePZuBAwcWc3W8jR49mk6dOjFx4kTuuOMO1q5dy4wZM5gxY0aJPu9FheO+aimvq5l0ebaIiEipKlSYqVChAp07dy7uuuTwpz/9icWLF/PYY4/xzDPPEBMTw7Rp0+jfv3+JP/dFRQPzOT/PjAN3j4yCjIiISKmzGWNMQR80efJkDhw4wLRp00qgSsXL5XLhcDhwOp3Y7XZfV0dERETyoSCf34XqmXn44Ye56aabuPzyy2nSpAmVKlXyWv/xxx8XZrciIiIiBVaoMDN8+HC++eYbrrvuOqpXr16sg35FRERECqJQYeadd97ho48+4qabbiru+oiIiIgUSKFmAK5WrRqXX355cddFREREpMAKFWaeeuopxo8fT2pqanHXR0RERKRACnWaafr06SQkJBAZGUn9+vVzDADeuHFjsVRORERE5FIKFWZuvfXWYq6GiIiISOEUaJ6ZXbt2ccUVV5RkfYqd5pkREREpXs40sNnAfsHdg1zpYAw4gornOQry+V2gMTOtWrUiNjaWsWPHsmrVqiJVUkRERKznSCr0WgCvrHUHGHD/nr7GXX7EB8NpCxRmjh49yuTJkzl69Ch//etfiYyMZNCgQSxdupS0tLSSqqOIiIj4AWca3L4QEo/DjI3uQHM2wx1kZm5yl9++0L1daSrU7QwAjDGsWrWKpUuXsnTpUvbv30/37t3p1asXf/nLX4iIiCjuuhaKTjOJiIgUj+wemJmbzpdFhcKvJ84vD20Nw9t5n4Iq1HOV1GmmC9lsNjp16sRzzz3Htm3b2Lx5M9deey1z584lOjqa1157rbC7FhERET9kD4QR7WFIq/NlJRFkCqrQPTMXc/ToUY4dO0ajRo2Ke9cFpp4ZERGR4nU2A7rO8w4yUaGw/G6oFFA8z1HiPTPz5s3jf//7n2d5zJgxhIWF0alTJ/bv30/16tX9IsiIiIhI8XKlw/M/eAcZcC9PXnl+UHBpKlSYmThxIsHBwQCsWrWKV199lcmTJ1OjRg1Gjx5drBUUERER/5DXmJls2YOCSzvQFCrMJCUl0bBhQwCWLFnC7bffztChQ5k0aRIrVqwo1gqKiIiIfzAGliWeXx7a2n1q6cIxNF/udW9XmgoVZqpWrcrRo0cBiI+Pp3v37gAEBQVx+vTp4qudiIiI+A1HECzqAzFh5wf7Vgo4Pyg4Jsy9vrgmzsuvQt3OoEePHgwePJhWrVqxa9cubrrpJgC2bt1K/fr1i7N+IiIi4kdqhMB/7vSeATj7Kqfh7Uo/yEAhe2Zee+01OnbsyO+//85HH31E9erVAdiwYQP9+vUr1gqKiIiIf3EE5bz82h7omyADJXRptj/RpdkiIiLWU+KXZs+ZM4eFCxfmKF+4cCHz5s0rzC5FRERECqVQYea5556jRo0aOcojIiKYOHFikSslIiIikl+FCjP79+8nJiYmR3m9evX45ZdfilwpERERkfwqVJiJiIjgxx9/zFG+ZcsWz2BgERERkdJQqDDTt29fRowYwTfffENGRgYZGRl8/fXXjBw5kr59+xZ3HUVERETyVKh5Zp599ln2799Pt27dqFjRvYuMjAzuvvtujZkRERGRUlWkS7N3797Npk2bCA4Opnnz5tSrV68461YsdGm2iIiI9RTk87tQPTMAb7/9NlOnTmX37t0ANGrUiFGjRjF48ODC7lJERESkwAoVZp544gmmTp3K8OHD6dixI+C+e/bo0aPZt28fzz77bLFWUkRERCQvhTrNVKNGDV555ZUcty744IMPGD58OEeOHCm2ChaVTjOJiIhYT4nPAJyRkUHbtm1zlLdp04Zz584VZpciIiIihVKoMPP3v/+dN954I0f5jBkz6N+/f5ErJSIiIpJfRRoAHB8fT4cOHQBYvXo1SUlJ3HXXXTz00EOe7aZMmVL0WoqIiIjkoVBh5ueff6Z169YAJCQkAFCzZk1q1qzJzz//7NnOZrMVQxVFRERE8laoMPPNN98Udz1ERERECqVQY2ZERERE/IXCjIiIiFiawoyIiIhYmsKMiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIWJrCjIiIiFiawoyIiIhYmsKMiIiIWJqlwsykSZOw2WyMGjXK11URERERP2GZMLNu3TpmzJhB8+bNfV0VERER8SOWCDMnT56kf//+zJw5k/DwcF9XR0RERPyIJcLMsGHDuOmmm+jevbuvqyIiIiJ+pqKvK3Ap8+fPZ+PGjaxbty5f26enp5Oenu5ZdrlcJVU1ERER8QN+3TOTlJTEyJEjee+99wgKCsrXYyZNmoTD4fD8REdHl3AtRURExJdsxhjj60rkZcmSJfz1r38lICDAU5aRkYHNZqNChQqkp6d7rYPce2aio6NxOp3Y7fZSq7uIiIgUnsvlwuFw5Ovz269PM3Xr1o2ffvrJq+yee+6hcePGjB07NkeQAQgMDCQwMLC0qigiIiI+5tdhJjQ0lKZNm3qVValSherVq+coFxERkfLJr8fMiIiIiFyKX/fM5Gb58uW+roKIiIj4EfXMlGPONHCle5e50t3lIiIiVqEwU04dSYVeC+CVtecDjSsdpq9xlx9J9W39RERE8kthphxypsHtCyHxOMzY6A40ZzPcQWbmJnf57QvVQyMiItZguTEzUnQ2G3SPcQcXcAeaT3fDryfOb9OjgXs7ERERf6eemXLIHggj2sOQVufLLgwyQ1vD8Hbu7URERPydwkw5ZQ+EsZ0hKtS7PCoUxnRSkBEREetQmCmnXOnw/A/ePTLgXp68MudVTiIiIv5KYaYcyr5qKXvMDHj30GQPClagERERK1CYKYeMgWWJ55eHtobld3uPoflyr3s7ERERf6ermcohRxAs6uO+/LpHA/dg30oB7kHB4A46i/q4txMREfF3NmPK9vfvgtxCvLxxprkvv75wsK8r3d0joyAjIiK+VJDPb/XMlGO5BRZdxSQiIlajMTMiIiJiaQozIiIiYmkKMyIiImJpCjMiIiJiaQozIiIiYmkKMyIiImJpCjMiIiJiaQozIiIiYmkKMyIiImJpmgG4vEsBkgEnEAZEAOG+rJCIiEjBqGemPEsC+gKxQAegcdZyki8rJSIiUjAKM+VVCjAYiP9DeXxWeUqp10hERKRQFGbKq2RyBpls8VnrRURELEBhprxyFnG9iIiIn1CYKa8cRVwvIiLiJxRmyqtIIC6PdXFZ60VERCxAYaa8CgdmkTPQxGWV6/JsERGxCM0zU55FA/M5P8+MA3ePjIKMiIhYiMJMeReOwouIiFiaTjOJiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIilKcyIiIiIpSnMiIiIiKX5dZiZNGkSf/rTnwgNDSUiIoJbb72VnTt3+rpaIiIi4kf8Osx8++23DBs2jNWrV/Pll19y7tw54uLiOHXqlK+rJiIiUjgpwA5gDbAza9mK/KgdNmOM8d3TF8zvv/9OREQE3377Lddee22+HuNyuXA4HDidTux2ewnXUERE5CKSgMFA/AVlccAsINonNSqcUmhHQT6//bpn5o+cTicA1apV83FNRERECiiFnAGArOXBWKeHxg/bUbH0n7JwjDE89NBDXH311TRt2jTP7dLT00lPT/csu1yu0qieiIjIxSWTMwBki89aH1561Sk0P2yHZXpmHnzwQX788Uc++OCDi243adIkHA6H5yc62kr9diIiUmY5i7jeX/hhOywRZoYPH87SpUv55ptviIqKuui2jz32GE6n0/OTlJRUSrUUERG5CEcR1/sLP2yHX59mMsYwfPhwFi9ezPLly4mJibnkYwIDAwkMDCyF2omIiBRAJO5BsrmdoonLWm8FftgOv+6ZGTZsGO+99x7vv/8+oaGhHDp0iEOHDnH69GlfV01ERKRgwnFf7RP3h/Lsq4CsMF4G/LIdfn1pts1my7V8zpw5DBw4MF/70KXZIiLiV1JwD5J14j4lE4l1gsyFSrgdBfn89vvTTCIiImVKONYML3/kR+3w69NMIiIiIpeiMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKW5tdXM0kpuPDSujAgAr8ZnS4iIpIf6pkpz5KAvkAs0AFonLWsO0CIiIiFKMyUV354C3cREZHCUJgpr/JzC3cRERELUJgpr/zwFu4iIiKFoQHA5ZUf3sJdREQsJAn3kITjuC8gCQeifVMV9cyUV9m3cM+NlW5FLyIipW8PcC/QAuiS9fverHIfUJgpr/zwFu4iImIBScD9wLI/lC/LKvfBFbE6zVSeRQPzKRu3ohcRkdKRQs4gk21Z1vpSPt2kMFPe+dEt3EVExAKOF3F9CdBpJhEREcm/sCKuLwEKMyIiIpJ/DqB7Huu645OrYXWaqbw7BBzm/L2ZagK1fFkhKRN0zy+RsisdmAqMxnvsTHdgWtb6UqYwU445U8F2FOydgFNAFXCtAWMHR4ivayeWlUTOW2VkXyXnozkoRKQYpQC34H5PPwe4ADtwALgeWFr6VdJppnLqyEnotRBeOQCuZUCE+/f0A+7yIyd9XUOxJN3zS6Tsc+Du0b8FaIs7wLTNWj6MT04zKcyUQ840uP0jSDwOM7bBKyfg7D6YfgJmbnOX3/6RezuRAtE9v0TKPj+cdFVhphyy2aB7/fPLM7ZB1w/cQSZbj/ru7UQKRPf8kpKUAuwA1gA7UU+fr/jhpKsaM1MO2QNhRAvgzPkA8+uJ8+uHNoHhLdzbiRSI7vklJUVjsfyLn026qp6ZcsqeDmOvgahQ7/KoUBhzjXu9SIH5YfezlAEai+WfwoHGQPus3z68YlFhppxyhcHza7x7ZMC9PHmte71Igflh97OUARqLJZeg00zlkCsdpq+BmZvPl0WFng82MzYBNhjeTqeapBD8rPtZygCNxZJLUM9MOWQMLEs8vzy0NSy/G4a0Ol/25V73diKF4kfdz+WdM839BeZCrnSLXa2osVhyCQoz5ZAjCBb1gZgwGNoKhjeHSpvdg4KHtHKXL+rj3k5ErOtIKvRaAK+sAZcT2OD+PX2Nu/xIqq9rmE8aiyWXYDOmbH//drlcOBwOnE4ndrvd19XxK87TYEsEezvOzwC8FkwMOIJ9XTsRKQpnmjuwJB53Lw9tAmOuhue/P38VY0wY/OdOi3xx0dVM5U5BPr81Zqa8SgHHQ8CHQPa3s1Ng/xNwBzAFnRoQsTCbDbrHwMxN7uUZ2+DTJO9B/z1iLDSflMZi+Z2UlBSSk5NxOp2EhYURERFBeLhvXhCdZiqEMnEOOhmYy/kgky01q1xXB4hYWvZ8UkOanC+z/HxSGovlN5KSkujbty+xsbF06NCBxo0b07dvX5KSknxSH4WZAvKcg157PtBkXx1kqXPQujpApMyz74GxV+cxn9TV7vUiBZWSksLgwYOJj/e+Xj4+Pp7BgweTklL6E/8ozBSAMw1uX5h1T6ON7kBzNiPrMudNWfc0WmiRHhpdHSBS5rkausfI5Dqf1Pfu9SIFlZycnCPIZIuPjyc5ufS79hVmCiD7HHS2GRuh67zz56QBejSwyDnosnZ1gO7ZIuLFlQ7Tt3jfc+3CHpoZ2+CVLTlPmYtcitN58a77S60vCQozBWAPhBHtvedj8ToH3dpCE82VoZlanafBdRD3Leg7AG3cy87TPq6YiA/lmE+qCSzv5z2G5stEzSclBedwXLzr/lLrS4LCTAHZA2Fs5zzOQXeySJDJZgNuBz4BFmb9vj2r3CKOnIReH8Irv4FrGRDh/j39N3f5kZO+rqGIb+SYT6odVNoGI9ppPikpmsjISOLicu/aj4uLIzKy9Lv2FWYKyJUOz/+QxznolRbqsk0BhgH7LyizZS0PwxKnaZxpcPtHWWOYtsErJ+DsPph+wt21nnjcvd4SY5hESkCNEPc8MsPbgv0QcA7syTCirbu8RoivayhWFB4ezqxZs3IEmri4OGbNmuWTy7M1z0wBeO5pdMEYGa97Gm10/7bEqabDwD8g5dcUkknGiZMwwoioG0F4p3D3ej8/1WSzQff65+8xles8GvUtMoZJpIQ4UoB/4O55zWK/GXgLqO2bOon1RduimX/7fJKHJ+NMc+IIchB5MJJwm28+OBRmCiC3exqN6eTuqckOOF/uhQf/5Jv6FUgmJIUkMfjDwcR/dX5Uely3OGaNm0V0pv9PqZk9jwZnzg9ytPw8GiLFKQUYSM47Tn8CpOOehM7Pv7SIH0oBBkF4fDjhfzyA4vDJcaUwUwDZ56BvX+ieOfPCexqBO+hY5Rx0SoUUBj/rHWQA4r+KZzCDmf/a/JwHqR+yH4Sx10C1wBQaVE7m9EknIaFhJKRHMKRdOJUSgTBf17IcSuH8TK1hQAT60PSFZHIGmWzxWev1upQ+q78//PC4UpgpoBoh8J87su5pdBnuWwBUgRFrYfifrHNPo+TTyTmCTLb4r+JJPp1siTDjqg27EpP4+NnBfPXl+fZ06xFHu5dncUWdaHRHrlKme+j4D02O6X/KwvvDD48rDQAuqBRwPJB1D6NTWWVZ9zRyPIAlBs4COE9eYp6AU/7/V86VDj8kpfDoSO8gA/DVl/E8OnIwP/ySYp1B2WVBCjn/UJO1PBjLvD/KjKpFXC/Fq6y8P/xw0lX1zBRU9j2N/ij7nkZjsUR3oaPaJeYJCPf/KYCNgcppyTmCTLavvoznsbRkjLHAC1JW+GH3c7lWERgCKXVSSG7rHqgZFhxGxLoIwg+E6xOgtCUDe4EQvO+LF5JVbpX3R/akq7m913006ap6ZgrKD7vXCiMy/BLzBIT7/xTAjiAIybj4f3hIhtMSY5jKjDLy/igzzsK+x5Pou6ovsTfH0qFPBxr/pTF9V/Vl3+NJcNbXFSxnMsD5A7i+AqpklVVxLzt/cK+3BD+cdFVhpqD8sHutMMJd4cwaMYu4Hn+YJ6BHHLNGzCLcZYWvBxAeevH/8Eutl2Km0xp+5bcaKQwekvsNAYcMHcxvNaxyXqNsOFIXen0Gr5z8wySfJ9zlR+r6uoYFEI37qqXtwOqs3/Px2bgfhZmCKiv3NDoO0XdGM7/dfLZ/sp3VC1ez/ZPtzG83n+g7o+G4ryuYP5EVI4nrnkcPU/c4Iita5QVxT+73x/E9rnSLTfpXEeiWx7pu6LRGKXKmwY6kvE/DLouPZ0dSsrWOLwvfg82ZBrd/nDXJ51Z3oMkxyefHFnu/pwFnsn7OZi37iMJMQflh91qhOIBTED4hnMY3N6Z9n/Y0vrkx4RPC3QObLdKhEZ4ezlszcp+J8q0Zswg/Y40X5Egq9FrgvhN7dqDJnqSx1wL3eks4AowkZ6DpllV+pNRrVG7ZbJB5+uLn9TJPO60zqWQS0BeIxX0PtsZZy0m+rFT+2WzQ7cIbFW+Frh943wi0e4yFJvlMAO4CWgDXAs2zlhN8Ux19TyqMaGAm7t6L47jnCQjDOpfVgbsH6RagGe4/DGlAMLAK+AnL9DAdiYH7l0Yz6rn5TH0+mRN7nYQ2cLDfRHL/ynDevQVq+LqSl+BMc89dlHj8/CzSYzp5zzZ9+0L39PN+P/4nFOgNKbNSSH4+GafLSZgjjIjfIggfHA5f+rqC5Yc9EC6rcfFvJZfVcFhjUslLXQVkgcn/jIGbGsHZDJj3o7vswkk+B7aAPzeyyI0/DwL3Acv+UL4sq/wdSn12aYWZQnCmwun0FI4nJeM87STsZBiO4AiCU8NxWOVeJ+HAFNwH3oQLyrsDb+L3fxjAu9v2vu/CGdoknDE3wvPfn/+2c/vH/h8CbDb3N7IvEyH5pDvQfLrb/YcuuCJEVoUeDSzyjS0CkhYk5ZiQMa5bHLMWzCI6wkqJ3/pqZw30/+OYGXD3Xta2wEB/oExcBWSzwbeJ7hsV1wrIOcnn3R3CmbkBGlbzdU3z4XdyBplsy7LWl3KYsRljiRxYaC6XC4fDgdPpxG4v+vRpR07CTwlJTHpkMF9ecC66R1wcj02eRbPLo6lhhUGOKbi7aPO6tM4C33Rc6TB99fl7M4H3vbIg627B7f3/lganzsCps5CQAvcuhdSzEFIJZt8Cl4dDlUpQpbKva3lpKQdT6Duwb54fnvPnzie8tp8fWBdKJudMrRb5/AdwpcKu/Uk55mLq1iOO516exRX1orFb4QvYVjhRC0wC2K/HfSq8Cri+BtvlEHoIuMrHdcyHlFOw55ckHsvl9Zj08iwa1YsmzAqvxwrcp5by8h1wTdGfpiCf3wozBeBMgw/Wp7Domb65Dqrr1iOO25+cT7+24X7dEwC4B9HFXmT9dtznpP2c6zhMXw8zt+ZcN/SqrLsFh5V2rQruyEkY8B8Y1iyFqArJ/JLspG6tMH49F8FrP4fzbi8sEZJ3bN1BbNO8D6ztP2+n8VUWOLCA42lAOoRdgfvGqxGQsgtsgRDm7+9vzof9f2+Fe65MoXmVZM6mOqkU4uDHU5HM2RnO35taI+wfT4XTGXDalULa7+7TyfbLw6hcI4IQezjBAfh9CHClww87U3jp4bw/P/750nw6XxHu968HP+EeI5OXH3EPYSiignx+W2IA8Ouvv05MTAxBQUG0adOGFStW+KQeNhs0r3LxSdpaVEm2xumAMjIfiD0BxnZx98hcKCoUxnRxr/d3zjR3kBkZm8S0h/vSqlksvbp3oFXTxkx7pC8jY5MY8B9rXOVw7MTFD5yUS6z3F4dPQb+P4If9KWxbvoM1361h2/KdrNyfQr+P3Ov9nTGwbJ+7l++1n8PZcKIxPTu2Z/2Jxrz2czipZ92nNv396+zJdDieDjv2JvGPe/pyVatYOtzWgSYtG3P/vX3ZsTeJ4+nu7fyZMVA5/eKfH5XTkv3+9QAgiItfteiDsO/3YWbBggWMGjWKxx9/nE2bNnHNNddw44038ssvv5R6XeyBYEu7+B9jW5rT/1M1lJn5clyN4PnvvE8tgXt58gr3en+XCTzYLIUXH839tgwvPjqYB5ul4O9/446nwemAix84qQEOd4+HHzueBncvcYfLqQ/35aomsXS4tgNXNWnM1Ifd4fLuJfh9OxxBsOg2iAnLuoN8KFSqDyNCYUgTd/mi2/x7PBnAOQOfb01hwiODWfaH98eX8fFMeGQwn29N4Zyfv0EqVoDgcxf//AjOcFLR7z+VcV/4crGrFo+Xcn2wQJiZMmUKgwYNYvDgwcTGxjJt2jSio6N54403fFKf8KoX/2Mddon1fqMMzJfjSofpm2Dmz+fLLuyhmfETvLI559wt/qYCEBVw8W9sUQHJ+HuHnwHSAiPp1iP3A6tbjzjSAv3/wDLkL1xaQY1D8J8b3UHG3h047P49ItRdXuOQr2t4aRXy0SPevEoyFfz8DXIuEzIqX/zzIaOSg3OZpVShoggF+uG+EvYTYGHW7w5Z5aF5P7Sk+HWYOXPmDBs2bMh1DpGVK1fm+pj09HRcLpfXT3EKqxFJjzxuA9AjLo6wGv7/xxooE/PlZHejZxvaBJb3c3/rzGaFbnRHEKRe4vRL6gn/vy1DeBB0ahjOpJdn5Qg02QMcOzcM9/vxJuFBEFPp4h+eMZWS/b4dABwAR2ewd8P7xrjd3OUc8GHd8ik/PeIVLNAj7giCBpdF0j2Pz4/ucXE0uCzS79/ngPvLbmfcV8LeDPTJ+j0hq1z3ZvJ25MgRMjIyiIz0/p+JjIzk0KHcv1JMmjQJh8Ph+YmOLr5LQV3pMG9POA9Nyv2P9UOTZvFOQrjf9wR4+Nl01AXlCIJFvS/Rjd7b/7vRARz2S9z48xLr/UX4Nmh5RTS9x83ns1Xb+fjL1Xy2aju9x82n5RXRhG279D78wYkjF//wvNR6vxEG7MH7cmaylvdkrbcAh+Pix7/9Euv9xWUh4cx8M/dJPme+NYvLQizwLRL88suwJeaZsf1hRK0xJkdZtscee4yHHnrIs+xyuYot0BgDn+2FuaeiuWfsfP71XDIVzjjJqOzg+5RIRq8OJ7IK/KNtsTxd6QjHEr0wealh4D83g21XVjf6qaxu9GUw/GZw+HmvDLhD8v5z7tMzeV3lsD8jkqh0/7/qJKUJTP8eZm/OeWD9bmDkn6zx+Rl6icnmLrXeb4TjnjsqtzlBumOJ974rHQLD3D3iX+ZyyX+PuDiCwiJxWeD9gR3qp0Yzv+98koe772LuCHIQ+Xsk4UHhUPTZQ0pP9pfh7KkLHLh7ZHx0TPl1z0yNGjUICAjI0Qtz+PDhHL012QIDA7Hb7V4/xcURBIv6QGQVOBsQzlVRjWn/e3uaRjXmTAV3kFnUxxo9AWWGHRzpYJ+Idzf6RHe5Ff44GAPTfwrn4edy7/F7+LlZTP8x3O9Pl6WkwfR1MHvz+bILxzDN3gwvr/P/gbMpaZB49uJjfxLPRvp9OwD3B84buIPLhbInx7RAL2xGJnxwiR7xDxLCybDCWBOAWhB+aziNGzamfXR7GjdsTPit4VDL1xUrhHDcU3i0z/rtw3Ds9/PMtG/fnjZt2vD66697ypo0aUKvXr2YNGnSJR9f3JPmgfsSWVsm2JPw3M7AFQ2mgoKMz6TgN98QCuNIKgxYDCOapVAvIJkTvzsJrelg/7lIpv8czrt/hRp+Po/G8TS4dYF7RmaAe1vC/10NE78/H3BiwmDJnf49T8vxNPdl2SNjk3IMAs4Oly9vj+aD2/y7HV6ScL9HjuPuGgvHEkEG3H9vey2A5FPu+XKurpZMQHaP+DH3fDmRVfx/pm8puDI1ad6CBQsYMGAAb775Jh07dmTGjBnMnDmTrVu3Uq9evUs+viTCjEhJcKaB7SzY9wPHgGrgqgemknX+SB8+BXcsguvqZ51S2g4pse4em2/2wYe3Q0QVX9fy0g6fcl+e/WCzFGIqJXPiiJPQGg4Sz0by6k/hzLvVGu0oK46kuu9P1r0BjGgO9u3gagwv/whfJbp7xP097EvBlakwA+5J8yZPnszBgwdp2rQpU6dO5dprLzaX8nkKMyKlK/v0y4W9FrmV+buy0o6ywpnmnrj0wnExrnT3aVqrhH0pmDIXZopCYUZERMR6ytztDERERETyojAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpZW0dcVKGnZExy7XC4f10RERETyK/tzOz83KijzYebEiRMAREdb5BaxIiIi4nHixAkcDsdFtynz92bKzMzkwIEDhIaGYrPZinXfLpeL6OhokpKSLH3fJ7XDv6gd/kXt8C9qh38pyXYYYzhx4gR16tShQoWLj4op8z0zFSpUICoqqkSfw263W/pgzKZ2+Be1w7+oHf5F7fAvJdWOS/XIZNMAYBEREbE0hRkRERGxNIWZIggMDGT8+PEEBgb6uipFonb4F7XDv6gd/kXt8C/+0o4yPwBYREREyjb1zIiIiIilKcyIiIiIpSnMiIiIiKUpzIiIiIiXQ4cO0aNHD6pUqUJYWJivq3NJ5T7MHDp0iJEjR9KwYUOCgoKIjIzk6quv5s033yQ1NRWAGTNm0LVrV+x2OzabjePHj+fYz4QJE+jUqRMhISG5vvBbtmyhX79+REdHExwcTGxsLC+//LLP2nXs2DGGDx/OlVdeSUhICHXr1mXEiBE4nU7PPpYvX47NZsv1Z926dSVW94K0A+Af//gHl19+OcHBwdSsWZNevXqxY8cOr/2kpKQwYMAAHA4HDoeDAQMG5Po6+nM79u3bx6BBg4iJiSE4OJjLL7+c8ePHc+bMGb9qB8CqVau4/vrrPX8Iu3btyunTpwH/OK7y05Z9+/blWc+FCxd69mOFYyshIYG//vWv1KxZE7vdzh133EFycrLXfurXr5+jnY8++qjl2gHwv//9j/bt2xMcHEyNGjXo3bt3qdfVn+Wn/lOnTuXgwYNs3ryZXbt2+bjGl1bmZwC+mL1799K5c2fCwsKYOHEizZo149y5c+zatYvZs2dTp04dbrnlFlJTU+nZsyc9e/bksccey3VfZ86coU+fPnTs2JG33347x/oNGzZQs2ZN3nvvPaKjo1m5ciVDhw4lICCABx98sNTb1aBBAw4cOMCLL75IkyZN2L9/P/fddx8HDhxg0aJFAHTq1ImDBw967fuJJ55g2bJltG3btljrXNh23HLLLbRp04b+/ftTt25djh07xlNPPUVcXByJiYkEBAQA8Le//Y1ff/2Vzz//HIChQ4cyYMAAPvnkE8u0Y8eOHWRmZvLWW2/RsGFDfv75Z4YMGcKpU6d48cUX/aYdq1at8rxXXnnlFSpXrsyWLVs805H7+rjKb1tuuummHPWcMWMGkydP5sYbb/SU+fux1a1bN+Li4mjRogVff/014P7/vvnmm1m9erXXNPHPPPMMQ4YM8SxXrVq1xNtQ3O346KOPGDJkCBMnTuT666/HGMNPP/1UqnW95ZZbiu35ilt+65+QkECbNm1o1KhRnvs6e/YslSpVKsXaX4Qpx2644QYTFRVlTp48mev6zMxMr+VvvvnGACYlJSXPfc6ZM8c4HI58Pf8DDzxgrrvuuvxWN98K2q5sH374oalcubI5e/ZsruvPnDljIiIizDPPPFNsdb2YwrZjy5YtBjB79uwxxhizbds2A5jVq1d7tlm1apUBzI4dO4q/4n9QXO3IzeTJk01MTEyx1PNS8tuO9u3bm3HjxuV7v6V9XBlT+NekZcuW5t577/UsW+HY+uKLL0yFChWM0+n0lB87dswA5ssvv/SU1atXz0ydOrWkq5yr4mrH2bNnzWWXXWZmzZrl07oaY0xKSooZMmSIiYiIMIGBgeaqq64yn3zyiTHGmCNHjpi+ffuayy67zAQHB5umTZua999/32s/Xbp0McOGDTPDhg0zDofDVKtWzTz++ONex+Zrr71mGjZsaAIDA01ERIS57bbbiqX+9erVM4Dn5+677zbGGAOYN954w9xyyy0mJCTEPPnkk+bcuXPm3nvvNfXr1zdBQUHmiiuuMNOmTfPa59mzZ83w4cM97RgzZoy56667TK9evTzbLFy40DRt2tQEBQWZatWqmW7duuVZx9yU2zBz5MgRY7PZzKRJk/L9mOIOM/3798/XwVcQhWlXtpkzZ5oaNWrkuX7RokWmQoUK5pdffilKFfOlsO04efKkGTVqlImJiTHp6enGGGPefvvtXF8Th8NhZs+eXRzVzVNxtiM3jz/+uGnTpk1Rq3lJ+W1HcnKyAcz06dNNx44dTUREhLn22mvNihUr8nxMaR5XxhT+NVm/fr0BzA8//OAps8KxtXTpUhMQEGDS0tI8ZampqaZChQpm/PjxnrJ69eqZWrVqmWrVqpkWLVqYZ5999qLHXnEpznasWbPGAGb27NmmZcuWplatWqZnz57m559/LtW6ZmRkmA4dOpirrrrKxMfHm4SEBPPJJ5+YTz/91BhjzK+//mpeeOEFs2nTJpOQkGCmT59uAgICvEJxly5dTNWqVc3IkSPNjh07zHvvvWdCQkLMjBkzjDHGrFu3zgQEBJj333/f7Nu3z2zcuNG8/PLLxVL/w4cPm549e5o77rjDHDx40Bw/ftwY4w4zERER5u233zYJCQlm37595syZM+bJJ580a9euNXv37vXUc8GCBZ79Pfvss6ZatWrm448/Ntu3bzf33XefsdvtnjBz4MABU7FiRTNlyhSTmJhofvzxR/Paa6+ZEydOXLSeFyq3YWb16tUGMB9//LFXefXq1U2VKlVMlSpVzJgxY7zWFWeYWblypalUqZKJj48vTPXzVJh2GeM+yOvWrWsef/zxPPd94403mhtvvLFY65uXgrbjtddeM1WqVDGAady4sVdvxoQJE0yjRo1yPEejRo3MxIkTS64Rpnjb8Ud79uwxdrvdzJw5s8Tqny2/7cjulahWrZqZPXu22bhxoxk1apSpXLmy2bVrV677Ls3jypjCv0fuv/9+Exsb61VmhWPr8OHDxm63m5EjR5pTp06ZkydPmmHDhhnADB061PO4KVOmmOXLl5stW7Z4vtgMGjSoRNtQ3O344IMPDGDq1q1rFi1aZNavX2/69etnqlevbo4ePVpqdc3uRdq5c2e+9/3nP//Z/POf//Qsd+nSxcTGxnr1xIwdO9ZzDH700UfGbrcbl8tV7PU3xphevXp5emSyAWbUqFGXfJ4HHnjA64t6ZGSkeeGFFzzL586dM3Xr1vWEmQ0bNhjA7Nu3L99t+aNyPwDYZrN5La9du5bNmzdz1VVXkZ6eXiLPuXXrVnr16sWTTz5Jjx49SuQ5CtIul8vFTTfdRJMmTRg/fnyu+/v111/54osvGDRoUInUNy/5bUf//v3ZtGkT3377LY0aNeKOO+4gLS0tz/2A+/byuZWXhOJqR7YDBw7Qs2dP+vTpw+DBg0u8/tku1Y7MzEzAPZj5nnvuoVWrVkydOpUrr7yS2bNn59ifr44rKNh75PTp07z//vu51tPfj62aNWuycOFCPvnkE6pWrYrD4cDpdNK6dWvPmDKA0aNH06VLF5o3b87gwYN58803efvttzl69Khl2pF9/D3++OPcdttttGnThjlz5uQYtF3Sdd28eTNRUVFcccUVuT4+IyODCRMm0Lx5c6pXr07VqlWJj4/nl19+8dquQ4cOXs/VsWNHdu/eTUZGBj169KBevXo0aNCAAQMG8O9//zvfg4+L8rmX27i2N998k7Zt21KzZk2qVq3KzJkzPW1xOp0kJyfTrl07z/YBAQG0adPGs9yiRQu6detGs2bN6NOnDzNnziQlJSVfbclWbgcAN2zYEJvNluOqlwYNGgAQHBxcIs+7bds2rr/+eoYMGcK4ceOKff8FbdeJEyfo2bMnVatWZfHixXkO5pozZw7Vq1cvtYFtBW1H9pUkjRo1okOHDoSHh7N48WL69etHrVq1cr3i4ffffycyMrLkGkHxtiPbgQMHuO666+jYsSMzZswo0fpny287ateuDUCTJk28touNjc3xhxpK/7iCwr33Fy1aRGpqKnfddZdXuVWOrbi4OBISEjhy5AgVK1YkLCyMWrVqERMTk+f+O3ToAMCePXuoXr16CbTArTjbkdvxFxgYSIMGDXI9/kqqrpf6/HjppZeYOnUq06ZNo1mzZlSpUoVRo0YV6MrE0NBQNm7cyPLly4mPj+fJJ5/kqaeeYt26dXleSl0cn3tVqlTxWv7www8ZPXo0L730Eh07diQ0NJQXXniBNWvWeG33xwBlLriTUkBAAF9++SUrV64kPj6eV155hccff5w1a9Zc9Bi9ULntmalevTo9evTg1Vdf5dSpU6XynFu3buW6667j7rvvZsKECSXyHAVpl8vlIi4ujsqVK7N06VKCgoJy3c4Yw5w5c7jrrrtKbeR6UV8fY4znG0bHjh1xOp2sXbvWs37NmjU4nU46depUbHXOTXG2A+C3336ja9eutG7dmjlz5nhdiVKS8tuO+vXrU6dOHXbu3OlVvmvXLurVq+dV5ovjCgr3mrz99tvccsst1KxZ06vcasdWjRo1CAsL4+uvv+bw4cMXDZGbNm0CzgeEklKc7WjTpg2BgYFex9/Zs2fZt29fjuOvJOvavHlzfv311zwvaV6xYgW9evXi73//Oy1atKBBgwbs3r07x3arV6/OsdyoUSNPT1TFihXp3r07kydP5scff2Tfvn2eK72KUv+CWLFiBZ06deKBBx6gVatWNGzYkISEBM96h8NBZGSk13skIyPDc3xls9lsdO7cmaeffppNmzZRuXJlFi9enP+KFPoEVRmwZ88eExkZaRo3bmzmz59vtm3bZnbs2GHeffddExkZaR566CFjjDEHDx40mzZtMjNnzjSA+e6778ymTZu8zsHu37/fbNq0yTz99NOmatWqZtOmTWbTpk2eAUw///yzqVmzpunfv785ePCg5+fw4cM+aZfL5TLt27c3zZo1M3v27PGq07lz57z2t2zZMgOYbdu2FXtdi9qOhIQEM3HiRLN+/Xqzf/9+s3LlStOrVy9TrVo1k5yc7NlXz549TfPmzc2qVavMqlWrTLNmzcxf/vIXS7Xjt99+Mw0bNjTXX3+9+fXXX71eM39phzHGTJ061djtdrNw4UKze/duM27cOBMUFJRj/I+vjquCtMUYY3bv3m1sNpv57LPPct2Xvx9bxhgze/Zss2rVKrNnzx7z7rvvmmrVqnm1ceXKlWbKlClm06ZNZu/evWbBggWmTp065pZbbrFUO4wxZuTIkeayyy4zX3zxhdmxY4cZNGiQiYiIMMeOHSvVunbt2tU0bdrUxMfHm71795pPP/3UcwyNGjXKREdHmx9++MFs27bNDB482GtArDHnBwCPHj3a7Nixw7z//vumSpUq5s033zTGGPPJJ5+Yl19+2WzatMns27fPvP7666ZChQqXHOyc3/rnNWZm8eLFXmXTpk0zdrvdfP7552bnzp1m3Lhxxm63mxYtWni2efbZZ0316tXNkiVLzI4dO8ywYcOM3W43t956qzHGPZZnwoQJZt26dWb//v2eK2uzB0znR7kOM8a4R1E/+OCDJiYmxlSqVMlUrVrVtGvXzrzwwgvm1KlTxhhjxo8f73WZWvbPnDlzPPu5++67c93mm2++ueg+6tWr55N2ZQ9mzu0nMTHRa1/9+vUznTp1KpF6FrUdv/32m7nxxhtNRESEqVSpkomKijJ/+9vfclwWe/ToUdO/f38TGhpqQkNDTf/+/S86kNsf2zFnzpw8XzN/aUe2SZMmmaioKBMSEmI6duyY69VMvjyujMl/Wx577DETFRVlMjIyct2Pvx9bxrgHjkZGRppKlSqZRo0amZdeeslrYOmGDRtM+/btjcPhMEFBQebKK68048eP9/p/sEI7jHFf6v/Pf/7TREREmNDQUNO9e/diu5qpIHU9evSoueeee0z16tVNUFCQadq0qfnvf//rWderVy9TtWpVExERYcaNG5fjUuUuXbqYBx54wHPlT3h4uHn00Uc97V2xYoXp0qWLCQ8PN8HBwaZ58+ZeVxAVtf75DTNpaWlm4MCBxuFwmLCwMHP//febRx991CvMnD171jz44IOedowdO9b06dPH9O3b1xjjnuLghhtuMDVr1jSBgYHmiiuuMK+88kp+Xw5jjDG2rAqKiIiIn+jatSstW7Zk2rRpvq5KscvMzCQ2NpY77riDf/3rX8Wyz3I7AFhERERK3v79+4mPj6dLly6kp6fz6quvkpiYyN/+9rdie45yOwBYRERESl6FChWYO3cuf/rTn+jcuTM//fQTy5YtIzY2ttieQ6eZRERExNLUMyMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpamMCMiIiKWpjAjIiIilqYwIyIiIpb2/ztZJMvr05n6AAAAAElFTkSuQmCC", "application/papermill.record/text/plain": "
" }, "metadata": { @@ -2165,20 +2251,6 @@ "p_diff_predicted[\"source\"] = \"difference² of predicted\"" ] }, - { - "cell_type": "markdown", - "metadata": { - "editable": true, - "pycharm": { - "name": "#%% md\n" - }, - "slideshow": { - "slide_type": "" - }, - "tags": [] - }, - "source": [] - }, { "cell_type": "code", "execution_count": 24, @@ -2197,7 +2269,7 @@ "outputs": [ { "data": { - "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZyElEQVR4nO3dd3hURdsG8HvT+0JCKglJkID0LgakV0UJ4itSpEhRlBIEBXmlKkVBiopK+SgWFFFAQUGiCIgUgdCEACEhgUACgQCb3p/vj4V9WVJI2ezuSe7fde0FO3PO2Wd2T7JP5szMUYmIgIiIiEihLEwdABEREVF5MJkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGsTB1ARcvPz0d8fDycnZ2hUqlMHQ4RERGVgIggJSUFPj4+sLAovu+l0icz8fHx8PPzM3UYREREVAZxcXHw9fUtdptKn8w4OzsD0L4ZLi4uJo6GiIiISiI5ORl+fn667/HiVPpk5v6lJRcXFyYzREREClOSISIcAExERESKxmSGiIiIFI3JDBERESlapR8zUxIigtzcXOTl5Zk6FKJKxdLSElZWVlwWgYgqVJVPZrKzs5GQkID09HRTh0JUKTk4OMDb2xs2NjamDoWIKqkqnczk5+cjJiYGlpaW8PHxgY2NDf+CJDIQEUF2djZu3ryJmJgYBAUFPXLhKyKisqjSyUx2djby8/Ph5+cHBwcHU4dDVOnY29vD2toaly9fRnZ2Nuzs7EwdEhFVQvwzCeBfi0QViD9fRFTR+FuGiIiIFK1KX2YiIiKiMroFIBHAHQCuADwAuJkmFPbMEBERUelcAdAPQEMATwFoAOAlAHGmCYc9M0RERFRySQCGADgFYBQAX2iTm00AXgXwLYDqxg2JPTOE7OxsU4dARERKcQNAIIAvob3MtAnaS03fAqh2r8zImMw8RESQnp1r9IeIlDjG2NhYqFSqAo9OnToBAA4ePIgOHTrA3t4efn5+mDBhAtLS0nT7BwQEYO7cuRg+fDjUajVGjx4NANi8eTMaNmwIW1tbBAQEYPHixQZ9b4mIqBLIBtAawPMAtgGIALAVQAiArvfqjYyXmR6SkZOHBjN3Gf11I97rCQebkn0cfn5+SEhI0D2/fv06unXrhg4dOuDff/9Fz5498f7772PNmjW4efMmxo0bh3HjxmHdunW6fRYtWoQZM2Zg+vTpAIDw8HD0798fs2fPxksvvYSDBw/ijTfegJubG4YPH27QthIRkYLZAZhWSLkAeAfAAeOGAwAqKU2XgAIlJydDrVZDo9HAxcVFry4zMxMxMTEIDAzULeaVnp1r9snMgzIzM9GpUye4u7vj559/xvDhw2Fvb4+VK1fqtvn777/RsWNHpKWlwc7ODgEBAWjevDm2bt2q22bw4MG4efMmwsLCdGVTpkzBr7/+irNnz5avcVSlFfZzRkQKdhBAu2LqDwNoU/6XKe77+2HsmXmIvbUlIt7raZLXLYuRI0ciJSUFv//+OywsLBAeHo6oqChs2LBBt42I6G7dUL9+fQBAq1at9I5z7tw5hISE6JW1a9cOy5YtQ15eHiwtyxYfERFVMvnlrK8ATGYeolKpytRDYgpz587Fb7/9hiNHjsDZ2RmA9n5Tr732GiZMmFBg+1q1aun+7+joqFcnIgXuS1XJO+2IiKgsagBQA9AUUucO7ZozRqaMb20qYPPmzXjvvfewc+dOPPbYY7ryFi1a4OzZs6hTp06pjtegQQP8/fffemUHDx5E3bp12StDRET/4wbgEyA5PBk3ut5AclYy1LZqeIZ5wvkpZ21CY2SczaRAZ86cwdChQzF16lQ0bNgQ169fx/Xr13H79m1MnToVhw4dwtixY3Hy5ElcvHgR27Ztw/jx44s95uTJk7F79268//77iIyMxJdffonly5fjrbfeMlKriIhIEdyBa09dw6j4UXj8+cfRqn8r1Hu+Ht64+wbi28SbpGeGyYwCHTt2DOnp6Zg7dy68vb11j379+qFJkybYt28fLl68iPbt26N58+aYMWMGvL29iz1mixYtsGnTJmzcuBGNGjXCzJkz8d5773EmExER6blz5w7GhI7BDz/+gPx87QCZ/Px8fLPhG0z+72QkJycbPSbOZuIsC6IKxZ8zosrlwoULePzxxwutU6lUuHDhAoKCgsr9OqWZzcSeGSIiIiqx27dvF1knIrhz544Ro9FiMkNEREQl5uJYfC/Jo+orApMZIiIiKjEPOw+0eaLwVfG6dOoCDxsPI0fEZIaIiIhKwV3jjo3vbUTLFi31yoPbBGPdlHVwTTb+dCauM0NEREQlpwYCng7Ajmk7cGP2DdxIugGvGl7wjPCE+2B34IjxQ2IyQ0RERCXnCaA74PGWBzxUHmhs3xjIgPZGkyPv1RsZkxkiIiIqOTWAJQCqAVgLIB2ALYAx0N4129n4ITGZISIiotLxhjahmQIgFYDTvTITLSXFAcCVRKdOnTBx4kTd84CAACxbtkz3/Pr16+jevTscHR1RrVq1IstI68CBA2jcuDGsra3Rt29fo73uw5+jEigxZiIyAHsAgQAa3/vXhGtismemkjp69KjenbGXLl2KhIQEnDx5Emq1usgypYqJicGYMWOQmpqKu3fv4qOPPsLTTz9d5uNNmjQJzZo1w86dO+Hk5GTASLX27t2Lzp07486dO3qJ5JYtW2BtbW3w13tYp06d0KxZM72El4hIqUzaM/PXX3/hueeeg4+PD1QqFX766Se9ehHB7Nmz4ePjA3t7e3Tq1Alnz541TbDFyQOwF8B39/7NM2UwWu7u7nBwcNA9j46ORsuWLREUFAQPD48iy0orJyfHIPGWl6+vL3bu3IkDBw5g2rRpWL9+fbmOFx0djS5dusDX19eovVaurq5wdjbBBWciIgUzaTKTlpaGpk2bYvny5YXWL1y4EEuWLMHy5ctx9OhReHl5oXv37khJSTFypMXYAiAAQGcAg+79G3CvvIKkpaVh6NChcHJygre3NxYvXlxgmwcvMwUEBGDz5s346quvoFKpMHz48ELLAECj0eDVV1+Fh4cHXFxc0KVLF5w6dUp33NmzZ6NZs2ZYu3YtateuDVtbW4hIiff7+uuvERAQALVajQEDBuh9lvn5+fjwww9Rp04d2NraolatWpg3b56u/tq1a3jppZdQvXp1uLm5ISQkBLGxsQAAa2trWFhYIDo6GitXrsTcuXOLfP+ysrIwYcIEeHh4wM7ODk899RSOHj0KAIiNjYVKpUJSUhJGjBgBlUpVZGKUnZ2NKVOmoGbNmnB0dESbNm2wd+9eXf3ly5fx3HPPoXr16nB0dETDhg2xY8cOxMbGonPnzgCA6tWr673/hV0unDt3ru7z9vf3x88//4ybN28iJCQETk5OaNy4MY4dO6bbJykpCQMHDoSvry8cHBzQuHFjfPfdd7r64cOHY9++ffj444+hUqmgUql072NERASeeeYZODk5wdPTE0OGDMGtW7d0+5bk3CMiMjoxEwBk69atuuf5+fni5eUlH3zwga4sMzNT1Gq1rFixosTH1Wg0AkA0Gk2BuoyMDImIiJCMjIyyBb1ZRFQigoceqnuPzWU77KO8/vrr4uvrK2FhYXL69Gl59tlnxcnJSUJDQ3Xb+Pv7y9KlS0VEJDExUXr16iX9+/eXhIQEuXv3bqFl+fn50q5dO3nuuefk6NGjEhkZKZMnTxY3NzdJSkoSEZFZs2aJo6Oj9OzZU44fPy6nTp0q8X5OTk7Sr18/+ffff+Wvv/4SLy8v+e9//6uLecqUKVK9enVZv369REVFyf79+2X16tUiIpKWliZBQUEyYsQIOX36tERERMigQYOkXr16kpWVJSIi27dvl549e8rly5eLff8mTJggPj4+smPHDjl79qwMGzZMqlevLklJSZKbmysJCQni4uIiy5Ytk4SEBElPTy/0OIMGDZK2bdvKX3/9JVFRUbJo0SKxtbWVyMhIERHp3bu3dO/eXU6fPi3R0dGyfft22bdvn+Tm5srmzZsFgFy4cEH3/ouIdOzYscDn6OrqKitWrJDIyEh5/fXXxdnZWXr16iWbNm2SCxcuSN++faV+/fqSn58vIiJXr16VRYsWyYkTJyQ6Olo++eQTsbS0lMOHD4uIyN27dyU4OFhGjx4tCQkJkpCQILm5uRIfHy81atSQadOmyblz5+T48ePSvXt36dy5c6nOvYeV++eMiKqk4r6/H2a2yUx0dLQAkOPHj+tt16dPHxk6dGiRx8nMzBSNRqN7xMXFVUwykysivlIwkXkwofG7t50BpaSkiI2NjWzcuFFXlpSUJPb29kUmMyIiISEhMmzYML1jPVy2e/ducXFxkczMTL3tHnvsMVm5cqWIaJMSa2trSUxMLPV+Dg4OkpycrKt/++23pU2bNiIikpycLLa2trrk5WFr1qyRevXq6b6wRUSysrLE3t5edu3aJeHh4aJSqaRFixbSpk0bGT58eKHHSU1NFWtra9mwYYOuLDs7W3x8fGThwoW6MrVaLevWrSv0GCIiUVFRolKp5Nq1a3rlXbt2lWnTpomISOPGjWX27NmF7r9nzx4BIHfu3NErLyyZefnll3XPExISBIDMmDFDV3bo0CEBIAkJCUXG+8wzz8jkyZOLfB0RkRkzZkiPHj30yu7//Fy4cKHE597DmMwQUVmUJpkx2wHA169fBwB4euqvvuPp6YnLly8Xud+CBQswZ86cCo0NALAfwNVi6gVA3L3tOhnuZaOjo5GdnY3g4GBdmaurK+rVq1fuY4eHhyM1NRVubm565RkZGYiOjtY99/f3h7u7e6n3CwgI0BsP4u3tjcTERADAuXPnkJWVha5duxYZW1RUVIHxJJmZmYiOjkaPHj2Qn5//yDZGR0cjJycH7dq105VZW1vjiSeewLlz5x65/33Hjx+HiKBu3bp65VlZWbr3YcKECXj99dcRFhaGbt264YUXXkCTJk1K/Br3PbjP/Z+Hxo0bFyhLTEyEl5cX8vLy8MEHH+D777/HtWvXkJWVhaysLL0B4YUJDw/Hnj17Ch3wHB0djYyMjAo794iIysNsk5n7VCqV3nMRKVD2oGnTpmHSpEm658nJyfDz8zN8YAkG3q6ERMSwB3xAfn4+vL299cZ93PfgINiHvxRLut/Ds3RUKpUuAbG3t39kbC1btsSGDRsK1D2YWD3K/fevtOdVYfFYWloiPDwclpaWenX3k4FRo0ahZ8+e+PXXXxEWFoYFCxZg8eLFGD9+fIlfB9B/3+7HWFjZ/fdy8eLFWLp0KZYtW4bGjRvD0dEREydORHZ29iPb9Nxzz+HDDz8sUOft7Y2LFy+WKm4iImMx22TGy8sLgLaHxtvbW1eemJhYoLfmQba2trC1ta3w+OD96E1KtV0J1alTB9bW1jh8+DBq1aoFALhz5w4iIyPRsWPHch27RYsWuH79OqysrBAQEFDh+z0oKCgI9vb22L17N0aNGlXoa3z//fe6AcZlVadOHdjY2ODvv//GoEGDAGhnZB07dqxUa6U0b94ceXl5SExMRPv27Yvczs/PD2PGjMGYMWMwbdo0rF69GuPHj4eNjQ0AIC/P8FPf9u/fj5CQELz88ssAtEnKxYsXUb9+fd02NjY2BV67RYsW2Lx5MwICAmBlVfBXQ0Wee0RE5WG2i+YFBgbCy8sLv//+u64sOzsb+/btQ9u2bU0Y2T3tAfgCKOqPeRUAv3vbGZCTkxNGjhyJt99+G7t378aZM2cwfPhwWFiU/6Ps1q0bgoOD0bdvX+zatQuxsbE4ePAgpk+frjdbxlD7PcjOzg5Tp07FlClT8NVXXyE6OhqHDx/GmjVrAACDBw9GjRo1EBISgv379yMmJgb79u1DaGgorl4t7nqfPkdHR7z++ut4++238dtvvyEiIgKjR49Geno6Ro4cWeLj1K1bF4MHD8bQoUOxZcsWxMTE4OjRo/jwww+xY8cOAMDEiROxa9cuxMTE4Pjx4/jzzz91CYW/vz9UKhV++eUX3Lx5E6mpqSV+7UepU6cOfv/9dxw8eBDnzp3Da6+9prtse19AQAD++ecfxMbG4tatW8jPz8fYsWNx+/ZtDBw4EEeOHMGlS5cQFhaGESNGIC8vr0LPPSKi8jBpz0xqaiqioqJ0z2NiYnDy5Em4urqiVq1amDhxIubPn4+goCAEBQVh/vz5cHBw0P1FbVKWAD4G8B9oE5cHr/7cT3CW3dvOwBYtWoTU1FT06dMHzs7OmDx5MjQaTbmPq1KpsGPHDrz77rsYMWIEbt68CS8vL3To0KHY3rCy7vewGTNmwMrKCjNnzkR8fDy8vb0xZswYAICDgwP++usvTJ06Ff369UNKSgpq1qyJrl27lrqn5oMPPkB+fj6GDBmClJQUtGrVCrt27UL16tVLdZx169Zh7ty5mDx5Mq5duwY3NzcEBwfjmWeeAaDtdRk7diyuXr0KFxcX9OrVC0uXLgUA1KxZE3PmzME777yDV155BUOHDi332jj3zZgxAzExMejZsyccHBzw6quvom/fvnrnyFtvvYVhw4ahQYMGyMjIQExMDAICAnDgwAFMnToVPXv2RFZWFvz9/dGrVy9dwlJR5x4RUXmopCIHYTzC/VVQHzZs2DCsX78eIoI5c+Zg5cqVuHPnDtq0aYPPPvsMjRo1KvFrJCcnQ61WQ6PRFPjSy8zMRExMDAIDA2FnV8Z1mLcACIX+YGA/aBOZfmU7JFFlYpCfMyKqcor7/n6YSZMZY6jwZAbQrvi7H9rBvt7QXlqqgB4ZIiViMkNEZVGaZMZsBwAriiUMOv2aiIjI7MUBiABwHkADAPWhHUtqAkxmiIiIqHQiAHQBcOOBspoA/gRQt9A9KhSnIRAREVHJJQB4HvqJDABcA/AigESjR8RkhoiIiErhJoDIIupO36s3MiYzREREVHJpj6hPN0oUepjMEBERUcm5o+jswRqAWxF1FYjJDBEREZWcGsDwIurGACjd+qMGwdlMREREVHIaAE8BcAWw+t7z6tAmMv4A7sDoCQ17ZiqJTp066d0oMSAgAMuWLdM9v379Orp37w5HR0fdnawLKyOtAwcOoHHjxrC2tkbfvn1NHQ4A7W0jfvrpJwBAbGwsVCoVTp48afQ4hg8fbjbvCRGZwE0AI6Gdnv0ZgB8AfAIgHNqEJsn4IbFnppI6evQoHB0ddc+XLl2KhIQEnDx5Emq1usgypYqJicGYMWOQmpqKu3fv4qOPPsLTTz9d5uNNmjQJzZo1w86dO+Hk5GTASA3Dz88PCQkJqFGjRom2Hz58OO7evatLhoiIyswR2vsR7rj3eJiDccMBmMwYRF5eHvbv34+EhAR4e3ujffv2sLQ07f0M3N3d9Z5HR0ejZcuWCAoKKrastHJycmBtbV3m/Q3F19cXO3fuhIWFBb755husX7++XMlMdHQ0xowZA19fwy5naaj3y9LSEl5eXgaIiIiolDwA1ANwoZC6pvfqjYyXmcppy5YtCAgIQOfOnTFo0CB07twZAQEB2LJlS4W9ZlpaGoYOHQonJyd4e3tj8eLFBbZ58DJTQEAANm/ejK+++goqlQrDhw8vtAwANBoNXn31VXh4eMDFxQVdunTBqVOndMedPXs2mjVrhrVr16J27dqwtbWFiJR4v6+//hoBAQFQq9UYMGAAUlJSdNvk5+fjww8/RJ06dWBra4tatWph3rx5uvpr167hpZdeQvXq1eHm5oaQkBDExsYCAKytrWFhYYHo6GisXLkSc+fOLfL9y8rKwoQJE+Dh4QE7Ozs89dRTOHr0KID/Xb5JSkrCiBEjoFKpirybdUBAAN5//30MGjQITk5O8PHxwaeffqq3jUqlwooVKxASEgJHR0ddXNu3b0fLli1hZ2eH2rVrY86cOcjNzdXtd/HiRXTo0AF2dnZo0KABfv/9d73jFnaZ6ezZs+jduzdcXFzg7OyM9u3bIzo6GrNnz8aXX36Jn3/+GSqVCiqVCnv37n3kewpoE/VJkyahWrVqcHNzw5QpU1DJb+dGRI/iBWArtPcifJAfgE3QznYyNqnkNBqNABCNRlOgLiMjQyIiIiQjI6NMx968ebOoVCqBtsNN91CpVKJSqWTz5s3lDb9Qr7/+uvj6+kpYWJicPn1ann32WXFycpLQ0FDdNv7+/rJ06VIREUlMTJRevXpJ//79JSEhQe7evVtoWX5+vrRr106ee+45OXr0qERGRsrkyZPFzc1NkpKSRERk1qxZ4ujoKD179pTjx4/LqVOnSryfk5OT9OvXT/7991/566+/xMvLS/773//qYp4yZYpUr15d1q9fL1FRUbJ//35ZvXq1iIikpaVJUFCQjBgxQk6fPi0REREyaNAgqVevnmRlZYmIyPbt26Vnz55y+fLlYt+/CRMmiI+Pj+zYsUPOnj0rw4YNk+rVq0tSUpLk5uZKQkKCuLi4yLJlyyQhIUHS09MLPY6/v784OzvLggUL5MKFC/LJJ5+IpaWlhIWF6bYBIB4eHrJmzRqJjo6W2NhY+e2338TFxUXWr18v0dHREhYWJgEBATJ79mwREcnLy5NGjRpJp06d5MSJE7Jv3z5p3ry5AJCtW7eKiEhMTIwAkBMnToiIyNWrV8XV1VX69esnR48elQsXLsjatWvl/PnzkpKSIv3795devXpJQkKCJCQkSFZWVone0w8//FDUarX8+OOPEhERISNHjhRnZ2cJCQl5xFn6P+X9OSMiM3VFRH4XkeUisltE4gx7+OK+vx/GZKaMv2Rzc3PF19e3QCLzYELj5+cnubm5hmiGTkpKitjY2MjGjRt1ZUlJSWJvb19kMiMiEhISIsOGDdM71sNlu3fvFhcXF8nMzNTb7rHHHpOVK1eKiDYpsba2lsTExFLv5+DgIMnJybr6t99+W9q0aSMiIsnJyWJra6tLXh62Zs0aqVevnuTn5+vKsrKyxN7eXnbt2iXh4eGiUqmkRYsW0qZNGxk+fHihx0lNTRVra2vZsGGDriw7O1t8fHxk4cKFujK1Wi3r1q0r9Bj3+fv7S69evfTKXnrpJXn66ad1zwHIxIkT9bZp3769zJ8/X6/s66+/Fm9vbxER2bVrl1haWkpc3P9+M+zcubPYZGbatGkSGBgo2dnZhcY6bNiwAgnIo95TERFvb2/54IMPdPU5OTni6+vLZIaIKlxpkhmOmSmj/fv34+rVq0XWiwji4uKwf/9+dOrUyWCvGx0djezsbAQHB+vKXF1dUa9evXIfOzw8HKmpqXBz01/xKCMjA9HR0brn/v7+emNySrpfQEAAnJ2ddc+9vb2RmKi9ice5c+eQlZWFrl27FhlbVFSU3v4AkJmZiejoaPTo0QP5+fmPbGN0dDRycnLQrl07XZm1tTWeeOIJnDt37pH7P+zBz+H+8wdnkQFAq1at9J6Hh4fj6NGjepfQ8vLykJmZifT0dJw7dw61atXSG6/z8Os87OTJk2jfvn2pxuM86j3VaDRISEjQe20rKyu0atWKl5qIyKwwmSmjhIQEg25XUhX5JZKfnw9vb2/deIoHPTh1+8FZUqXZ7+EvWpVKpUtA7O3tHxlby5YtsWHDhgJ1Dw92Ls7990+lUhUof7isrB4+TmHv15w5c9CvX78C+9rZ2RX6GT8qtke9f4Ux1HtKRGRqTGbKyNv74ZFP5duupOrUqQNra2scPnwYtWrVAgDcuXMHkZGR6NixY7mO3aJFC1y/fh1WVlYICAio8P0eFBQUBHt7e+zevRujRo0q9DW+//573QDjsqpTpw5sbGzw999/Y9CgQQC0M4yOHTumt05PSR0+fLjA88cff7zYfVq0aIELFy6gTp06hdY3aNAAV65cQXx8PHx8fAAAhw4dKvaYTZo0wZdfflnkbCkbGxvk5eUViONR76m3tzcOHz6MDh06AAByc3MRHh6OFi1aFBsPEZExcTZTGbVv3x6+vr5F/sWsUqng5+eH9u3bG/R1nZycMHLkSLz99tvYvXs3zpw5g+HDh8PCovwfZbdu3RAcHIy+ffti165diI2NxcGDBzF9+nQcO3bM4Ps9yM7ODlOnTsWUKVPw1VdfITo6GocPH8aaNWsAAIMHD0aNGjUQEhKC/fv3IyYmBvv27UNoaGixl/se5ujoiNdffx1vv/02fvvtN0RERGD06NFIT0/HyJEjS3yc+w4cOICFCxciMjISn332GX744QeEhoYWu8/MmTPx1VdfYfbs2Th79izOnTuH77//HtOnTwegfT/r1auHoUOH4tSpU9i/fz/efffdYo85btw4JCcnY8CAATh27BguXryIr7/+GhcuaOdOBgQE4PTp07hw4QJu3bqFnJycEr2noaGh+OCDD7B161acP38eb7zxBu7evVvq94mIqCIxmSkjS0tLfPzxxwAKXgK4/3zZsmUVst7MokWL0KFDB/Tp0wfdunXDU089hZYtW5b7uCqVCjt27ECHDh0wYsQI1K1bFwMGDEBsbCw8PT0Nvt/DZsyYgcmTJ2PmzJmoX78+XnrpJd2YGgcHB/z111+oVasW+vXrh/r162PEiBHIyMgodU/NBx98gBdeeAFDhgxBixYtEBUVhV27dqF69dKvvz158mSEh4ejefPmeP/997F48WL07Nmz2H169uyJX375Bb///jtat26NJ598EkuWLIG/vz8AwMLCAlu3bkVWVhaeeOIJjBo1Sm98TWHc3Nzw559/IjU1FR07dkTLli2xevVqXS/N6NGjUa9ePbRq1Qru7u44cOBAid7TyZMnY+jQoRg+fDiCg4Ph7OyM559/vtTvExFRRVJJJR/Jl5ycDLVaDY1GU+BLLzMzEzExMQgMDISdnV2Zjr9ly5YCvQN+fn5YtmxZoWMiqPIICAjAxIkTy3R5qioxxM8ZEVU9xX1/P4xjZsqpX79+um56c1oBmIiIqKpgMmMAlpaWBp1+TURERCXHZIaojB5c9p+IiEyHA4CJiIhI0ZjMEBERkaIxmUHFrqpLVNXx54uIKlqVTmbur8GRnp5u4kiIKq/7P1+luW8UEVFpVOkBwJaWlqhWrZrewmyGuj8PUVUnIkhPT0diYiKqVavG5QqIqMJU6WQGALy8vABAl9AQkWFVq1ZN93NGRFQRqnwyo1Kp4O3tDQ8PD+Tk5Jg6HKJKxdramj0yRFThqnwyc5+lpSV/6RIRESlQlR4ATERERMrHZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaGadzOTm5mL69OkIDAyEvb09ateujffeew/5+fmmDo2IiIjMhJWpAyjOhx9+iBUrVuDLL79Ew4YNcezYMbzyyitQq9UIDQ01dXhERERkBsw6mTl06BBCQkLQu3dvAEBAQAC+++47HDt2zMSRERERkbkw68tMTz31FHbv3o3IyEgAwKlTp/D333/jmWeeKXKfrKwsJCcn6z2IiIio8jLrnpmpU6dCo9Hg8ccfh6WlJfLy8jBv3jwMHDiwyH0WLFiAOXPmGDFKIiIiMiWz7pn5/vvv8c033+Dbb7/F8ePH8eWXX+Kjjz7Cl19+WeQ+06ZNg0aj0T3i4uKMGDEREREZm0pExNRBFMXPzw/vvPMOxo4dqyubO3cuvvnmG5w/f75Ex0hOToZarYZGo4GLi0tFhUpEREQGVJrvb7PumUlPT4eFhX6IlpaWnJpNREREOmY9Zua5557DvHnzUKtWLTRs2BAnTpzAkiVLMGLECFOHRkRERGbCrC8zpaSkYMaMGdi6dSsSExPh4+ODgQMHYubMmbCxsSnRMXiZiYiISHlK8/1t1smMITCZISIiUp5KM2aGiIiI6FGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRTP7ZObatWt4+eWX4ebmBgcHBzRr1gzh4eGmDouIiIjMhJWpAyjOnTt30K5dO3Tu3Bk7d+6Eh4cHoqOjUa1aNVOHRkRERGbCrJOZDz/8EH5+fli3bp2uLCAgwHQBPSwLgA0AlakDISIiqrrM+jLTtm3b0KpVK7z44ovw8PBA8+bNsXr1atMGlQvgEoD5APoBmArgPIAMUwZFRERUdZl1MnPp0iV88cUXCAoKwq5duzBmzBhMmDABX331VZH7ZGVlITk5We9hUCcBNAHwLoAdABYBaARgN4Acw74UERERPZpKRMTUQRTFxsYGrVq1wsGDB3VlEyZMwNGjR3Ho0KFC95k9ezbmzJlToFyj0cDFxaV8AV0H0BFAZCF1zgDOAKhVvpcgIiIiIDk5GWq1ukTf32bdM+Pt7Y0GDRroldWvXx9Xrlwpcp9p06ZBo9HoHnFxcYYL6BYKT2QAIAXAZcO9FBEREZWMWQ8AbteuHS5cuKBXFhkZCX9//yL3sbW1ha2tbcUElPuI+qyKeVkiIiIqWpmTmSNHjmDv3r1ITExEfn6+Xt2SJUvKHRgAvPnmm2jbti3mz5+P/v3748iRI1i1ahVWrVplkOOXmhsAdwA3C6mzAlDbuOEQERFRGZOZ+fPnY/r06ahXrx48PT2hUv1vbvKD/y+v1q1bY+vWrZg2bRree+89BAYGYtmyZRg8eLDBXqNUagL4HMCLhdTNBuBp1GiIiIgIZRwA7OnpiQ8//BDDhw+vgJAMqzQDiEokBdqBvtMBnAIQCG0i8yS0PTdERERUbqX5/i5Tz4yFhQXatWtXpuAUzxlAMIDNANIA2IFJDBERkQmVaTbTm2++ic8++8zQsShLNWgvOzGRISIiMqky9cy89dZb6N27Nx577DE0aNAA1tbWevVbtmwxSHBEREREj1KmZGb8+PHYs2cPOnfuDDc3N4MO+iUiIiIqjTIlM1999RU2b96M3r17GzoeIiIiolIp05gZV1dXPPbYY4aOhYiIiKjUypTMzJ49G7NmzUJ6erqh4yEiIiIqlTJdZvrkk08QHR0NT09PBAQEFBgAfPz4cYMER0RERPQoZUpm+vbta+AwiIiIiMqmVCsAR0ZGom7duhUZj8EZfAVgIiIiqnCl+f4u1ZiZ5s2bo379+pg6dSoOHTpUriCJiIiIDKFUyUxSUhIWLlyIpKQkPP/88/D09MTIkSOxbds2ZGZmVlSMREREREUq040mAUBEcOjQIWzbtg3btm3D5cuX0a1bN4SEhODZZ5+Fh4eHoWMtE15mIiIiUp4Ku8z0IJVKhbZt2+KDDz5AREQETp48iQ4dOmD9+vXw8/PjvZuIiIjIKMrcM1OcpKQk3L59G0FBQYY+dKmxZ4aIiEh5Krxn5ssvv8Svv/6qez5lyhRUq1YNbdu2xeXLl+Hm5mYWiQwRERFVfmVKZubPnw97e3sAwKFDh7B8+XIsXLgQNWrUwJtvvmnQAImIiIiKU6ZF8+Li4lCnTh0AwE8//YT//Oc/ePXVV9GuXTt06tTJkPERERERFatMPTNOTk5ISkoCAISFhaFbt24AADs7O2RkZBguOiIiIqJHKFPPTPfu3TFq1Cg0b94ckZGR6N27NwDg7NmzCAgIMGR8RERERMUqU8/MZ599huDgYNy8eRObN2+Gm5sbACA8PBwDBw40aIBERERExamQqdnmhFOziYiIDO/q1auIjo5GVFQU6tati8ceeww+Pj4GO35pvr/LdJlp3bp1cHJywosvvqhX/sMPPyA9PR3Dhg0ry2GJiIhIAS5cuIAePXrgypUrurLatWtj165duglCxlSmy0wffPABatSoUaDcw8MD8+fPL3dQREREZJ5u3LiBfv366SUyAHDp0iW89NJLuHnzptFjKlMyc/nyZQQGBhYo9/f3L9A4IiIiqjxu3LiBiIiIQuuOHz+unGTGw8MDp0+fLlB+6tQp3WBgIiIiqnzS0tKKrU9NTTVSJP9TpmRmwIABmDBhAvbs2YO8vDzk5eXhzz//RGhoKAYMGGDoGImIiMhM1KhRAyqVqtA6Kysrk3RqlCmZmTt3Ltq0aYOuXbvC3t4e9vb26N69O7p06cIxM0RERJWYp6dnkRN9xowZAy8vLyNHVM6p2RcvXsSJEydgb2+PJk2awN/f35CxGQSnZhMRERlWQkICli1bhuXLlyM9PR1OTk6YOHEixo0bB09PT4O8Rmm+v8uczKxZswZLly7FxYsXAQBBQUGYOHEiRo0aVZbDVRgmM0RERIaXlZWF69evIy0tDY6OjvD29oaNjY3Bjl/h68zMmDEDS5cuxfjx4xEcHAxAe/fsN998E7GxsZg7d25ZDktEREQKYWtrazZXZMrUM1OjRg18+umnBW5d8N1332H8+PG4deuWwQIsL/bMEBERKU9pvr/LNAA4Ly8PrVq1KlDesmVL5ObmluWQRERERGVSpmTm5ZdfxhdffFGgfNWqVRg8eHC5gyIiIiIqqTKNmQG0A4DDwsLw5JNPAgAOHz6MuLg4DB06FJMmTdJtt2TJkvJHSURERFSEMiUzZ86cQYsWLQAA0dHRAAB3d3e4u7vjzJkzuu2KWlSHiIiIyFDKlMzs2bPH0HEQERERlUmZxswQERERmQsmM0RERKRoTGaIiIhI0ZjMEBERkaIxmSEiIiJFYzJDREREisZkhoiIiBSNyQwREREpGpMZIiIiUjQmM0RERKRoTGaIiIhI0ZjMEBERkaIxmSEiIiJFK9Nds4mIiKiKiwOQBOAmAA8AbgB8TRMKkxkiIiIqnSgAQwAcfqCsPYD1AGobPxxFXWZasGABVCoVJk6caOpQiIiIqqarAIZBP5EBgP0AXgOQYPSIlJPMHD16FKtWrUKTJk1MHQoREVHVdQvAwSLq/rhXb2SKSGZSU1MxePBgrF69GtWrVzd1OERERFXX3UfUa4wRhD5FJDNjx45F79690a1bt0dum5WVheTkZL0HERERGYhbMXUqACboczD7ZGbjxo04fvw4FixYUKLtFyxYALVarXv4+flVcIRERERViBuA7kXU9QFQw4ix3GPWyUxcXBxCQ0PxzTffwM7OrkT7TJs2DRqNRveIi4ur4CiJiIiqEB8AKwD0hrYnBvf+fR7AUgCexg9JJSJi/JctmZ9++gnPP/88LC0tdWV5eXlQqVSwsLBAVlaWXl1hkpOToVarodFo4OLiUtEhExERVQ3XoR3smwxADcAd2vVmDKQ0399mvc5M165d8e+//+qVvfLKK3j88ccxderURyYyREREVEG87j3MgFknM87OzmjUqJFemaOjI9zc3AqUExERUdVk1mNmiIiIiB7FrHtmCrN3715Th0BERERmhD0zREREpGhMZoiIiEjRmMwQERGRojGZISIiIkVjMkNERESKprjZTGRACQCiAfwDoBaAVgD8wLOCiIgUhV9bVdUVAM8CeHCBZXsAvwFoC54ZRESkGLzMVBWlAXgH+okMAGQAeAbANaNHRERESpVv6gD493fVlAhgUxF1aQBOA/A3XjhERKQw2dD28H8PIBxAGwD/gfa7wwSZBZOZqigTQF4x9QnGCoSIiBQnH9qxlt0BZN0r2wpgDoA/ATxp/JB4makqcgHgU0x9S2MFQkREihMP4EX8L5G5LwPAS/fqjYzJTFXkA2BhEXUdoJ3RREREVJgb9x6FuQLgphFjuYfJTFWkAtARwBr8L3GxAzASwDoAHiaKi4iIzF/OI+qzjRKFHo6ZqYpyAXwN4EcA7wJwBSDQXvN8FsAfKP4yFBERVV2e0P4BnFlInRNM8gcxe2aqongAC4H0Jum45H0JR3EUEXYRuNn0JnAL2oX0iIiICuMFYH4RdR8B8DZiLPcwmamK0oAbC29guu10PP6fx/FE/yfQMKQhnv7xaUR9HQXEmjpAIiIyW/YAhgH4BUBzaHtjWgHYBaA/ABvjh8TLTFVQjjoHKy+uxNKVS/XKw8PD0eP1Hvj757/hw+tMRERUFFcAvaFdXyYT2gTHzXThsGemCkrITsDilYsLrYuJicHFmxeNHBERESlSDQC+MGkiAzCZqZLS0tKQnJxcZP358+eNGA0REVH5MJmpghysHODo6Fhkfd2AukaMhoiIqHyYzFRBXtZeGPfKuELratasiaAaQUaOiIiIqOyYzFRBtvm2CO0QiuEDhkOlUunK69atiz/W/AFfK18TRkdERFQ6nM1UFVkA3re9scxzGf67/b9ITEmEk4MTPOM84bXWCxhv6gCJiIhKjslMVWQFIBJQN1FD/aYaQdFBgCOAodCuEcD+OiIiUhAmM1WRDwB3AIsBjL33PBvAJgD/BbDHdKERERGVFpOZqsgKwAho1wdwuFfmAKAdgGXgfZmIiEhRmMxUVRbQ9sZMBXAbgCWAFwAMMGVQREREpcfREVVRPoDN0F5iun2vLA/ay0x9AVw3TVhERERlwWSmKroGYEYRdScAXDZiLEREROXEZKYqSgVws5j6U8YKhIiIqPyYzFRFdij+Fu1+xgqEiIio/JjMVEVeAIYUUVcNQEPjhUJERFReTGaqInsAswF0eKi8OoDfob2dOxERkUJwanZV5QvgB2gHA5+Btrem3r1yprhERKQgTGaqMo97j+amDoSIiKjsmMxUZfkA4qGd3WQLwBP/WxGYiIhIIXhBoapKArAOQEsA9QHUBTAGQJwpgyIiIio9JjNVUT6AnwGMApB4rywXwNcA/gPghoniIiIiKgMmM1VRPIBpRdQdAVcAJiIiRWEyUxWl4H89MoU5aaQ4iIiIDIDJTFVkB8C6mPqaxgqEiIio/JjMVEWeAAYXUecCoJERYyEiIionJjNVkQOA9wE8+VC5C4AwcAVgIiJSFK4zU1X5AvgJwBVo75LtA+09mXwBWJouLCIiotJiMlOVed57tDZ1IERERGXHy0xERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKZpZJzMLFixA69at4ezsDA8PD/Tt2xcXLlwwdViVSxq0d9FOMnUgREREZWPWycy+ffswduxYHD58GL///jtyc3PRo0cPpKWlmTo05csE8C+AVwA8AaAngM0AbpoyKCIiotJTiYiYOoiSunnzJjw8PLBv3z506NChRPskJydDrVZDo9HAxcWlgiNUkIMAOgLIfah8HID3AFQ3ekREREQ6pfn+VtTtDDQaDQDA1dW1yG2ysrKQlZWle56cnFzhcSlOIoBXUTCRAYDlAMaCyQwRESmGWV9mepCIYNKkSXjqqafQqFGjIrdbsGAB1Gq17uHn52fEKBXiDoCzxdQfNFYgRERE5aeYZGbcuHE4ffo0vvvuu2K3mzZtGjQaje4RFxdnpAgV5FF3xbYzShREREQGoYjLTOPHj8e2bdvw119/wdfXt9htbW1tYWtra6TIFMoVwFMA/i6kzgJAG+OGQ0REVB5mncyICMaPH4+tW7di7969CAwMNHVIlYMrgBXQJjR3H6pbDsDT2AEREVUhN+497kL7+9YDHKdYTmadzIwdOxbffvstfv75Zzg7O+P69esAALVaDXt7exNHp3ANABwH8AOA3wHUgnYmU20ATiaMi4ioMosCEAIg4oGy56H9Q9LHJBFVCmY9NVulUhVavm7dOgwfPrxEx+DU7EcQABkAbGDmqS0RkcLFA+gAILqQulEAPgbgYNSIzFqlmZptxnlW5aECf3iIiIwhDoUnMgDwJYBp0PaOU6kpZjYTERGRol0ppi4H2tvLUJkwmSEiIjKG4uaw2IHjFcuByQwREZEx+AIoas3XNwB4GzGWSobJDBERkTF4AdgOoP0DZVYAXgPwNrhgaTmY9QBgIiKiSiUAwFYANwGkQru+jBcARxPGVAkwmSEiIjImt3sPMhheZiIiIiJFYzJDREREisZkhoiIiBSNyQwREREpGpMZIiIiUjQmM0RERKRoTGaIiIhI0ZjMEBERkaIxmSEiIiJFYzJDREREisZkhogqhubeg4iogvHeTERkWNcA/AHg/6D9c2kMgI4AfEwZFBFVZkxmiMhwrgJ4FsCpB8r+AhAM4EcwoSGiCsHLTERkOL9AP5G57xCAfUaOhYiqDCYzRGQYSQBWFVP/BYBkI8VClVMutJcxrwC4ZeJYyKwwmSEiwxAA+cXU59/bhqgs4gHMBdAIgD+AZwAcAJBqyqDIXDCZISLDcAMwvJj6UQDUxgmFKpkbAIYAmAPg7r2yowDaAzhiopjIrDCZISLDUAF4AUDdQuqaAOhu3HCoErkM4M9CygXAeGiTHarSOJuJiAzHD9pp2VsArIX2z6VXATwHoKYJ4yJlK27weASAFACeRoqFzBKTGSIyLD8AEwAMgra3poZpw6FKwK2YOmvwm4x4ChBRBVABcDd1EFRpdABgCSCvkLqXAHgYNxwyPxwzQ0RUFWRCuTN/agL4FgW/sYKgneHkYPSIyMywZ4aIqDK7CeA6gNPQ3iurJbTjSwJMGFNp2QPoDeA8gJ8AxAHoBaApOBaLADCZISKqvBIB7AHwCoCMB8oHAJgHoLYpgiojR2h7Yt42dSBkjniZiYiosroB4GXoJzIAsBHAZmgvPRFVAkxmiIgqq83Q3gKgMJ9Ce2NQokqAl5lKSwDEA3JbkJ2fDWsLa1hUs9Beg7YxdXCll5OTg+TkZNjZ2cHR0dHU4RCRIcUWU3cNvL0EVRpMZkop91IuLmsuY+OmjThw+gAaBjbEiCEjEJARAPva9op5R3NzcxEbG4uVK1diz549qFmzJt5++200bNgQ1atXN3V4RGQIHQF8CcAL2oUL7aFd/v8wgOZQ5B9gRIVRiUilzs2Tk5OhVquh0Wjg4uJSvoMlAcf+PYaOvTsiPT1dV2xpaYmfvv4JPZ/qCWs/63JGbBwnT55Eu3bt9NoBAPPmzcP48ePh7OxsosiIyGAiAYQBcAawCdq7lncF0AJAtXv/OpkqOKLileb7m8lMKVy/eB0dn+2IyMjIAnXOzs7498i/8H/cv1yvYQy3bt3C008/jWPHjhWoU6lUuHDhAoKCgkwQWTlkQXsDOmsArqYNhchsHATwfwDWPVReE8Dv0CYyfsYOiqhkSvP9zQHApXAr+VahiQwApKSk4MrVK0aOqGxu375daCIDACKCQ4cOGTmicsgHEA1gMYAPASwAsBW88RwRoF0k70sgp3cOrq29hrjv4pA8MRlIg/bnRSGXxYkehclMKeTmFTUtQCsrN8tIkVQsRXXWRQE4Ce0aFHEA7kC7lP4vAG6ZLiwis/AHcHXrVcyuPRuNJzdG7SG1MSBiAP7d8C+yr2UDOaYOkMgwmJeXgpuLG9zd3XHz5s0CdVZWVqjtp4wVqKpXr44WLVrg+PHjBepUKhWC2wSbIKoySAaQCKQeScWN9jeQ4JkABzsHeN7xhM9dH6huqHiTQ1PJA5B07//u0CaYZHTxPeLR560+OHHqhK5sZ9hO7N67G8d+OobGFo1NGB2R4bBnphRq5tbEF+9/UWjd7DdnwzNFGfegd4c7Vr2/CnZ2dgXqpk+YDk9LZbQDyUDi7UTMSZmDen3rof3A9mj5fEu0mdEG4UHhyM/KN3WEVVMcgEXQzqTpDGAZuJ6JiZxOO62XyNyXnZ2Ndz55BxrRmCAqIsNjMlMKFtYW6BHeAwd/PIiunbuiRo0aaNWqFX75v18wxmEMHJ0Usk7LbaDp/KY49dMpvDH8DTRs2BDdu3bH7q92I7RaKNT71aaOsEQkX7Dl7BZ89MVHyMv73+10r127hi4vd8GVHGWMYapU4qBNYKZBex+dCACTAPQEExoT+HHbj0XWhf0RhuTsZCNGQ1RxeJmpNNwBZz9nBJ8Nxo8Lf0SapMFOZQe3I27AZQDlnPltNJaA1QEr1H2uLpb0XYLk/yTD9o4tXKa4aG9I962pAyyZhKwEvPfpe4XWpaSkYP/x/QhoE2DcoKqyfAA/QDsg+2ER0E4RHmHUiKo8t+puRdY5OzvDwoJ/z1LlwDO5NFwBDAZwHKjWuhpqPlETbq3dgK+g/Uu0lmnDKzE3AJ0A5AC2P9jCfY47XD65l8hYAnjCpNGVWHZ+NhISEoqsP33xtBGjIdyGdoG2oqyBdvo8Gc3L/V8usm7MqDHwcPAwYjREFYfJTGmkAJgJ4OeHyv8B8BKUMx24OoDPoU1qHrYC2tVCFcDW0hb+/kWv69O6eWsjRkNQofi+XitwILCR1YqphQXvLyhQ3qxZM7zR+w1Y5yhjkU+iR+FlptJIBPBdEXUnoe3ZUMjYWTwO4BiAbQB2AQgA8BqAQGinOSuAt6M35k6biyFjhhSoc3NzQ5uWbUwQVRXmBmA4gIKT5LRGAFDGcKxKQ11PjTE1x6D3L72x4bcNuJV8C//p+B808W8Cn1QfLjBJlQaTmdJIhnZcQFGuA2hqpFjKSwVtAjMB2iTGCtpLTEqSA/Tq1AsfTv8QsxfPRkZGBgCgfv362PTFJvjbm/9qzJXKNQC1oV0i/zi051T+vUdbaHsEb0I7VZuMwwGo9mQ1VJNq+KDDB9p7M82E9rNap61XFIH292wetKsXVzNpNGRGmMyUhjO0X/h5RdR7GzEWQ7I1dQBlV2NODYROD0X/l/rj1u1bsLOzg7ujOzzPeALZ0PY0KcVtAKmAJl0DS0tLONk5aXs7lPKFkw9gLpD2WRquuVxDwo0EqFQqeHt6w/eWL+xn2QO88mdcO6C91QcA/PFQ3fsAekExl5WRAO0A84+gTYo7QLvid31okzQluQttT38atAmZF5TXBjPDZKY0vAAMAvB1IXUtoZxfCpVFLoBGgO03tghYFoCAjABt+eMAlgA4AaC7yaIrnXgg7k4cftn2Czb8ugH29vYIHRKK1m1aw9PHU5tImzsfIHFhIrb9uw0T35yItLQ0ANpZMys+X4Ge7/eEm3fRs2uoAhQ3Bj4WylkB+Ca0PcjbHygLA7AbwD4A7UwRVBldgbYtl6HtpYwD8DyAKVDOMAUzxBtNllY8tOtmbIK2yxMAngLwDQAlXtW4CSAD2rTWE8q61HQdwEYAbxZS5wpgJxQzM+vK+Svo9EwnxMTE6JX3e7YfPl/yOTyDlPFb7u+//0b79u0LlKtUKvzzzz9o3VqBXTNXoe118ob2RqZKshrAqwBcgeze2ci1z4XDPw7AKQCNoE0GlDCh6Ti0fzAC2svjagCXoJ2U0RTam2Yq4fLlDSDnnRxcfeEq9kXsw8W4i2jbpC2aOjeFb4yv9rtFwT3lhlaa72/2zJSWK4C5AMZCex8gF2h/GVQ3ZVBlkAztL4hJ0PZg1ADwFoChUM7lslwAS4uouw3gIhSRzOTE5+DzLz4vkMgAwJZftmD8a+MVkczcTrqNhQsXFlonIli2bBlWrFgBZ2cldDMBiIF2cPxqaC9Z9gcwEEAdUwZVSsHArYW3EFEzAss3L8fd63fx0oCX0H1md9SSWsq5hLkHyO6UjWuTruGf6H8QfzMebZu2ReDNQHi+4wlooIhkJjcxF4efOYweL/ZAZmamrtzPzw9//t+fqJNQR5usUelJJafRaASAaDQawxzwTxGxEhGIiKOIWNz7/zoRyTDMSxjFL6KN++FHXxG5acK4SiNG/hd3E5HMVzIl98VcEad7ZZNNGVzJXT1/VTw9PQXavj6xsrISCwsL3fOBAwdKXkaeqcN8pMvRl6V+/fq6uB9+tG7dWq5dvmbqMEvmkogMEpH1InJQRA6IyGYReUFEokwYVynd+uWWjBszrsBn4e/vLzH/xIhcMXWEJZO1NUvCvg0TW1tbvXY8+cSTErctTvu7QAEuh18WtVpd6M9Hl05d5Pa526YO0ayU5vtbEevMfP755wgMDISdnR1atmyJ/fv3myaQeABjgKRZSYj4JQK7P9uNU1tP4cbHN4BZ0F72UIIEAOOKqPvpXr0S2ABoCVzZcgVrB61Fvxv9MMpmFI6sO4Lbb98Gmpk6wBKyAPLz89G/f3/8/PPP+Prrr7Fp0yZs2LABrVq1Qm5uriIu/7k4u6Bhw4ZF1jdq1AjVXKoZL6DyiAayZmTh4hMXcSD3AP7K+guR9SOROi9V25OZ9cgjmIVY21gsX7G8QPnly5exeOViZFkpoyHXHr+G5155DllZ+vEePnIY836Zh8zqmUXsaV4uJl6ERlP4/bD+3PsnbuYWvIkxlZARkqty2bhxo1hbW8vq1aslIiJCQkNDxdHRUS5fvlyi/Q3aM3NaJG5bnHTp2EUvo27YsKFE/Ral/etNCc5J4b0y9x+rTRdaqeSLXDp+Sfz8/Ar8lTNr0iy5E33H1BGWSGZ8pmzetFn++9//io2Nja4Nrq6usmHDBjn05yGRHFNHWQK5Iv/884+oVKoCn4elpaWcOH7C1BGWjEZEc1EjP//0s7i6uura4ODgIJ98/IkkXEwQKdmvH5ObOGFikT1lTk5OEnclztQhlshXX35VZDvs7OwkNirW1CGWyMbvNhbZDgByIvyEqUM0K6X5/jb7MTNLlizByJEjMWrUKADAsmXLsGvXLnzxxRdYsKDgypYVSWOrwcT/m4g/9/0JAFBZa0dqRURG4bm3X8CvX/4Kz2zzH9sAQNurUdTQbxdoxwiYufTUDMz6eB6uXk/UfRb3vffpB3hu0Auon+1kouhKIdUSuWKJBYsWA1Dp2nInJQ2vjHoNh/cdRnpGrvkPDLwJ+ObUxtcbNmHipFAkJSUBADw9PfHZJ5/DK8sf6fG52vFZ5iwbuKCJwQsDBiIvL0/3eWTk5CH0rbdRO+hxdG5aQxE/I6nZOQV+Nu7LyVchPScP6dm5Ro6q9KIvXy2yHVl5gtspqXBXQDt8A2oX2Q43NzeorOwU8XkUxt7aEiqV6Zb4NuvZTNnZ2XBwcMAPP/yA559/XlceGhqKkydPYt++fQX2ycrK0uuKTE5Ohp+fn0FmM108dxH1GtaDiEBlbYtakzaX63hERESVQcR7PeFgY9j+kdLMZjLrMTO3bt1CXl4ePD31ezs8PT1x/XrhA1QWLFgAtVqte/j5+RksntSMVJhx7kdERFQlmf1lJgAFuq5EpMjurGnTpmHSpEm65/d7ZgxBXU0NKysr5ObmQnKycGXJC3r1R44cQYMGDQzyWkZxDdrp2XuhnQ74NICaUMxKlJp4DYaMHqK77PewPTv2onWHVkaOqvTuJN7BCwP+gyNH/im0/r2Z72HSlEmF1pmVLGiXLShquvwsaNcEMvPfOjlZOZgxawaWLy84cBYAOnfujDUr1sCjphIWaAGuX7+OnTt/w2efLUdKcgqe6d0b48aNQ2BgACwszPrvWZ24i1dxPvYcNm7ciK1btiI7Jxu1avnjrbfegpuzG3p3fAZWHmZ+YgHQxGgwc/EsxFy5hJdeegkO9g64fv061q1fh2mT/4u+XUOgqqHMu7HaW5t4lkLFDt8pn6ysLLG0tJQtW7bolU+YMEE6dOhQomMYcgBwamqqvPbaa4UO3GrXrp0kJiaW+zWodE4fOS12dnYFPo9nuj8jN2JumDq8Evsz7M9CzysHBweJOq+gucAXRMRdCg4q9xGRiyaMq5TO/HtGbzD2g4+9e/aaOrwyuXHjhsTHx0tGhpLWkNDKT8iXk3+flNDQUNm0aZNs2rRJPv/8c5k1bZZ2QLZSZIjcOHZDVi9bLYGBgWJlZSWtW7eWPT/tEc1ZAy0fUomU5vvbrJMZEZEnnnhCXn/9db2y+vXryzvvvFOi/Q29zkx8fLyMHj1arKysBICoVCrp3bu3XLmikAUbKpmcuzkScTxCBvcfLB4eHlKvXj1Z+dFKib8Ub+rQSuVO0h1Zv2a93hoUgYGBcvjAYcnJUcJUpgecE5Ehol2HyVlERoo2yVGQ1NupErYrTHx8fHSfh1qtlrVr1sqNOOUkyZVKvMjVM1flaNhR2b1pt0QeiZS7UXeVtb6XiEiqiESKxP8SL1d2XJGbv93UrpNj/ktJGV1pvr/NegAwAHz//fcYMmQIVqxYgeDgYKxatQqrV6/G2bNn4e//6PsHGPx2BgDS0tJw/fp1aDQaODs7w93dHdWqVTPIsals0hPScSf5DqysrODp7amclU0fkJubi/i4eNy6eQtW1lZwd3eHt69SlmN+SDK0t8oAtCtkK2TR3wfl5+bj0qVLSLqThLy8PLjXcEetmrVg62ju08oqMYF25fV8aGf3KfC80smDdkacHQBlXlmqcKX5/jb7ZAbQLpq3cOFCJCQkoFGjRli6dCk6dOhQon0rIpkhIiKiilXpkpnyYDJDRESkPJVmajYRERHRozCZISIiIkVjMkNERESKxmSGiIiIFI3JDBERESkakxkiIiJSNCYzREREpGhMZoiIiEjRmMwQERGRopn/PdPL6f4Cx8nJySaOhIiIiErq/vd2SW5UUOmTmZSUFACAn5+fiSMhIiKi0kpJSYFarS52m0p/b6b8/HzEx8fD2dkZKpVhb02anJwMPz8/xMXFKfq+T2yHeWE7zAvbYV7YDvNSke0QEaSkpMDHxwcWFsWPiqn0PTMWFhbw9fWt0NdwcXFR9Ml4H9thXtgO88J2mBe2w7xUVDse1SNzHwcAExERkaIxmSEiIiJFYzJTDra2tpg1axZsbW1NHUq5sB3mhe0wL2yHeWE7zIu5tKPSDwAmIiKiyo09M0RERKRoTGaIiIhI0ZjMEBERkaIxmSEiIiI9169fR/fu3eHo6Ihq1aqZOpxHqvLJzPXr1xEaGoo6derAzs4Onp6eeOqpp7BixQqkp6cDAFatWoVOnTrBxcUFKpUKd+/eLXCcefPmoW3btnBwcCj0gz916hQGDhwIPz8/2Nvbo379+vj4449N1q7bt29j/PjxqFevHhwcHFCrVi1MmDABGo1Gd4y9e/dCpVIV+jh69GiFxV6adgDAa6+9hsceewz29vZwd3dHSEgIzp8/r3ecO3fuYMiQIVCr1VCr1RgyZEihn6M5tyM2NhYjR45EYGAg7O3t8dhjj2HWrFnIzs42q3YAwKFDh9ClSxfdL8JOnTohIyMDgHmcVyVpS2xsbJFx/vDDD7rjKOHcio6OxvPPPw93d3e4uLigf//+uHHjht5xAgICCrTznXfeUVw7AODXX39FmzZtYG9vjxo1aqBfv35Gj9WclST+pUuXIiEhASdPnkRkZKSJI360Sr8CcHEuXbqEdu3aoVq1apg/fz4aN26M3NxcREZGYu3atfDx8UGfPn2Qnp6OXr16oVevXpg2bVqhx8rOzsaLL76I4OBgrFmzpkB9eHg43N3d8c0338DPzw8HDx7Eq6++CktLS4wbN87o7apduzbi4+Px0UcfoUGDBrh8+TLGjBmD+Ph4/PjjjwCAtm3bIiEhQe/YM2bMwB9//IFWrVoZNOaytqNPnz5o2bIlBg8ejFq1auH27duYPXs2evTogZiYGFhaWgIABg0ahKtXr+K3334DALz66qsYMmQItm/frph2nD9/Hvn5+Vi5ciXq1KmDM2fOYPTo0UhLS8NHH31kNu04dOiQ7mfl008/hY2NDU6dOqVbjtzU51VJ29K7d+8Cca5atQoLFy7E008/rSsz93Ora9eu6NGjB5o2bYo///wTgPb9fu6553D48GG9ZeLfe+89jB49Wvfcycmpwttg6HZs3rwZo0ePxvz589GlSxeICP7991+jxtqnTx+DvZ6hlTT+6OhotGzZEkFBQUUeKycnB9bW1kaMvhhShfXs2VN8fX0lNTW10Pr8/Hy953v27BEAcufOnSKPuW7dOlGr1SV6/TfeeEM6d+5c0nBLrLTtum/Tpk1iY2MjOTk5hdZnZ2eLh4eHvPfeewaLtThlbcepU6cEgERFRYmISEREhACQw4cP67Y5dOiQAJDz588bPvCHGKodhVm4cKEEBgYaJM5HKWk72rRpI9OnTy/xcY19XomU/TNp1qyZjBgxQvdcCefWrl27xMLCQjQaja789u3bAkB+//13XZm/v78sXbq0okMulKHakZOTIzVr1pT/+7//M2msIiJ37tyR0aNHi4eHh9ja2krDhg1l+/btIiJy69YtGTBggNSsWVPs7e2lUaNG8u233+odp2PHjjJ27FgZO3asqNVqcXV1lXfffVfv3Pzss8+kTp06YmtrKx4eHvLCCy8YJH5/f38BoHsMGzZMREQAyBdffCF9+vQRBwcHmTlzpuTm5sqIESMkICBA7OzspG7durJs2TK9Y+bk5Mj48eN17ZgyZYoMHTpUQkJCdNv88MMP0qhRI7GzsxNXV1fp2rVrkTEWpsomM7du3RKVSiULFiwo8T6GTmYGDx5copOvNMrSrvtWr14tNWrUKLL+xx9/FAsLC7ly5Up5QiyRsrYjNTVVJk6cKIGBgZKVlSUiImvWrCn0M1Gr1bJ27VpDhFskQ7ajMO+++660bNmyvGE+UknbcePGDQEgn3zyiQQHB4uHh4d06NBB9u/fX+Q+xjyvRMr+mRw7dkwAyIEDB3RlSji3tm3bJpaWlpKZmakrS09PFwsLC5k1a5auzN/fX7y8vMTV1VWaNm0qc+fOLfbcMxRDtuOff/4RALJ27Vpp1qyZeHl5Sa9eveTMmTNGjTUvL0+efPJJadiwoYSFhUl0dLRs375dduzYISIiV69elUWLFsmJEyckOjpaPvnkE7G0tNRLijt27ChOTk4SGhoq58+fl2+++UYcHBxk1apVIiJy9OhRsbS0lG+//VZiY2Pl+PHj8vHHHxsk/sTEROnVq5f0799fEhIS5O7duyKiTWY8PDxkzZo1Eh0dLbGxsZKdnS0zZ86UI0eOyKVLl3Rxfv/997rjzZ07V1xdXWXLli1y7tw5GTNmjLi4uOiSmfj4eLGyspIlS5ZITEyMnD59Wj777DNJSUkpNs4HVdlk5vDhwwJAtmzZolfu5uYmjo6O4ujoKFOmTNGrM2Qyc/DgQbG2tpawsLCyhF+ksrRLRHuS16pVS959990ij/3000/L008/bdB4i1Ladnz22Wfi6OgoAOTxxx/X682YN2+eBAUFFXiNoKAgmT9/fsU1QgzbjodFRUWJi4uLrF69usLiv6+k7bjfK+Hq6ipr166V48ePy8SJE8XGxkYiIyMLPbYxzyuRsv+MvP7661K/fn29MiWcW4mJieLi4iKhoaGSlpYmqampMnbsWAEgr776qm6/JUuWyN69e+XUqVO6P2xGjhxZoW0wdDu+++47ASC1atWSH3/8UY4dOyYDBw4UNzc3SUpKMlqs93uRLly4UOJjP/PMMzJ58mTd844dO0r9+vX1emKmTp2qOwc3b94sLi4ukpycbPD4RURCQkJ0PTL3AZCJEyc+8nXeeOMNvT/UPT09ZdGiRbrnubm5UqtWLV0yEx4eLgAkNja2xG15WJUfAKxSqfSeHzlyBCdPnkTDhg2RlZVVIa959uxZhISEYObMmejevXuFvEZp2pWcnIzevXujQYMGmDVrVqHHu3r1Knbt2oWRI0dWSLxFKWk7Bg8ejBMnTmDfvn0ICgpC//79kZmZWeRxAO3t5QsrrwiGasd98fHx6NWrF1588UWMGjWqwuO/71HtyM/PB6AdzPzKK6+gefPmWLp0KerVq4e1a9cWOJ6pziugdD8jGRkZ+PbbbwuN09zPLXd3d/zwww/Yvn07nJycoFarodFo0KJFC92YMgB488030bFjRzRp0gSjRo3CihUrsGbNGiQlJSmmHffPv3fffRcvvPACWrZsiXXr1hUYtF3RsZ48eRK+vr6oW7duofvn5eVh3rx5aNKkCdzc3ODk5ISwsDBcuXJFb7snn3xS77WCg4Nx8eJF5OXloXv37vD390ft2rUxZMgQbNiwocSDj8vzvVfYuLYVK1agVatWcHd3h5OTE1avXq1ri0ajwY0bN/DEE0/otre0tETLli11z5s2bYquXbuicePGePHFF7F69WrcuXOnRG25r8oOAK5Tpw5UKlWBWS+1a9cGANjb21fI60ZERKBLly4YPXo0pk+fbvDjl7ZdKSkp6NWrF5ycnLB169YiB3OtW7cObm5uRhvYVtp23J9JEhQUhCeffBLVq1fH1q1bMXDgQHh5eRU64+HmzZvw9PSsuEbAsO24Lz4+Hp07d0ZwcDBWrVpVofHfV9J2eHt7AwAaNGigt139+vUL/KIGjH9eAWX72f/xxx+Rnp6OoUOH6pUr5dzq0aMHoqOjcevWLVhZWaFatWrw8vJCYGBgkcd/8sknAQBRUVFwc3OrgBZoGbIdhZ1/tra2qF27dqHnX0XF+qjvj8WLF2Pp0qVYtmwZGjduDEdHR0ycOLFUMxOdnZ1x/Phx7N27F2FhYZg5cyZmz56No0ePFjmV2hDfe46OjnrPN23ahDfffBOLFy9GcHAwnJ2dsWjRIvzzzz962z2cQMkDd1KytLTE77//joMHDyIsLAyffvop3n33Xfzzzz/FnqMPqrI9M25ubujevTuWL1+OtLQ0o7zm2bNn0blzZwwbNgzz5s2rkNcoTbuSk5PRo0cP2NjYYNu2bbCzsyt0OxHBunXrMHToUKONXC/v5yMiur8wgoODodFocOTIEV39P//8A41Gg7Zt2xos5sIYsh0AcO3aNXTq1AktWrTAunXr9GaiVKSStiMgIAA+Pj64cOGCXnlkZCT8/f31ykxxXgFl+0zWrFmDPn36wN3dXa9caedWjRo1UK1aNfz5559ITEwsNok8ceIEgP8lCBXFkO1o2bIlbG1t9c6/nJwcxMbGFjj/KjLWJk2a4OrVq0VOad6/fz9CQkLw8ssvo2nTpqhduzYuXrxYYLvDhw8XeB4UFKTribKyskK3bt2wcOFCnD59GrGxsbqZXuWJvzT279+Ptm3b4o033kDz5s1Rp04dREdH6+rVajU8PT31fkby8vJ059d9KpUK7dq1w5w5c3DixAnY2Nhg69atJQ+kzBeoKoGoqCjx9PSUxx9/XDZu3CgRERFy/vx5+frrr8XT01MmTZokIiIJCQly4sQJWb16tQCQv/76S06cOKF3Dfby5cty4sQJmTNnjjg5OcmJEyfkxIkTugFMZ86cEXd3dxk8eLAkJCToHomJiSZpV3JysrRp00YaN24sUVFRejHl5ubqHe+PP/4QABIREWHwWMvbjujoaJk/f74cO3ZMLl++LAcPHpSQkBBxdXWVGzdu6I7Vq1cvadKkiRw6dEgOHTokjRs3lmeffVZR7bh27ZrUqVNHunTpIlevXtX7zMylHSIiS5cuFRcXF/nhhx/k4sWLMn36dLGzsysw/sdU51Vp2iIicvHiRVGpVLJz585Cj2Xu55aIyNq1a+XQoUMSFRUlX3/9tbi6uuq18eDBg7JkyRI5ceKEXLp0Sb7//nvx8fGRPn36KKodIiKhoaFSs2ZN2bVrl5w/f15GjhwpHh4ecvv2baPG2qlTJ2nUqJGEhYXJpUuXZMeOHbpzaOLEieLn5ycHDhyQiIgIGTVqlN6AWJH/DQB+88035fz58/Ltt9+Ko6OjrFixQkREtm/fLh9//LGcOHFCYmNj5fPPPxcLC4tHDnYuafxFjZnZunWrXtmyZcvExcVFfvvtN7lw4YJMnz5dXFxcpGnTprpt5s6dK25ubvLTTz/J+fPnZezYseLi4iJ9+/YVEe1Ynnnz5snRo0fl8uXLupm19wdMl0SVTmZEtKOox40bJ4GBgWJtbS1OTk7yxBNPyKJFiyQtLU1ERGbNmqU3Te3+Y926dbrjDBs2rNBt9uzZU+wx/P39TdKu+4OZC3vExMToHWvgwIHStm3bComzvO24du2aPP300+Lh4SHW1tbi6+srgwYNKjAtNikpSQYPHizOzs7i7OwsgwcPLnYgtzm2Y926dUV+ZubSjvsWLFggvr6+4uDgIMHBwYXOZjLleSVS8rZMmzZNfH19JS8vr9DjmPu5JaIdOOrp6SnW1tYSFBQkixcv1htYGh4eLm3atBG1Wi12dnZSr149mTVrlt77oIR2iGin+k+ePFk8PDzE2dlZunXrZrDZTKWJNSkpSV555RVxc3MTOzs7adSokfzyyy+6upCQEHFychIPDw+ZPn16ganKHTt2lDfeeEM386d69eryzjvv6Nq7f/9+6dixo1SvXl3s7e2lSZMmejOIyht/SZOZzMxMGT58uKjVaqlWrZq8/vrr8s477+glMzk5OTJu3DhdO6ZOnSovvviiDBgwQES0Sxz07NlT3N3dxdbWVurWrSuffvppST8OERFR3QuQiIiIzESnTp3QrFkzLFu2zNShGFx+fj7q16+P/v374/333zfIMavsAGAiIiKqeJcvX0ZYWBg6duyIrKwsLF++HDExMRg0aJDBXqPKDgAmIiKiimdhYYH169ejdevWaNeuHf7991/88ccfqF+/vsFeg5eZiIiISNHYM0NERESKxmSGiIiIFI3JDBERESkakxkiIiJSNCYzREREpGhMZoiIiEjRmMwQERGRojGZISIiIkVjMkNERESK9v9M2sjlP34lcgAAAABJRU5ErkJggg==", + "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZ00lEQVR4nO3dd3hUxf7H8fcmpDcgJCEhIaFLFUFFRJqIoChYrg2kSPGqKCBcQa6IoAiKBaxX5YfYO+JVrwpYQBSQFkA6xIQaDERIAoGEJPP7Y2ElpJCy2c1JPq/n2Qd2Zs/Z7+yezX53zswcmzHGICIiImJRHu4OQERERKQ8lMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmk13B1ARcvLy+PAgQMEBQVhs9ncHY6IiIiUgDGGjIwMoqKi8PAovu+lyiczBw4cICYmxt1hiIiISBns3buX6OjoYh9T5ZOZoKAgwP5iBAcHuzkaERERKYn09HRiYmIc3+PFqfLJzJlTS8HBwUpmRERELKYkQ0Q0AFhEREQsTcmMiIiIWJqSGREREbG0Kj9mpiSMMeTk5JCbm+vuUESqFE9PT2rUqKFlEUSkQlX7ZCY7O5vk5GQyMzPdHYpIleTv709kZCTe3t7uDkVEqqhqnczk5eWRmJiIp6cnUVFReHt76xekiJMYY8jOzubQoUMkJibSpEmT8y58JSJSFtU6mcnOziYvL4+YmBj8/f3dHY5IlePn54eXlxe7d+8mOzsbX19fd4ckIlWQfiaBfi2KVCB9vkSkoumvjIiIiFhatT7NJCIiImV0GEgBjgC1gXAg1D2hqGdGRERESmcPcBPQErgCaAHcBux1TzjqmREREZGSSwUGAhuA4UA09uTmE+Bu4AOglmtDUs+MkJ2d7e4QRETEKv4EGgBvYz/N9An2U00fADVPl7mYkplzGGPIzM5x+c0YU+IYk5KSsNlsBW7dunUDYPny5XTp0gU/Pz9iYmIYNWoUx48fd2wfFxfHtGnTGDJkCCEhIYwYMQKA+fPn07JlS3x8fIiLi+O5555z6msrIiJVQDZwCXAj8CWwBVgA9AN6nK53MZ1mOseJU7m0mLzQ5c+75fFe+HuX7O2IiYkhOTnZcf/gwYNcddVVdOnShd9//51evXrxxBNPMHfuXA4dOsT999/P/fffz7x58xzbPPPMMzz66KNMmjQJgLVr13LrrbcyZcoUbrvtNpYvX859991HaGgoQ4YMcWpbRUTEwnyBiYWUG+Bh4FfXhgNgM6XpErCg9PR0QkJCSEtLIzg4OF/dyZMnSUxMpEGDBo7FvDKzcyp9MnO2kydP0q1bN8LCwvjvf//LkCFD8PPz4/XXX3c85pdffqFr164cP34cX19f4uLiuOiii1iwYIHjMQMGDODQoUMsWrTIUTZ+/Hj+97//sXnz5vI1Tqq1wj5nImJhy4FOxdSvBDqU/2mK+/4+l3pmzuHn5cmWx3u55XnLYtiwYWRkZLB48WI8PDxYu3Ytu3bt4v3333c8xhjjuHRD8+bNAbj44ovz7Wfr1q3069cvX1mnTp2YPXs2ubm5eHqWLT4REali8spZXwGUzJzDZrOVqYfEHaZNm8Z3333HqlWrCAoKAuzXm/rnP//JqFGjCjy+fv36jv8HBATkqzPGFLguVRXvtBMRkbKoA4QAaYXUhWFfc8bFrPGtLQXMnz+fxx9/nG+//ZZGjRo5ytu1a8fmzZtp3LhxqfbXokULfvnll3xly5cvp2nTpuqVERGRv4UCs4Bh2MfJnOEBzMae0LiYkhkL2rRpE4MGDWLChAm0bNmSgwcPAuDt7c2ECRO47LLLGDlyJCNGjCAgIICtW7eyePFiXnrppSL3OW7cOC655BKeeOIJbrvtNlasWMHLL7/Mq6++6qpmiYiIFYQB3YBvsE/P3glcAAwGmqKeGSmZNWvWkJmZybRp05g2bZqjvGvXrixZsoSlS5fyyCOP0LlzZ4wxNGrUiNtuu63YfbZr145PPvmEyZMn88QTTxAZGcnjjz+umUwiIlJQA8APaAikA0HYTz3VdU84ms2kWRYiFUqfM5Eq6gD2yxfsBuKAGCDSebvXbCYRERGpOLuAa7GfYjqjOfA/7L02LqYVgEVERKTkUoCbyZ/IAGwF7sB+NW0XUzIjIiIiJZcCbCyi7jd0bSYRERGp5DLOU3/MJVHko2RGRERESi4UsBVR54FbpmYrmREREZGSiwCKWu3jrtP1LqbZTCIiIlJyIcDzQAP4y+svTkSewH+fP7U8asF92NeccTH1zIiIiEipHPE9wvfdv6fPoj60fbQtfZf2ZcmVSzjqe9Qt8SiZqSK6devGmDFjHPfj4uKYPXu24/7Bgwfp2bMnAQEB1KxZs8gysfv1119p3bo1Xl5e3HDDDS573nPfRyuwYswiUnZZWVl88MEH9Ly6JytXruTw4cP88ssvdO/enQULFnDq1CmXx6TTTFXU6tWr810Ze9asWSQnJ7N+/XpCQkKKLLOqxMRE7rnnHo4dO8bRo0d59tlnueaaa8q8v7Fjx9K2bVu+/fZbAgMDnRip3ZIlS+jevTtHjhzJl0h+/vnneHl5Of35ztWtWzfatm2bL+EVESmJ5ORkHnrooULrxowZQ48ePahfv75LY3Jrz8zPP//M9ddfT1RUFDabjS+++CJfvTGGKVOmEBUVhZ+fH926dWPz5s3uCbY4ucAS4MPT/+a6Mxi7sLAw/P39HfcTEhJo3749TZo0ITw8vMiy0nJHBl6Y6Ohovv32W3799VcmTpzIW2+9Va79JSQkcOWVVxIdHe3SXqvatWsTFOSGE84iIiV08OBBTpw4UWhdeno6KSmuX2jGrcnM8ePHufDCC3n55ZcLrZ85cybPP/88L7/8MqtXr6Zu3br07NmTjIzzTXJ3oc+xX5OiO9D/9L9xp8sryPHjxxk0aBCBgYFERkby3HPPFXjM2aeZ4uLimD9/Pu+88w42m40hQ4YUWgaQlpbG3XffTXh4OMHBwVx55ZVs2LDBsd8pU6bQtm1b3nzzTRo2bIiPjw/GmBJv9+677xIXF0dISAi33357vvcyLy+Pp59+msaNG+Pj40P9+vV58sknHfX79+/ntttuo1atWoSGhtKvXz+SkpIA8PLywsPDg4SEBF5//fV8F+A8V1ZWFqNGjSI8PBxfX1+uuOIKVq9eDUBSUhI2m43U1FSGDh2KzWYrMjHKzs5m/Pjx1KtXj4CAADp06MCSJUsc9bt37+b666+nVq1aBAQE0LJlS7755huSkpLo3r07ALVq1cr3+hd2unDatGmO9zs2Npb//ve/HDp0iH79+hEYGEjr1q1Zs2aNY5vU1FTuuOMOoqOj8ff3p3Xr1nz44YeO+iFDhrB06VJeeOEFbDYbNpvN8Tpu2bKFa6+9lsDAQCIiIhg4cCCHD/+9nGdJjj0RqdrO13tco4YbTvqYSgIwCxYscNzPy8szdevWNU899ZSj7OTJkyYkJMS89tprJd5vWlqaAUxaWlqBuhMnTpgtW7aYEydOlC3o+cYYmzGGc26207f5Zdvt+dx7770mOjraLFq0yGzcuNFcd911JjAw0IwePdrxmNjYWDNr1ixjjDEpKSmmd+/e5tZbbzXJycnm6NGjhZbl5eWZTp06meuvv96sXr3a7Nixw4wbN86Ehoaa1NRUY4wxjz32mAkICDC9evUy69atMxs2bCjxdoGBgeamm24yv//+u/n5559N3bp1zb///W9HzOPHjze1atUyb731ltm1a5dZtmyZmTNnjjHGmOPHj5smTZqYoUOHmo0bN5otW7aY/v37m2bNmpmsrCxjjDFfffWV6dWrl9m9e3exr9+oUaNMVFSU+eabb8zmzZvN4MGDTa1atUxqaqrJyckxycnJJjg42MyePdskJyebzMzMQvfTv39/c/nll5uff/7Z7Nq1yzzzzDPGx8fH7NixwxhjTJ8+fUzPnj3Nxo0bTUJCgvnqq6/M0qVLTU5Ojpk/f74BzPbt2x2vvzHGdO3atcD7WLt2bfPaa6+ZHTt2mHvvvdcEBQWZ3r17m08++cRs377d3HDDDaZ58+YmLy/PGGPMvn37zDPPPGPi4+NNQkKCefHFF42np6dZuXKlMcaYo0ePmo4dO5oRI0aY5ORkk5ycbHJycsyBAwdMnTp1zMSJE83WrVvNunXrTM+ePU337t1Ldeydq9yfMxGpVPbs2WPCwsIMUOBWr149s2/fPqc8T3Hf3+eqtMlMQkKCAcy6devyPa5v375m0KBBRe7n5MmTJi0tzXHbu3dvxSQzOcaYaFMwkTk7oYk5/TgnysjIMN7e3uajjz5ylKWmpho/P78ikxljjOnXr58ZPHhwvn2dW/bDDz+Y4OBgc/LkyXyPa9SokXn99deNMfakxMvLy6SkpJR6O39/f5Oenu6of+ihh0yHDh2MMcakp6cbHx8fR/Jyrrlz55pmzZo5vrCNMSYrK8v4+fmZhQsXmrVr1xqbzWbatWtnOnToYIYMGVLofo4dO2a8vLzM+++/7yjLzs42UVFRZubMmY6ykJAQM2/evEL3YYwxu3btMjabzezfvz9feY8ePczEiRONMca0bt3aTJkypdDtf/rpJwOYI0eO5CsvLJm58847HfeTk5MNYB599FFH2YoVKwxgkpOTi4z32muvNePGjSvyeYwx5tFHHzVXX311vrIzn5/t27eX+Ng7l5IZkaolJyfH/PDDD8bLyytfIuPj42OWLVuW7+90eZQmmam0A4APHjwIQERE/tV3IiIi2L17d5HbzZgxg6lTp1ZobAAsA/YVU2+wXxp9GdDNeU+bkJBAdnY2HTt2dJTVrl2bZs2alXvfa9eu5dixY4SGhuYrP3HiBAkJCY77sbGxhIWFlXq7uLi4fONBIiMjHedWt27dSlZWFj169Cgytl27dhUYT3Ly5EkSEhK4+uqrycvLO28bExISOHXqFJ06dXKUeXl5cemll7J169bzbn/GunXrMMbQtGnTfOVZWVmO12HUqFHce++9LFq0iKuuuoqbb76ZNm3alPg5zjh7mzOfh9atWxcoS0lJoW7duuTm5vLUU0/x8ccfs3//frKyssjKyso3ILwwa9eu5aeffip0wHNCQgInTpyosGNPRKzD09OTK664gk2bNvHOO+8QHx/PJZdcwoABA4iLi8NmK2p54IpTaZOZM859UYwxxb5QEydOZOzYsY776enpxMTEOD+wZCc/roSMMc7d4Vny8vKIjIzMN+7jjLMHwZ77pVjS7c49z2qz2RwJiJ+f33lja9++Pe+//36BurMTq/M58/qV9rgqLB5PT0/Wrl2Lp6dnvrozycDw4cPp1asX//vf/1i0aBEzZszgueee44EHHijx80D+1+1MjIWVnXktn3vuOWbNmsXs2bNp3bo1AQEBjBkzhuzs7PO26frrr+fpp58uUBcZGcnOnedeIldEqitvb2+aNm3KE088QXZ2Nt7e3m5JYs6otMlM3bp1AXsPTWRkpKM8JSWlQG/N2Xx8fPDx8anw+Ig8/0NK9bgSaty4MV5eXqxcudIx9e3IkSPs2LGDrl27lmvf7dq14+DBg9SoUYO4uLgK3+5sTZo0wc/Pjx9++IHhw4cX+hwff/yxY4BxWTVu3Bhvb29++eUX+vfvD9hnZK1Zs6ZUa6VcdNFF5ObmkpKSQufOnYt8XExMDPfccw/33HMPEydOZM6cOTzwwAN4e3sDkJvr/Klvy5Yto1+/ftx5552APUnZuXMnzZs3dzzG29u7wHO3a9eO+fPnExcXV+gAvoo89kTEmmw2m2u+c8+j0i6a16BBA+rWrcvixYsdZdnZ2SxdupTLL7/cjZGd1hmIpuiLbdmAmNOPc6LAwECGDRvGQw89xA8//MCmTZsYMmQIHh7lfyuvuuoqOnbsyA033MDChQtJSkpi+fLlTJo0Kd9sGWdtdzZfX18mTJjA+PHjeeedd0hISGDlypXMnTsXgAEDBlCnTh369evHsmXLSExMZOnSpYwePZp9+4o735dfQEAA9957Lw899BDfffcdW7ZsYcSIEWRmZjJs2LAS76dp06YMGDCAQYMG8fnnn5OYmMjq1at5+umn+eabbwD7egsLFy4kMTGRdevW8eOPPzoSitjYWGw2G19//TWHDh3i2DHnXWa2cePGLF68mOXLl7N161b++c9/Ok7bnhEXF8dvv/1GUlIShw8fJi8vj5EjR/LXX39xxx13sGrVKv744w8WLVrE0KFDyc3NrdBjT0SkPNzaM3Ps2DF27drluJ+YmMj69eupXbs29evXZ8yYMUyfPp0mTZrQpEkTpk+fjr+/v+MXtVt5Ai8A/8CeuJx99udMgjP79OOc7JlnnuHYsWP07duXoKAgxo0bR1paWrn3a7PZ+Oabb3jkkUcYOnQohw4dom7dunTp0qXY3rCybneuRx99lBo1ajB58mQOHDhAZGQk99xzDwD+/v78/PPPTJgwgZtuuomMjAzq1atHjx49St1T89RTT5GXl8fAgQPJyMjg4osvZuHChdSqVatU+5k3bx7Tpk1j3Lhx7N+/n9DQUDp27Mi1114L2HtdRo4cyb59+wgODqZ3797MmjULgHr16jF16lQefvhh7rrrLgYNGlTutXHOePTRR0lMTKRXr174+/tz9913c8MNN+Q7Rv71r38xePBgWrRowYkTJ0hMTCQuLo5ff/2VCRMm0KtXL7KysoiNjaV3796OhKWijj0RkfKwmYochHEeZ1ZBPdfgwYN56623MMYwdepUXn/9dY4cOUKHDh145ZVXaNWqVYmfIz09nZCQENLS0gp86Z08eZLExEQaNGiAr69v2RrxOTCa/IOBY7AnMjeVbZciVYlTPmciUu0U9/19LrcmM65Q4ckM2Ff8XYZ9sG8k9lNLFdAjI2JFSmZEpCxKk8xU2gHAluKJU6dfi4iIVHp7gS3ANqAF0Bz7WFI3UDIjIiIipbMFuBL486yyesCPQNNCt6hQmoYgIiIiJZcM3Ej+RAZgP3AL4PrrTCqZERERkVI4BOwoom7j6XoXUzIjIiIiJXf8PPWZLokiHyUzIiIiUnJhFJ09eAGhRdRVICUzIiIiUnIhwJAi6u4BSrf+qFNoNpOIiIiUXBpwBVAbmHP6fi3siUwscASXJzTqmakiunXrlu9CiXFxccyePdtx/+DBg/Ts2ZOAgADHlawLKxO7X3/9ldatW+Pl5cUNN9zg7nAA+2UjvvjiCwCSkpKw2WysX7/e5XEMGTKk0rwmIuIGh4Bh2KdnvwJ8CrwIrMWe0KS6PiT1zFRRq1evJiAgwHF/1qxZJCcns379ekJCQooss6rExETuuecejh07xtGjR3n22We55ppryry/sWPH0rZtW7799lsCAwOdGKlzxMTEkJycTJ06dUr0+CFDhnD06FFHMiQiUmYB2K9H+M3p27n8XRsOKJlxitzcXJYtW0ZycjKRkZF07twZT0/3Xs8gLCws3/2EhATat29PkyZNii0rrVOnTuHl5VXm7Z0lOjqab7/9Fg8PD9577z3eeuutciUzCQkJ3HPPPURHO3c5S2e9Xp6entStW9cJEYmIlFI40AzYXkjdhafrXUynmcrp888/Jy4uju7du9O/f3+6d+9OXFwcn3/+eYU95/Hjxxk0aBCBgYFERkby3HPPFXjM2aeZ4uLimD9/Pu+88w42m40hQ4YUWgaQlpbG3XffTXh4OMHBwVx55ZVs2LDBsd8pU6bQtm1b3nzzTRo2bIiPjw/GmBJv9+677xIXF0dISAi33347GRkZjsfk5eXx9NNP07hxY3x8fKhfvz5PPvmko37//v3cdttt1KpVi9DQUPr160dSUhIAXl5eeHh4kJCQwOuvv860adOKfP2ysrIYNWoU4eHh+Pr6csUVV7B69Wrg79M3qampDB06FJvNVuTVrOPi4njiiSfo378/gYGBREVF8dJLL+V7jM1m47XXXqNfv34EBAQ44vrqq69o3749vr6+NGzYkKlTp5KTk+PYbufOnXTp0gVfX19atGjB4sWL8+23sNNMmzdvpk+fPgQHBxMUFETnzp1JSEhgypQpvP322/z3v//FZrNhs9lYsmTJeV9TsCfqY8eOpWbNmoSGhjJ+/Hiq+OXcROR86gILsF+L8GwxwCfYZzu5mqni0tLSDGDS0tIK1J04ccJs2bLFnDhxokz7nj9/vrHZbAZ7h5vjZrPZjM1mM/Pnzy9v+IW69957TXR0tFm0aJHZuHGjue6660xgYKAZPXq04zGxsbFm1qxZxhhjUlJSTO/evc2tt95qkpOTzdGjRwsty8vLM506dTLXX3+9Wb16tdmxY4cZN26cCQ0NNampqcYYYx577DETEBBgevXqZdatW2c2bNhQ4u0CAwPNTTfdZH7//Xfz888/m7p165p///vfjpjHjx9vatWqZd566y2za9cus2zZMjNnzhxjjDHHjx83TZo0MUOHDjUbN240W7ZsMf379zfNmjUzWVlZxhhjvvrqK9OrVy+ze/fuYl+/UaNGmaioKPPNN9+YzZs3m8GDB5tatWqZ1NRUk5OTY5KTk01wcLCZPXu2SU5ONpmZmYXuJzY21gQFBZkZM2aY7du3mxdffNF4enqaRYsWOR4DmPDwcDN37lyTkJBgkpKSzHfffWeCg4PNW2+9ZRISEsyiRYtMXFycmTJlijHGmNzcXNOqVSvTrVs3Ex8fb5YuXWouuugiA5gFCxYYY4xJTEw0gImPjzfGGLNv3z5Tu3Ztc9NNN5nVq1eb7du3mzfffNNs27bNZGRkmFtvvdX07t3bJCcnm+TkZJOVlVWi1/Tpp582ISEh5rPPPjNbtmwxw4YNM0FBQaZfv37nOUr/Vt7PmYhUUnuMMYuNMS8bY34wxux17u6L+/4+l5KZMv6RzcnJMdHR0QUSmbMTmpiYGJOTk+OMZjhkZGQYb29v89FHHznKUlNTjZ+fX5HJjDHG9OvXzwwePDjfvs4t++GHH0xwcLA5efJkvsc1atTIvP7668YYe1Li5eVlUlJSSr2dv7+/SU9Pd9Q/9NBDpkOHDsYYY9LT042Pj48jeTnX3LlzTbNmzUxeXp6jLCsry/j5+ZmFCxeatWvXGpvNZtq1a2c6dOhghgwZUuh+jh07Zry8vMz777/vKMvOzjZRUVFm5syZjrKQkBAzb968QvdxRmxsrOndu3e+sttuu81cc801jvuAGTNmTL7HdO7c2UyfPj1f2bvvvmsiIyONMcYsXLjQeHp6mr17//7L8O233xabzEycONE0aNDAZGdnFxrr4MGDCyQg53tNjTEmMjLSPPXUU476U6dOmejoaCUzIlLhSpPMaMxMGS1btox9+/YVWW+MYe/evSxbtoxu3bo57XkTEhLIzs6mY8eOjrLatWvTrFmzcu977dq1HDt2jNDQ/CsenThxgoSEBMf92NjYfGNySrpdXFwcQUFBjvuRkZGkpNgv4rF161aysrLo0aNHkbHt2rUr3/YAJ0+eJCEhgauvvpq8vLzztjEhIYFTp07RqVMnR5mXlxeXXnopW7duPe/25zr7fThz/+xZZAAXX3xxvvtr165l9erV+U6h5ebmcvLkSTIzM9m6dSv169fPN17n3Oc51/r16+ncuXOpxuOc7zVNS0sjOTk533PXqFGDiy++WKeaRKRSUTJTRsnJyU59XElV5JdIXl4ekZGRjvEUZzt76vbZs6RKs925X7Q2m82RgPj5+Z03tvbt2/P+++8XqDt3sHNxzrx+NputQPm5ZWV17n4Ke72mTp3KTTfdVGBbX1/fQt/j88V2vtevMM56TUVE3E3JTBlFRp478ql8jyupxo0b4+XlxcqVK6lfvz4AR44cYceOHXTt2rVc+27Xrh0HDx6kRo0axMXFVfh2Z2vSpAl+fn788MMPDB8+vNDn+Pjjjx0DjMuqcePGeHt788svv9C/f3/APsNozZo1+dbpKamVK1cWuH/BBRcUu027du3Yvn07jRs3LrS+RYsW7NmzhwMHDhAVFQXAihUrit1nmzZtePvtt4ucLeXt7U1ubm6BOM73mkZGRrJy5Uq6dOkCQE5ODmvXrqVdu3bFxiMi4kqazVRGnTt3Jjo6ushfzDabjZiYGDp37uzU5w0MDGTYsGE89NBD/PDDD2zatIkhQ4bg4VH+t/Kqq66iY8eO3HDDDSxcuJCkpCSWL1/OpEmTWLNmjdO3O5uvry8TJkxg/PjxvPPOOyQkJLBy5Urmzp0LwIABA6hTpw79+vVj2bJlJCYmsnTpUkaPHl3s6b5zBQQEcO+99/LQQw/x3XffsWXLFkaMGEFmZibDhg0r8X7O+PXXX5k5cyY7duzglVde4dNPP2X06NHFbjN58mTeeecdpkyZwubNm9m6dSsff/wxkyZNAuyvZ7NmzRg0aBAbNmxg2bJlPPLII8Xu8/777yc9PZ3bb7+dNWvWsHPnTt599122b7fPnYyLi2Pjxo1s376dw4cPc+rUqRK9pqNHj+app55iwYIFbNu2jfvuu4+jR4+W+nUSEalISmbKyNPTkxdeeAEoeArgzP3Zs2dXyHozzzzzDF26dKFv375cddVVXHHFFbRv377c+7XZbHzzzTd06dKFoUOH0rRpU26//XaSkpKIiIhw+nbnevTRRxk3bhyTJ0+mefPm3HbbbY4xNf7+/vz888/Ur1+fm266iebNmzN06FBOnDhR6p6ap556iptvvpmBAwfSrl07du3axcKFC6lVq/Trb48bN461a9dy0UUX8cQTT/Dcc8/Rq1evYrfp1asXX3/9NYsXL+aSSy7hsssu4/nnnyc2NhYADw8PFixYQFZWFpdeeinDhw/PN76mMKGhofz4448cO3aMrl270r59e+bMmePopRkxYgTNmjXj4osvJiwsjF9//bVEr+m4ceMYNGgQQ4YMoWPHjgQFBXHjjTeW+nUSEalINlPFR/Klp6cTEhJCWlpagS+9kydPkpiYSIMGDfD19S3T/j///PMCvQMxMTHMnj270DERUnXExcUxZsyYMp2eqk6c8TkTkeqnuO/vc2nMTDnddNNNjm76yrQCsIiISHWhZMYJPD09nTr9WkREREpOyYxIGZ297L+IiLiPBgCLiIiIpSmZEREREUtTMkPFrqorUt3p8yUiFa1aJzNn1uDIzMx0cyQiVdeZz1dprhslIlIa1XoAsKenJzVr1sy3MJuzrs8jUt0ZY8jMzCQlJYWaNWtquQIRqTDVOpkBqFu3LoAjoRER56pZs6bjcyYiUhGqfTJjs9mIjIwkPDycU6dOuTsckSrFy8tLPTIiUuGqfTJzhqenp/7oioiIWFC1HgAsIiIi1qdkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJpSmZERETE0pTMiIiIiKUpmRERERFLUzIjIiIilqZkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJpSmZERETE0pTMiIiIiKUpmRERERFLUzIjIiIilqZkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJplTqZycnJYdKkSTRo0AA/Pz8aNmzI448/Tl5enrtDExERkUqihrsDKM7TTz/Na6+9xttvv03Lli1Zs2YNd911FyEhIYwePdrd4YmIiEglUKmTmRUrVtCvXz/69OkDQFxcHB9++CFr1qxxc2QiIiJSWVTq00xXXHEFP/zwAzt27ABgw4YN/PLLL1x77bVFbpOVlUV6enq+m4iIiFRdlbpnZsKECaSlpXHBBRfg6elJbm4uTz75JHfccUeR28yYMYOpU6e6MEoRERFxp0rdM/Pxxx/z3nvv8cEHH7Bu3Trefvttnn32Wd5+++0it5k4cSJpaWmO2969e10YsYiIiLiazRhj3B1EUWJiYnj44YcZOXKko2zatGm89957bNu2rUT7SE9PJyQkhLS0NIKDgysqVBEREXGi0nx/V+qemczMTDw88ofo6empqdkiIiLiUKnHzFx//fU8+eST1K9fn5YtWxIfH8/zzz/P0KFD3R2aiIiIVBKV+jRTRkYGjz76KAsWLCAlJYWoqCjuuOMOJk+ejLe3d4n2odNMIiIi1lOa7+9Kncw4g5IZERER66kyY2ZEREREzkfJjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxtEqfzOzfv58777yT0NBQ/P39adu2LWvXrnV3WCIiIlJJ1HB3AMU5cuQInTp1onv37nz77beEh4eTkJBAzZo13R2aiIiIVBKVOpl5+umniYmJYd68eY6yuLg49wV0rizAG7C5OxAREZHqq1KfZvryyy+5+OKLueWWWwgPD+eiiy5izpw57g0qB/gDmA7cBEwAtgEn3BmUiIhI9VWpk5k//viD//znPzRp0oSFCxdyzz33MGrUKN55550it8nKyiI9PT3fzanWA22AR4BvgGeAVsAPwCnnPpWIiIicn80YY9wdRFG8vb25+OKLWb58uaNs1KhRrF69mhUrVhS6zZQpU5g6dWqB8rS0NIKDg8sX0EGgK7CjkLogYBNQv3xPISIiIpCenk5ISEiJvr8rdc9MZGQkLVq0yFfWvHlz9uzZU+Q2EydOJC0tzXHbu3ev8wI6TOGJDEAGsNt5TyUiIiIlU6kHAHfq1Int27fnK9uxYwexsbFFbuPj44OPj0/FBJRznvqsinlaERERKVqZk5lVq1axZMkSUlJSyMvLy1f3/PPPlzswgAcffJDLL7+c6dOnc+utt7Jq1SreeOMN3njjDafsv9RCgTDgUCF1NYCGrg1HREREypjMTJ8+nUmTJtGsWTMiIiKw2f6em3z2/8vrkksuYcGCBUycOJHHH3+cBg0aMHv2bAYMGOC05yiVesCrwC2F1E0BIlwajYiIiFDGAcARERE8/fTTDBkypAJCcq7SDCAqkQzsA30nARuABtgTmcuw99yIiIhIuZXm+7tMPTMeHh506tSpTMFZXhDQEZgPHAd8URIjIiLiRmWazfTggw/yyiuvODsWa6mJ/bSTEhkRERG3KlPPzL/+9S/69OlDo0aNaNGiBV5eXvnqP//8c6cEJyIiInI+ZUpmHnjgAX766Se6d+9OaGioUwf9ioiIiJRGmZKZd955h/nz59OnTx9nxyMiIiJSKmUaM1O7dm0aNWrk7FhERERESq1MycyUKVN47LHHyMzMdHY8IiIiIqVSptNML774IgkJCURERBAXF1dgAPC6deucEpyIiIjI+ZQpmbnhhhucHIaIiIhI2ZRqBeAdO3bQtGnTiozH6Zy+ArCIiIhUuNJ8f5dqzMxFF11E8+bNmTBhAitWrChXkCIiIiLOUKpkJjU1lZkzZ5KamsqNN95IREQEw4YN48svv+TkyZMVFaOIiIhIkcp0oUkAYwwrVqzgyy+/5Msvv2T37t1cddVV9OvXj+uuu47w8HBnx1omOs0kIiJiPRV2mulsNpuNyy+/nKeeeootW7awfv16unTpwltvvUVMTIyu3SQiIiIuUeaemeKkpqby119/0aRJE2fvutTUMyMiImI9Fd4z8/bbb/O///3PcX/8+PHUrFmTyy+/nN27dxMaGlopEhkRERGp+sqUzEyfPh0/Pz8AVqxYwcsvv8zMmTOpU6cODz74oFMDFBERESlOmRbN27t3L40bNwbgiy++4B//+Ad33303nTp1olu3bs6MT0RERKRYZeqZCQwMJDU1FYBFixZx1VVXAeDr68uJEyecF52IiIjIeZSpZ6Znz54MHz6ciy66iB07dtCnTx8ANm/eTFxcnDPjExERESlWmXpmXnnlFTp27MihQ4eYP38+oaGhAKxdu5Y77rjDqQGKiIiIFKdCpmZXJpqaLSIiYj0VPjV73rx5fPrppwXKP/30U95+++2y7FJERESkTMqUzDz11FPUqVOnQHl4eDjTp08vd1AiIiIiJVWmZGb37t00aNCgQHlsbCx79uwpd1AiIiIiJVWmZCY8PJyNGzcWKN+wYYNjMLCIiIiIK5Qpmbn99tsZNWoUP/30E7m5ueTm5vLjjz8yevRobr/9dmfHKCIiIlKkMq0zM23aNHbv3k2PHj2oUcO+i9zcXAYPHqwxMyIiIuJS5ZqavXPnTuLj4/Hz86NNmzbExsY6Mzan0NRsERER6ynN93eZemYA5s6dy6xZs9i5cycATZo0YcyYMQwfPrysuxQREREptTIlM48++iizZs3igQceoGPHjoD96tkPPvggSUlJTJs2zalBioiIiBSlTKeZ6tSpw0svvVTg0gUffvghDzzwAIcPH3ZagOWl00wiIiLOl52dTXJyMpmZmfj7+xMVFYWXl5fT9l/hKwDn5uZy8cUXFyhv3749OTk5ZdmliIiIWMTBgweZOnUqLVu2pEWLFrRu3Zrp06fz559/uiWeMiUzd955J//5z38KlL/xxhsMGDCg3EGJiIhI5ZSens6kSZOYPn06x48fByAjI4MpU6bkK3OlMp1meuCBB3jnnXeIiYnhsssuA2DlypXs3buXQYMG5etmev75550XbRnoNJOIiIjz7Nq1i2bNmpGXl1egrkaNGmzbto1GjRqV+3kqfDbTpk2baNeuHQAJCQkAhIWFERYWxqZNmxyPs9lsZdm9iIiIVFKHDh0qNJEByMnJ4a+//nJKMlMaZUpmfvrpJ2fHISIiIhYQEBBQbL2/v7+LIvlbmcbMiIiISPUUHh7OBRdcUGjdRRddRHh4uIsjUjIjIiIipVC3bl2++OILoqOj85XHxcXxySefEBYW5vKYyrwCsIiIiFRPzZo1Y8WKFezcuZMdO3ZwwQUX0LhxY+rVq+eWeMp1bSYr0GwmERER66nwRfNEREREKgslMyIiImJpSmZERETE0pTMiIiIiKUpmRERERFLUzIjIiIilqZkRkRERCxNyYyIiIhYmpIZERERsTRdzkBERERKby+QChwCwoFQILrYLSqMkhkREREpnV3AQGDlWWWdgbeAhq4Px1KnmWbMmIHNZmPMmDHuDkVERKR62gcMJn8iA7AM+CeQ7PKIrJPMrF69mjfeeIM2bdq4OxQREZHq6zCwvIi670/Xu5glkpljx44xYMAA5syZQ61atdwdjoiISPV19Dz1aa4IIj9LJDMjR46kT58+XHXVVed9bFZWFunp6fluIiIi4iShxdTZADf0OVT6ZOajjz5i3bp1zJgxo0SPnzFjBiEhIY5bTExMBUcoIiJSjYQCPYuo6wvUcWEsp1XqZGbv3r2MHj2a9957D19f3xJtM3HiRNLS0hy3vXv3VnCUIiIi1UgU8BrQB3tPDKf/vRGYBUS4PiSbMca4/mlL5osvvuDGG2/E09PTUZabm4vNZsPDw4OsrKx8dYVJT08nJCSEtLQ0goODKzpkERGR6uEg9sG+6UAIEIZ9vRknKc33d6VeZ6ZHjx78/vvv+cruuusuLrjgAiZMmHDeREZEREQqSN3Tt0qgUiczQUFBtGrVKl9ZQEAAoaGhBcpFRESkeqrUY2ZEREREzqdS98wUZsmSJe4OQURERCoR9cyIiIiIpSmZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFia5WYziRMlAwnAb0B94GIgBh0VIiJiKfraqq72ANcBZy+w7Ad8B1yOjgwREbEMnWaqjo4DD5M/kQE4AVwL7Hd5RCIiYlV57g5Av7+rpxTgkyLqjgMbgVjXhSMiIhaTjb2H/2NgLdAB+Af27w43ZBZKZqqjk0BuMfXJrgpEREQsJw/7WMueQNbpsgXAVOBH4DLXh6TTTNVRMBBVTH17VwUiIiKWcwC4hb8TmTNOALedrncxJTPVURQws4i6LthnNImIiBTmz9O3wuwBDrkwltOUzFRHNqArMJe/ExdfYBgwDwh3U1wiIlL5nTpPfbZLoshHY2aqoxzgXeAz4BGgNmCwn/O8Dvie4k9DiYhI9RWB/QfwyULqAnHLD2IlM9XRAeBpIA14CPuCeUf4+zxnAkpmRESkcHWB6cDYQuqeBSJdGw4omamejgMGDr5ykKTwJNZuX0t0eDRt67Sl3lP1qLGlBnR2d5AiIlIp+QGDgabAo8BO4ALgSeASwNv1ISmZqY4CYO+ne7lx4o2sXbfWURwYGMjCDxZyadil1NChISIiRakN9MG+vsxJ7AlOqPvC0QDgauh4zeP8+51/50tkAI4dO0bvAb3ZH6olgEVEpATqANG4NZEBJTPVUkpKCh99/FGhdRkZGfy+5dzrHIiIiFReSmaqoZPHT5KTk1Nk/YG9bljxSEREpIyUzFRDQb5B1K1bt8j6i1pe5MJoREREykfJTDUU5RfFUxOeKrSu46UdiY3QVSZFRMQ6lMxUQx45Hlzf5nrefv5tIiPtCwJ4e3sz/M7hfDLjE8KPaglgERGxDs2/rY5qQO3/1WZg14H0eK4Hx7yO4ePpQ8SRCPzS/OwrO4qIiFiEkpnqKAoIA9tEG/Xurme/nwn8F9gG/OTW6EREREpFyUx1VAMYin19AP/TZf5AJ2A2upSBiIhYipKZ6soD+5VNJwB/AZ7AzcDt7gxKRESk9DQAuDrKA+YDI7EnMgC5wCfADcBB94QlIiJSFkpmqqP92C8OVph4YLcLYxERESknJTPV0THgUDH1G1wViIiISPkpmamOfCn+Eu0xrgpERESk/JTMVEd1gYFF1NUEWrouFBERkfJSMlMd+QFTgC7nlNcCFmO/nLuIiIhFaGp2dRUNfIp9MPAm7L01zU6XK8UVERELUTJTnYWfvuki2SIiYmFKZqqzPOAA9tlNPkAEf68ILCIiYhE6oVBdpQLzgPZAc6ApcA+w151BiYiIlJ6SmeooD/tFJYcDKafLcoB3gX8Af7opLhERkTJQMlMdHQAmFlG3Cq0ALCIilqJkpjrK4O8emcKsd1EcIiIiTqBkpjryBbyKqa/nqkBERETKT8lMdRQBDCiiLhho5cJYREREyknJTHXkDzwBXHZOeTCwCK0ALCIilqJ1ZqqraOALYA/2q2RHYb8mUzTg6b6wRERESkvJTHUWcfp2ibsDERERKTudZhIRERFLUzIjIiIilqZkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJpSmZERETE0ip1MjNjxgwuueQSgoKCCA8P54YbbmD79u3uDqtqOY79Ktqp7g5ERESkbCp1MrN06VJGjhzJypUrWbx4MTk5OVx99dUcP37c3aFZ30ngd+Au4FKgFzAfOOTOoERERErPZowx7g6ipA4dOkR4eDhLly6lS5cuJdomPT2dkJAQ0tLSCA4OruAILWQ50BXIOaf8fuBxoJbLIxIREXEozfe3pS5nkJaWBkDt2rWLfExWVhZZWVmO++np6RUel+WkAHdTMJEBeBkYiZIZERGxjEp9mulsxhjGjh3LFVdcQatWrYp83IwZMwgJCXHcYmJiXBilRRwBNhdTv9xVgYiIiJSfZZKZ+++/n40bN/Lhhx8W+7iJEyeSlpbmuO3du9dFEVrI+a6K7euSKERERJzCEqeZHnjgAb788kt+/vlnoqOji32sj48PPj4+LorMomoDVwC/FFLnAXRwbTgiIiLlUamTGWMMDzzwAAsWLGDJkiU0aNDA3SFVDbWB17AnNEfPqXsZiHB1QCIi1cifp29Hsf+9DUfjFMupUiczI0eO5IMPPuC///0vQUFBHDx4EICQkBD8/PzcHJ3FtQDWAZ8Ci4H62GcyNQQC3RiXiEhVtgvoB2w5q+xG7D8ko9wSUZVQqadm22y2QsvnzZvHkCFDSrQPTc0+DwOcALyp5KmtiIjFHQC6AAmF1A0HXgD8XRpRpVZlpmZX4jyr6rChD4+IiCvspfBEBuBtYCL23nEpNcvMZhIREbG0PcXUncJ+eRkpEyUzIiIirlDcHBZfNF6xHJTMiIiIuEI0UNSar/cBkS6MpYpRMiMiIuIKdYGvgM5nldUA/gk8hBYsLYdKPQBYRESkSokDFgCHgGPY15epCwS4MaYqQMmMiIiIK4WevonT6DSTiIiIWJqSGREREbE0JTMiIiJiaUpmRERExNKUzIiIiIilKZkRERERS1MyIyIiIpamZEZEREQsTcmMiIiIWJqSGREREbE0JTMiUjHSTt9ERCqYrs0kIs61H/ge+D/sP5fuAboCUe4MSkSqMiUzIuI8+4DrgA1nlf0MdAQ+QwmNiFQInWYSEef5mvyJzBkrgKUujkVEqg0lMyLiHKnAG8XU/wdId1EsUjXlYD+NuQc47OZYpFJRMiMizmGAvGLq804/RqQsDgDTgFZALHAt8CtwzJ1BSWWhZEZEnCMUGFJM/XAgxDWhSBXzJzAQmAocPV22GugMrHJTTFKpKJkREeewATcDTQupawP0dG04UoXsBn4spNwAD2BPdqRa02wmEXGeGOzTsj8H3sT+c+lu4HqgnhvjEmsrbvD4FiADiHBRLFIpKZkREeeKAUYB/bH31tRxbzhSBYQWU+eFvslEh4CIVAAbEObuIKTK6AJ4ArmF1N0GhLs2HKl8NGZGRKQ6OIl1Z/7UAz6g4DdWE+wznPxdHpFUMuqZERGpyg4BB4GN2K+V1R77+JI4N8ZUWn5AH2Ab8AWwF+gNXIjGYgmgZEZEpOpKAX4C7gJOnFV+O/Ak0NAdQZVRAPaemIfcHYhURjrNJCJSVf0J3En+RAbgI2A+9lNPIlWAkhkRkapqPvZLABTmJewXBhWpAnSaqbQM9mW1k4As7NMC47Cfg/Z2W1QiIgUlFVO3H11eQqoMJTOltR37FYBnYV+oyRv7Mu3XABdguVf08OHDZGZmUqNGDSIiIvD09HR3SCLiLF2Bt4G62Bcu9MO+/P9K4CL0A0yqDIt99brZIWApHMw7yJ4pe9i+Zzv169an0alGRH8cbU9qYt0dZMmkp6ezbt06xo4dS3x8PHXq1OFf//oXgwYNIjIy0t3hiYgzdMJ+OikI+AT7Vct7AROBmhS/GJ2IhSiZKY002N1kN9eNvo5NmzY5iuvVq8eitxfRIquFG4MrnWXLlnHdddc57h8+fJiHH36YlStXMmfOHOrUsdiyrVnYL0DnBdR2bygilcZhYB0w76yyX7BPZ14MHAEC3RCXiJNpAHApHMk5wvAZw/MlMgD79++nz/A+HDh5wE2RlU5ycjL3339/oXVffPEFycnJLo6oHPKABOA54GlgBrAAXXhOBOyL5L0Np/qcYv+b+9n74V7Sx6TDceyfF/2clSpCyUwpHDp1iO+//77QuqSkJJKPWyMJSEtLIykpqcj63377zXXBlNcuYD32NSh2Y/+laQO+xv6rVKQ6+x72LdjHlIZTaD2uNQ0HNuT2Lbfz+/u/k70/G065O0AR51BeXgrHM48XW3/4sDW+Pb28vLDZbBhT+FSGWiG1XBxRGaVjXxTsISDxrPK5wMPYe2csdrasysgFUk//Pwx7gikud+DqA/T9V1/iN8Q7yr5d9C0/LPmBNV+sobVHazdGJ+I86pkphZqBNfH19S2yvn5UfRdGU3ZhfmFc1/u6Quu8vb1p17qdiyMqo3TgdfInMmc8hX0MjbjeXuAZ7DNpugOz0XombrLx+MZ8icwZ2dnZPPziw6SZNDdEJeJ8SmZKIdI/ktHDRxdad12v6wgPssalW4OPBzN79GxiY/NPvfL09OSz/3xG5E6LzGY6AXxaTP2PrgpEHPZiT2AmYr+OzhZgLPYZNEpoXO6zLz8rsm7R94tIz053YTQiFUenmUrBN8SXsbeMxS/Ij2dfepZjx47h7e3NkDuHMHnwZEJ9LTLP0QYNhzbkl+d/Yc1fa/hh7Q80qNuAvp36Uu+VevgOKLr3qVKxYZ/FVJQMVwUigH0w9qfYB2SfawuwCBjq0oiqvdBaRf9NCgoKwsNDv2elarCZogZOVBHp6emEhISQlpZGcHBw+Xf4B5z68BQHGh/gmMcx/D38qbuxLn4D/KBp+XfvEkeAm4Al2NfFueB02WrsfXXbgUbuCq4U/sD+5bi0iPpvsV9ZV1zjMNAD+9WZC3M58D/s65uIS/y+6nfadGhTaN3EhyYyddxUvCK8XByVSMmU5vtbPTOlkQFMBq/3vYg9d3W8L4HvsF/WoLKrBbwKdMY+A2j3WXWvYV8t1AoM9sG/R+DgsINkRGXghRdh34URsDdAJ1FdzUbxf1FqoIHALlY/sT4znpjBxEcn5itv27Yt9/W5D69TSmSkalAyUxopwIdF1K0HDmKNZAbsvTFrsCdhC7FfX+qfQAPs05ytoAZkHMlgxbQVPPCvB9ixYwc1atTg9ltuZ9qz04g9aZHlmKuKUGAI9kXaCjMUCHFZNAKENAvhnnr30OfrPrz/3fscTj/MP7r+gzaxbYg6FqUFJqXK0Gmm0ogHipvo8x32gY5Wk4U9rbXaZZn2w0+bf+LKXlcWqGratCk/ff0TUU2i3BBYNbUfe1I/GXtCUwP7OJo87KeYJgAdsU/VFtfYAbTB3ovZBfu1mdZhf6/mYU8+rcRg/9GYi33l4ppujUYqmE4zVZQg7F/4uUXUW2QSUAE+7g6gbFKyU3hw/IOF1u3YsYNNWzdZK5n5CzgGaZlpeHp6EugbaO/t8Hd3YCWUB0yD468cZ3/wfpL/TMZmsxEZEUn04Wj8HvODS9wdZDXzDX8Pkj93vc8nsI8ps8pp5WTsA8yfxX6dvC7YV/xujj1Js5Kj2D/v2dhjD8d6bahklMyURl2gP/BuIXXtsc4fhSoiMzuTDRs2FFn//U/fc3Xfq10YUTkcgL1H9vL1l1/z/v/ex8/Pj9EDR3NJh0uIiIqwJ9KVXRSkzEzhy9+/ZMyDYzh+3L7IZFBQEK+9+hq9nuhFaKRFZvxVFUUNxgZIwjorAB/Cfhr8q7PKFgE/YJ8A0MkdQZVN7v5c9m3dx/pd60ncl0i75u1oHNmYqFZR9qRGykTJTGkEYl+MLRv7FWjPnKC7AngPax6Ih7Cv11ID+3gfC51qquFdg+DgYNLTC18ro15sPRdHVHZ70vfQ7fpuJCb+vQLg999/z03X3cSrz79KRJAFBmN5wg7bDkbcPSJfcUZGBncOupPffvuNUCtepnkf9l6nSOwXMrWSjthPJ9WG7D7Z5Pjl4P+bP2wAWmCdXtm95E9kzsgFRmK/aKYFTl/mHcojfmM8PW7vke/vVrNmzfju3e+IC4mzzntSyWi+R2nVBqYBK4CfT//7OvYZQlaSjn1qdi/s07MvxN59a43LSwHg4+XDXXfdVWidp6cnXbt0dXFEZXPqwCle/c+r+RKZMz7/+nO2bt/qhqhK76/Uv5g5c2ahdcYYZs+eTUaGhRb/ScQ+u68f0Af7D5ldbo2o9DrC4ZmH+fmln7nz+J3ckHgDc2+fy575e2AK1jmF+VMxdRsAiyxkvP/QfnoP7F3gB9j27dsZ+ehI0pIt0pBKSD0zpbUO9u7Zy8aMjazdupYL4i7g0vqXUn9nfTx6eYBF1ptjGXD2FQ0OY7+e0UpgDpa4ptHx48fp3Lkza9eu5ZdffnGU16hRg1dffZVVK1bRtl1b9wVYQikZKbz18VuO+zVq1CAvL4+8vDwA3vjgDbpc1QUP38r92+NY2jF27Sr6237nzp1kHMkgKMgC58wSgUlAX+CL02XbsH9GnsYa6zABqbtTmfrHVF4e/7KjbPHixcTGxrLkkyXEHYmz9zhXdqcPmdx/5rLnzj3k+uYStCeIiH9H2BNMi3yTJexNIDU1tdC6bxd9y6FjhwjRlL8yscQh8Oqrr/LMM8+QnJxMy5YtmT17Np07d3Z9IAdh54mddP9Xd/bv3+8oDg4O5of3fqD94fbYoi2wkEYycH8RdV8Aj2OJZMbLy4sxY8YwduxYRo8eTXx8PLVq1eKCCy7glVde4eY+N7s7xJLxgLy8PG699VYGDBhAZmYmXl5eZGVlMWvWLHJycixx+i84KJiWLVuydWvhPUmtWrWiZnBN1wZVVgmwb/I+klKSeHfau2RlZXHbrbfRfHpz4n6Pg2gscTogySeJl197uUD57t27ee7153h22rP4WKEhXWB3/G4++/4zXh74MocOHaJTp048Me8Jmv3RjJA61kgADqYeLLLOGMOxrGMujKaKMZXcRx99ZLy8vMycOXPMli1bzOjRo01AQIDZvXt3ibZPS0szgElLSyt3LIe2HTKXXnqpwT5aJt8tIiLC7N24t9zP4RJbjTEUc5vjvtBKIycnx8ycNtMAJiAgwLRt29Y0btzYAMbX19ckbEtwd4glcvLASTP/k/nm3//+t/H29nYcU7Vr1zbvv/++WfHjCmNOuTvKEsgx5rfffjM2m63A58PT09PEr4t3d4Qlk2bM7h27zeDBgwu0o0uXLiZxV6IxJfvz43ZjRo0p9O8VYAIDA83ePdb4m7V7127Tp0+fQo+rn376yZhD7o6wZFb9tqrI96NmzZpm29Zt7g6xUinN93el75l5/vnnGTZsGMOHDwdg9uzZLFy4kP/85z/MmDHDpbEcOnGIVatWOe7bvP7+RZPy11ESUvZRO9siU5q8+XsA87mCsQ9yruxy4B99+rN+yxY+/PRDNmy29wiEhIbz6XufEOoVSWZ2jpuDLIFjnuQYT2Y88xxgcxxXRzKOc9fwf7Jy6UoyT+RU/p6AQxB9qiHvvv8JY8aOdnSnR0RE8MqLr1I3K5bMAzmVv9cvBzbs3Mo7H3yU7zMOsGzFb8z/8ivuHXCvJT4jx7JPFWjDGafybGSeyrXEZyQx+QDfLPq+QFvygAcfmsBH735MTHC0e4IrhRMn8+jR6xp+/LHgVXBHjX2IrCws8X4Uxs/LE5vNfWcmKvWiednZ2fj7+/Ppp59y4403OspHjx7N+vXrWbq04EV5srKyyMr6++qD6enpxMTEOGXRvPjV8bS71L5qns3Lh/pj55drfyIiIlXBlsd74e/t3P6R0iyaV6lHFB4+fJjc3FwiIvJPS42IiODgwcLPPc6YMYOQkBDHLSYmxmnx1A6vTWCgFUbLiYiIVB+V/jQTUKDryhhTZHfWxIkTGTt2rOP+mZ4ZZ4iKimLKlCn861//wpzKYs/zfw8wvXPAnTw9cyYhIU64Mrer7Me+tPkS7Ndmugaoh3VWojyEfUbW5iLqFwA9XRdOWR1JOcLNt/+DVat+K7T+8cmPM3b82ELrKpUs7MsWzCqi/jHgQSr/X51TMGfe//Hg2DGFVg+9axjTJ08nMMwaFzE7ePAg3377Ha+88jIZ6Rlc26cP999/Pw0axOHhUal/zzps27KNSzpcQmEnEq677npenfUKtSMtcKGpBPgz60/en/8+s+fM5q+//qJRo8ZM//d0OkVfTs1GNS27+Kqfl5tnKVTw+J1yycrKMp6enubzzz/PVz5q1CjTpUuXEu3DmQOAjTHm8OHDZt68eaZevXoGMLVq1TLTp083ycnJTtm/lNJiU/gg5ibGmH1ujKuUflz0Y6GDAv39/c2ubbvcHV7JbTfGhJmC70eUMWanG+MqpV07dpkGDRoUeD9CQkLM1i1b3R1emfz555/mwIED5sSJE+4OpdQO7z5sXnzxxQLvR3R0tLUGzZ4wxnxoTM4LOWbv2r0mcW2iSV6VbMx4Y8wadwdX+ZTm+7tSj5kB6NChA+3bt+fVV191lLVo0YJ+/fqVaACwUy80eZoxhuTkZE6cOIGPjw+RkZF4elpg7mxVlA78AowCErBPYf4H9gXO4twXVmkd/eso//3iv4weO5q0NPvCWQ0aNODD9z6k/aXtqVGjsndnnGUbMB34HPuJ7FuB8UBTdwZVSpmwa/8uZs2exfvvv092djbXX389j01+jKaRTalR20LvRxVxaPch9h7ey7y35nHw4EF69+pNt67daBTTyDrrewEcx/636nXsa+R0xf4ZaUglH/jheqX5/q70yczHH3/MwIEDee211+jYsSNvvPEGc+bMYfPmzcTGxp53+4pIZqQSSsae2HhjX9bcgkObcnJyOLD3AIcPHaaGVw3CwsKIjLbo1UvTsZ8GBPtlPiywTl4BeXA85TjJ6clgoE5gHWrWqVn5Z5VVZQY4AXkmDw+bh3VWMC5MLvYZcb6ABZYnc4cqddXs2267jdTUVB5//HGSk5Np1aoV33zzTYkSGalGIrHuVctPq1GjBvUb1Kd+g/ruDqX8gk/frMwDAuoG0LhuY3dHImfYAH/wqApdGJ5YZ3yiBVT6npnyUs+MiIiI9VSZqdkiIiIi56NkRkRERCxNyYyIiIhYmpIZERERsTQlMyIiImJpSmZERETE0pTMiIiIiKUpmRERERFLUzIjIiIillbpL2dQXmcWOE5PT3dzJCIiIlJSZ763S3KhgiqfzGRkZAAQExPj5khERESktDIyMggJCSn2MVX+2kx5eXkcOHCAoKAgbDbnXpo0PT2dmJgY9u7da+nrPqkdlYvaUbmoHZWL2lG5VGQ7jDFkZGQQFRWFh0fxo2KqfM+Mh4cH0dHRFfocwcHBlj4Yz1A7Khe1o3JROyoXtaNyqah2nK9H5gwNABYRERFLUzIjIiIilqZkphx8fHx47LHH8PHxcXco5aJ2VC5qR+WidlQuakflUlnaUeUHAIuIiEjVpp4ZERERsTQlMyIiImJpSmZERETE0pTMiIiISD4HDx6kZ8+eBAQEULNmTXeHc17VPpk5ePAgo0ePpnHjxvj6+hIREcEVV1zBa6+9RmZmJgBvvPEG3bp1Izg4GJvNxtGjRwvs58knn+Tyyy/H39+/0Dd+w4YN3HHHHcTExODn50fz5s154YUX3Nauv/76iwceeIBmzZrh7+9P/fr1GTVqFGlpaY59LFmyBJvNVuht9erVFRZ7adoB8M9//pNGjRrh5+dHWFgY/fr1Y9u2bfn2c+TIEQYOHEhISAghISEMHDiw0PexMrcjKSmJYcOG0aBBA/z8/GjUqBGPPfYY2dnZlaodACtWrODKK690/CHs1q0bJ06cACrHcVWStiQlJRUZ56effurYjxWOrYSEBG688UbCwsIIDg7m1ltv5c8//8y3n7i4uALtfPjhhy3XDoD//e9/dOjQAT8/P+rUqcNNN93k8lgrs5LEP2vWLJKTk1m/fj07duxwc8TnV+VXAC7OH3/8QadOnahZsybTp0+ndevW5OTksGPHDt58802ioqLo27cvmZmZ9O7dm969ezNx4sRC95Wdnc0tt9xCx44dmTt3boH6tWvXEhYWxnvvvUdMTAzLly/n7rvvxtPTk/vvv9/l7WrYsCEHDhzg2WefpUWLFuzevZt77rmHAwcO8NlnnwFw+eWXk5ycnG/fjz76KN9//z0XX3yxU2Muazv69u1L+/btGTBgAPXr1+evv/5iypQpXH311SQmJuLp6QlA//792bdvH9999x0Ad999NwMHDuSrr76yTDu2bdtGXl4er7/+Oo0bN2bTpk2MGDGC48eP8+yzz1aadqxYscLxWXnppZfw9vZmw4YNjuXI3X1clbQtffr0KRDnG2+8wcyZM7nmmmscZZX92OrRowdXX301F154IT/++CNgf72vv/56Vq5cmW+Z+Mcff5wRI0Y47gcGBlZ4G5zdjvnz5zNixAimT5/OlVdeiTGG33//3aWx9u3b12nP52wljT8hIYH27dvTpEmTIvd16tQpvLy8XBh9MUw11qtXLxMdHW2OHTtWaH1eXl6++z/99JMBzJEjR4rc57x580xISEiJnv++++4z3bt3L2m4JVbadp3xySefGG9vb3Pq1KlC67Ozs014eLh5/PHHnRZrccrajg0bNhjA7Nq1yxhjzJYtWwxgVq5c6XjMihUrDGC2bdvm/MDP4ax2FGbmzJmmQYMGTonzfErajg4dOphJkyaVeL+uPq6MKft70rZtWzN06FDHfSscWwsXLjQeHh4mLS3NUf7XX38ZwCxevNhRFhsba2bNmlXRIRfKWe04deqUqVevnvm///s/t8ZqjDFHjhwxI0aMMOHh4cbHx8e0bNnSfPXVV8YYYw4fPmxuv/12U69ePePn52datWplPvjgg3z76dq1qxk5cqQZOXKkCQkJMbVr1zaPPPJIvmPzlVdeMY0bNzY+Pj4mPDzc3HzzzU6JPzY21gCO2+DBg40xxgDmP//5j+nbt6/x9/c3kydPNjk5OWbo0KEmLi7O+Pr6mqZNm5rZs2fn2+epU6fMAw884GjH+PHjzaBBg0y/fv0cj/n0009Nq1atjK+vr6ldu7bp0aNHkTEWptomM4cPHzY2m83MmDGjxNs4O5kZMGBAiQ6+0ihLu86YM2eOqVOnTpH1n332mfHw8DB79uwpT4glUtZ2HDt2zIwZM8Y0aNDAZGVlGWOMmTt3bqHvSUhIiHnzzTedEW6RnNmOwjzyyCOmffv25Q3zvErajj///NMA5sUXXzQdO3Y04eHhpkuXLmbZsmVFbuPK48qYsr8na9asMYD59ddfHWVWOLa+/PJL4+npaU6ePOkoy8zMNB4eHuaxxx5zlMXGxpq6deua2rVrmwsvvNBMmzat2GPPWZzZjt9++80A5s033zRt27Y1devWNb179zabNm1yaay5ubnmsssuMy1btjSLFi0yCQkJ5quvvjLffPONMcaYffv2mWeeecbEx8ebhIQE8+KLLxpPT898SXHXrl1NYGCgGT16tNm2bZt57733jL+/v3njjTeMMcasXr3aeHp6mg8++MAkJSWZdevWmRdeeMEp8aekpJjevXubW2+91SQnJ5ujR48aY+zJTHh4uJk7d65JSEgwSUlJJjs720yePNmsWrXK/PHHH444P/74Y8f+pk2bZmrXrm0+//xzs3XrVnPPPfeY4OBgRzJz4MABU6NGDfP888+bxMREs3HjRvPKK6+YjIyMYuM8W7VNZlauXGkA8/nnn+crDw0NNQEBASYgIMCMHz8+X50zk5nly5cbLy8vs2jRorKEX6SytMsY+0Fev35988gjjxS572uuucZcc801To23KKVtxyuvvGICAgIMYC644IJ8vRlPPvmkadKkSYHnaNKkiZk+fXrFNcI4tx3n2rVrlwkODjZz5sypsPjPKGk7zvRK1K5d27z55ptm3bp1ZsyYMcbb29vs2LGj0H278rgypuyfkXvvvdc0b948X5kVjq2UlBQTHBxsRo8ebY4fP26OHTtmRo4caQBz9913O7Z7/vnnzZIlS8yGDRscP2yGDRtWoW1wdjs+/PBDA5j69eubzz77zKxZs8bccccdJjQ01KSmpros1jO9SNu3by/xvq+99lozbtw4x/2uXbua5s2b5+uJmTBhguMYnD9/vgkODjbp6elOj98YY/r16+fokTkDMGPGjDnv89x33335fqhHRESYZ555xnE/JyfH1K9f35HMrF271gAmKSmpxG05V7UfAGyz2fLdX7VqFevXr6dly5ZkZWVVyHNu3ryZfv36MXnyZHr27Fkhz1GadqWnp9OnTx9atGjBY489Vuj+9u3bx8KFCxk2bFiFxFuUkrZjwIABxMfHs3TpUpo0acKtt97KyZMni9wP2C8vX1h5RXBWO844cOAAvXv35pZbbmH48OEVHv8Z52tHXl4eYB/MfNddd3HRRRcxa9YsmjVrxptvvllgf+46rqB0n5ETJ07wwQcfFBpnZT+2wsLC+PTTT/nqq68IDAwkJCSEtLQ02rVr5xhTBvDggw/StWtX2rRpw/Dhw3nttdeYO3cuqamplmnHmePvkUce4eabb6Z9+/bMmzevwKDtio51/fr1REdH07Rp00K3z83N5cknn6RNmzaEhoYSGBjIokWL2LNnT77HXXbZZfmeq2PHjuzcuZPc3Fx69uxJbGwsDRs2ZODAgbz//vslHnxcnu+9wsa1vfbaa1x88cWEhYURGBjInDlzHG1JS0vjzz//5NJLL3U83tPTk/bt2zvuX3jhhfTo0YPWrVtzyy23MGfOHI4cOVKitpxRbQcAN27cGJvNVmDWS8OGDQHw8/OrkOfdsmULV155JSNGjGDSpElO339p25WRkUHv3r0JDAxkwYIFRQ7mmjdvHqGhoS4b2FbadpyZSdKkSRMuu+wyatWqxYIFC7jjjjuoW7duoTMeDh06RERERMU1Aue244wDBw7QvXt3OnbsyBtvvFGh8Z9R0nZERkYC0KJFi3yPa968eYE/1OD64wrK9tn/7LPPyMzMZNCgQfnKrXJsXX311SQkJHD48GFq1KhBzZo1qVu3Lg0aNChy/5dddhkAu3btIjQ0tAJaYOfMdhR2/Pn4+NCwYcNCj7+KivV83x/PPfccs2bNYvbs2bRu3ZqAgADGjBlTqpmJQUFBrFu3jiVLlrBo0SImT57MlClTWL16dZFTqZ3xvRcQEJDv/ieffMKDDz7Ic889R8eOHQkKCuKZZ57ht99+y/e4cxMoc9aVlDw9PVm8eDHLly9n0aJFvPTSSzzyyCP89ttvxR6jZ6u2PTOhoaH07NmTl19+mePHj7vkOTdv3kz37t0ZPHgwTz75ZIU8R2nalZ6eztVXX423tzdffvklvr6+hT7OGMO8efMYNGiQy0aul/f9McY4fmF07NiRtLQ0Vq1a5aj/7bffSEtL4/LLL3dazIVxZjsA9u/fT7du3WjXrh3z5s3LNxOlIpW0HXFxcURFRbF9+/Z85Tt27CA2NjZfmTuOKyjbezJ37lz69u1LWFhYvnKrHVt16tShZs2a/Pjjj6SkpBSbRMbHxwN/JwgVxZntaN++PT4+PvmOv1OnTpGUlFTg+KvIWNu0acO+ffuKnNK8bNky+vXrx5133smFF15Iw4YN2blzZ4HHrVy5ssD9Jk2aOHqiatSowVVXXcXMmTPZuHEjSUlJjple5Ym/NJYtW8bll1/Offfdx0UXXUTjxo1JSEhw1IeEhBAREZHvM5Kbm+s4vs6w2Wx06tSJqVOnEh8fj7e3NwsWLCh5IGU+QVUF7Nq1y0RERJgLLrjAfPTRR2bLli1m27Zt5t133zURERFm7NixxhhjkpOTTXx8vJkzZ44BzM8//2zi4+PznYPdvXu3iY+PN1OnTjWBgYEmPj7exMfHOwYwbdq0yYSFhZkBAwaY5ORkxy0lJcUt7UpPTzcdOnQwrVu3Nrt27coXU05OTr79ff/99wYwW7ZscXqs5W1HQkKCmT59ulmzZo3ZvXu3Wb58uenXr5+pXbu2+fPPPx376t27t2nTpo1ZsWKFWbFihWndurW57rrrLNWO/fv3m8aNG5srr7zS7Nu3L997VlnaYYwxs2bNMsHBwebTTz81O3fuNJMmTTK+vr4Fxv+467gqTVuMMWbnzp3GZrOZb7/9ttB9VfZjyxhj3nzzTbNixQqza9cu8+6775ratWvna+Py5cvN888/b+Lj480ff/xhPv74YxMVFWX69u1rqXYYY8zo0aNNvXr1zMKFC822bdvMsGHDTHh4uPnrr79cGmu3bt1Mq1atzKJFi8wff/xhvvnmG8cxNGbMGBMTE2N+/fVXs2XLFjN8+PB8A2KN+XsA8IMPPmi2bdtmPvjgAxMQEGBee+01Y4wxX331lXnhhRdMfHy8SUpKMq+++qrx8PA472DnksZf1JiZBQsW5CubPXu2CQ4ONt99953Zvn27mTRpkgkODjYXXnih4zHTpk0zoaGh5osvvjDbtm0zI0eONMHBweaGG24wxtjH8jz55JNm9erVZvfu3Y6ZtWcGTJdEtU5mjLGPor7//vtNgwYNjJeXlwkMDDSXXnqpeeaZZ8zx48eNMcY89thj+aapnbnNmzfPsZ/BgwcX+piffvqp2H3Exsa6pV1nBjMXdktMTMy3rzvuuMNcfvnlFRJneduxf/9+c80115jw8HDj5eVloqOjTf/+/QtMi01NTTUDBgwwQUFBJigoyAwYMKDYgdyVsR3z5s0r8j2rLO04Y8aMGSY6Otr4+/ubjh07FjqbyZ3HlTElb8vEiRNNdHS0yc3NLXQ/lf3YMsY+cDQiIsJ4eXmZJk2amOeeey7fwNK1a9eaDh06mJCQEOPr62uaNWtmHnvssXyvgxXaYYx9qv+4ceNMeHi4CQoKMldddZXTZjOVJtbU1FRz1113mdDQUOPr62tatWplvv76a0ddv379TGBgoAkPDzeTJk0qMFW5a9eu5r777nPM/KlVq5Z5+OGHHe1dtmyZ6dq1q6lVq5bx8/Mzbdq0yTeDqLzxlzSZOXnypBkyZIgJCQkxNWvWNPfee695+OGH8yUzp06dMvfff7+jHRMmTDC33HKLuf32240x9iUOevXqZcLCwoyPj49p2rSpeemll0r6dhhjjLGdDlBEREQqiW7dutG2bVtmz57t7lCcLi8vj+bNm3PrrbfyxBNPOGWf1XYAsIiIiFS83bt3s2jRIrp27UpWVhYvv/wyiYmJ9O/f32nPUW0HAIuIiEjF8/Dw4K233uKSSy6hU6dO/P7773z//fc0b97cac+h00wiIiJiaeqZEREREUtTMiMiIiKWpmRGRERELE3JjIiIiFiakhkRERGxNCUzIiIiYmlKZkRERMTSlMyIiIiIpSmZEREREUv7f9rDV16R+2NWAAAAAElFTkSuQmCC", "application/papermill.record/text/plain": "
" }, "metadata": { @@ -2262,21 +2334,21 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 7: The average difference between what was found and the estimates of the participants and what was predicted using the empirical Bayes method
 averageaverage
sourcedifference² of estimateddifference² of predicteddifference² of estimateddifference² of predicted
G1121.070.29G1121.070.29
G272.321.89G272.321.87
G300.310.21G300.310.20
G320.110.07G320.110.07
G670.260.16G670.260.16
G700.030.00G700.030.01
G950.520.27G950.520.27
G960.150.05G960.150.02
Gcaps0.260.07Gcaps0.260.10
Gfrags8.117.71Gfrags8.117.38
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 25, @@ -2495,21 +2567,21 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Table 8: Whether the observed value fell within the predicted interval
 objectwithin 96% HDIwithin 50% HDIobjectwithin 96% HDIwithin 50% HDI
0G112TrueFalse0G112TrueTrue
1G27FalseFalse1G27FalseFalse
2G30TrueFalse2G30TrueTrue
3G32FalseFalse3G32FalseFalse
4G67TrueFalse4G67TrueFalse
5G70TrueFalse5G70TrueFalse
6G95TrueFalse6G95TrueFalse
7G96TrueTrue7G96TrueTrue
8GcapsTrueTrue8GcapsTrueTrue
9GfragsFalseFalse9GfragsFalseFalse
0G112TrueTrue0G112TrueTrue
1G27TrueFalse1G27TrueFalse
2G30TrueTrue2G30TrueTrue
3G32TrueTrue3G32TrueTrue
4G67TrueFalse4G67TrueFalse
5G70TrueFalse5G70TrueFalse
6G95TrueTrue6G95TrueTrue
7G96TrueTrue7G96TrueTrue
8GcapsTrueFalse8GcapsTrueFalse
9GfragsFalseFalse9GfragsFalseFalse
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 27, @@ -2685,7 +2757,7 @@ "data": { "text/plain": [ "within 96% HDI 0.80\n", - "within 50% HDI 0.35\n", + "within 50% HDI 0.45\n", "dtype: float64" ] }, @@ -2719,7 +2791,7 @@ "data": { "text/plain": [ "within 96% HDI 16\n", - "within 50% HDI 7\n", + "within 50% HDI 9\n", "dtype: int64" ] }, @@ -2802,12 +2874,12 @@ "text": [ "Git repo: https://github.com/hammerdirt-analyst/solid-waste-team.git\n", "\n", - "Git branch: review\n", + "Git branch: main\n", "\n", "pandas : 2.0.3\n", + "numpy : 1.25.2\n", "matplotlib: 3.7.1\n", "seaborn : 0.12.2\n", - "numpy : 1.25.2\n", "\n" ] } diff --git a/plastic_shotgun_wadding.ipynb b/plastic_shotgun_wadding.ipynb index d590d80..d7a79bb 100644 --- a/plastic_shotgun_wadding.ipynb +++ b/plastic_shotgun_wadding.ipynb @@ -216,8 +216,8 @@ "outputs": [ { "data": { - "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Percent of samples collected with the designated land-use feature and category.
 orchardsvineyardsbuildingsforestundefinedpublic_services
191%92%11%72%63%68%
26%7%6%14%25%7%
30%0%1%0%1%7%
41%0%20%9%2%8%
51%1%62%5%9%10%
\n", - "application/papermill.record/text/plain": "" + "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Percent of samples collected with the designated land-use feature and category.
 orchardsvineyardsbuildingsforestundefinedpublic_services
191%92%11%72%63%68%
26%7%6%14%25%7%
30%0%1%0%1%7%
41%0%20%9%2%8%
51%1%62%5%9%10%
\n", + "application/papermill.record/text/plain": "" }, "metadata": { "scrapbook": { @@ -289,8 +289,8 @@ "outputs": [ { "data": { - "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The average number of shotgun shells per linear meter of shoreline by feature and category.
 buildingsforestorchardspublic_servicesundefinedvineyards
10.030.080.110.130.090.10
20.590.060.010.120.180.08
30.00-0.000.010.08-
40.040.000.010.030.090.00
50.090.680.140.030.000.12
\n", - "application/papermill.record/text/plain": "" + "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The average number of shotgun shells per linear meter of shoreline by feature and category.
 buildingsforestorchardspublic_servicesundefinedvineyards
10.030.080.110.130.090.10
20.590.060.010.120.180.08
30.00-0.000.010.08-
40.040.000.010.030.090.00
50.090.680.140.030.000.12
\n", + "application/papermill.record/text/plain": "" }, "metadata": { "scrapbook": { @@ -462,8 +462,8 @@ "outputs": [ { "data": { - "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The distribution of the total number of plastic shotgun wadding found per sample for each region
 nsamplesmeanstdmin25%50%75%max
Grand lac581200018
Haut lac137610002751
Petit lac5514000022
\n", - "application/papermill.record/text/plain": "" + "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The distribution of the total number of plastic shotgun wadding found per sample for each region
 nsamplesmeanstdmin25%50%75%max
Grand lac581200018
Haut lac137610002751
Petit lac5514000022
\n", + "application/papermill.record/text/plain": "" }, "metadata": { "scrapbook": { @@ -475,8 +475,8 @@ }, { "data": { - "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The distribution of the number of shotgun wadding found per meter of shoreline
 nsamplesmeanstdmin25%50%75%max
Grand lac58.000.030.050.000.000.000.030.22
Haut lac137.000.170.310.000.000.050.171.64
Petit lac55.000.020.050.000.000.000.010.30
\n", - "application/papermill.record/text/plain": "" + "application/papermill.record/text/html": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
The distribution of the number of shotgun wadding found per meter of shoreline
 nsamplesmeanstdmin25%50%75%max
Grand lac58.000.030.050.000.000.000.030.22
Haut lac137.000.170.310.000.000.050.171.64
Petit lac55.000.020.050.000.000.000.010.30
\n", + "application/papermill.record/text/plain": "" }, "metadata": { "scrapbook": { @@ -612,20 +612,20 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 pcs/mnsamplespcs/mnsamples
Saint-Gingolph0.6813Saint-Gingolph0.6813
Allaman0.143Allaman0.143
Bourg-en-Lavaux0.122Bourg-en-Lavaux0.122
La Tour-de-Peilz0.1225La Tour-de-Peilz0.1225
Montreux0.1153Montreux0.1153
Vevey0.1144Vevey0.1144
Saint-Sulpice (VD)0.0615Saint-Sulpice (VD)0.0615
Versoix0.054Versoix0.054
Genève0.0329Genève0.0329
Préverenges0.0115Préverenges0.0115
Tolochenaz0.013Tolochenaz0.013
Lausanne0.0120Lausanne0.0120
Gland0.0022Gland0.0022
Morges0.001Morges0.001
Rolle0.001Rolle0.001
\n" ], "text/plain": [ - "" + "" ] }, "metadata": { @@ -743,6 +743,71 @@ "cp = cpm.style.set_table_styles(table_css_styles).format(precision=2)\n", "glue('city_rankings', cp, display=True)" ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "989efbdc-f400-4894-8424-a5c4856595ca", + "metadata": { + "editable": true, + "pycharm": { + "name": "#%%\n" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove-input" + ] + }, + "outputs": [ + { + "data": { + "text/markdown": [ + "\n", + "\n", + "This script updated 21/03/2024 in Biel, CH\n", + "\n", + "❤️ __what you do everyday:__ *analyst at hammerdirt*\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import datetime as dt\n", + "from IPython.display import Markdown as md\n", + "today = dt.datetime.now().date().strftime(\"%d/%m/%Y\")\n", + "where = \"Biel, CH\"\n", + "\n", + "my_block = f\"\"\"\n", + "\n", + "This script updated {today} in {where}\n", + "\n", + "\\u2764\\ufe0f __what you do everyday:__ *analyst at hammerdirt*\n", + "\"\"\"\n", + "\n", + "md(my_block)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "11d8473e-9271-4828-b1fc-ecbcf2f28765", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [] } ], "metadata": {