forked from MatthewPeterKelly/OptimTraj
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trapezoid.m
255 lines (209 loc) · 7.59 KB
/
trapezoid.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
function soln = trapezoid(problem)
% soln = trapezoid(problem)
%
% This function transcribes a trajectory optimization problem using the
% trapezoid method for enforcing the dynamics. It can be found in chapter
% four of Bett's book:
%
% John T. Betts, 2001
% Practical Methods for Optimal Control Using Nonlinear Programming
%
% For details on the input and output, see the help file for optimTraj.m
%
% Method specific parameters:
%
% problem.options.method = 'trapezoid'
% problem.options.trapezoid = struct with method parameters:
% .nGrid = number of grid points to use for transcription
%
%
% This transcription method is compatable with analytic gradients. To
% enable this option, set:
% problem.nlpOpt.GradObj = 'on'
% problem.nlpOpt.GradConstr = 'on'
%
% Then the user-provided functions must provide gradients. The modified
% function templates are as follows:
%
% [dx, dxGrad] = dynamics(t,x,u)
% dx = [nState, nTime] = dx/dt = derivative of state wrt time
% dxGrad = [nState, 1+nx+nu, nTime]
%
% [dObj, dObjGrad] = pathObj(t,x,u)
% dObj = [1, nTime] = integrand from the cost function
% dObjGrad = [1+nx+nu, nTime]
%
% [c, ceq, cGrad, ceqGrad] = pathCst(t,x,u)
% c = [nCst, nTime] = column vector of inequality constraints ( c <= 0 )
% ceq = [nCstEq, nTime] = column vector of equality constraints ( c == 0 )
% cGrad = [nCst, 1+nx+nu, nTime];
% ceqGrad = [nCstEq, 1+nx+nu, nTime];
%
% [obj, objGrad] = bndObj(t0,x0,tF,xF)
% obj = scalar = objective function for boundry points
% objGrad = [1+nx+1+nx, 1]
%
% [c, ceq, cGrad, ceqGrad] = bndCst(t0,x0,tF,xF)
% c = [nCst,1] = column vector of inequality constraints ( c <= 0 )
% ceq = [nCstEq,1] = column vector of equality constraints ( c == 0 )
% cGrad = [nCst, 1+nx+1+nx];
% ceqGrad = [nCstEq, 1+nx+1+nx];
%
% NOTES:
%
% If analytic gradients are used, then the sparsity pattern is returned
% in the struct: soln.info.sparsityPattern. View it using spy().
%
% Print out some solver info if desired:
nGrid = problem.options.trapezoid.nGrid;
if problem.options.verbose > 0
fprintf(' -> Transcription via trapezoid method, nGrid = %d\n',nGrid);
end
%%%% Method-specific details to pass along to solver:
% Quadrature weights for trapezoid integration:
problem.func.weights = ones(nGrid,1);
problem.func.weights([1,end]) = 0.5;
% Trapazoid integration calculation of defects:
problem.func.defectCst = @computeDefects;
%%%% The key line - solve the problem by direct collocation:
soln = directCollocation(problem);
% Use piecewise linear interpolation for the control
tSoln = soln.grid.time;
xSoln = soln.grid.state;
uSoln = soln.grid.control;
soln.interp.control = @(t)( interp1(tSoln',uSoln',t')' );
% Use piecewise quadratic interpolation for the state:
fSoln = problem.func.dynamics(tSoln,xSoln,uSoln);
soln.interp.state = @(t)( bSpline2(tSoln,xSoln,fSoln,t) );
% Interpolation for checking collocation constraint along trajectory:
% collocation constraint = (dynamics) - (derivative of state trajectory)
soln.interp.collCst = @(t)( ...
problem.func.dynamics(t, soln.interp.state(t), soln.interp.control(t))...
- interp1(tSoln',fSoln',t')' );
% Use multi-segment simpson quadrature to estimate the absolute local error
% along the trajectory.
absColErr = @(t)(abs(soln.interp.collCst(t)));
nSegment = nGrid-1;
nState = size(xSoln,1);
quadTol = 1e-12; %Compute quadrature to this tolerance
soln.info.error = zeros(nState,nSegment);
for i=1:nSegment
soln.info.error(:,i) = rombergQuadrature(absColErr,tSoln([i,i+1]),quadTol);
end
soln.info.maxError = max(max(soln.info.error));
end
%%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%%
%%%% SUB FUNCTIONS %%%%
%%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%%
function [defects, defectsGrad] = computeDefects(dt,x,f,dtGrad,xGrad,fGrad)
%
% This function computes the defects that are used to enforce the
% continuous dynamics of the system along the trajectory.
%
% INPUTS:
% dt = time step (scalar)
% x = [nState, nTime] = state at each grid-point along the trajectory
% f = [nState, nTime] = dynamics of the state along the trajectory
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% dtGrad = [2,1] = gradient of time step with respect to [t0; tF]
% xGrad = [nState,nTime,nDecVar] = gradient of trajectory wrt dec vars
% fGrad = [nState,nTime,nDecVar] = gradient of dynamics wrt dec vars
%
% OUTPUTS:
% defects = [nState, nTime-1] = error in dynamics along the trajectory
% defectsGrad = [nState, nTime-1, nDecVars] = gradient of defects
%
nTime = size(x,2);
idxLow = 1:(nTime-1);
idxUpp = 2:nTime;
xLow = x(:,idxLow);
xUpp = x(:,idxUpp);
fLow = f(:,idxLow);
fUpp = f(:,idxUpp);
% This is the key line: (Trapazoid Rule)
defects = xUpp-xLow - 0.5*dt*(fLow+fUpp);
%%%% Gradient Calculations:
if nargout == 2
xLowGrad = xGrad(:,idxLow,:);
xUppGrad = xGrad(:,idxUpp,:);
fLowGrad = fGrad(:,idxLow,:);
fUppGrad = fGrad(:,idxUpp,:);
% Gradient of the defects: (chain rule!)
dtGradTerm = zeros(size(xUppGrad));
dtGradTerm(:,:,1) = -0.5*dtGrad(1)*(fLow+fUpp);
dtGradTerm(:,:,2) = -0.5*dtGrad(2)*(fLow+fUpp);
defectsGrad = xUppGrad - xLowGrad + dtGradTerm + ...
- 0.5*dt*(fLowGrad+fUppGrad);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = bSpline2(tGrid,xGrid,fGrid,t)
% x = bSpline2(tGrid,xGrid,fGrid,t)
%
% This function does piece-wise quadratic interpolation of a set of data.
% The quadratic interpolant is constructed such that the slope matches on
% both sides of each interval, and the function value matches on the lower
% side of the interval.
%
% INPUTS:
% tGrid = [1, n] = time grid (knot points)
% xGrid = [m, n] = function at each grid point in tGrid
% fGrid = [m, n] = derivative at each grid point in tGrid
% t = [1, k] = vector of query times (must be contained within tGrid)
%
% OUTPUTS:
% x = [m, k] = function value at each query time
%
% NOTES:
% If t is out of bounds, then all corresponding values for x are replaced
% with NaN
%
[m,n] = size(xGrid);
k = length(t);
x = zeros(m, k);
% Figure out which segment each value of t should be on
[~, bin] = histc(t,[-inf,tGrid,inf]);
bin = bin - 1;
% Loop over each quadratic segment
for i=1:(n-1)
idx = i==bin;
if sum(idx) > 0
h = (tGrid(i+1)-tGrid(i));
xLow = xGrid(:,i);
fLow = fGrid(:,i);
fUpp = fGrid(:,i+1);
delta = t(idx) - tGrid(i);
x(:,idx) = bSpline2Core(h,delta,xLow,fLow,fUpp);
end
end
% Replace any out-of-bounds queries with NaN
outOfBounds = bin==0 | bin==(n+1);
x(:,outOfBounds) = nan;
% Check for any points that are exactly on the upper grid point:
if sum(t==tGrid(end))>0
x(:,t==tGrid(end)) = xGrid(:,end);
end
end
function x = bSpline2Core(h,delta,xLow,fLow,fUpp)
%
% This function computes the interpolant over a single interval
%
% INPUTS:
% alpha = fraction of the way through the interval
% xLow = function value at lower bound
% fLow = derivative at lower bound
% fUpp = derivative at upper bound
%
% OUTPUTS:
% x = [m, p] = function at query times
%
%Fix dimensions for matrix operations...
col = ones(size(delta));
row = ones(size(xLow));
delta = row*delta;
xLow = xLow*col;
fLow = fLow*col;
fUpp = fUpp*col;
fDel = (0.5/h)*(fUpp-fLow);
x = delta.*(delta.*fDel + fLow) + xLow;
end