From 0d37719e0dbf48140deb5e1c930f24de55a880ce Mon Sep 17 00:00:00 2001 From: Vijay Janapa Reddi Date: Thu, 12 Dec 2024 18:10:46 -0500 Subject: [PATCH] Improved Chapter 2 further to add in system aspects --- _quarto.yml | 2 + .../ml_systems/images/png/convergence.png | Bin 0 -> 389384 bytes contents/core/ml_systems/ml_systems.qmd | 215 ++++++++++++------ style.scss | 12 + 4 files changed, 160 insertions(+), 69 deletions(-) create mode 100644 contents/core/ml_systems/images/png/convergence.png diff --git a/_quarto.yml b/_quarto.yml index e0df9502..3ca168cc 100644 --- a/_quarto.yml +++ b/_quarto.yml @@ -229,6 +229,8 @@ editor: format: html: lightbox: true + mermaid: + theme: default theme: light: - default diff --git a/contents/core/ml_systems/images/png/convergence.png b/contents/core/ml_systems/images/png/convergence.png new file mode 100644 index 0000000000000000000000000000000000000000..5613e11adb4324ea84f944a70e8841c40c81dbf3 GIT binary patch literal 389384 zcmeGEXH-+`)&>m6E-Ij+8>Ol=6%`ebUTi?JfRF^fxpbd>_Sxq=-_Q5QJKl`pP?MFl?lQ}DU31=fuC6LizmH`f3WcIa zE8NgTp%~$xyLRl|4S#tJbq>H^+nhAzuc5MA*k(|u6DahJtG6D;%n!K7bav3TmfZZ0 z@4kQb#P8dGFFq2|T=7g>J;O))nBGoBBlXlQ{so;3nf?#@S;py_{p7m_=T8|NJt*=Z zQS++oLG>Hyzwf$vk7@V)$wBI7ahS55U1+rDRLj@c671C2Hm8WN@vyKMr_lZwwrU|2 zEf~lDc;#Nh814BV@55UO``G=q{jZPw&RyGc=YM^GI`Q(`wqyVElZI2yC}c(c`<1)* z|Cz@q`23uxdYCdkbMD|j#^Lz8$uSr9?I@J&wGx8|}%QXK2nKo)y*8g&4LVmaWJ zVmu`?HPw>8(EazT;omCSz2vwc9Q7X+a76U#@4XfIW{n{ywUXJ*R0M|jCA=f=Q+I#dexR2Fohy+yH+58f zblHl_xZ{7 zIusJU2|10=*)%%tR9I+Rhby7IDfg`1m&EN-qlx(O`tKa{id}5xd(L0P5aQ}@lM;?< zzm1769rBEePfoc{6!8qoi*3S=YN_^Xo)M8wkx64Wr|b$DsQ<1bb(?iGS0bFKHT7Jr zf48P$U&>_T^R>;}5d`0eE)G7kM^)x`m|wj-)`adM z;#s6xTr+~FQaXp7Fjl3TUE>ag281^e>tlr8a{}5;^qP6_8S^GJ-!7;rcU)8=HHMqb z+#FA~yjwQvLRF8}JS*U1yobjvf;ss9Sr?OiR^_E)GJ#tLQxkPQ_Tfz3JN1YXAqE5S z@g4-*t4q5SCq(=7G3+rBU6V_$v2U1o^jg)YQWQV1EF1bvaxQr z^Nt~iUB}`^lA>`fEoGQkKcfCZBK46>kxY^Jc8QckCa_uAhd+Y|DXu#e*M*}Kh_Gx4 z(2&R?jv9VunqXs=%8*v0UXl>4IEjB%nk+(i>9pz@%&BtN=LR~LI_^-M!WdS$jCE7> zte+Dz-g=n9r?lwcG{B^qPrTW|?vu_mQ-GIKt)WAp*$ z7NbJ^czsMUb$`#GNulTZ^60a&%h}`PsaGPgj?t=8Gq0+-hWbg))61jrz9WTh+Hz0M z3M5-@u^fKm`-vnUMG8DB|89BocyOLk zXw6MCJDid}#&Cky4oCcg>+M=oTO~HgQ>I+G0X;ZUdYX6@1L;W5@$YU;?U7`n1{ zG5ZtAYMBtH=<{~`vwbc+0m9;qb@2_48tb6v@!Ek81bz5R!k@6$EvCeZvRpF+*O_(Bp10R z+iTMP7E|qCaruq5&!|p?{ArWMq`A48nK$<&_zXpqM~Zn(9Xvbn3mbKcoTc8YLklB? zMTy=FuYGgqV*AP%W}_3R`!lg&_G`|o5)u`OQgl}F_|_ulrk5FUbXvxqU7qx3w%Swq z#`sH*G%8sUoZdOkMM|I8Iy^gbu>L7LYNUK1AbP4t7lzKlw`Y;!BpI&ap7 zxD&}4tm3vB-+6(~4Eq>@;WZDeSDx!F>(cyXY!u0bI@uIORf2E4wl|rL9$pzF|CU}E z6z#jb!CTz#pK0$!6u_u^8}UY4S#K?emUvuFjr%e==YMq~ zNp&uon^a&T%BNP;pR9oyyLxJzETEcC`2NmPGY8w;rzEbfQ-*atI=Xl)MmZ)Ptf`{TWF#D|d27LKb7>87O zo9Yv2bzC;VUYQ#jtvO!ZtHHs1WS?Q(S*9_!?nSw4Icxm#IUZjGI4edOwBpL!%W8yg zEO@Ovm#~!l7u8ebM1edj=x%5U2`$744UI&#=~Ch#N91Gny-M+4-NA40SVypVW8ir3 z;&NDR>__9>VgN+ys8oS=5&=53dRXR!ou9%NWtf)=G^~j%>_;h2i4FXGJW-+P@hLFx~St!z-FO z7xTi1f@xHgU#bbCW#H?soT%PQ~FXoLP?X=Q!!R zhwhQ5!!MkyFqIDsr=-&^wi*dMeO8UlOY`+uThqpSW~azkmTc9Hs&WK)ZZ2%(oDEuk zNS*yqOcq~m%fJ_PGN3sYjmXml)Nx;?l(itd3@5?sV^_7gdkfkBd)&f`yTc4qN?4}X zD*?4n4t!mUJ`T70C#uEbr`m$b=6G<_usPy7nZk)(uVru57I-+GXzV$Y9r3v) z_L$lOT3m?qjfyu@vFw#3&0G)R{sEmX8b=PnQm2b}l~k%r<1nrq8+%ZnxV$gz)Tu~K zq1j{kAC~E>5Q*S&MPa=N{+b`_?RodnFslOvl1ajxiZAoRc%aotc zN*>tObMe5Q{e4?cr9#c)vH$!c>T*lIyybJ8FP@CBwzQwf z*g`!f)^|)Cl- z1LTOHD!9?i7wjBzzssMnOdq`~p3TW2|NGnPI5X=u(Js24459$M+g`o53OE?X33JR5 zcOPL8e}DN!nWbCh|F$N3!C_|l0L1l>!@q{pGepbI@kHPPoX}f9H^U%9eL$gz40#DMWrW;vcP~j+i_ccNP;x`cV?}+gD@*(K?bJfszS#z@ z;EoRwnDhu^pAw8qGHs!3(Rt)4vsFusmo--9VPAGbB z(bmrL^W&3MqVv7Tj#9K0Jd5aq1do;J_a#nKT`mpi=14(#qcYb{VyjGR!vWbBU0DVx ziNVtPMMFMitMlKr#+u3&D=E(X4)vC8f7}$VJooF-Rn4$Lck+LOjQ;8m#M2t+4Yk1L z;ng4x>x6IrpmaS&L`5)5wOZH~hI#hPnYO8TUpwEfR1Ged>2Fs9IDLx6ou?DZ%hTg0 zx-#_=eP|mq|MU!5|gIDt!do^j)}Zt z?sB16gI*(+A42yNnwLEKYi$zIVZ5tzx5QU`etg=akMr?XdGe+(kX6L0=Gmbaa*3fy zromD=dFHKM*+yk6q;6wt(ro9(#vHc5X-ZWk`ijaxnOnq>xv!E|9jDJ5SC(I>-V?&* zu{xjTFji;TU+lml?rdQc@M|D`yLqoH+h-ya0d+Zmp$d#!y;V2{LPy; zLpA46l4gxZ(3%-KSsgj1^(@cNYX?hjq{1q5p~YvC!t(EY+D@A5R(tyNsl&{R7cZO_ zN~UIqwl<4AAS0pA3J7#_ZvF_+4?ZrtAU6N8+IhgGd!}?Q8-FGxMzee5=hILLkJ4Dk z5pDYLzst}6Ig%qskER*pd_t3it-CC0UmQiJTvEX=oRhrQaByO3s@vj~i8rj(>Rj1E zDgXO1tbv0=4zKdNJGgjh@6xkp&sv?6{`C+P$|_1jO!4I>i}Uct@tcTchOibV@BI03 zh_*jH>wO%9;JzP}MI6??k}MZ0wU7=YLBT4JWlCF;P&$S z%`B9%X!}Y%f0Krb2aJ4aB=l5)2gyo;2CftNgXXzdk%D+(tc076hQ@1H99ThldKMvt zR!QQk#>U3O$;ZW=Qx8;st7eq3@xAi!#~n|x{md6uUQINM40SZT=5pyV2}mn0zTF%p ztW{(;AOtRu6kG1OGJUf8;{0p0+kDUaJ)BtZoc7fpU|Y-%FR z!1Pzf!_;P_e7ssT=#hck#C!F-Jbc*QCeN7#+pJ_zWT*13etl`o?3jOx z*c2NjPoBfQCT?*Dqh!cM74E}r<6pvD+HNwZDMehc`kwn?-@bhv>Dv74?&GgZH)b=u ziDlrLmk(U$^j>*Q`wlC^UwyG73C%>wixf2Pz4VGhs#k>ZkG9lg)!1~CYX6yp#|)Zb zyeb{Y>>;{z8@a{8xF;mCZWRouiO+DOH7zaEINZk%#Xk58V}G#Bc1L^Ep;snUVYU@9!+MHHh_E{=y>RYBRk0%MN7;IdZ5g$Fp{U z6DH=4wM~O{3J3lbA3h`{-2k`jt?(>D1_x12;v((M87*$~9<~R5s?y}~-o2OJ1hGq4 zL0||?(lz$hmS=OgkvfC%rMZB+SmS7`T6y=I=Ue4p9eW?Z;h~^u6U*tdZZa`Jmcg$< zBr7sDemL@Ub?(KBeMUay36It9=1j?C2r(oGH*@h@)Rej)_6)te`)QtQ3-3o)bG<39 zfyXXg!wecD2}drfVZX90C{X8u^c#FY_(h zPBq6#83^A0`fZiaCk)1a{`SWc7Y1G&<&47gCfS<`Rc5XU{> zkFd$-C&kO7Q=PiTox7L~L%y}Sea|)1FSLoQ3+BW^HkvIS3sMpnkWqSjuI_RB$p8d3k zQ@L~iw?4X`o=sGpUpM;|#S1dKewk}loX>`(%DanKaWsOxREqEN7e1F};cjlp)H^VR z-h9ijLGLvqsUKB4JRo7`&VD-hGn}DHQmw{~<*XseG;sd}IsH|_JU>73%hbGeD+%(J zB_ufg0;_NxEG7%miAQpvTw>G}+o+_ThEG@7?^^f4e1zQ=4AJeeZi8uvqmI55(DCv4 z(fS}(++~?sZr&OvzTCh?TB_%q!)?*9$VfbQY71-QQyKi%&FC?z8^Q`xpRzwJ3+ z+-bZJ3F}K!ioRkS$~^!f6ImLUFFX+z#K~r>?(Eo&RYFF2xny&^%n(PxTFF!#-f!Cu zBwKD=u%G_+9vKOQ4I#&I1$Ho;jgbJ(6)LgSdZztDZ;4ZiqN1XZc?(;tYp>;*EG6%O zWPY7Y^`T1d0^7bTXia#i(48uj%Y2VUUy*&cfqlgXNYV-tZVMgH4sqpsuGtxR%zUVH z5HKiI9;*w)FAS7*=9(#y2z|OpT;+@Rx*J?r26m4mC+n`voF=ucO1_DqOY!lgF`z*sVZb2Ey&sPhg_nCEdPML z%76fK_Wb$IK6_jiY!widY2U3iUnCA$H@-P@`M~1KMG4n=bu{|9G;Kvo*slM!H)T~j zfPp>VqcRM^_*3^I6S{pGi#&dJ*k2Snggr`hp)uCiR(|Q_q29L?qEb@OsgO zHO6xKQZ<+jA3PFwnMD#A@5;t6ba)~!U2fCt7jV1`J~jK^LdZ())Sc*yILjt{HFNV=>Dd-8`~3pE?%;--MTA@2lg2%C!sBOM4jD zETWPvE7wO~u9~m)I|VQ1gS{5UE>x@y3aa3R7$xQ}Qu4qrBu%2gae9VuOLeTmd78f&yCeG)z zsy2)PmKst8dl3{o{Cs`VBm{6M&wQRLK;@v9dZF%pwndS!%LRCwfzr--0I%2jiw0by z^>lRZr}X8S2aADGOBjLiFuir_)Yh#%pK(2aVKOD&hb4j+9w*ZO;BjoS(^QK?6JSEG zjhPg}BE;F2Cleh2HuUwaH~^2kMj?xH?)-U`XERTkF&Fpm->-tcZ({Pk#Brjrc(I~z zCQxM10(Ou8!T>+E{O%RY_8L_pVrg_u9uwiZ^NSEpdY>%9ejxjmQUbfhR2Xgcf$tQ{b7I?Mh(;5TY&Jps~`c|qd0>x_X0Zbf)iiRM88pbh{d!DE^Mg?uNjPYC$V zL?S#FUa9P5cAj1Rna1yiTscg#jd6qhkPLnrA3&=~2JXhbDnVH?cdGqP<=QqAu z2o9OmOdpJ^=)Fg9s?(WY> zNRWjno!cThc7T!xiFpR%-M8USk2_0UtYN+?5k{_&$;y#`WEm9k#!dl~Aj;w(Vg{0F(H>$Si<~5xP(W5PupXV;DCQ z$($y?w!tXgg)D&cw)dAf5j0*ShybF@5Shd4$EPSD#E`(ueBVYyqyRVRrM$F^n(fI+ zM4%DyQ~|pUNF}wHDRv203xLpPum<8SGFx7O>=HV_sS0JR+x~cpgeXddWfaR5n|BDZ z`Th6p6yoR4*Q5aHuTt*yammOS3!1mQVhz-LF@Xo5o@q=SWe&aDHx1F=dfFuw+qYux zONo|>f^_#70X`X!kmwv@+y>o|oWgAh$k=1}(Vp!@Qy_5&M!r{XaR!JbaAv|9ajKOu zCO85h*j0dKq1**_1Ny--n-BY?O)P<5_CKo!46EX<_eD8gdLYgofcXk|==AVoMpXq7 z=jm_7v>Cv!NI>_V>ML|e_WR!R6W|kRB7K|oD=6Udq$!) zQzPBF9V3LOMzMJmXqAY~cXYeUXp+4j$2Gg`?Cp{ql_Tg40wIw{I$y3S;mm-jn~na4QzzZEbBLw22k8_?rE?`C}ng43^F zfN);bnA7-IMi0wolA}8yzzpTXh1!q{xM#rMJ77ElL;2kp&ny7iOw#tS(-73};c(-j zN{7YoD~6gJLlQJ$4MLG><>li)%7$nyL?WibqqYJE96<_?BsPRRB=xv5UbgAE$nNy@ zQsvN)YoG1v+;PGCJ6oF4D($qUHa&q1t=FAIC&~rpN}R&2v@3yjK~(XqrWaZFaRX4+ zixsi$JyNVJ0KVuk{XW1MBAMmacbBXn2H5wu#7gwBM*)+2y__3Lu9w*~!Br9p`{rri zn!dfiP6A2BFcd+g$i`M$Vv9%j4UxnN`S|(LM*gkL#Va;F3G}R29=0SRXa;a;q0RR{ z3aq;~>V9ppUzB-6$XN+Q6+Geevx?!kqx;P-ug`7&Xi`1jjY&iSE9l!;?X%}WR|ha+ z3yRw>-L2VsUN83sYv{d|i(MDfmg+fo2Mo-5su=hEbZIUZdSvFd0D0>mnX04?)U zNc=;#XKTf04XBL{Ay;gBr-9;hBX}Ip_0D9YBD+}Hj~zG$TIW)W#9|K?Hn~4(2C#({ z&UHc1?kZQIh-Lc?;2t4I<__4pNEY3uAeu}^hOU6r%D3yQr(0DAN?rEPe*~EkUVgnA z!pj1Q1@O;%hyTPXxEGEB3ZU9d& zK*TUG+SzWbasTO5UrOK5sJN^|tmi_>*$WrmayQ3_3BG5V+b>Xl2Uq#y^Zv0){&VME zvF;*)G}fM~k=Oxz6S3k_QkMY|u1I}Two8Zr@vG$Nf zym3yh&V}M)o?n_W2I8;w6<9MDe+4>+e&KS~#dWvqe%3V&dG@30-eCLluU&wgg$13q zNek|ChG^?*J_CL(ZTZ#T!~!B2dd#k`&~|wBV`It@)-*|`EB1q#YeT-qz^mKeT{0B{ z{)Ytp0Cv}Rib_g6XWl2;xX>V)u5RW4qpNqZSsm-&0-bLv8i@#xh;)tBAO$on)Kmf= z9PlDG&-NB%Fi5Z8F>?KGwlO8Ml?HHvFYxHkwApb<6V^$P6%g^cC)|U_YP?vT(i{|wxAzS~5; z-DSb|D%m(zQgZU0=?bv)nG_kCW&f11Hz^!R5C{i=Oy1=_6`Nw#^!6!+;nx~k`3rCV z_~n;+7A}Q*fj|lF>@&aO%)KlGq9ksq#)@m>CcLXj0< z&EbaZw?O-5AkAxCz4|E5dsPqJ4ty>gJY2czi<*z<({cyQ4AmLdA=>C*~Pl}H@-aGhzti6b}LYerSNEe=L9 zoXH0@*#MMS~M5px>lxcw0Vl1iMUo>sDQ8$iWmm{)Gy-CwIG`!W5s?=R6O z?4Lne2XYz^Lm+Vr#SB#f6)U0K$cCi_iA}yMJ{5>N^S(cdn(hqVrYvu-HJ zWCi9?NTi0G+X++{u+=%j_dI!(D4{kWUjSr>f8W17A`ig)bT@9Zz=t+xjPO~6FARDS zRVtPn`8U7;d1~d3aR4|%Sc*FP%@4N&+97y?I-vygsua@Qm>jEIb8n$-G{_wBRYEe< zACGCJfD+MDdd5WvIvHl;?Najo<|vOv9>6H7b*Zz$LSnTqf8CxB+_=ctAdy@uY}KJK73&tqZP}e|6a_jz$g3ns7=VO8 zpO^#CPG9jA)_4xo)-E7#8Q?bvtxyLsn%fdU6evHq*yU{TXmdFN*AweY zS(!opurfMoBDf?o=*Y?tZ z>mUa{0kq~(0aOyvmr9*yPN5;}tUiN2OXQX6-LAnVKvy0o+i*&Gxgi98T|}-01=brlq3~hd++`w2 zY&}?P>1=vcTM>XwZ%To2{lvYd{f?v0`FgQo6Y<<&vduo;pXvCLDhy?SMh1b=VXrfY z-2gp$NyQCR|GCL%`@*5JxnC7IR7YIT-YS1n?mMt*_qP9YsrVtQ%U8re6$0qUSu~QK zpc11O@t%yRRSe?OCw|JtsxmZZ(6`OeDHNcAB+Ag%pbuxqCo*sz&0r2GZZyz>_DsDz zZuG8QyEYI8DAo)CX$AIm4&+}vtn0yJO%P}a-QbfiDcRsLtJYWzj6mu1DGJGWYeV-u z5O+7Rm%p8F2jKy5;?99w@nyAmDZr%a)fN2b@}^Rz1z9Htx;NU2&=N zu4i{!4@y6eMhZSx?D|vTlJM~GG$7o`TGw1nV0kcAicg8;C4;YUb9=IJjnLfQ5F+6CK^t{Wp zRrj-m{oh~}iU+SjQsFyurT2sI=X-@goBU{CaX*O$mFk6V?=7(IMDjGES_2pb*Re_o zym1Q9;_IK85rlU{FHP#1#vx+rjtEnimcEZBj}az;7N^YT6+nu0PsRaqBD{<9To982 z#qn};4c~YLyyXEpEqAS)1_7U<*1v{ia^u!$5do78pyzWScDy~p>R#ZxwW(kHz~ovf zP`KMbb93Y`NNrJxooQMrRW5QLLH5mnOX#@bz?QWDYIlQF%!5XP7igmgJt`rqV_^7J zeT7-vmVh6TQAtTCs6pC5bP?Jn?7A)n(@ed$a873bZ|4-I-^_V^{KOS3Ir^RMAt-3# zpduAKTpBHIg&f9SEQwuax%VyMD#FZo&~x3`Zm3Mnh(#>`MPlpLTL);{0RcL?J@@nU zKv_|#E8#3!Kkt6vg^Cr;Ru>G2!<(Sx_Ac&WXsnar9x4Mf2ABMV9H2gcLPMz^LQa`3?>^?NKG|q za#GUmlyW4NLap_qgpxjFmJATu(}7h#YAS}D#ghQ+PAokF^v0k)%`ymX-&xODvX~su6)-X#iexAd0OIKPGgmNs-FLjI)QB3pATREWQ zAq!%9J4nGD6`pR8s*$2c975YYqpm*QJrk;QAuZ=!%!D~qKE=mFt|J&8N)@+|(pWZ- zK`G)_L5SY^rOs)vd+Ff(Ga=U*+MoiIZ}a_f1)?lk)IsEcLTm)L?f2YTj!Og9?g)7U z1?4J&2cQV1aZSGnq-o@8WRf77?V&*+(uufWG*9IR2^JPF5rpv`e2hz%-p0V9k8ZQ! z@*1=gOn((@ePbEr0W!7_lnO|TL&kuT;2r&(yHD>oN13^0a$LH*lj|jbMR;|bOmuwn z+v8uA-WUI<^v;F9d6Sx&+Q2ch^o%R$qx_>x2JCBDL8S771W#nP5XpoVBr>YA!EdWq z0Oac-I7EC4z_dEzMN;YJ06SfvCb(1839_FxWb>aQ%nVX(0RsyS$p%$}QSyhMxqL%t z=wbGU!;dx~s&k{`y;mb4G+=f141A! zWx%W*TpB5%jnxNtL+}x{Y)^W!2!)0RNL>p)uxKP^gF1v@0>G&&8OAh4V_#Z<>*8P* zWH`@cc44bGaSuo7j>|P0iP}Ml01^2CrJ>uw{E;$O0a$jZGhj~3&rj$eb!8lReq&`K z!gv<^R{5P8idyt*H&4r5o1+X-P*Iu$g6u2_-7r^5G1+eDVB9GCE3fUmn=$AjtL8ODW zMEN-YmEDjcurSLEQ2!vmKUNhT**V}tAs~QL7&=4LV|~vfLOji*A><@lp1!5236Fqg zXnL6i4xj~jrvQNKX%OcC>Ocjn!Wr-xQuIU$yi!wbpa>zr15x!rTk?g{X9m=KS5GIs zMYui`wA$vs=Lv(#!48rPuxA}8iy-w5dJf6k2txmT*Z%pI;M6#zlnSedl*|za6}IiY z1+gC~R0x@T-U%V@TviM2?MA7J8q6R|FHa5$DF|>tOcHt`5U2@mBo%H-yq+1 z7CVfw1W(m68+Sk{0}D?`hgEPro^J@u70Fg|L2PMIIK2g5hp3c;U?rqdgJb}tyzr=sc1f-8(BXRP0SZBGr)6pYGQb8q$uxT*;PyzxGf<=Kdbt8f;%n)MT zPgDgJ{p`vOD@5F51lrv1(eVaotpcLm0Uvh;9AtqMi-AG`;LWxhD4j{q$Zm(imoV5B zJf!2HV*9O7E~n|3}OgmGTEvl^))nEy@`n6g9Zs-_|D!sMB_do@}q(2*Bv@c zyPn1GVRsHeisj-#yZ^ke-&q9pazX1G>fS$4FKRXo8lQAwVcv2FvWbOi{MpY1vU%;B zGhb4v`$6AP{@J7>wn!~2?9qt()&p)X&&pd~I`*sI;23g-W_Qbxwg1&egd*Jl^$vQv8lfpl?>=>X38Jx= zQNSlLctorazNSrY&2BEMHJ|IZEi>!OC@|C6l$b|=Cv+W~?SW>pya9%V|uB zCQo5NeOxb~%U`440e3jDcWRTKwH{VCDR_Q^7$uhn&FT$ER_V}YBD zRlcva+F#uE!RNj09u)VOOaowcDL9bClM_?lyTi|XX z=zq7Zsq^)VY!@4HA|6Bud0|Ad-X$MjD2}dltGy4mnm~tU_{B1b{R1( zN%)K&qm%W9Zqc3xuYNk5a>8F7fPVTDZjVDqt#eK&*=nnWXrwIR5F8C7MGQ6LT6|mb`}f9Fl*_FXt(pc1zoM&V=Duj>jw*0jl~Q6+}@T&4>SgY={H|6J@ed@8%5HEt&TyW>fhz%4sjgo<3HLg z+N1s9pyl;%%{X^=_qfH993INLRDU(rc5Qa2GMEs(u6hcmxu^ZWu+@j0Ua#KG`9mEu z_1_1}`h2jK+fXH3^Ch^vy!`~}W<)XD z)j5xcC*~jf6Bzu>O!z|w&apj@65nF<ZHarU5f4FzGy!%r+HjHm+bk0sBbJG;kDesXB=8@aqZ^uolF_~DP|NyGAg!L&io)Gz z?A@p`yg94I%)OxYe5tO}sFM74)MxZXwWkca-&iZ{`oKh;x|ftmPkdCP;DO^ty%|3i zUJ_UhGYcQ5^qULdqJ2edf~M>Env$&Y7d2HnO3;n@x~wDNEqoYHcgxPJgTx4pNX8(S zRin4{r4Nf*H=7i*4Ec-MX7UgUzsmu3a3_1NB)g>u!gFZQn9A2`_ko&u~^f~Xw2p1yK`o@d_rWB zu>1T;;Ym+as~Rv1S7cZMXGyh3qt^9rPWb3BO|8rnksX_H_gf|UC$hvz4_PMK)6MZ| z!IH#Qjn++B3bg4XGiQbeo4gmC{onYDF*89#DO8hnd=v1V!ar@ z*6V*+>zF;yZ;&3n_$+BX;hyMQruaqwH|qA|$K5q2mcq_xJsrz_ z(@WsP234`KZcD{NGrWp?1wADE*`Iy$KM{kU{?z>>+&Kulloq814!XD!c zyx%f~L z*52W|H~5BpHq8>x+Ah2agtMSK=HfqY@n++UFxLpUP4Wb%S}1wFj-bWRKOy;^?e+}+ z)RZ10oPBT^Hi{fv*m<{BKQj1GWTV991J9(}b7^a;{llRHF(TU+dyWoOrWo!XZSR() zU`o6ey`}C&Po!6Cr4bKzbtg*J+M&WSnq4xZ>&vA~ml{2vT5L%XFL#!^b+X2}M{+N! zhOJP(J(S=fd_yYU+52(tuBjCV_xR5n{x-o{cJkZT zaE&CAa=bo;P*R!f(i4?Rir7VyGH_Tl&p35a}+%?T?W;9^ zjpxz(GAl7Sw@ryDP7j&AI^BMK6s=CcF*eADCLZZ?=)j@6A2(@Y8rdF3!~JZeyy}Tw|kEC4C5Hqs|Mf=Lm}g+e6DvTwm8dky57C=qUcW zlG)U>mgU1;cpU8oMY3Zf;7j+txp-Ac%W<{o2_BA!`MK(uFo;xIORD{=g$C=cIy&KFQ-2GMH`|{!7u(3*!j6#FX<-3HN zfi+_}tu^tj;%hvM5BrA<>g6w+4h*Ju39d%EnAOZ4VXmOuJ#M=i$a?e`YF6TU%Wp^# zHS*{A`Ck}DxMlpvO=xHQ)eEo)nf2M#@S)lD>|ItvXR)*LJ&m~ca?K9?C&t}({O%;4 zc)7x9GfqUg#^-_XwYm{jtRMsSA$xp4Q1=GLvANpXXg>0uSFBdECr{aNuCLdi>n=K{GBJ*0IP77lL{`#YRKQ z?RuQLX}L|g#^p0_Ym?lkE(L!i1<$+^JF%#Yi$3IC_16_54Q7u`h4?UalN^dfPrSxzX78oYRzDS=PtpYAXW^VqTaND^DRg$Fztl*Ivc6 ze{8iWohDlA@hMTV_o!hit$kK@0ayN}G4bS6u~yAtuXHWO4+dM}%e5_2aG*D~b*9@q zj#RAc9e-|1(*}1r)^}e{`K@Jves|sbL;(}eP76xB$EMjvxv-7ITg;|==Z=%ht-Uhi znR|XG3fOqRUU|rEBc1Zb*JSoly7OyB8Et2pTj+7$1^a?6wmtWlaZbKd?l@wv&(`2m zE6qDBl9iXo}{%4oN~iUu3l1O(hI6xgS*(|}m%reo_ujVW|7bO- zrCu?q%SoBgqB?|^`6zx(DJEs>Nbj2ROeJN@N$*-{l_tohl2&bWCA%aDGP2c#bA ziHO~XYVWec>D(jfx_XYx|G3T?Pb(MSx*cFyt3qGlY@Sz2e-IVY=}KMZ2+!J5)u?yy zGdTu&p+jPS$<`@}ozhe#|G4rIKC2>QOl;j=l&tryoN*^xiB(6mCimgj8tyUUm3G@v zq;S%+;q*Vxtn@#J=JcOkBne&afxiuN%p5|6yu5q;+zl0cWl8Nuz{aO7-a9B1+u3MW zeCJZVm3&NM-vhP~BdYx7%hOkK4UOdYqEbcJ>bL3C52a(LSE2*^`%aIH81wFddfhFh ziEmXpl*Y&HC?W3q6N^>6%m;ymTz*l1X*0j zm>=yv-r&u2QH{78^^mS_Bw!V{P)r{C0u>Z&gU+5vH9~QCclmJ*`jN+P*L(z{`Zk2Km8HXSQ3$#&QK)@y;_dCRFx{{ z&1MXy@3Xy7!ZBc0vZt^NRrzbA>!YV{dK*ezO0IKn6~^{_y*z4G zaLz=X7k3;s^WLpLe?NpDIcHOF)_u=OU`>~~@hjzY$4F|_!m%$(DAb;^;AdyrCc9ZN zeGP-I;fu#XhB&D6W)(N+XgpTr@N)|51v#j1s9S;5CU?*sWO*+k$Krm0C-M5dk5GQc z@S8H<=`ZwCLu0)p?DF8Sp7b#S)vw@C?Yx#v z*ntYsdqv%!a5CNF$q5(um65-T46?C`e$M@sDt=zWlsH8`Q zG7|2A+if^MwTT;lJ6^i9WdcakOLDYY8=8&W7ZHG|@ z%V^!|Z`yokrNnJ^ptfscf=z{@Hv~*-WUg?bPH^Mmr$l)hFz6!sJ_Z1b4w4FC*7HD? z^OoK2gzbL@xBUANrh*F&_u#Fh9s=(EXO*gaW)f$s(RNhLl4Y+YaW1d%kfg=RHq=Qy zE|f%{Z_uvUJwt?=NAQKt>g(WVcjUm&s8)Mnn0o)_Y$0arSD8?b5i{$Y^mK@k?;NS? z@~KcbVZ)+QO8oC1LRAEJYvKj)QgC){`j zcfRufJ!>D(Y($syd!Wp*+3ELdhaWuInJ|*>aqP%{eHk7`2fvhJ=U^GqlMd#RT`w%j zi%4~v)g!Vy{+x$a0nFon88>*=ITMBCFDg~^hYgORhO0=${`Gf2ZIZPTWwY=TJqQOz zJs!T>?YBDA*^Js}ubpBxa#d z<=TH)=D$TM*|#HI0;mR~{+<1IF71Qo(8nBF1Kupd%eZA#g*+IA8qS(EQI8RUfBlWP zZ_0SOad2w8Z23~9&<$@xKOskvrfq&xOJo?OmwiJCZFv2V7xbw-`tK=nsJ} zs7u`H+dxNT~znDXZ+H872-e+Jk0zH6N>KWk1t)k4{f>P%4$aGPt zM&1AU&5tYlQB>xaezq@-{9r_40exUOXYc-NwkXsaZ04~e|9m3ckJCiK@#9_?LYb*# zi~oTln9!}K532kRY=`xW;x^`gWAzMGkWrhJTpG&pDe(Y&j0Wi0|+m2G8;Hy`xNr@;bm2jT*)sh`@e4`rCzV zs5?&c;4D90Ikk!4om_9gbitpz{`WVPaHyZAT-dV<>@V7>*c-sYsejED7K+^X;;O?x zpZNbd@Bin#|1WS}&5$C*`_%=Iz){7A9Lut_wCpW+&x2N?6zHQoBPx3P_3PKA(81q< z^Y!K7<~}VdTKw5*zOP6PXb&>S+GL3Xi&J^-X>%Z)}lIH46R!#fCm_COEL zTex{HK;2c>(9p1;1x|LbRgfp6CtIPF``c*k%YmRTU%%ec)C?sP;Y9V3BQ-ymTJ9?_ z>`^kbd7km&GSZ*&_MDz(hLa?8+OS-{rw}-3eUo$crCk}}3ZcIQPZfiXQaIfKrw%f@ z+~FX40`y(Jli}mxL29sW5|hxa*p63|Igg%gOALVClUV(HHlOE9qLfQL+j=;mpsXA$ zwfe5l2}+Jd98jCKimflOcSTMScf#)>=ojTkLXWJvoSZ-R4D@O1KnFzlh7LG_*G-(5R|Kn#8)c>jv)s9`On zjT-8a*OBv~(7l!dGe0dMVF0bzjm^!SaQv^}-j~BjcS|W8@IZbB!d~RNj;5AY1}(0a z*I}EPB6HEly*)w2>9XF?ZIJF7^CmVn3reJ&8ZS}Iuj;=CKW6vSc;VSd+|f-}`D?l-A zP0eXZNkb?#H#Rh=V=!^tGtedCvC<|_f=2F`y#4f6_sPo>Q1xGa=r%~BtXV@3l1u;D zbw3C>;_fE$|~KTfqiyq30lInH8eEX3-|hY!#XLli$0Kr z<`pgIHSXdi5gm)f`0E#&oaU(@Ji?}nr!if0x@aY`^%Rv zF8!C+nSa~X_gfk2{dQ=cY=eG+@__?=4y$uWcL6lRbrd_81`pPc8lr@!0BUZH&3h)b zj~`THQi7v0Nl0Uy8GiOFbT+%d;W5Qf=usV==z3VkiDml#vG?ZTSgvjR@GYfCsU(Ut z8Hy4jvs9EDNit-1l{z=P~TZzVC;7(EhRA?Aum(7qr?{?RwS|rpM>*0d@>wt#S2( zYb_R-YxQ6N8CMaYk=`nOZT=yLYeF{rmTW z%^i=fU%mQR|4O&QK7ao7+Tq;xbVy$fpf4VCw3qG-!Z{B3t7MB677`LVJ5&oUlC@aH zHvDb>8#h8VbXS3*vyHQWXzjs3yUq2A&D;F`O&$vSp0_S1|7UGQ>CnV6cKy*4{_ftj z73>c|x6`4a31vER`RY}32my&n0oM*OF>TO2(>^?HK5_nh>eg-BxT)l*LbDq>Qu+FI zE#ynwRLHC>W1ce2mu{&%xjJ)&?U9Q=Ln9(gWv4{)c|}DVh87Iknd<5PZVf#7MMO04 z6N2MG{)RN#K(nwSKO~xqMD*?36IEN5r8B!P|Es)w+AVqLW?0zQ_in)33D+62&b-N8y-@a9$s_W=PaJmf%1+}-}y4+a5 z=MZEAH@Q6KCL6)?Q@_!i1#Q(X{X8}Hz2|G8SA(Mjp}X9baf2#{3P!WTl@Sk!xCre^ zDHx14O|!{)dS)J?Ck&4NG2WYk%+$l_)LBMPY)FU#OITQV?W$F=|I!o@Yn%xwEuPJr z<#2{{Gf!T8j8lNy!{@Zc<{M@0nl*7VGtLF`KL^8dm(RaKTOf5mN^BrR)58=8mVA%h zg);|8EU>alkBf`D08Q!uc%Y3S5T&vjxgR4g7F;{HxfNEgUd{5fA55^1#6!Vp#IUEk zI}v%|8F+o7HXU-Gox5(B*T!DtE-K<8W;URsHsXtBn>X;q$a?5PMwU7uQ|&2(1Bq;y znYxQITTbfr_6%+wo+!UKq&1ed5lPF|ykkZ4KU3oC;?%*IO*?$=xVm~=cD4u+jOjf+ z{~lL@d@JG@@Pgy}$yI`R&WQZgBtIlUTSLsm@T>1nh7KoO z?6g-)M8JzrAv|~R!zEoO5*IC6R1euYvDMfhWGo-L5ZIt;)JUJ``|^ZHY1Oct0h(35 zC*VEW&zs<fCxV=X(o#|I7^sFo1evSmL}W1Lvq z4N6Sf#0$*U3G0!|3_{Se95ltu)!pKh%zJ2S=BtrZbo~C=7uD_d>QadgjmLA~+qpAU zcVrWoYWTSqa332@kDXUl4J0&La8L)L8$k(XorA{XCkzW zV0X0=KQjdaG#1ZSsL;->JGW89R4u=S{-A<{95Djb0TR<0^H$bqJY5jW>}Wk zW^)Kn7*zGXu-O)f3`ry-I;;8&qkZ-l!Gg7LfJ6}$)bnP`)WCb5KdCqaV$9(P7{pTI zGrWk1NDU_plBM6I^e`_+&?eWeU%!J&*u&tS@=5Q-(*ox+OyimF(#)${Bsg~3W&zW2jTB;b%M(Lij^xr60P&E_60+D1ZY56paDw};wsj9d80NF8bBg-N}y>N%uZ0w zR+5Tv0}9Ky2VkK?L|;oJGDMa%b+4p5YV=NUuzG(MihYFKV{&rdYu2pUX+f*Djp8aXt2}-_Ru_pRSw}& z6G_{8&Do&ukcoUGp^1|-{f^Z$s@KfRO(M|s5^YcL?OV6*gDzU55}2igFbihtxmRmS zN=lSeRO%rLCBFi+@g0caS5NhUAKVDfot?jio)xNkKLSdIaxAk9r$@x)`{@{I7xgb+ zz7UZIY!kj}iR?sKOB56!Ccf>xbm3@#u02s7YGL~kkwwEb)&6>kAS2k#*>xr{ zeDY`$WP}Ls)6R+aITqSP z^F@paT5OTpqJ+=*e;*$YjfzT!R=pn?He>V!`W(WDC*Q!=ciH%leY0PfqQq_Eh;a?d z3leu+QKBZFfAolW?jbNxgNYFhYTRV-ZmlZLw-*|amyZM(Pn>SZ)AxjMSNHo52ZtE% zfz2G5TNcq2uYu>!ZLZH~2MJxhrC=5roE#=lTl*S~yc*zNbOD0$hzurlFX&;zHC!{i z!2J&WwI0Ry*{#;dsSPNum0E7!yctW>kylS`M@fL|xpO)X-2NwXYgaBY_cq=@IiGsI z*XU0%*st{ur0(H93A=9JA9*NE%+XsEcuqm;u#;*h&OvN2s;Tp#@lbd6Z(5kSmj9~; z%9R{^LrJp_*eC3ML5_zfZ~O-5udGO8K@vDR5Ib zjB+(t$%$23>W6ml1`*R(C_?bwsOr^PP8k%+Ut9pQ;P0d+>UT+b`6;8fr^gIwriU{m zGBSyzq^(&?FLZJ^ndqrnJ|1mC;|U;YL)LYdhj%Sn}@*5&C9F(N%d%6 z;Eq;@Mgs!fj5eW~;+K_${9?3YKU%QL;Jx(?4vVBu5v+Yiibkg=Q0iOaC}b(m-nhF% zhiPxPN%%BwPuxto!%)fO%p36vHoTv=pM7e+?&O5ABrB|%K0X)+LcXB(-#};Q8y1=_ z=Y*|1Y`NLP2C)vhkjC!&&pg3Zfk*}81^p3d{|@k&Xi zl%uT9Kyaphcc1>z-1^eGDf5157vyYe{Vu=|&dIi+*AKlnNZ;6=fS0AoIij06M5JBu zE7U*h^TtXdeI`a9xI{_bjjj-P*Y-*VoF^lL#>dBNTndsGcc7s2zzGT_(Fbu=l{1Hb z%a)Rz%hU~rY>+9&Uy#V=8z=S85r+DYo-x$iLsv0lqP%$J5Pl~$HPv-)h<549h#>e@ z>GzC5b`|{c%gs}4RwFq|&{zj@NNlAtFfoZaeMwV1v)tR9Ur6W}O2?ZT&u&)a+Xsj2 zp>ZzureRpQGX05T@g@nb^%(zbN#DU|N0cY<^T?6B7V6Pg=<(}q1vF5p-=CmwGoFJ= zxL0}sN{u@~$B!SEQTk>}=#7q!j-f@@9<5Bh z{DNM3Is$@!t!E*bTu*LZjkj~EO!Fg-Kta~|Jz?er)5ykQ+4~>QOVTtbh@U*Tc#$_Z zip5s{M|aZd#*e5m6*_p%KwkCU(!ffyOWnFcO>`Oe~aK-9XP zn;*tE0#3oOatzsUZxD@|-8^>v7D)rVWHo!p1c1z_ciLJi}QGB0s1OxA%x^o_rqj*eV02$Dh)&aZG5Uf1Dzon_7*=fuv=&V1IB-(+!0 z26M-bf6TFTN<>R?`Fgl1%HRA7h?zo*1(CUORerJAzGFv{uBCmT&{|ej3*duR84>~4 zh}_2=)FBc-?97|Cy`;(KTyaJfThG$=&NxnvCbg|y;Ckk0FP8P`R%hF z8h_4$3WrnIU%vdjBf3(d!6oQXvRh$svD}iyi}P|S`DkcploSqU&=$+j&oqf; z6W0z2i4#Dy`rt#MGyiGS2?u&Ns{O!Fk3{>W97&xD+39?e5A*Vx+&NfTwbM3wC)9mj zkyiI7G9X#JNA8EdEIu~2ZpY?xMVrd;Tpl&P=K2AQcyws*72kF;_3&Gp#jUi6n7)y zAczM^O?XZ(;q)R+5$K+sy*)P-u&bJ)qGC>Se{-9EGcy}oBGA(y#|a5|iNtU%NCHPO zFS)cNSc#QJirE{$0#~TOge?yf%}1esjiMDkXFX=&Tc&nHU@6ORNAEMe zlfZzGo}4s4r9Zok3YXYZpgtuc{?5+M3p1mqkf*3?{A5NK{pp`Re22Ql;*9UD`CVTG=l?`stbAD`Mqlxz9tyefc^k;|yHD9qiRK6Kptik#h z7AL!H=T4PIeft|gMsK5{BBoVYSy@U)j)+#s>pRg;p$oiiY+?c{30L9+$b0mz1~iJq z&GSiOlzsR~ifD&T?Y%{rX^%0oj==~&^FJZi6qrp*j*p?(ef!y4CI=3o=4UNLGPblaCcui@48bh)DKQZWEi}|anEARWmP|c>x_>R& zFE4-Db^4pZqkBwVXY$;yq-EOBJG@Pn&BmPWYZtmWE!VrBpF0f#OXw;5_~0{%iG%h9f&23a&ZvJkomj*vl67hDpP*wS@bj!|bsz{NMs_gtxuc+=m8x?eX#bt88qr4m2br0f8-53xz&-Q} zz%2;a4h`xqzta1FbBzBzP5LJ-K)Go4h??3>PUjAq@m{pUW^mEKoG5w1|wD`i5tM-j6Hk!mT&R;(XFm_=BHl?mxE;lE(6D*PCE}qFlFU{o>!;O|;hl zdvCk70^@3JKCWHewyQRBdkmsPadENag8R(2f7IhV+}x34C2%6)JJRZ~>ww);B=!{8 zsRk>B1i&YFQmJJDl4zx16dd&rkFYOUtg}y{Yp9V7FVN`x2{M$_PE2kT)!p4+oQQ`; z{GG}hOGudUC^XXS^S_;(M$p%4YE(|3K8M9xn1*g<%Hx=C?U>IpRBVC-+LEXB>gCHi zAJ3sPu6KWdyN-G_t<(fwFy=g4Hc8mY<5fP1Uy+{rLe-m>(ckM6+eJ!;G6_&K+<>WI z)tQB=mpi{gs{uwd1bd^_VPs1_BIJs1zS!iw+W~YfkIWyzqo8<){+o70c_Dzt5&!qK zhCoCFFhUOiscOw|6Ut4Z$|o9BxHy=~?n4EDF`L_LB<6D)B<$kj>&l|ZummulbZ;J7 zG6HX5Xo&%g=mIpdc2Zw4zY*NT%gbvq)>&?q!Mb)Walj%TFbS5J)M%m^=B8d_+Vl~H zO7*8>;{5!|LDJuSh4<`{nLT2Wj_cun{rYV#kJ+&bAf-3uS-k4G4+aBlp(MXcmK6~e zuDi~Jmjh^&sUJf!s|tXR{c!Hyv)n|Zd%9?$Ao4XZwKzckG0cr?*R2~M|IUehB?Chp z^tLiHH&SXGR)51JnvaUxuIcXX9^=lbw&M@+OEF!+PT!s==H->f8ZEfA+lO|UsnBM;NsxQ6xjCb$tS^|m~ zMfMczVo`N}K!LzTC8oHAVVyGLfDf~Ks+nPWwZ?(LSg9njiCmk)cbL9 zTjy{a;8HqBP%-3|0Z7h1q8EQBTL?QXqD9VW(U07>@T2A#pa)XYojH4U0NyXhAn+%8 z|Mgez+r&DJE|*84i7i2=zNOT2W>iVg4Izem{7O54ZW%T!9kzI7GFT@^v> zt?fAEA?9o! zFni#`)F?3UBYL|OvSy&azaPK0Tf*-cdFjf#3y4#9!l5E32fQ>=*IMn9a@v!+qPHl7 zx4Nxlwc}YN{TQ`(>@1bl)q6u!lDCP8O-J{p4je@2OeJV9f#i|cZ{NG;Ro(dkbORX} z-VpOXvu~?7I5^y^f17S&D)%lz=pe`|TDT;#aOJTNT#gw88oa?5)&Q_YoMvyOe)^OF zcuIH9)unNz_r_>KBeh+3F3S(#CsiG;7v}myoro}XaATXmod(Up05Ks&aDO+d&N^b( z&_8E!`gA-0+p?T#qBbqoeL zyzzC$yGTn%8v+5Ntad~-pAMer6tUG7NL1{YrNq>u1FXGvMG9&xL_t}eckcBJ` z7*?6XC|nnYJ&xa6lYmSE6W{}$f|T`a=y6p&_)_GqeGDC77d4M32q_s-;Wng`<{bz# z$S1deTM{7D6qXyrMT1`kkM_FkOb4w8T<3{xrsw>RbI7fHfHud*#)yq1%f^kvVJdpJ z2ri1&w2;`|d7xy%JSrSB8~p3Ei?mAz@PyToO)Mte+{l6oWH*tN8D1Wqk5#>;Mt^a4 z6E^{-O4H3DM!%E59Z7FW>_^~~LR>A#6mDT;VQ!znh4%`?iiIoml_2T0>&SQ+3964c zykPY}C?+`}yhq9227f=lW9Zi$03HpNF5jI!(H zA|oRK9%#L^5+H-2VRCZtaTysv@5F^N(e0X3s)$20i7izhyw@E&y3eN%+B zjCf;(|FAtr6;Pd=U1WndAW$@Gr(AspgbE%C+!XWx^gQW);qA5UKe(^KF9j3dV>VR1 z@9L?%Ik4N#&ui=Gn9e)ZT;H5wSHBeRLs8i2e*B+K~N459ZH-#&Zh)6`(G^k~f8d$(| zzz|)6W99h1`hC5%whD94#|tf5+KjoSS@`U}TYY_PJj9fNyAgz6l9s(%^sJIev2ly(UnUDQH;+cfi1=ff_xazJV%(nqc@(K;{i zao6sv(6!KR5^cQlZt$rorqZACY#$(_12{nOLX4wa@)am=j%Ry5dhEKeUzjn*P*QWh zL37@XaB&l^#viNw#@0}JgN`39dhlWQi;T`{)?`5kzVTw*$#ti=u}^4}>9#cRMvD98 zgTjmhvMp=0S$eObpfy8eAcJY7pob_`7=mOFRe&II5hhDo2G63YV&~{Nae|Dg$y}!0 z3x4nnnG@Byll?ZkpDvaQZF)kF0pRd#)&DGF|G}Nt(#g9#E{`^@4KqM0+VkMMUh_W~ zg67~8{k8(xH+B3ejkmS^w^e;TXYncT{>?_7iNZVCLn98(2MYT!y8u*8MZ#}?E%|Fg zw6@TZ{A$BVw3C( z!xnliv5{&i!v7 z4AlF>Y{48m7twWyo;r1kFux|++(uwUq6myZ9T&p^>5(|wkRJ-vgPG4NT!-w&{q4%QAVGl{j?Zr$|AloAUc@Idf{h)BD3G{{CY}|ILE{z z%K0kr;(thiDfUm6H{o3WU1E(_!r3Pg+1?D?%iws>=q!HY@~j*jsl@P5tj*cPLu|G9 zf)MAqgXbJaV?QjVIQ#zQU{W$H$hw$-fX~5RU|}Q|&GzgDt~F|0MRC5|ZS?<1HF0B{ zio1B%;=^cPxR6b%C1M+fe9&ekK$-E~W6NP6i*3~_&%Ix^ zJD1ksB6%9555#0zsBJKv9!ffN6A_$;N^+FucH<|6tuYcU$fL;tDAS>p1XWYoz^WQ6y|0i%T^;BIv$0AEpqJ|xpG z0160mTChp&PVA*0KubQzXm6_aFD`&J=xb#A9^CBe2hX{YavkHH4~TN;Ph|mBDS_cb z>M$&}Aq!_PR@{$2X|poF5zW*{>81Ub#LN5)pc%Lmo}MQ=-cfnwb8()n*dfr2oj(5}Z5mpwmVWhD z8PLQ$L7gx0pE(19F)=aam*K%!1aor@V5umoAAu^0Aw%Db0jBU>dJii&-Bf}_u#(@c4}vUzD6C-3iRhb0jMWQvf=jg+`_`@pm1x6X1&rk2_o4GW9HOJ2{ELUo~m#QfO0=E;RE9^0Y>mU@Lz9~ zyr2f4mb4gf$IJeBPjeGmx`#k|G%z5Um3C8udJps!7+&RsFLzti~k`1wej&J{*CI zAk6qpIz`#84T!Cvwk~RX(!zV(4+FxdrKQ}_OK~P|-?@|0+Nw_&QSd*kh5TUxa8N&N z&?gF~o01c>T(Uf#p#jvK+am;{&A6b@$3x&o!vva$6I^DOGI`x_`$ zL~|SkuV1vJ(cyStwC3Ga+3G##dk^6I(ngX={JCxL6s+In2<*?>@Pq!@X?l$rfYQ%}_PI zybnAp^p~zn))8<}$@Z}&OP4-*zMP`*21T6agQJ%o9XNQf>T^Rb9z2nOL|oF)O&lKa zT6pd`J9hX8{NGo0+RSVw{K{AD(LVt{KE%B>FUo)iovrjyHf5fgY_lqU&PZLkj)pdI4|=c<1VESJ0TGQ%dC84J1y~7s85Y+O z^I209ageH=zj_^~^x%D-oX05MwgzJ;DP;)xk=~{h=07*vwogjP`oavCZXhw!on-P(h-7mfdt`dxu?Va zw=n4crfU8AV<$Q$7=;RX5tn2vvluF0*H8o>YO<&0YYpD@?_ELO-fyny;=YJtEJ8Zp zU=n`tq&}MI(X^ZVfya6uV0e++$$>UBhEGsF8^0lioI_5X>C6Y+G7 z6QcA0HWm;Mdg|}M3tApSP&=HlA-5v4T*6@?cq6_C3t&~;uR&~ZJ&vGX?a~f@CX`ph zQ>_?8{2qYUA|cke97XWJ#rchnVHgN3m#jc7efbh9Hukx%Vny#ERbg4b{zO;17ltJ0 z*=}>e@3bFF*~VuI$c_TC6vX5eBef3bR2s++n$ELGfP|e+q=De2Y66^w-XaN$6x4|( z4j3Pw`v{??6NZ0q_U}}^WCy@x(i1(kZciT?Id24^i(+Re#DsnHl|cy8xDYC%|K6o4CpH% z&!QgT7Z6CVvme6u`Tg^NUt{>uI4eWOAOs2od({3)RtZ@BXTJ&Hrx*)t2ut;IsK#5C z#m72|Z15h^inZv#LDeNJQG8uhW@5;qJ*ro$S8OSt}zA$_(f(o zB;?HexZ6Ct(J9%oRTwPJIWP+Th&?y+f90XGfNXkPjaoCTCuNux5NeoK+eMc`dbRYz+tyD)1nkvu~yh(EwX zR}3b9U|>_SglLf@tkgBzPqaj2?_FrOdEDtWvR!ZD-9+@p)ytxTAVYflD+0m*ZBm>} zjkIS#&NN8m5P<&4I$Vc=dMX*-wdi;t;uF3RzUW42XSMzN_oH460dqSY4_WJzm|{X# zIT=R*SSB?Odi;N>YLL}sem>W|BXsWfGsYN!_@wXHw(TIsI@kwugY2Tf@afr`>E};- zi?BtMD4qb0?I709x;g47JNP0?+XTz-rHgUb5dCtXo26A(vi4;!`y5 zO{LyA@(2-SO0GY;gSE<7y|^7zP?##q^tOK|)g{QLE%xd5vdGw0`Qt{Y{m#C%!So1q zOoRzH0+vU-{!Eq z0ylSEwn&;vx$tnfnLy7^(Oeb%Jvoodtu-EcvNUGuQ?Tf;eaU{g{m0bg=r~TD^z>4( zkG5U+bb05fOOavUPN#3Jk;|u{NFI+qw-f}N`)b=e1_l^5ZQ8`hzE`F9xvb+58&cGD z%sjq8m}2ATc=gdEUexbb5K-AZj=mD_q2I=}RoLh#uTQ57E$C#oZbwj5Kq6(K{dL>d z*OyBS>zQs*+(EbWsfvH}$OPkTV+l*Ud=C5%`C|r?gpT3i8(^F@H8-zwBk)ls286GB z>$|&4gAl!%gX20RH>?Qe>&Z69!d}4qf|y`&;6(P0ffNSe;#LunwHVjD zBto*2TW{?EJt<@RTJFr!)1ij1^lp_6U zy!-ZT!g!zz0_%NbvTYe~;C?ZpI^M!XECQoNDBF*&OL?Y0Awfpx)0;OlXF~90;f#GK zTY}-rBCzHUBYu<%<5fU`m@7i1?WkY zY_R?DPivJD)M0YyJW4@=Kd7d*>TJ#38)$Xe=42VRDx{8MR%|jq`$MuNDkQ`Q#GNjb zcTHF!hCpI8WSMHywCS9uMk+hKNP>G~zO4}o||F^%{3d2#mE+^c|kN(hspkP(ao{cs1#!;lO*eE9G-Ny!aB zeoHY^?C9z;xv)`vQUZ&rmylzQNaw&AlZTcXkt%@&> zv$P}q_}Z%)S)Wm2lgky;#3LiK5!FyBCRMe$*6jz5t~uwQl9H0=fdT{TQKhc9euf9V zAaDb5Ny*NHaKkl0ZmzCz*j%ottbFjo1rgkrBdXnY1NA$EBrK2*@jTR%%1~uwf_Gcc z$i>UM4UY`bw-hjMCbnniJ%7$>{(Qx;Bn`4qehjtHV0m!Vbn|nk-CzV=20@_tbURaQ zU?chl0iH#5zCl5Uabl2kfq?x|DLqVC5UqZe${Br z@-yP)GIB~c^^Kz>W0P^sp80nE{P|jt3Ph}0*>JT`7QIA0dF$T2Akk4^2zhX9(e>!WsotHT9sdVv<@5@OHk z(_GjD8;CmB9Xe9A?Q5M;Rb02S2QSlb4HIQzpkcYUYb=qBmV2jx4-p6AzKxyT0bSh< zxLMb56%Hh*pTeWEv9&EhGi34IE$(qFXKU&H;;+7LIjNZQ8$;{RIdjg$gx1>H8qm`+ zjI2vA%eR>v(1e1q3%nnBJ3C>tfRoAJ5zh$sMv~b94C{5AoSd22*=2x{$~#^n#h1K! z!+@T-;l$ySCpY5>(@_8v$RU`#$HJhdPoGGx%Cq@$iLD#MPhTw5>i{8Zd(Oy1ab#pJ ztHz|`6@7M4i+sFeQ(9NI2IppJY~X6LMpr-2X1{cMx`7m`;tgS8VZQ$UrQ}hEhhIa| zForgG83V&5(A(SGNOeX?p5-25Vq(rNE+y~ZuSQf~wtV?PD=Pu~qRaS;+t35^9#cuy zF-F!fma|7pdJlLi@7c4hQc~;yS&$>Wl@iE>6T~eqps6O;5BH^P4nH9lda}$XPhO(0 zvgv-ky7jpe6AscVG}D_P-z+LVEo$P=K4?1BR=^J6X7x0?h$#gR7n!sZM^fB#Rva0q zoQq3i*-+4)eZpE40m~&hR5Zqty#*-K4`x;RkO0Pdm+Xtp&;>VON3ep`TBfE_+qK1uBp|s^%->V*EQ1*||@GrXY__`k7 znya*DeJ>U-9|75B26*9p4ZdSIs#pR<#}~?gZNFt`W+)UCBnp_`33|=DqpEoM>C<}5 zOMR|fS)zJRcGnuggUC9#FRP{49)s0~VnXM{iTlV|&N$o<4P68=ggi`)-Xml^B!OEc z*uUFPa?;u{-siGU8@kK`yFnT%Y259#0v%5M#6y@UU{5Hpa;DP~!s`i4?~d zW1v;}cEg`s3Kxsk%F60y77X<~AbRl>G?f}6% z=Yi5PYW<`tDi$Me-HeXDjtB?d)KXH#-;#AYaNtt)&VEFcU3G)YO@MoMKF1c>6~G@Z zBX|$&1PkK|)(me(&Vp!RKOUyg$zsZbLBLi5GEy=D ze8j{@lzyW<(jfCrE)}eYQ{THQjp;mZpzl73MYAMj;CMspdn)@o&<~7=QMOeeY%b^L z=O;Uhq+QxwT}9NqxW3xRj6 z>IZPSSZKLvimR%sI_yBL6L%injN$l2;4k;lN|C?6UkrN z{yLp#5yai5c2Z(Nw;_c@d56yM8Qi*SkP>u&0qx3MItxZ0OD-9HXul`4OVTC)m?Bve zjLw+-RSL&ib(X4WD-cn8-ahP>K~1LHE49ySUK++m*TE@TXYtGTEiFGK{NbhMc#waD zY}%1NFi|MRTXYDEly(sYhfpfjsECuqX{b(!Nr;Y~9=m%DYCi;_FCZ;k3<_fEwv)i` zE|=HlmI+i|pKEH`oQvyo3U$8Zu-<_Ki{Ss{jpvc5!FL{zN(SG3iL%`rntSV_=$~g( zS2N)!FKu@pUjaJAstp_bL3J8DLiaEWMog3ec}^pv_5)sl!LQ=g=PYlZX;oisO6T!p z=_?MQRnG6t)~q;;_6_K-ugR&iXL())ZQ9LKQah0oxIvTwPnX4G3fMe}ig3JOq@e5$ zuUvc*K@aG}Nd!X@LCd>vj$Q(ZxPk*Mm!#1N5QprDz3?+6VZdH1Nn;r!IN{9 zyTL>0?e6xqpu=@o+enXyh=tdf0-$CA=b>%y^-cRY;eWCk>xr(Q_`7`hvM*JaY@MXk zM$Qm@GF^)LHT+?>(YbTycEX>;`qFKv*WN~nE=K}E6z;RicY{3NsP*ZSC;T>Nf5kz~wW>WPC54|* zI}2!@c|U6&2JU*w%#2=6X7sg&0u4eCJg$^@x6r9ErN`{^l11@Jk<(baJ-KLMo*fkq zg#vs4ql1Iio7Yihe*8Fv<%pDe%{ZS+msHZV_plMcnQ49EY9Q+}La(P$i5TZ&sVAHJ z93UfJy63NZzAsv8bL>RN=95p#yMGF==Hv{79*r{KID-)QK{<}5zM=+|kKZq}RXzvq zubS563svQQjy-aH+`1GwFm{B{f!KQC1auO;P5Ce~6uZjZ_o)v6-gg$B{dJEuROt#J z%vlH@K&;$d)&*+Ru}ZW`(O>nQ}F5z5m=T`=!G&_47G{plv4g7wPTFplF~w^L{HH;XlqlzwCS;bF4G z&+z;1*mRXW;9*e)XsVh+`7b`Q%(-*tPRYe5A3uIX+aJcJXc*n3@_;K#6^D^cO%_Ro zwB;jG)1#xsI9UD#9`axJKOEl_s(-9G9x?3;t~kXT54NA%mom^rMu1;>dzZ?^y#9_) zbEowxs%H*h*>WhsA<7SM4xXPnzHRM%XH8nMU+%)pem& z+m#8jfF90&;(^Sq2ST2no@_ABP~Dp3<3me&*_a-84-X+YU)T=O*0c2F@Ml@@m9v|e znfVc}H`l_Vfj9Yx+|119F@-s-!gGI%=Dl&?fn~OBpFeLT0!URnLDlmH7?70M8{NRY zyOpS$q|TkHpRdk~^L2| z`7{NBN>|bCK)-zXa(95_u0?xb(DJ^&t9C+6=D9w20Am2Q*Uz2*69r-z{d-sZpB*Y6 zOS8}E?4@^-HTW1eh%7_pB1^}_dH#ajF7#KiGAFn2^QXLSIhLZe%N=Z6lDDsG(bt(m zDB;(pyyxa(wHlt?qVI;rD1z=YHcc%p>;_LkaRmpDozj8Jljl4Z_x=nDKt8(n(p8m} z)JMU$cp{%|2OW3^XxVB*Cs3QPwi}?Vgi`T_K#I)Gz7tV2ZzvOM0<%G#?8FB;Brm_X zwY62niam4*3uXOM8fKOcK$FUcu^)~Q!4HK`PENAWuHGXoOzzTHD~f*Yx)a~i0x?4z_nvF$sR3excC=&0bcyFe380%Y$jbZp7c z;8RG@MVyO~4?l-#2@Oi6gQR=JuylK>S6D4)hh=gM<`P_(3HOmC_2D!8*JVw|*AV)It+%dg9AugcV`aKnM4E7_{{m?)( zSsh7zkoMx$?($QqN9k@pwcamv|1>~5y2kr+c~jq)>@ZW|>uEo9;?*t|`j<3&;*B?- zTnTjDYSi`!x5kQLdu_|~^mOCL*DfW$fiD3o@}}rabV33*dAhb<1g5A_Zs<)-(qc^9 z_k8L{`cpj3ftW^f>|2cxpZ@mY5fkuw6B`LUEO&Sn9%|fn=9dFnQCqz|)W|Jp;;uY@ z{=9N}$IeKVtB6jgfH#hQ|6X@Tj-Q)*2?k6RXk`Tv-2j0y0>BiJxR~Uqe|BeE?fg)4 zm4y*+p5t&-)8U%$6BA`X6;=VcBplX>Ya$(}c@0(tC8&x#Sebds?W_|%BI<$|O za$)e}3IHD>GtpD+r*VyLOevc!+>rStR>}5=qf*CW{8XO!NP3}T86g=FL9^^g~JDKK&Xi?gl<;wTfIslAQ>go3` z(G&w@A&(}Dz_FmI>KAz$Waw^+z3b9ezj?!OjV$(c0_9;tS9b{il>^-zTe6@+O$ej6 zzmNC3RnumlYOQ#oCD!ctPI^Tu2f<45=4mLXKaAI-%?}v_*s|ZoCbO-pt*vcI;X1Wk z{$_gdaxXcC; z-)IdBE?d(~eM=xk-1zrkUE*>{Gw-D-!8ovL$C1rB4DkySU zoDEI;L?3D-Yfv*bWL!n^LZu_mZenhH6n{_Jbz&L%7&X4oLni((yNhb&JbLsfJUBN4 zb|;vxr>E@BojbXP?LS&sGep%Vp#y4y=WI!@|6@+P9UVYpDz2f)bD$0#FgD(beJn2l7y1*~GAg=She!UDuqXJbe})?hf^Q8kD+j`(}&k!~ODSRi;K9P8y1G z5pZ-Jvp2aj#wYKsS$$06)e*Qx{&_ra7;f1Ne%!^y&AmlHU?m7gz5xL~ zN`uC^N^#5EQHv>{m4Ud-7XMAzt5=;!o02X1(bILDipSI(d^+)8Gw0sW)De7DU;G^n zMudBsV`93NlOu{y;e$DP z9IB2(Dc=?qUa6A);HJwVgnG3kGY?W?E3` zmNOU3%-`s0>Q;{1Zdr$qR6Y#ob8C$Kj=s$3n#b!H^CLbubC2xNJ0P+P#p(hv?L3$hdf(9v>6_+oO?LWxxVZ6;izu$ty{;(Cv>;` zmstYeIq``qeT=o_TGMrNlH10?E^K<{z>fjUDi#**6LuLwko@TsdCHLKhpWBqh|fwduIf{Pl@oH?@u;qUa>vs=Z)STQEVo0a^P z5bIdGD#^qTZP|UCG2ndbs88_y#65nB0CK&7B77ZEav5+CA@n^3eo|!kf!>?oU6OwK zxWG+?9#W{KR_f{Lk--CLps2Ha$;cbcW9Lsz#c0@WdLQ7&;vJxrytlGG-|&=?_4ZE* zv23wi6}CIN!p>1`J@wi;5%<&8Qa|$^-{7%4qhM+SCiE-h3__1e(KwT8riw*@YNEbl z;XfJ{=l3joD>DR{&#)XiRsAHp#T%!mnaG+xuv`8D-o-o{&>OOCk#5E#r_ymsJ?{>eWKub$2(Wpoks9hkLOku#((GgsleEiW$q}Vd=8?ZHxC2`xZ z24A&fXy`iNV&98$%?*8+oR9TCy0^|O<{{r`C{Kd=4y)(+`KLf~QE)A|KTst1g)TDx z*|Scx@Gnu`XMs;ch6+HEJ6&+dgKy&t12369p#3PeE^g6j;gz;R%B?90Y2wUgrpY~& zf&IZ(Id`XnVfz+7XBxf@XV0Bm>g41EvGXF(Wexx&1kp^dbK3o`%8KmzHnGPC&b~6s z{T0=C`$Cc8MrEXNdPM(n-__ePAxq|vb!Q9TZS>LQ9&kE>1(N|X;hAE@0=%~z?Y=D- zA7oYtrirA_Z5Db^#@*}0 zbYL;%{O4yZI3BfwkESOl%K#K1&X$O+8P(ed$v zX!TZdh8xItHtY5tMjBUXs zfc)D+vShfoKAF5Ayq&Z6cllkm_#`TcWHth5$#Y4(^IlHDGx@mw0s&sZWAN*4N80NI zYx5AA&{}wY6%+04OSX^ z4`R|55KT!{+n(t}>Tu>2EiV-0hZq&EC z><>MSc3R=rX-mr+N}+r-wV!vFC$(zpW?cq02b(s;2FhO(+%8}};urc>L7YdSfR>{3 z!dZwAB&S`Km6e^{++Ly&#%PSp5>Y||39|*+1_RZD7|0@#nYI_optREHv=m5Ad*(Hj^bCy$VuvHum=XENUdVm5^nDeQW@dNbIFDU&+-f+YP6y~ z=_~>9vo@Y0ZYA#XKYEdpi;DIUieP*~!WX>qJgI{J_W|Uiy%V_ z0NkE+barm;Na4{?KF!}PD4QS!84GyFR#*?(!u6;%&z9EvryJq<0PQ#tuhiK5D-B-{ zum13TBRx*RS33?z%qq*D9Wv`Nx+{k6bT!qlM-|8VpB3?D_{X+RO-?qr2td@J5odeh z0^wHp0b=jdc;4{PfSM<+c?t1`*J|nF#V4V61bgT(c)pW#Hl{_|wuF_~+J<)P*3u*x zoA`FO<2;nSe0fkBnqULlUnrWFr1N81jFv^g)hnq1QLr`e#*KzZ&GrZ~c1eC?Xp4bz zoY%sX4&S@Y{fYBb;*p(@<3`x*Y0VW~i*`Wdw*rkKbphY*w~rYHAAO(-JZQL6Hfx-B6l!-8!w49H?1F!D=%BF`f)+ zfbXx&%g?7#Tda8G9Dk`rm`H7Ym!Gla%I|rJ zVtI6DI4TI=%EQP@lWWwJwsATS=QNfL0})!JHtomeT9~P{AtY?7{g6w5o*`G%{`MEr z=K|j}j@^7ygwf(1cUgF+MAyK4XCnYAO8lUGSmo)snDDBexH%CX(9!$sn_Dz$<+tE! zVb&`=6Rk0<4O$^XfsEXjX5Hhce79JEw(XV-dVhey;NOB`U9#cgJ+On4LKIJJ-%+oz zBobrzn38qi7^YXkT8Ey5{y-*$xKmT&z+q)+$K74>JbHF)p@i7tpVIQ%F}!T0or@%wKus zz(uq%CYW%~pu9jHL+`a+C{h6|)>?R9h78_}o7+{BJ+18Q?0m6`y=6COud71B^)aL? z9*_o?fz*}6Ln$njFO0;-L)Y0Z0(=ZGFRyu=nOThC%$Ls2MREn!a8ab8kRIaPJ&&sx z5p{uVB=&P2W64)28p`G#Tcv#d{8@qJ9zHb^}f(MRC}w z3Tnvj2|Ssjy~j9ct5?`xgSr>nZL0$0%PWiCveDA;MZxDhq{f0LlyaeE_l{rD1fR9C zXcjO5RqO0Teq3rVK>9-=`x4BHP@*cdMBl!xadOQlg5nWbqnr2*#ia*iT1C*5Lrr$Y z(-HtgaPa@b*mr<)-M4-J&9aJ&j1<~bR)mlWX(-A_BpD%O7cHd73Rz`DQQ27uQB+10 z(J)FWNg1g$jLQ2t>$;EUdEWbe$8lW8`(Dp=7ytk7_Z{c?S?5`d6EiW6-1CT1Gv0mNx zWEl-C2S?!O*6n|oH~;&fzHu&+qw7$V>EANli^_@4>o>>s^rqtqNMdeJ0M>y}A&KS7 zc^Fpq_Q8;%r`REd$~)!T{>8i23=;3u^O&G4IGipWk6ovDeI_Gq&+X%Hz5}DvZ+5g52b@1xOJT&D>hurB3WSM1dtpNe>fR30?_T&ztcRT@yH< z21@K}UHqDg$xXE2V^DA~Y5H^%0Q0SY05o@W7Y}+Q!P#g*_P)Q=Yl@T6Rz4m3ssbB8<^e%&BO2Hj-_wi%Q6y5m^g;=7+ap;tQV#c7_ z;tvtkk*syM$S%{7e#d(oDo`t^-lS^k!K6`?)=Q7ePj94UeK|7q`xtT6_ZVH16-#jT zZu)lP^QC*sWu>6#$xJrZzWT)#e4Z}_T|!BUFxzfzVpOE`q~Fg+A+7B=mxChG6k7V7)B|!m
    }FxUO_O=kC5K1pKe<$TfT8tnE54G$D^__5?eq7U;V& zQ2GMWQAxf7L88J}%ToX|r>$AD#(fGb-#y4LsJW{8*4XF4I&GQ_{Gn=rCva=Co0^)Y z*qLA7&n7D?3+Ay76|F#E+I3`*QA=YT@4IHrZR>??Lh)J07z~`RvjPvsoINWC0-k0z zEWd#UR^Ez(0e#@^+?w||Dy*v`p-sc-$KAY1Hle8yS}ONf_4QX9Ms&8vFd4Y>7Kpsj zTrQ@mscHQt0=Y=90VFG_M14n`6Vw%@WmByi=7p>c^`B75*5IfG!|B%7C|LCkf)rhD z?dv$4K?qM{T)M-Zw$(w&#B7DS`W)!kT77dD47>V*6bVP2!eTJ3 ztMg;(XpZ>;eej?bW-HMPNAa?T{uNbI zu%w25JH8zScBpyA7pZz#oSU`y!19{1L-eq-tcb4@{5}yOLVNE-e z1wqG^Rqh*sMPr`Gevc!ZPLOw7r$Sn_C2=JV-YwPmd|r#*us-1rgYSnAXaZ~ijd5Wr=&8)+BY;{-QfrhNe?;6W!wj|2&=#tzEKiH`- zkK_1TCRG-g%_X1WC6AP#?OEEusNZ^&pG(<&7p)gejJ$!HOUB2>(qLiG+qiM9iHQ(K zwH)J~qr&^~<3~uS%De}KASsYx|Gmr1EM)CcoUw-obBuH1%QP_X?I#LW0-Vta?ZqdC zJKCzV$d2(ukPX(sN5%Hrj8IO_oU2|Q>&W9$P$SH9_tYs>F!VM^6e-3@IK+t$-5r#HP#ZAhpKw zx~GN!=s*NeUeZpzEWtL+0!DI~MHw%$;x=sEI%9=JnLqqa{8$PbFz!tvp~?N@3)Pf> zN^DqRIV-Kg8;)SXNw9kOuo|2Q)FqLY5T|NjN{Tp{4sctA25f+FyqYFT{ge$@aEZDJ z4*Ss+qWVP+dr=3y!KMeN=|jB-8rM%a!imkH^QHbd)k6fyLX7Kk3|A$2jjFz(J`q6m zrv=)0F2DtBV=o-|DD3>VEV>JUBuOC)f1-|Ba@GfhHWP~1R`zB{Z*ae!fcj9{G@s;H zZ*b0lKos>q@%*r-99R+Tb3PEhI-p)~h((~4zlaNucsQ(LdR{+z-n==X>iO<;hju!k zOvo1IK>T?M2Qo%hFff8B0QQz_qpTAEjZOv!hcP9IzdFT&`J;bl1gLpEa(b0z>IV>Scx`G9d59UMCi+(1L#G2!C{zzpY&!pzZUK}l9`B*m(2S*KB9tGFrYJ5VO#Kb^V8-aIsx2cH>vEL{b*#R7%z=wtIG<4*a zO3XRls*XQwz?#{hL+Tc%9+f(4j+g^?M9SmWnv(A-pQ+7%^+> zEsJ#z6KM4OISXhyC2eWs8!W*J;aRl*>tOq~1(G7$QMe-Gn(zZG-1&=woiIhC=GMhK z(i^vM>izh8xpSW1*LJ$UQrt*XczWz*xK8d`o!Gk;OjP*RShHs+D}vF(_vYPrdE(kN z*@0(yVbB@_a|=Cgj!KKhgpB;$*{Io%CCm)>!&)F^&8cf5;T_{5UKG5%dw;VylpB(Y ziu{n-u2Q*}RkwPiG7!CA4|+=iuu$NmU!REq2&^!&z%Qh2ZGGvz;;PsJZoT&7xLw(h z(&s0K!w#^mb5{umP7AcA0aaBRP)EB%j{wP|;8-W;U1*t!g@L|Mdto0ippeooXkm@B zjn?klcg0ew2)sD~FN#aUB+(iRJkLJ==xKYq>BvOfcV#xT_P9$J{%|tU(!e2nDlCi( z3R<_%Z*-EuAXo1DIriCFN-hG`XV`P}p!E=`>_xu=foU3k8{-N8X)w(~Xz5SEGePn? z^bIvA%g{@cl?E81PO`0yO(2TtJK({-&NdGf{{JB*a@0Y%ZRZ7jNsT;qgwj|gt^u6- zp)Hz|+&JTabk%`H<6iL`?rWfuGa$m8#;~|~P~TPgD^`a!u)l_umJODcbMefWGIQQz zX>kL4t3~%zfCisYjSuC;&g-PIdbJG>j-9uTsv=w34Q~&$RCQ}>;iJ^uNw^#6mm)dy z4SX)TkRLL<-*_Q1w5I(@{%$dV&nK^5z1sQ>r7jO(a=Zw3+>_H7DEAiN2FtqP41l80 z=kptDzo0wP4k+u^Vsu1)EsoOY-LshBHtfrajVwu)*E#~zQ8Lm}+Q^(CMwxvGYWjUAytAwlSt6g5F$YKtOoK>J;f&Bwh+ zy3tmF2w7;4l`wTp7V1o3nx`8Tx|)tb96?n;b1yA6QbeOv&;kO7-bqdH!%8y85{4zL zv|oU6Iz!ZR2g#XG1cHZJ4>E@#p`b7e=-T0?!-o%(p7KOYOiYb8yot;x>UUn>FNo|f zw_g+9RoUwpkFeZn?-*6IMoGm(_KmVe1PWRy>2Jwu-i=m*2wk83AZgW1azjrhV-A#H zTsR%Hu(OE#e1Mjyo^;Wgrb0xdB2FRKvPu+V9uD0k0A^!XRU+5EciIc9c{zl<+!oqfX5=1b)adl{3+%b; z>Vs#@m?6CS;4;GTVw&PiUfqH9H3%>J^kkRuL}+@3{8EXBuj;}CZdCr4#0-nFHt{4( z5;p}(ulSH48+Ym(plD+lUi$UIAy3b{XqqA{ouaZ^I-wcIz!Vv1StC&*g1Q=5Xxg4@ z#t)cMNo2j*u3c|%d)49|BB>$HPaN&@K@Bd$_@h8v1CT@U=<@qBeXw4Q%9*q|&^JqC z>!SZVjZfKTi2QgZlN;mwiC%hK;Cu3EgEua=K<%@nc2svd=0hH43_ zu)OADJ5X$eJ$SGMvIr3dFRFTw|5bg!>4{7cP4=lJnVmBi13U@CAJH_?4ClRj1K@PA zK`bK-LP>gQ5g40do?2Y22ov>bTvvhviU~shPnsz7VRJJc{0!i`>#=L7O^W{HxC#II z8D`m;Se}Fx!?tu9lncomVcM;MBmM-Ck#y)^F<)(VoHsn>`cOsM4^MQclInAl`Md30pt76bTjJ9KCR?)y)5VyZaR2UGb@t=fQ(@=zqcy zQGmg{GiR@`s77@HIjteYiv-{Ui-tVU^t@53jKe$!GVnlWau?7ro$=Zr-(YTor3a#! z0Mrmz`b#>~5|E6r7te%N6%6^3@7-3nAanH7=vvt+1i{v%NccF9jmA%H?{ta`8s-cr1`WLn!U_oiH z`o4Wju2~xlCxMbWr?q`E-)8dl(b??dqe31#oUS3>Mp$!X7eZXpBjD6kjjEzhl;ZRk zFM!=nTUVF%WmHoix~28_bEwLuRpNZ?yHxQ2x{RI=A3|_l_JGE~b$tq#=!@=dk{3~+ zynS^=Vat{&>-Tnl9G!D35e-VXF~~_b&~pnGERev>kLoAW{Kg9S6h0%$=Yx@)498zX z(srNLH?yHlqxDP04j|T6fQD52;L<#G_?Y9@xLw zeqyrQUwpY_^~auRzz6ygV^_WrLr>owST^J)qG$}>LkCAmP0Wi;&w`G_9z=u5Lc&1Y zDpIK6AYF3v_9jV%{L!&b>+~heaJ)k`&WdMr2MCt?_!m34kf=SNMS>O{4!r|j+l^ed z*B-=Vf;xQP0{32BVl5$+FDNYyf}jWMEEvn@H3}WJ1KajK#fgSn3%gGjHwG2=aNvLn zkpxe_b?YCd5dh2U-rhiTPy_mw`$AJwQ}q}KJz9Z*2QD7ISf+HV;cOx@bcJQ*Y4Q{U zWpZ9A;6C8S|BltU^J|=d@;(_C2#Q3`hYv61JD+zoX6j|I{P=8B}ig2a~7X6iUsG z&@`HP_SMhJEH6JAeo%E)Li49Iel_Rf*nw$Zy2|Gt>QA8OhwTUO#|ml&w33i*RbvM! zoZs@(pmRsaf_Zm`Z@#M>oXAuEn&`;IP?=2U?^1qO8KZ4`3pN3NxS1FX7*5Xse^}GM zT>5s~uA}~yP8F0%Y5tr)5`h&pc$} z*KDp2Q&VTUg;JM1g4W*#kFjC~ zv$A>e#U%VLVA5q?A7(LVFbU)cw`%%8VHW^?V))~=L7ZT@@423lW`o!7`BG8}y8nRU zQqsFU$}JW!06z=i?m5zIj$fsHin!)~$hrG(d|eqR?+wqBV2%Do^&+!GuLKxq=~X2; zzo7~ez>jb}kIH3BvI-vnI|iL-P(>$nD&LACNXJNR3V%`XYarpzEegBGcuJhNB)0t6!r2*Ot3Q<8&#(btl zxdPJVYJ1T)YoW|c?TzP)oAv*e@crw(FHU}lcR}Go_n;S$gE|2ypccSUbgJ@Y&UiI^ z!om#$w~f~R600w~zgX%LbHmCQUG@Iqw6FXTwvX-j9|c6GSG*O73Y7 zcv+aF&YlBE0hRKX%2k1xLk+gh+d>+g>F3w0Vi!m)HB%qqk)Zv+|HoiXzu`%sIlk>2 z_iMBGqJ>CBA|iwRVc077hbzZY*%WmDHdMaO(Z&(8X9 z(og*8|Jq4Xp7p;~6fr^}5=&eH4<#xz0GrM*#7#;c;GDF(___aNW1#0?%P_(x2r9$= z(3>{d`{2=SLD<~!BqaZ;2L3#W7)Rb{k(ggc#Lt=X&_2qj{cj2qqvlU{7U5vI{0|BR z2dToLsXBM(FW4dsg@+k@ExxNWSIS}IN=b|8>fu1YU@7zV|MF1(S%!Rk=U17)kb3Ek zq5BtE#X2nT)0wuyl6=wQ6dmv{E%~>~RrnuHXKwi;CZ|1az@#9u!m{Gz6u0O}w9uCj zR!6lj%*mu>K|8!=BqGE5&s%FF-9@@J8y!cYe|*mL-0uJT68i7VFP?oI|3J<1#upaa zx);_W>FDJwFxL1Tv)7_ecD1AZX{ZKzUN5X#b!&>F~r1VZir zo>=}ZZ!y1$8{SjHgTKG;%)UpfWLwV9XJ@96!`?rCRUxUW!t{FfT#6aW<)R6l@53FTZ!c1?>3 zU+Ik-vc=oXBnvsQ6Qa+@eE5la!#4ciKFs|zpMSriu--3utYg!0E9$K;ZMl^kqq<~0GFjl!Mnv88oTYsfvDl&rtx3a%R9v*57^Xl30CLX$)DVOV6bFY1Ex zH~o55l*ds}F#ZJ}`Xp|A1`Pe)HiX~+H{zW=J9vZ8@_>V@Yi=FG%Q@S&pdNoO^=dn( zZ!&6v|9L$9Yb}{}@-XK^T1mknziHHBK7MsScw~nXk zTZ63vZeMfRr2u#8XwL$>-TX~4Ue@^)-r57PKWFso%mv9m!!l5#hK-Gl{r4ay9bQAX zwMM*VY|(bwI)(zF_Jw=vGW zxe_B^kkf&zo7fkJ;mij$BQsmr+1`Gdlatf?!NFC}<&`5#f9B6xH{H>FseiVy`)CRD5}YNag|Flgbi$8Aa=7F1gWF!O z=s)mY(idQCp*M9VpeuH|WJbirdCDA)ORWoq8ENV1j~kDyI~}Y2?v;H^dAaI?hYyMM zDR0NHueS=rdQ$`TU0M10x^O9=e}DTdJtrp&k6ea(1`a<0TN1wsC!JJV!MAR@;d-EqzM{^^r{R+gj8@WN<8gj%4Gv?zPYQ!QikmVcef$#s%nzh(|{ zygqwy;tIaFu2i%HG*ToA5Jh7dzYI6ehTWVTHz)v)JpP7wO0=eHBULMv;V-nh>aB zbrM4$DanK}oJ(Y7gF`|%Dh`dz0M3FfYXvZ%WlL}(NG1aR8J{4*dV^2}r#=nnIu0%F zK~v!0(jVB;-&D1TcRKj~i*oC?fe_2i&hDs`iayPzx3uB{jn7yiw{xN$w9`Hf-OEe3 zqI5AlkCK@f{)L6|`Ic2(L(d;Pc4KdC3nmSzg(OM1<#x17u(@I&S-|L1j~C z>6G{G&P7|3ryn}>W8cg5 zZI-}s-ykM~C|Uf}&K}01MT>w`R70#K2kY33)dgp@B&sQe%*fdIHPTC+hr5{`-STV4 z#2F4$2{Zoi2B<2`4+Ue(m4sdmT-$n#g$|a}${J!C@^sd$Td70K5~rvY%~*j&q97n# ze1L1_%zEH9(Q$DLf9x_eU;J63qQaj;Ob77Rx{ z>Zvg?>jS(`@(z#P&^S}yONm0LA|AE32Vb}__v_cM2H>Ota3f4fN>g(#$`P2BdTdLY z9zN8e$RW$hh6|7Jhtt#Nb4`zDpJu*mSLs(i&BvfNsD{FlqQVM&J*XU0H9vB^=G~i zyLd6hS46bc^kNd9;m(~XhyH-Nh=QyJg37UbcXxbus|oU9BLIcZ2XG5rh~sd#w;{+0YQ{Xd z^-zIOUfw)|lB8Ob=jcpvAFU zkmdpFns(1x9?JMms}q1BJF1SXLf90gsCYrbq;&9RErvH^Jycyk6v$h$gAW6^)Dg|@m!Gm{!|?r-cHgsPPngE{?C7m-wYd7*iPwUyOhtZ$3H zev->-v{K|QXOLz6VQI>lk2tyr=;d1B<>5i0T-T$t7W_*K09gC}hh;{)cSq3LeRVt4 z`_XR*arU~pUXy#i^h3h}g{fKI=g*xZEt0UZ^SKvJN=iz2u)SUi@xKwbnpRpG{}7c! z80n^NPpzBI zdctpH{ZwAPVf40L4PdZ4zk*wf0JFGunGhvpR0HRF9(v@N`mSt^%L_}c+DPi(o%|78 z{@tJ}wAPy3aeMt;!SiE;nwUi}4x>8(WiSB)sI6sR@2hN}lO_-45xc#8KYRa8zbVbq z1Kpum#SGHa$RXBw|Bpp;V49zayYpe!08*JkFeXb3a-=93SD;{F2yYLteli(@_&2%+3>hf&c-N`1@82PX^7)E}*Dt9?EHw@U z4<0UdwMSwAv6{uMSJPLc5aF8pc67Ys=AmnMmN5kd1^Ij|?%JOKj!}<%exkPz8);4Ix*nRV*Wn^qdH!YZjJAOU@LC`WDg9C^^ z_@|;o;fj0aB9&J?ERtT+xyM3B>C3q^=gQ7hkg{Jg8Sc_3cVO4Jr;g| zUO}4scidAHwImTh=p{tAJ2MzO#n%!z@YCITTC7H2tSDHrilP3a@=)((a z*RoOZbt5|)1`tawTzG2tB-Q{WkD?BaDZT~yaiPDJV_gpjpS64T+#a8)8v-V9Ynm&J zZ_t0mv40r&@BtM;G~4)>@uQTd07u57qxK78na-6Y!z!-4GXlX<;Smw?h>j+GFnT21 ztNxLZ+hj%-N@hs9eCRJHJ=UK#tpQ2Zd)In5zJLEd4a>|!gy=Sm{H;OVuusN zCuDVFSfP9umbYd_1x3-My(kGusE56U1~3x(L_SDM9Obl(7tDH15oCux&Y|MHv2hb6 zW|D9Oyz-1`$O(B~%5!___v+`<^c7A+kV}eh()3XIV`9R-e*Joc@7#fo0ZJ$-lW8u zL30s)hegt(zE~)Xq^;k_P{~DeT|r_x2bt=iyrEBtAagl+`2f_56wih;+RV|-V#lBq zHXgBEDEA=c3CG3d^`VUo7#0FhSJE(z5{tt>$K-QnQ?X1o4^$uYO6J3S1Zh25tpKDy zlGvi%@`%1;-5fJEHa2o6Lp2qR9Kx=yU1&9{5ydK7^>r4MA~WGgyWHgDvBhOA7BD&P zP%i!ac@$^h*P%}Sqnh(b;)=-kC%d-oXtsgOk5qpQe@F*r%vI0y`i1hFT%s5UsqteD zoMwIR_(HUa*21J|5{}?2;5JQzoC~+<)o{J8woSwC>T@I6dO^a*Y3$jtBM_zARs%Ow zbtthq)Mw7qyoV)2@Y(ld9Pbdws&<~(y?eJ3mV_2QCz?GKrrYTJHYLa_DcJ?w zYO~ridv?M*v5tTZBL2_Me)-~oA-@vv!XdhzdSUdYgd-dsbK7!WK_~A>?6W2PPd|g< zFLL~#F^o~HClQCm%z%fx+lo=(oYDhPel-je^bIhcgbj}MB}tRB%pv z5PkO9U1k>wY^3z*@sSgWPQfXEa$ z92WyRjoH|q@(AJnG=4Ph`TqSkTi^yHd3duYTm|w;zafu77D891O>4%Pi^JdNxg5LJ zuw(gdafBxt3-=^JDS{uyp0H}=%9Eh=7azH{@=<$T-4)|$Y>tYVQjc;0QPy6udu}J# zn!%lbDH3&9*TDIBum=6RQ?YjUV)6y7f4c&IWC4Dm>}ANEsG!Ck!;33$>WA<>wv>mZ z8i?1&b?z^tG<%x3V-G?y=0b=~sPhbqlSKZom}`nB?wVC<|qe0^8V?d?VV z!#HMr#y&}c#J}ohso!YV`Dz0llNuTt7Ldmh-3kDKcKFA=5LjmyXlysxp_vMyx!A3V z0hwk`kc9TP7cPg0;Ex!On0v|t);y|$Qz#g_3EJ`502`@hR##Uidrfmys@?+R+wsz( z$2Y+e1TJ@{qeB=S4q}k1=^NeZ&pzJ1KmU6!aQ%aGN56bAFgI`NS_Ak0!s~vkf%e}+ z7%c&?_yFlBPU-KVXn#F4l>1Dr;r8E}TjSx+&HovO>=K^XTdag)aoL_*bFg}b%CX8( zu@=)Sw&NFvCbUhI3EIz~ytm#j#FmBAF7~>$lT80jA^m)2Kar(z`bNp4w z&7l=}aH!*AfoDl+WY)sCgajK1rf{8Jdg0V&bsy@&z4uP@QS?nClfg=j$Swm5i*N|Y zB$qA?8Lc!}0_7DOE?!6o-t-`iC!egs_6`bcPiq@Dzpy zHs=IlfdTT~#g#hz4S`{ts6CUvpP?oS_#(2spwg|yjn!%O=>X1Rv?)Q@BgOsuot!8m z7|0A61gNUT#r*u-U6aiyn5ch&Cb+ykqwfnABc%Y~747=?yX5loV@9p}#Mf_%`E$CV zKe_7aGNrzFR!9`goO0ExkP3s&nJ545y?ZBPs!YGPAOt|2)6Iop%$m3Z7jY6A)Zn)9 z62qWWeAqq6&9e|UsyG7`A<^g%Ue`l^DVUFhD;6MZIsgs&ebFIefo5E}g5|(Zme~T_ zvqDa*jBns5)7ZcHx>!?u9GQ1NeR6p61+tpe~ST9aJh$GpW*i(@TjV1CL-d_9B7ga}QQ+6O`-@N$J zHn9%h0g31VWIBNw@Ph7ShU1ZVZK)cx!|o8{l^@;%!7(yUNkR=XKV=#iO%;;( zh1(2cU1?~=ojdFB$HWmD=-8&YiG!6HSzf2TzhVRz7n&X(;N|!f7Yhn_k@HD@4~7KR zC_>lzz0`jp^b&m<1tdS?vjeaJe9JTNJg0!jn&awCqDSFHL&0f{x5l$?OKDNj_VEcw zE()w_m~o*qXEx=&gF}Hb3;_B;mQ3dnjs<0xE>?7q%?@K-Dy9ROxw-d{INx!Q_%?Wd zs{t&aio;c3168<$P?$S*u)yrutao!gy%}jk0EHv{oMnRQ!F}1r+)oVaqD3mQKzI%B<12NXlQ7tMzt!5 zZWx=NGQmNHzKf0N(!3IHgyN14d#s@$Rlr~nqoBi{4fcZkD%w(fxP(4K_Sp+1AZOry zIyH+BSRwTDIb^yZEz&SJ36Gb|8x->st>=bDksbu+U~tB<52)19rl@%97w!zl`}RC> zqW8@kWPdfQolJ<0MIeDN00n1N$F%&F5}^KS=zF=l%M-B*pa+N#PC1$GR4^aa@H`yV zOpWPmZ)nII-+H3UCwWS55Eb8R)>Lc>Yk1(~l$0=1oCCW5=-61+5bYCKD0hG!AbltC z#o=A)$)={rkml-1#*~el2{1&^spJ0T?MC1Ts6{iycT(Af!cjI#Z-Fqn7RojT4lcEH zDF;1T$ttOBhB|5G z5Q7yttz>XxWb*5yT}$qgZxH&{f_eaq^!3mfhog_6HHx$=z%DyMq<}Jf`z#u@4VGtt zlRdCuSb)gp`{c=!9$d)C$3C%hSsi3WB&mX`{<_YIp{H314u>PV&JNcV*-e4*1I{0(c^ur_C*jtI==iRgNleSt8#h*=^v6p(iHbT} zW3jlEk)iScj+~>&$Q!cU1_U64=lxkUN5Ddg0v2IH0Sol+=aQ08iy&2$3&EB{9h8EL zoWh;MLlxf~(>0uMmW)9c+S$AJZcxp`hdh+c10x4e00TqA05V9{oM1zEe8HWyj}Xlj ziLN(EV=f3MgqDUUCW=A?L6&X!Urc4hZfq4HwOg+##Pz}!&eioL()SaKMLA^{o z8OMR$uv|3Vib+Ul&o~x4ffK0H*B#sxZmvEBF06c#s3XOOpFyK1DAIRle>&h~7RKro zY59Sh(N86nY@=3`I!`e%F5JtI(@-22pdt$H8#{VymzmE1T`FduuHpDY4OVksdVx?_ zA%v22!84%lj>NG^p?8cD&-^E^M@Cvodr=HwIl5`)XziZ%hHR)fDM>7kqvkUvk*<8> z?6qN`xf_H7v$%la~3w!HqCME6=IVZN%tpG z3C4I@&Zx$ZW5f=C1(_EkK?724Lvn4+XOR|Ek3aZU;W4xyOwbUjvNAJKCxZs>l(t|Bf4#G?>dJx`uJ1AD-W7kLM^HDB6uG2B6ejU%TfTs7Xs=atVs8Fh~%rm!5s~81Mo9i>SGA-QXO?T zJooxS@E{m#!_L5YOwJsS6k8i>YiKFwrCqtgPR>EBwU{E)S?Z66-EsW6d3l`#nT8Ra zH5abs=Eibyp27GToTUC0+?&y0<65K%CZaFSU|lS3XouHI9(R`g6DIIrxI-%cg3rj&wXO{n`~xg; za>AGOanTLCB_0sc3o&e+ox_1uTBGYt_NAFXei+~f{DuY)Ssov^6XH#eIG9R?>r5Hh z%Qzneo-Hj2kyGy)h1&YBs=e zgwCpf$qZd+=UaxA{_|phm1dt@uUS@+^#ZbzW_5ry)OJzqHshGS!6djK&os9!7Z*~37S zeD7-Nap`u+D@$!xt6~g|<%%@pidU3N4V;j{KohuUUWlv}IOM^Xdfz3d3 z3>8x!oooBjkZp6uTYBPk@H~lGAx~azt-s46;Tvyr;`FSq7fN&Atyn)(T7H_jLs@&mQXJj`0_Jj{QZqV3xwkimfWCg7Ttv3IP@K0?u zQnBYT@dkf)(d_phK*oMB$a`-=vww2$_KUez2EeNt_E=JwG4W$064J7w`XZ5}#KCh< zXm?;U=X|>XV5Yo}i<6Tc0>eAt4V*gH?@XM5{}fL1rlJ^jj7e@T-kx}2gG+SxHBf3Y z52Eh&k9PJG)(w<#*Q>}G>EfmJcvR#D#V3W+kQ+Iqasc|FPF(4D3>TVI^mG*807ghR zCX=&waC}wZG{K2HX?gi*{T58Ne63C=(arYdvafqt57l&!>AOs|*8K=wBE&ED z$3hSO8#EMU8Dr_U-f-PR1vYxdT1XJw5Yt5&eK;|PChcu)S&?x;NEpq%qb?D>AHZ5+jAaxekqNXbG&#mOiUWWg5yX3i zd|l#Rw++4on<~Jr3t5T{P@ZMghKcS*1GrFfj}mB!I&l8%pIi)h%_w$3b#l+{-FaiS zj_0!vhg|uQxxDj$g|YFeq9TRw9WP!~8vZ$Y?C=|gx~_-u|Kxh|G=XNUe7DpqHg0PB zI@?6VK9ET$)RT|9^iXHb&{2M*^n5hZ2icO~~7cLnd?e z2g84ij8uQkk^Dn|9yDaPq65W?`^gn;$nCg)6?BTCg3T>hAN2$!r}FafX%1aH4fxxCkeUEW-*N!lS28PvH}xFG#H9fv5rb5F0-X!lJDWshWR9wTT&! zw9LFbHiK2!M}GC}Svof|m||9uBcuOv8#)R=v-44Jg7Dw8`VF&piZaYcX6)S%-7Io7 z6-Tc{n93h}!0Llr@_RS^BW^=)_I_aC4)z2N_LxC#sf9eh+5CZCN)OFpdy>+Qgv^WR z_h4AcWwGC!BJ*MTxYq7PS0_?#+I4nxkR6V$e5ex87$q(gTR$lQP)^{o<>5Hq@ZXqAJ2MBRv=k zOpKU++nb`>ry{JE*M_e|u zznsAm;jq~=t_d3^UaUc<5fm}fGOW#laZ{@NSe1_=hw z!6gUbzde6mglnbCGMoe0`Z-FjfPAiw>TR~;NCJp}KI|k)cfilRn9KnJ{+(Bk0H`$} zCx8utLiiV3<7DA832^4VX4PJz;MSu> zkt^tV0QURqE!bWbo?W2_=m;VvmbCo&naCw=bQ!=A1QZ3$GLE=foWp_#qm;o)VTN1V zx6JHmv^xD~BPf-9bu1>@7U-PGy4(;S2-eUda1`5kG?%|%sEBU=v%?KXQL76G2v{N9 z2cjY2tLfK}+VgC+aZKq5N^=OyUbFs$;!643Nd(ex2Xss*%269o4g}DGbdPS}51RrFGH4<&U?o&H z{Ef{1V$!oQW2%!dc%bpRI&$zB;CH)+n5we}7Iu|waJhf5cLI1oO+{CmMPE_&K^cGZ z6`QB+jr(&cXLs$v0eD$K*wh621E;{p88a?#JVNx`_O=SS>O8;0zP?!&8z2sNJuuLC zqGIFvOcs90j9;W>?_Tw%LU-VY6aqUa!zN96A^v|>P}vcQdzJ`D;i3a;hm#bkB8z}y z1iyW2o9C?njm(bmiXpuL>%y{{t@`?%LC(SB6DgC(?(Zl`N!cCv+{4Yy!GlpCMQS<- zjZwpqf*(_}DT`V|Bc=FS!a1;fXoe*KSu#C*A18?dQ5`r}J>nA{ z>SpF`ReR{3PXb%e-o;|q*9`2l7&`Y?{c?c`bPIKDsHk{n&AKG#bP9Yj`^^Sge(2@|^tJ^*!AR=JJp7$7jNVtX_FmULy@J+#H`9#(kt zabgfN^RZ*cu>v&wGo?u2`XqGXdE-oeF6Dk&hqOBm@gVyZZU13uBpf z?(R}Y!>xo#WJuWH1SUy)9sN9!RFqu=c?Cs#;B0IK?tE&{2}ILwlBsbuVEiaIYOyPB zn$VpPivex~NGOh9f2uLf!r|UrH8s9TPwYp026i z<+t*eC10QAoHcU`gX5tOnl~{q@t0DlML-2SVi>77T|iI}{9)pb<`3`R(;UT@FJF>+ z0-}h`OdT$4#;l@!2+K)MvxI0K2qnPT9{k_H0Fd<%Y_J4SM|z{TV==cM$QW8JgiVqJ z5@vC!9TH??u1F2aD5F6Z#xq8`+LaaPgppbG#A}cBl_!K@{ z9hN8?gTk_K)S%GlP{22E-qqc5S?Zy0K8~nCpO*qfX3-muk!r?ai$U;0p)fvZN}#Wx z!55hPb1d<-sV+2QG(VZo%+ ztQ+m%vIbMpPcmW;+AaQr#uU00TrdcgnVy#ab1Uc};_^~8AI1-YodSBKA`&=$^wzr{ zGU|z#I+O{PjF77qyp&4s5Y{3>cfZLeoC~#RErw+eKc4X#W0S^zxC|ysL$x&owV@+FXhrGY>sxV#$=l zM3t2E6PcB$KB3j+pkx;y5ZE*rD@5@Y&`6NX9S9cc0+ZuN{hP-4qe5-{^!7My~=-<$0BgRkDAEH>3dW8W#HKVw=#Fy!%UN;M&_Q4Hj)>EWBO@b}) zn#HpW4c(X)`yE+3Zc9T$Pq8P!y}>-}uhchQsp^+#A!Bjr~uaVFJkuj8&x62P+e;749 zJ!k8u*egt#D6Do?crAteu+LIaNvW1ZchHUFQ4;=)rcTsln>e~Q==^nY89r@vLkAIr zPdf)VDzP>U2GFv%tPB~hGKcVYnx;i&)4aUBkt2ClcloySEXL6dKR53R1Mz{7WL2iy zp=!ZE)_5qM4tYW7Fj>%CK#=v1?pQJK*JR3-Gn66SeY4>3MrU1V7YFs=pZ z5(*`iNu1$lAOmG5QVRL^kF2h2Xqy06M>%*XZnjptu3a0@W{2*W8`h$&1+u9vuKWQ5 z+uMeoKuMe2kJ37v{#;!TNGKyCBL)M;EzHlo&tc8N08w4;T!S)yzjnM2Z3)yy%H16d zz7La2E@zJV!LC3UJBr2EG*As^3=Eo`gR??T@;FmMCjr^Z0(Uyajt-zLN|=0*orBef zq7zRlx6SuS=bFwUbLG=F3$Y(|(0(W}yigidOLA?%z+r(L*#8nDPobU;2$uTVfC4DkG^A z1*4JR1^o-dAG+7Qki{e~t7&9kE|HiP>aSe&y~_!*>}pixj3?J^kmxuI9xsnk)xK*c(TLwS1DSaSphHjYCIa}hfik2|X>;><>7{|z=@S1Ly9-D5tEHk?mXG+WL{By%wpctly_|W>wgq-t z-N4al?CetLukpEjUZ0xX^;TX9VLl77mY5h&@B~LhL^O`W`PlJo-S-!cz3PqoQXDhq z52F?neW7~{rP`2M8Ll0Q_oX=i3P3e;W0#lED7ool?ZAF=hs9w8h zU!@wTtj@0pVLgpV3#Bp~8r)51h0$q1pm15Fd0^(2%cq?mw6aX^*Zk-{yvf=>X7|^ct5K9M9YO0DOTNTum$j=0|pQ=_Vw{Ln&DHvRx9x) zcmHP}h&BE3y^(0@j@gDjT#m*xX9eEM71caQ$Yh?tEo`*}~+hpL~oi%v#sAoMTe_T)rpFDlqjwnb6Q9%fz}}%zvyBlF|zoFD?!@LqRURIso9f z^W}`rjIQ}m6)B73PVgX~4Jt$2Ie=-MyINYd*=aeMnTa4$sl!HRglQYsc@?|W%!n2( zHLRbFa^%W1ZsBU*hfklz>BDljyYDc~yu(cSsb3?0M4>Q-Q)TR6^iP7A@wQmh1l73dw2DdC$Vg*9H-V{ zv#gQs#~dVuC?}40E5Kep=!oS!-s%a9iBXU=3?_E~O;SD*$8QXuo<>#%s*Iqqpm;W117HwH zrUZS`EG%_wU{k?=1h3FPD`Qm!Y))7q`4>+n(*XS!+<-{l3LM=ngL)bjAPr%H!pw%W zm1XYy{uQ?xwXb8ei@Vx`DNv#Nm&0kH`h(_iysrEWeH8ha=%ay&h|90XCd03=i@ePA zN^3B7ln1^}K!`ILPo8p!a$bslgTtlT1h=t-gw}^ji1uEyUYEw8%?DS2Y6>=^?oj=4 zQ-Ak18>M%e&@780ueloMIzzMVowA2xMC3DHb^QZb%$VEWX*+7M<0y7ug$0IK_ zexeDW8%Pe}_Z2Ri7eMB82OmP-^(AE(Q>Y<|wL0{4!SEp+?9T6WhI!ZgP6D{;<8)$J0H?oPDjYNW|8-dn68|#p1;s_Wf70dFxt^d{9cw9*VHw3l(}pCnD(a9l)cY# z%{B%4F&z-kzRv7#_v$eop;FmAu+M+SVqi7eAd_Io7cJ1ixp-NU0-SOA=>T2$ZMTa4 zM}F;p8VrMucQ`xQDrRk5eNx&JQG`&$CTN&^OP?w}0MX?=*y!k*qIXQ*BAmAR=i~zPQTy() zTRepD_ks`TJQKg6;YQkaV$oF*YU`h_~ukeq=A~xy!`G>t}@4V(W^;`e91^Arv z`XjLC2?`2s>eql>axOvxFB(k8KbTRy$YqBhR6p?xFGFhsg+fl7FX){AMc8}5bN#RV z;~x-39&+9p;xMesl)CJzcl$K*|dwGG$sdF{waTU3vi;C{Y zS~y+;y00l;dnL|m6wz#W6G$hrL{gJuxrkAk2?t+od>@C z)AGBZ18LBzAYEZ{;X6y=7lUk~F*%u0Ra;qEfVP$#gUKEO{)))zQwGPL zJ^^)uM{)+{gNwB%P$qH@mL5{qy|5=+i?FOk$3CvKX-+4@D2hN$oFfv;rRdprcl#-N66# zco(7rrD7r#-i(t!a=IHUQ?ml!Ggo*jx~cV(<4goV8V)KE5a z9@wK-2fNLkPILMAN=vlVh>4BQl#L<~F=G-&u8IM-x8?V)*H}Z!nB*LAvfUoOXR^^24E*_xSnC zSbg5P&!o(Smi$3631EQ=y||^Z+wv4(H7+>rf*XX6@K}lWum$sR%j7dynHFzAj=NqW z@E#AxYpOOc^fqfuR=z9XH>e4MJN(@MH_by0QIFN1^Z_H?nc@IS8YmdG&CSd4IFK2p zj%R=7a9_*wJI!w&8?Lr%?Vom3S}T5+mz+hHTwLcy{HaMAnWbxx^%gWtzvIqv^iXn0 zl~ZYHsWE?MTG|cgqH|fB((e|usHv%mu*u57ME-oi57qgOW`Y;eOi3v`!irn@0@tBP z#{U|W*S>xC?m-8>U365fY3A{%#7Amh@2C;%I)4BTq!?;4v`^l_YYQlq5|}%E(tbm| z*huZM`E$&D3R9Q7ob97Zs!50s%bZLq&rsme8fV-~%fDR*B!s-fQn{bVK{ST}`!CeW zh>LysE(sDJ$T}#{k$TD%A|g|?gT@Bo7~hsqhY}I|5Y*P?Njo1X?>mr#qK`~8@Ne9= zJX~ZwvS(#0l2TF8F~yt-3qr($M0_*!GlYlKG9AJhl(;yp=JBJ0!p%RGA!-CxM50Jg zcJrsWz*6}q38fcM zHdY4FfnePJ=F=gdgdtNOlZplo$16ldZ`|%dqDz91Gy|U2;qMgcQ2|)BHG@#?hQ*|E zI283JZZ^*VX0%n7BX8#WZP}Z1dSL&60O~SqMSH1to1wEY!(tHKX^*7d+FRb>%%wf^0^rGkRW!xNx}^@5kT!zvfcR+IB7+{Q4xn34aZO(9^Vy@ciB z!ns==_xi7?d==tKX1(B^>`XCZ0)5GwjL6`LLR-+})W@kfiuih@wB)IJrJF?QYdb*DHhgD5L2#0vmvmrxU{XIv9hc!d8X?_eiH?#4K zGmama{w^EKLv%}36PkU5zl$*}HMWwo{G??%8EH?93pTO*0Ye;C`>q=|-_3)?3 z+x4cuzkeXG-%#B$Oy{-E;ji!vK+9}8Jb};?ng-BX!H=#9P7e=ffVQcIWDF1=MVu8N zx(xYIT2*DKcPGs4gvl~l*+)-9?oN5%BZP$%o-Q3goet>7#ekaA6xJ4xJcLk~+=i+q z766%ZTpUBLK(zApx3_h4#MWf+GswEPBirxFmD&yN1K{XE0;H>V*qzgC>TtsOGLSTp30fID2UO>(4i0HDQs?f0AVh)DxbdHY4?>EAD7*#h z#_aVpA_c}sqHe|wp&73cNqe!rdL&MUh~mIyU<^cpba-D!l0*{V){2YkT*u|H_oELT zsk-Z9s3uya!NPLRU{49Dq%bWYgDT)2;0#x8IBty-3=>s%d}GphcIyn+K3j>M+$2*}{4yFjb0AeZM39zsRpbL_4w}+mY ziJ%x|Xo7IHB-OlK24N6BLgFvazzBS;Q(cMaDb|&Ob0OYEcc%i=JsjG-ucXVHaaVvm z5G3Mo0`hB6xYE8H67fUN)qaiJx>MWmwIM;X^<}wR1-m(lhKFWk@|~agCQI{FAkQH2 zGZFNTxB@L9jym|O1KgMGP&uR_n3>C3S1?S^_Dv;UXG}l6Bfaqm&2Y*xZVYAMU*z~s!C0>sl+w<< z-Nfv~9X$u=Kry6)5@;1bLySaTZ49!K0nI~RE8xpshwRvpGjZ#yoK!%viawhJbvOt> zB?Dt1v7obJU`fZs&Np_{R%SKop1gj~Z>7n4{Dvw4I8h08R7t$?dPNVm?$%E}7{ z;WU;d&v67Vx}kj7huMnm`K#Eewz6+!Jpk>sqGZJws|esT&3@4n;%1o1#lnPFQpLNz z51PFv)$2;D+Y~U=sA|GDk;dO<1wfrW()|Qx?{>H9_s7Y5#@=kn5*!mC%gW045NS@lSx`tVQdz?LO_o5e(f6 z`8AW)g3`o+By29v0@rQbiLX4EK1KIn+QSTpU9O%Vxwr^y$CF$fxuRuayk~+4b!o7K z28=uzeg~ctzUPmgrX^@H>?}_{+7e1H)UOIRBRKluomJweK z^#M_wXdU_Y@Gn|K`??TD40h`&L6qdfD0UFYY)0iss^z5{O&g%HaR^y^=>1$&A@Plz ziLor_I#zNUi#b|pXP4u7a^ITGM@HQKhs4Bq|kC|$Ov?)GN zA7mC=0{+qbX?^%msMF_#lq*1nF90R{gM#i$>s|r0cAz}e7eLx(Ar?UCH|#b7#4f@S zIVojBaeWF_577K1pKPR<5cE=2>}nW;R(9NS1`19Y2cUG~I9wrnF9*Y3EJLHDx1+ok5iKM(4r3xDPr)y1{IRKCGGUIr4iWc_t;Ym7S%cO4@2BPOrP= zTXT{%p@VbB3=T(+N}RR}u!_X#Eh4D@e*x^)&U0~&3OaK8M!;^-=-DaJl*NTyWq5no zX`gSpc1k}H^8*&LHw96e7nmkIs{(n&Y{0vr^ebQNJEPMfc&9};B&lJvu(bS$Wy7iw zL$eC7LXF#erveoC2to^40s-A2&#8lT`|cpksz{ z6hD3dvu9aZd*syc^@eh?*F0z*QJGoUUTS+r93G8_h?Y+tP2{c5$(c z!Z)V~rc0}2c?@NHSHz;Wr$@qfN?-k$)15u5y>^^g@@sfF5~nAfkDxhFp6jixted#* za(jrjH3&0b^qV#7dLLZ@c*4|d0Fk;@n}&Vg`AYoyO9^t1xV`4JS@AX~SqWvEG*JZp z0_|%>=8`!4`29#=+$9uFMPVJ;HdZwOJyrJTW(J^e?ML=w*9jM#CMxlIq73VIsmsW@ z1SekSw(~5T@)gJXW{m=T6t{P#`i=GkSUVm3z7n{$Q1pwP%v3VQpQDwA{?iOUo=Z)~ zHe=`UTnK^qk7W0G*0$dh9fa#spxoyvZXkyquSzin0bjQ&;Luc+E%UUMYi_g`V=jm_Q0wGEOFJ)C((p9 zw%@~bVx;LyW6l%9-2AyVr(n0BF!X7T4a-NID*K_wKW)wnnqQ-56c7QLs!}`{L^1)x z39yhlMF|(Wxu(|z*nidKje7vmYDSaAxMAaWV7T?m7jIO|a{+frZDBSG|6U&RS!8Xf z#J(vY7SR|EC8@!%ytMQjAO>>%bSIK#2-nAtZrA+plSLxcXm}3ax4 zj_!C>pR!MdLX1%E)I3RW9c^6_v-imw2xK^P=K2Q*$JJyk(KcyCr3C;%E#RPE&AwJs z!PNbo{;orR3d%M5Q)ouF#@7;qv-zHw==sC+5u3pSWg5{Z7KocXLwcRglM{#V8YtQv z<%$|`m!;QV-ZdG*SkDbdF|u9WH{8~?M6US-l!fMa=x;Oag<*i`4G5zELoG^=!efI@ zefdDPIJ>fk$nY?{KyjeqAY#T)m;4hj3JX8{A&X*GrhVL$lQAJkPMC+L4ZE! zB+e;E0I-`O=kSI6-bf+Lx=P1?xlXHTeY9A3XV)m$gl_?Nf%X?U_N5X zS_}doeJV<+0qcl;`t+wbZWClvH7ybQGYx}-Ux0zg^Myv2kQN}##kx9%8`V8o`JA6O zC!S)_xNsOzSTiVw)Vo6R2fh1c8ggPtMcF&P@0Xj`B<@~-nfE->>EY&T#hjXIS6p^P z7zcbtvT`gl%hmCzBYjIIez7U5sPrL3kkIoC`}Uc4?%b)kw~dcVf0#?IlJ>;@XvG{# z2}U`@Lxa89=8n_g3{=D!tU^_`9|~twW!p1<&g)nUA>G#T_7!lH!ri$Tiv*_vrWPtdU4Z9%(}zP_V7dAsEbXA!e~xB^B(zv{ z9ht>gS^RPiN|fDz&92K=9gO1+{rNKA?wJe}s>v0{iAeh@OmPX`4|;-MxWq}8*ZFEK z#wWxkM!}$hGM%7N$ip0Z8u`tOE=y+ZLC3q8PzKrzn1;X@t`KHLP}e@iV*w*#PsBF~ zPp~2t#($Y#Ml2XP7vM&s;7{WH;nYW2w+a)I=##s*8h6uCf{vZ3$$5~U96)fEKYjUf z3-7lwo_nv%Z@R}Ot z*uLZm4+ba1?pNR)1C=>}~yt~)a2i|XDI7`Xa&%jg}b=zs)F2mnUF*@acx zF%*;n7b9;34Gs<#<9}-Y`0*TI>W)3Qy(TWf26KAi!&JB#5*$hvWAu{H;$KC#2$&F{ z1m#ic4rv&-Z${e34K@V`95LA`-9-dQ*uIw%6il`F>+E!2@qL~cYPuTv z$Q8C@Xx%gwq139{@u}{_Tj!@Uqt4VlEi&HzdFE~J7jZU?K?XusFfmt-&{m4j4hO1` zxno8}XAg|Y6knfs`l4djfh)l;(lCJ`4l%~8W+)*)&-8jB*tXU9!u?C>o4DUjzi4`( zONRAYX&WNus=VFe!h*}*a=QS$@q^tQHl84^XI!WU?0Vxx5?1u_%GimI4cj$r7imyw& z-P?|64KYymBV?&Vqd&8$s-KD42Zt|Lt5=-DxmdL#F&Iz-H00Pym&q~O(=*uehlY7a zDI2!WmbT%zY^ADL<;&x7YXmO7@OJdLziLAPoaRNupFfz9(PSxwfBT_-+1K}LYDC0! z+Wcjj{1~F*OCy6@`!o~<2QLk*`0-PQ-9}l{}|TU3~yWl;TQje#9}Nxm-!lQ|9NxnrhA+{EP(GL zwQLQ-F$4wc^Q90!GNW+8ZGGtmK&q476s{vPbn2|_AJS~D|47fva}6j~*SGiKo!I4v zO&VKp1c(vPz~uCTWH5WcilU1I4p!*g!S1e&tl>An&#t=1yR_ofJ}z$m=XwUikFVU{ zJBC+=D+s!FKh#MK23YFRMfp&8(~OxxzTw0f#Rbf)WW0t8ZK*6fK8N(zueO@=R{#DY z8t=ApAp^)d2szfH1^DXww_&)wCA23Pazu&P2uB5Lw z6==(T94O>IfxDM#8R`N66U3P2DUk6MsOx~{jEBom6?|-Kv&;?m5e;Q$SN4r>xrS5= zTxUXntnd|SL=mds94BoGga;6w$QbhLDmf~HwYF`D13VbLbFr1P>J z3X`YJj$WJf3s&G>c${06Uke6$Q8}FvWQGM+`tLYla&fJ#bM1 zD5XNC{~*in?^0NVke}x_geFAzn9!AT`*)=L^~#KSa^Kz!E-WjXNi%#*@=^}fuer1C z*c9BUO7IXT(`H;Zgze$LRtDeeHUDZIP669dyY(2ilMzNDYaUKLxqke=Em0$$9v-)n zpC&Hb|C|zoRuyx*VZEL>ub zF)?82#65Q|iW<0OvEeo9P34vnB79p_bvX9_*gf3b#_Zf~+TQ})FigLQ!;^4W2q7Un ztg3HLN9$DeB^M5F)|HWJvKlyrEtX*qc&H{K(ni&C--+<=5O9(_n`r)w-rkQYgpdlc zECFpAj{)MJ0-Q4sC^***9BhngqjlWF&UCK_5~Z&o;J*-$AySi@<=%Z&i$~QVoB9+q z@PjQh57Hh}eSD7EC;Z=hWrl#E)3Rn9K!4Ws5{1h+aYKecl@jyq#+hyk#fjlDi`q-` zo*;B-Mrmt;b|3rVtwG!y7wz3y1Ban?JUGTgTp7O)qnUh2keT;?u7QT27*CX5&zns1;e!}UfC znH)|R5KgcK0qHuS=exabcKvf$>Ueu6>^-J%Ws3qf;3k8P+sW;5CUmjk`bPD^a0A|s zQLc?}u8VbK;t&s)cWL&vd6S zN|O1{o9!Xx&SwqWW}M|PL`qqz<-J&zQTSDm*CK)UTem(#J%?xF@ELK~8_~IthJchY zuU{u#vs+$xGZ#DCcT`Ib=O zqSctnpaKzX0BMX-ox)_9k-5j@IA=}fdc15y@Ad!u=XmDt)o_4P$49}4Bd-Y*{L|S_ zDE0Wg<_DkdRsat5%=iq9Tm|rI>1%A>oR9O$fp>JeyBo&sn}tS6(hqRw-i(lv{EHa+ z+&$NJtXAU_dp^#0g;z6odIF-0#JY$2kBvb-ZuAy$S^)AT4HQih(2Y=AOP0Zml=O5j zQ20>3PuECZ!1%GBPK=n;Klr4jm9~4)X8dTZ>FIxeiyB)XspP%jGTb3-@1=|-u3?-R zouHWybQiwc;w10KZjY6UtG&j;gi&`Ddmg$Lb)1NCs~tp`<0t`gUFT(40-K*5q4IzVm}X+%VC6HH3A^Q+-sDEb6DPW6e3{^? zdy9sQ-m%}L!)~h=Ck{~W7i*|)h$(@=;=Z<$0Q#_4erfj{(c9sAeCoEq)V*l~BOZBc z@1)S2Kf((o*GgT>H{d;l$HZ*5TMY0`QBjd9XjBXI@zLkTuRJU=XVq$43&!jJte%Ue zulfe|yw<+Iogb_WHk1_@_ABG#QVcxGLW+IDPtI61uTtWFPBe}2w*OKO82I30O!iO6 zuF}-JSephChdE$U5?bs+v@cGLPYPlyLQCRsggw@}#pKWw0a)eW@(KI3yv#vQ(LsLOrCz8-mG#Hk-?i*2Sou(z``%2Sqgsq!Qock zdx=bwPZ#@6g^smM$ktGjy=Bl7KFC~p1CLpKuG%xm@*qkFECEE>N9Hv$xlp&LL9~Mz z1t$abG5+&;dXTrb=oNOQ{JuHDz3=T5ZMXTCwvnuk#Gy1;^Ylc^J8cSIAh7Qm`K`H$ zS7Qb)VHt{IJ z2R1?e$?zsZ5g?>oTXS9nWGh z)V)tp!RyPrv&})&mDKEq%!b~R=YPrng3tcmD)TT5JP%`hVi=+#-t~re?cvL)AzL5S znWz8|TY53_hu)f81P7+>Es+U#yuD`KLvtZuD{!u!g(2j<; zIR$dD8blw-4SlHor^ZaZt}iHPch|+}#mHok{Qpy9F5EU(jqXLfDTG580Je*^ zd1PDj6w^KwsONwpsjLn%Ix2=*0H^;A8>NlH!gH&W4t?JFBJDqpNgadX&t2>7o?WIm zyfz6hd?2k43+IOMO>R4%zqj31^63SOl>Anyc(vPw$uj*mc+62HCeMV3#Q-j*O=j~J z#6OF|HOc!|aa#D*ZQk#b==lHNNpu<-JhFg<D^=ehUl;_Q8mKYC@W%&d=1oaW z+z+cuO2q1t_nvPVc1(lqe*=^M%M{zSNZ>R3kMi+9-)M=yYk)7ECEhO_{$6NlbjwhF zh_5eTk}E$lF>#^k2&A2q{eVK*U@nvC!P(sJR$KBO?fQ8ryZWIpp^Fe_gOF|_VZTS; zCLv>TGfq~n3pG}_NEX-G*G?`dY`Ur)8^4SHm*>h(G!{VBu$Kn1k|ZkzZ++N4(&0du z5rS)o&kOBK&B^-9Sen9Tf=`vo)|2d!j zU2(m9#ZO`dokujBdKZHthG-Ck_X3NPJoEElY+o|;b~LXg9Vc$Zn^KmVva&dr1?!hj z;i`xLF7q~p3CEL{06Q_432CR`Zs0_3IuhLRfNgnj7cAB3T7chUe3L&#`Ol8mZSen$ z^3j*-%k?~hf^T$BvOfPWl`P+NSW064La~lKu+GGE4iij}70FSX`ZQ8v!*jB^tIMt% zF^Dhju`^WJ8R%qag<{6N9~I|OB$or;BN+xc4OfJ3`h_{m($wQNzWEnF;I8#}nLbZs zalv^X6gvxj-Z8EEvlZs%_0Z7FlVhPfD%y_#@1Fu>eZ7bW+a&hC9`yd41kA!tc_xOW z=wXScNW^~z19qw8pG3q3RK_%@Jf7KbxiYnL0k{9R*|OsXwt(Ac^m1u|cnii!Dwqi} zG4kM9kEC>O;I2#M zY8t2lziocPB^dVrh1b8P0e>B57SYIjc>n}3yZ7k~>)M2cG^s?r$zV`ljqvhj@DFGj z4AbvsXv02x8|=hc{^G>KB$hoG77!(Y@Hs$(bk!r;k0!)WuM>!fzk^k6f*FGUf1Eqq z0}kVAweG(UTb<8W$*LFgP;Tm zG?FSsf9LL&>lFTZnQ!e(7=_Tlg;oqW1Tc1-htUn$bA0@>V!UO%-2`qJPs;%F1Y_M9 zXumEHLlvSRiW-3JW@VP69qoSr>1?VqH(6~uB??G^8Ku163+m}&&eFpEePVAvmb{Co zE|`-MGlmAec#5j%^cV~@9&l-v#%h{^%P)KEXFX!Syw^t|Y5QWT^omX9|4>^kC^hvj zs3&y_T&KuijQTD36tzGSK<-hU~ zb5}|NBPbeJwmT4UEPYAfuGk5!n5sU<;*68Am16yGm7B-!Qf$%25F6MJx57P831=~> zImlcUxyK9!aB_1rVT66tQX?V(9&pVf8Ne<7N2jgB3CWTdxh+B@H@Vhc-8_d{g^9tt z=Abt;hKpc?O>}qg70&~G3|_zA{K3DriL42jMv}ntv9|>QkKh+deLB7#oCaE@`S2nl zN*I>z)+JI4y`t!V`_Fprj_mInNaWGMcN9Uf32in;(DWlIwUcoau0}*y#+ZgEAao*M zzi$57+sC`QT4>_?|E`!~JlA82y?jR~2Q5=L-nx$Vu>s~oRGimR6;A<7fN05K?*lh9 z>pr^5%>Z%S2aVcRF?nHl0s>6N=>ZW1_$`9#NbZ<80Mt=HR3fpFZ1uR_$wi+&HWxLq z;3{EjG)00^stIQ8ruuUxi%xxhmQ5s~C7)1mLFbU^C3(qXaJp%(8rW5AxJYQ0go0DJ zMp!^lO8CEToj4{K0rV!jj?JJE3sA2IprsMU$iU%x3DZb&QYRl1Fq~!r>Xp_&FRafk z$SC+Hzzq^@5*1ijSTy6ryMSH`j4><}3M~NpkQIzeSqE9?67PD^v+$8v8##mK!>*ri-e{(u*oI(1(U)9S5O0^Lt;d3S;bTr zXD|c)y1X<)Lx0e6#C3!ZV+C^GqCZX)6No!$YCR_@Ky&}|!~Y*uWUPf1FAfuO0l_5Y z7@Y4=_A_JoPh}9l2a#(ewgPLZ7q>Vcjh@x2RaMn>{yVfY!yY|5q9mq*wNeB|9~oMr z`Fjf3ilhT;jx^%bJ1ih4$BW6p=b7o#Q~qb?g1o!Hg zsZqR-_o4?ypWY($m%9U*t9IR7FDx$hAKOat&Kz-?O=mY+`TjW+-n3oCRGbI_&G?Dr zcmqN|ijYao`7@kTRN@m22opE+g`C_5>j$1FE38Ga_@A^GV>guZ`{0siFFb1}zcX+R z8nvT|hPsChfBPvWm(5_(8ksuJ!x@7`l$3hP`^DoG{|8naX?p@{LF$)?-wojXZh71B z_2k=#0-Ln8_=pECUqe;C2o#}LI@1W{!epN4p(IfPiFPqG>M&z2O+lmtwd5!;ctHKJ zkh--{Frj1Tquco6bAyU=P{h0#jJ*Wc{f}6ir0+W1lq>c+5U@H8*r5%UyM&=y@AvQ5 zcv<3IfY$lqwL)6#FYyH1UL49*8UYrudAg6*DGjKCP9{}!yjCc%W z268h%-K+utMG`a2oA6GRChbn2wP9O^JomkwM`^Zd9% z38k$D7RASn&i|kQf}aXCo?z=vrXS&<{4tTmg(HX-8`EJA

    4?^SF;-VbQIGa@#TR z+vm^sWcQ~WVBUvh(9TAEzWl$D>_5F~jViI^^2P_m=|PZ%11%OTR2upM`=D7lQQRm~ z4H#B&MTCk@yrG!A*EUtz%cnn?{+ENnfZId)98vYrl2Pr2e4D#A_;R!=spUjTeoInQ z>)9k?QhHp337j}HFs}(3z%&<Gi>_IC#UJ(qbK;VlSv* zCT%>9U;*|i767XTFhqmn4QB2)+8zlC8v;sj=aHz%5IHpEm=fiVH zF)z65sO!W&d7*J|i-q@#OC*?BZmYiKbXvs#tn%S1t9eh zfJ&J)r9t8vFm9BR-kRoT| z)6g=&6yVj|rKmWz2{5?C9?wqk@?ujM`=Li1_1kL>QKlqe;8Z1nRj~>Cm&hV5D0JN( zK75#2_-IAoX_``Qjf;^lgD)aBC1^H5Wod{T1*NRx(4w=j+ra%hg+X+U@lhwVJtkHQ z-38#(q!qs@CGOl&{GR4dpY&z<4n*J(@+Arr^fum#U#FNc)_uV{Td2jdZr2`82gFRA zMOA?_C1hBo-LRxdJ``s`fL_C|x~lJ+@vDEq0*B19n?cql7jUw7hZc)C-M_v*Ebqk- zXDNuRSgNF+aYx;AbHhQwR0)t6#JU#K1VjJLUqecrsq^N~-;Xwvo*Xue4nknI#bY>0 zxEhXRXvVO=N|&*_*OqDxG=05w4*lM|`%KG3(s%B%T!4X8Z2JgweP*ctsj(r&9#lhI zMA1jF>4o+q0$b042>|*Ce|mmtL3GiZxF*=sf$96;^nv6$Mh{b=sb*v^wa$M>hogF6jmY?Fh745r`W&W$lTLKKbl&E2H%*#twhUYKxZOX1i+QB2m* zpx*>P9Pqghj$}%_M%2}FY;|a7naH=3B#eMSCyVR)`rGtq8J#CR0-Y!47;!d#K}j)p z$SsxBw{$}s2F<{E_4Sv%py*)aF@<^-+nPAbq7`DhJLYBWd`FFRhvAgR4#2{R8wN(; zd3;Ipcd3?C1P6+nUIF)52w*ivtIsi-1nvJd|KUfKiTQ_yig9Dcg$c0h7BBg{br8l9 zm6&;==2o`~#e*OSK(s!(aGj7ZeI6lD%`k?PD|PyO%ZfN$Ih+?@%X{GQS!EZO z+}fYkSFW9fr8n*gzDIYm9K#Cc9Bo#_>$@FSm7ZH?e~{y#F~--F>LiMAEc7;2?R&Ev z3ea>DpN9b&$J3UT@+WBRMwKl!KApRHbxPPnx*yOrW;v>mky6u-!-y;# zah;Jd)Q0WCsmGv#5glw)r!_n0uQlt>-QASuhaFCly0}(qf+;8ki}iw+R}^5l0~b?1 zr~U{E!e0wfRpJs*KKW06C(ptZDHLauu6)?|)FD9xa{+6UQbRFdrzR8)+-35yL8*?i z`F)Jvf-@%QwKxNB-RWA!J_UMAvS~sI9nyiIxN2LO_#u1ZFwUFD#GvUn-pofF%W|a{ zy=dSdd8E!!I~ofTTlC|Pxcf4Westf?Y-(^hlDqI{iG`F5SmQ)Qz*&s#GlOU;XbIGS zoITigg#VQZ+hhfz9>3`w(`|bgS3{e}fY;SkIpzls9~MHNK%8%)OJa?qo&+A>Y32Hd za>3LLch;&zZEd;Z90zQ(Gv@=#oY!+1+zFRzi`EO*n?9FzvXE_NYz0Jpe${)1Y^aQ zi?5=cJbsaHBJkCcn!DN8FcAeq-3KzU77z;Q_+E3k!5g=CE9?SpZalMwh=o85&0#@J z{^A7Z@~`1GU~YSnSEBxVRwwrtVyFKUrO~nh&D$hM!r@YJf5#Hsm!!!98S~1*sDvSo zwX^q^bI>^H#<*DgeywdWU#q}3Ae5IHBU%C2#MFeYGEB%vcm%PQfWHuV1mI-D$KX4) z4_YV7NC3QU^VW_cVnd0biN}X_huC12CnThDq_vq4OPGQ0>bHap6vc#GDF#7ci1XTH zh+?KGC&Ur&g6T+tJ%@f2^QB03ow)-iDk4V{VooVUJq518w|s8i&Fj;qJd>(&wJYV@ z83|>V=Pu5H5x!@a_(hJR7}&R)d&{mreKLN+jjYNO~R`dV!o ziYz*`QI}c2Pm8@Jn6`LW{bben*8Et9sl4l^acO31tZJ_fiBL7L91FYDsmPHdXW+V; z_tzeKr^w?+nK$+YuHBx~#T77dW3ioamv*_(m#~~u!Q<1AkRr9;!1ex};_W@TVyg@{ zmag0)^TDMi*s#T}?L#taoe*#Lle@!7KDvQ=`?DhKGOCKpzMK-9kk`ZCsY?k>=DGN& zp)2Nl|Er@3YITRTn%>kE=KL7rHSBwi91P&7lC<71p+dwc>6LU*%!-RsrUyxfF;;lR ze>j@wYqJX1(ca5bPA;BbbLYp0e+H$#IU0yI9&hkcy>U%AcKx9A_0N@>d$&&=+`^eV zVQA6ByJtsi`|kCDdf)A97!380BUxQ5`*{;8hVEIdm%AkSeCS?ia!dQ|?jTXgC87#t z2HV9e89RqV1N0rld@+ds{@oq$4d(Vt3@~&9co`I(MnWuz_Ylu`1=VB6p-;Pa?zBG2 ze>`&$34U-U(t?9sW`13r5pQLBWPt5}>@fF5FNWbrBl=L-g9!Ix;QUZ0N2v*_kSGJ5*%Cyy{0@ zwdKMk$=xzH79LTnHUE_@Ey2{b?n>n8(75vAh4zU&*If#~4!J$OeKPtT=gHZ|{h?!a z!8q;-vmnMW$Uh7Q)+Jfx0_rBEUE&ob%_`RhmVZJ--Rztrsz*GIZ_ocFpZYU9dav-j zZAVJ?99h|Mc&Il1iA&*NPij#7xXaYi6(UzBByBTUg^db--jH^^>-tVzUXRIAAw4e7 z?rW}0O5^d+c6D(hs|TJf-IsTpTo2`~HG8$j;p%uJ@_qfRyG-p&C_8N2!UXNf!;N zaZ1xr9UOf+RdG<0=Mq#6lWiB=1c2&M?IR^=V5O~mYo#KJF75!ff9st5UyFc_g+Txp z3@vf9YXhYr&`MDmUzZ`3giZXTH|KxKz%p+G@bcfIKP+o1O?W>UQOk~2u!*{FP$(gmL+C!u76^EQSr&w7l%<-8vjH?-zRv) z%&I0-eie23_wHgeL8TW3NI;c}@mwgxyHsRiHV=Uk1BDz_v8aN5Fzz$MpQ(}pm|Brw zEKNw1-CVPpi7s5mwj9geoY|zkMz!pvnDWG|#mb^iVbYyhYhOD@?jIV}?OxRuYP!KC zDrv3rpw6myNf+-62M-zgHlTWd44&2f>qvr~QSvVU;_ zI%51s@;bkpsxLOxJ8a}s`mN+jpN(@J9Qbvg{UOZa??aF=;}FX3~)j;SV7BWIjyo^AAD^T$;LtXt zC&jOwXyjtsw`EXZ4713Kfm%!C`jKg<=MMyB}-bj=ZARy3?*q+@P}}AtA!5Nm+QY zP`atmYMl#NRi0&;5f8>rm-}Ap<7sp;7_E?7dzaa|xuN2%OAZczdU4w$dE<5}k4#J6 zx;PgnU;Y-9WW2F>hvEJaPE)?S27dg*!W}Nrf zSYYlV->wD2KZQ8DHNJIiukhWSwY{d@|6~7lbH&bt9pz5pnRzl*-q!;5B%H%+fF2*6 z7eMMsvF+c(PR4ho7&4Uy;^4j)8V*<>5}!k-;dX9 zwbHNOz02g$qV}+|M|(OPo+%CQE$dHCvor4b8TiDV%!!_v!HV00 zWh66pV7!DbFs(Lrs2{iyql8rnXaIb)>z>>J_5kwl?nk!E#^gu7KE(9Dc1yp3-;dzp z-Hy5OJ#!+v9m9n`RF>sMeRa66n)~6)5NCsMTGHB$rQ*_i^*$u~X7(tzW-+!t+{@Y` zQ+HyeqPXkn$Rp#a{nxTO{JKYr?kWasPQJX}#JziT-UbuPhQZQf*(CwvGqOgSV%krd z`vujGwrLra1cc2l5m_Q(Fdl!oHQs;wZHp&n!QZ6jS~;c1r=5*qukT`iwuky?Oxe&! zt9FHKR+LW3uq!!-tvqI`y}d4XR!oodvYt5=Hjxl=4Ld1lQDhh7b9j+v~iUwUI_lG)cEvr7#Qd3`rpIoPUOYjiwo z=X-}uLLn8JVU9hk)Wwps-$V}tT-Gp`)86kCJosF*$o!}?@0)=}qk-rdo>eN=t~EFRdg_Ud;0>84@*exEjD)0Z9U-CHO!faUCUZ2OO`(1>fuG364R;3w24PfF{fd0K(fen>mOI zy+l|%AS(*$AYB76Ky!qwodUQq*+5+lcWfo1sh}RWs!BAmb5!SVovW4@hCZ$1et5Xj zu+QlGnNN1S-RID=>+QPImks;o=*&CQ+sp*f;04MuLh-!o4Gm7V-jrZMwezPBI2>23 zRg;qmPzvTny9U4D=QU)(#Sf4?Yd<@!hxe zY*BKlOnsb*Y0cLs*W%|m{@fNFXtaEWqLF5myp`q$#kQt%0re)_YY$s|{MBbp22fNn zB=D_u_#6kpCqy))$iS@2;Y$S*2;o!uFd#dA@WjyL^siHcf1Zu~l2hK?Qr&*3aZGQ# zze@Y;ut;=_NHRznkmtN;d!A>vUa4Dm7V5s|VWrVdnuezuRBe7-yK${}#^7u9cDZY)c>sk$NL z?se3i{XIpZV!A9m=S*Qf_KtvA6^7JOg#UT%id^C5-X+`m^JX4fVy9}umo$zxmuI%EgKQq;Q zEK_k&-A#@qJ7jE4zW3+$jq|(ya+;q$@{D82frj!4SBRhckSMhfHmFz{&kp7O^maXR zd7|eO+u%sl=!T9f_jO~n_4I^JbLxu(0RJoUR)k60bo_qBY?Dc?N8z3I_T68n@y6_! zyIs!>a?J`Sk9J###8Ur;nt`iyX!rhYEM^J?#!H-75t^^lKG-0KKczF zx$>Z?F6ZGO2kVkAKY2z**Z!E+@Ujmx1|Tl~$iu}=LP8=uJ>=0N+4(GN)NW&&0k;~> z(|$Wqb8JD6bi=kW#hd@+g{g36Dpbx?D8HQ5`fXuymyC*{mHdakfma#Xd6Js^>Kn%2 zcJb7;`km&Nu`b-;uwj5NYkSq+!O^237LHvTuNjwJefR#$ULj6SmK{ZQ{{(1ykcyfp zTVO3*9v^qv7lOHl%lGSH0^pXwB5303v?3qt$gW}6p2&7TwuqSyUY*rpW`_=O!kY>k z>f_ixl^#wY5!{t8cqSEE4;|{6nrj}f8{N(7=CfSLSN%MoA(9Y-g0uAWnKK@aP%e`Q zni4ZHADb3`hu4$!g8FnOzUhov{Qo?wH;DB4hN&f`FOg^s!jL`ET)!OQf`D-ac?A(R z0yx5a=IAviK6weXMXagSd_Oign3d`;WZ45qJ#Vy49NCR25=wQowe!(i$hbg>BP1`s zr)ByP$+?Wha$GmtPuj@H$WT->k|7adpaRQMMCqtE6yvV|3nybI5(NF0>z&Zgm_c4% zV9GEto!z{lE3=AB=9A>!b{ zgP@RXI4EqY67utIb$z{^1kWC0W1ryQV9AYE2#JAfaRD5^u|x?U08$2G0lpy9t*u4& z3Y9EX$Tx%Qg_)TdV`4aY;vyVcHt)T5_x=0#+J=UnFld?P2dmJ^krGcLXZ*&{DNceu zJ~G3AKF%>v=xg|vGtu1TR$yx5P`FKE4I&ui2OI3cm~TI{ty8Aqlc{-TPkWByLKRn6 zMc|x&hB=GLp%wKFhkz9M+~ps(?p2VInN@)?w=2zV)T|WH!=ZFyxQQ%{AG17};XrCy@CFnCei*UQH>9wfxe&_(OhJ0ka3|EFRvZ z4b2s+nN(#YR|IH&YHRzKv#HBiR^u8hI12CuYUzo?oz>-jc*K$l-fs4oCDVE37^g%y z58E6*Ov#`mh{2*@FEs*};@LA*BHT#b+L}7dv8^{^!^v4E53iMB+-x7*P}kJtN6&q! z>4&JC9Oq|a5JzzXJOoRK-E?ep^sQvU3pgKL2^;%r#c)F`jZgeisgMZ%Lk^~1p>Np2 z`Z+yZw;d}(?vx}?Z;fLi{|qau_I=E`Al6)OIjwfm1%bOYBZImk0ooz~U%q}_G_VfG zU2ktMm&bYMvu7_P>#bj*@lSM+smnr|Ho*hmjk0n(k1t=8Xm|;^lay|G)8al>HwH!v z2gaYjd82o8k1(cV#JBPDE5DoDy|`P>EaRmTt7}Ny;CNA0L&If={Ky;tlkd0`c%u=o z8-uNW{%x8vRi8pt&gW+j3hPzaK0@R(xf1naY}*13otn9MRKcN*^6~_ze;5h zi&+eF@8-HKo{i$Srq8)M^FB;miJW+*C+Gg42?$RtP~cE>IWkT*>o4W@{cOnAtfI}9 z^?+Fd>%pH}a#Cz`z=z+>=iWUS6W+m;3MApL;E#Sq*<1W3feIygb6*(kp~iHusz;KQn!_jLTcEK`~jVOCKg zP@&J)AcZrW$d8a8MRqL$v`utSA~O;l_uUD?9wWqExYk6BxgzZ4be zphi*lP+Z(}+efG0enU15^fPXlmq6Z17Fzg9K>IzX#fN5ry?w!Sv}FMf5f9zi8(E74 zw{R>NeE`V-&rivpZiaY;o}R4dnVKkuD%;6^YdM0h552wG0~^Bbm^JoN@9&!M`m%1@ zwk=W#RuHmq3)exEbgxUnRUDXwzb{(~5rG1(7qG;_^mYxI8fSbBR4xqM*Wf@-XMgBt)D)<;C|&N@m5g0x>0I_%xns<)kPQD99KLWImBhKRNsRbiklnca?A6 z>&6z=>g7`2Kk@?Jx!StA?$@r(UfR3c&~W*v;@W434}gXbj&^f$S=rd^1>!G|N_KR( zF3%HGRxIDUtGzbQ_HgY)Q^2^I#jL?LuoI5sv`*lliScL`-Tgf07l{XS(; z_}rLt@NSpe$Lq1dA&4SPE^)VSuM$0Z>{tO2^f8+#z^AcRJd!Xt?%7y}OJ)oG zJ`y5=p@=LuOq#-VV}Crx<1XAd*dVmkA`{m<1jL%!lHA*5g|^+0dVglwoqyWcoSmJ2 z!EfjaOr$72m4}Cis}|C%kMMO=g~+=*XV7H)4EHuhx*TK41-Xh4oE=2y@Mbc@YLn8! za*-KY8K6nzS%kpjY~&6E)=pF=Yz?Bd0R#Fc;hHCJ(v04U0_8;ls{e>#I}$@^!v;PG zJRqHve4BFs{T3-RNU~sV4hde-tmZF|Ir$T$WZ2~$v}drTkA_D_PX(C&oSd76hfnWw z!W16W1FgdAEQ(Gpd1vt3HzCRT;-yPEd-hz$%0L+Tl?*>{M`4RVog7T*VWF}QCOFIE zZWf8GU%xPKE^!-hcQY#&U*@?QDEp+);cT$*G&~ zW1xC4zpk|O()GH_`@dwK$><-cm{|PnPO@RVj**ct%LOl1k0)7K>WQz5idd=m7#Ns0 zQaFV2KG_ra6I~b!N9!%7YugwlAtEP2aO|5 z-Hr_Z*dGG}^Y*2T*$9UG11ylV1!*c5q#~5u+?v<;bXIIUOGMXI*&ywJz2>o;V>0 zF(mFN4MW2~>kvEv+)zXc1y@{4f2r?tYi191-bK%L>qquQR9eHppK>CX_MSoVN6t4& z6Tjfx+R_4rddaMYFG-wroYoon;%w<(^x|uN^%l+oz$lufj>Dx8w(oumOwS%`c%t4n zs&E1>*OcmxHb5KIE3|4jv-~p3QDSjp;DCvwd~ZH82(<1vXM9BNJ?XozI5v$ccVOj| zSQuNn^jh`KvLPt7-E?DB5vOuPGkV3RGbolM$L;_*;N<)6=;+8_et%sD=fi{pzp ze*}Z#>{*_0=W<7S-k6w)>zE_<+84(VfnX8O(1%@JT@m^sYP0sfNRNs#uWo&5A%(@u z$MI`;WW?V6!m%~F>~AXu3%{9*?%lgLCN6Hahr6R6?k4W?Cvq57M;=YtvwDH@)7FhX z(<@aUA~~G4{Em$SbIAp9wUy=@YZ+Kxq;gGPy>jKIW5@cu`Om{DQ1x6h_B^Wh&8HQQ zZNMQfH@m$tsgs^bPDR5*FDk}tPG$8i2jqzh=jN9jVfcl? z$*Gu11eolap##|$t*UoEi8)2Cf?4FmWM?YHi;fh0M^O}*{zLHyP=rL#A8ZNK%azD0 zUWe*HexO)%cjlZ_6^yUScH1_C>Ux>d+Xo5i%tK4waEo{SHNTY zkTYjo5xj8L(GRs_)P(C&o3WM!c}lQrB+d?295%buv;a*@ ziRSnj)}3;-zR$2?u|J4VHe(1Kw*AqZXPz5^{HptmF4~Xh=QCi{&oQoGXk-+1|GrhV zIZ6Q^<%08hgFk*;z==66beez1=%DMwT9=Xfrl;tBL4<8PlRQV;%IdyE!PRb*w$HhR zE0JQULUWI&PcI~+iI5n|Ve1(yPRh(&NJ>1|2^<3zaGw*Uncs#{{p&kt5=y2_Z!VPD`&{ ziSuj8=?NSYu+^0yYnbr$DVnxnvUl{I_1Bwq>g?`T2j2%P_84ARWjGhc{v>fQra?;*NqdZ`0X+POAGpd`L|HfTkzqc$?A_ul~2E8O|(Gwn6D+CV^LjpBK?fQ+Vp<3+Z%F6x;HHSg37`hgdFa| zgK$D3*)n<_P)10=3C0$v{Y@7FuIm$@ZnS4&TpW=dy>MO8#Km5Tl)8w>NagArqXpj+ zbUlfWk1trA3r+wS+->V!-JgWmkE(8LGJSGl+piq{Mf%BcaZe$NQ2)^M{yi@o z2cGsMu3nTd(g?$FmU8zO8N9r_&8@A>zZ048dTeGyO2)^=Vi!w7t#jdU0b&yhPbjCS zrYdV|Bl#I_HA*OZ0bv#;syB}KB~jg<-N%Z$U$DUn$;B=H8jCkUf)Apz&@qqntv}DW zMt-F08#lA^ignPrgN%2&9t_%#p=Y``;gx}cg-yeT^tx#x%LVNv-aB$7UoXh}D^l#4+@K?O(e0!qcU;0&#I%3Uk|*`;g=Iky81QTuq}!=U-JOf0GV!a|i_&Pzr| zmY~11dGpIeX4@WIU5dG*-?iv#z=HQ$)}pK#xP_H@b}pE?8dtQveSgXbfkQx*lm&2^ z5Wd)2#Th&}o{qgpf-|(dcsz3gfk{%t2%XYEp_U~aJ#~FR&doX@ZI>7-Rg!OF-XMVO z%*n~gn$9_Wx-x9+x!4bcU-njiI;gc3_b>;w`S9)-Fe!#*5S)tL5DL$WzlI7d@@4D) z-R3XP&B~Ia+8l79X0&eF>fb!OLL8jWnf&!Qj%@NNx|f_h3l%?U|7d%ouZ&7g-f?6D z)B*JENtc0liUEN*_U%cSDf2d=1nk3Q$%)XAH3$v&XhWT%j)e;XnsxOR$2nu8jc?uv zv7DVTeL8t%L*9w)=bI6RXfLkbnvIaxxms=c6nj7PDR_D*$bh0ENH<93pGXveMn+y} z({(Cz26^N+)g6V-K&_ytVAhf)OI}!{O4b$D?dV@qSw2{F7pU~!y@wPa6;ZsEd)kSEh5-29zJ2>hu0lSGRv-8kX*2-f zv_g*XaTG4DtZdj-@mF4Xx$H+8(^7eHe<`p3XaO>|?b#)Xl~AON!2|~6W`HhsHI@_? zZ-D0k8UKbv9|X4!bPj0G^&^5G)SQ?5sn0`}Ks4C~gEcm;aza7M`r5x|a#&QYSD$AWu_nTzIx^vTw-bYm`J||Z@9&L9ssmBN zsWnwq)H+%kt*LL`7<}dj1WUZ%zkNHucQ_Me4emk{f^WLr?{@{nGyE!4Kg(`yon>1p zTUs_o%EfFS28JUhCFPlKSomV~nyqfa7zO^SzOHoUa)W$EI6~9*#licF3rH5XDi;QR z|HdCM7&e7W-qrac&mg~m0G4w<078;A+ZQ{H{AwL@k%j)R*eYUfyJ>CpJ=gxezWYrD z=)GXgZkMkuI`zb1V3yc{kg5&_Px5OuaNk>Bxa}t1Rl6OA&vUm=OErAvHC0m`z*m$=?tf$XpK0^N=!>A)Omtpy!YA5-lK-PQf~O$7 z?@7lD8D~qlsk-UajZJ(L1Mm7%00CqQ70eq>1RLbM@-g2)(nu8u0Zb^OPW}&c?_i{Yt)m`H~8b8WCRk@av42nsEyP zWp!W^W|F+nlVh?pFmcpFJW_5i+C?0}<+v#Wg*;LgF^4?)gt>f6c}Oxz{4~_pKMjxzCB|Q}vU^oi;XGu76-tEfShJa)u1(Q86hPg%wey-7!v;8G z*MNn()VEs@dh(i@H16PLAJ2p`iJ(rz7Wj2c44wZGNL(NZC-gC!dg80(8yGJ&|E5FzE_`J1T?6QUi=gK>lOs+7BzaRQ7@8{3W=IQE3b{q~UVxQ0+L{|NK znk64JoXHDo;q( z%e9%2lt>ebe2Vff02hs=H#s%69mV6>RHtC}Rn0>%>FtNw1%P$sE3X?mZDB1O*3Y z;Yz;(WXkyDq?g?zSkmqcS$Uc(;8St2r|UsUvDm6BusWQ^1~9UDgxEV?WZ^EunO}ai zZ|xuPsCZyOE`+Y)`K>61zz=`A>&Kw=zv#9F1sR3Oy|cS*T33+vA7SoSKNsDG*r=#; zTh?-Ma^8EfHw36u1Z_U2fLFX{E`Z`u-1 zVZ<%lY7Jv@@-bMknqoiE5tFTaWmQ$HC@@NC^UH&sxMkulyj=QGQX&m==e10ZI5;@s z$FES7VAmYFj|i_E2$q1&pRjWjySf!%8SvHlF23A+=f!Sk5_^mQ@nXN`r`6Nv*3F>G zMjHO4ZByFP!i-vy&5lis=ZSu@Dly`&-03jfUxeaDLI}pZ3yB&Z5prwyJ3N@JN^rU- zvNTgl#tVXigLME1SxV|g;l+#JChir;_B8p*qQHQ~L+^lX255Kug_gJcp{-=I1YDmH zxOCEeed)7qzIye!b^QVcV$ZftNr=qSfpgpc+TUH@sJ@|LgjjT7#rYk%m@WQr z>E1+aBcYE0m0>!U2FM%_9uXZ8?$~rjOgmi10a(0vnZWhCzo*AWqSRAA3*kQko8ica zq|-vb)aQ)g`fss3&`PPOqe*4*ph>{iq_-^Xt$#!RrKY$l|O&7(5&3( z(AZyvlqDEBxJ6Y*=%4lgZW9;tU z>6>ut(Z6$@35ofzMuz;_l?9(a57&FT>xXDyhY*T5F#M+hq3CNsVwGZ4cL%a$^Ivj7 z?=6^IcyI6S(OW~{ah8`l{|jcG-l$v{MVuH(Ef1)2Z=YuG;Gh>~Hc5)X=Oh$JglRp4^DY4rv2o`~9ax4*<(NzW`-p=z>h-btsFVO*po725A&JQq)^${7! zG#7sapce|YKRjx9cU#+Dni*`n#gNNm=4oFQ;{8E%@nkefWUj6hl*pqFDBSFrPFQ-s zyW0yP?Oo|$%+p02C7d88p{c`G(Ur$ZuDfq9L@=Jbyu8;1geBWS>tED~Ul)cS@QenK zMu;p-VoO}V9#x65udKP5OtZ@tv;vC9L8i_01`C7hhX97>XSOkY>y|C8#N7)2;5B_W zyxkKGYq$hQzwOI1-Ou8S$_jhvw^8P!;nmmIFKZ})>I7}p**!Kuh_DjDYvopYI;joF z!Njx&{gL?4PE}=P0)C(pTR!b7>!l77>f#Q6ndkqdE_Bt2#~?r}v*}?S5QCSMO+d(C zdRGU9N7~Zj9J%NSfnre=m6fbC^RxqZX&YyUPw?=_ubpqk2suGQpR2M&j9iwLy^X$^ z9v8KzuaEL(EJuawMqzhw>{qq5Pp_TT1mi@FF^y1i0gJgW~9Vu6%UX)xA#SeVa&I3`-jInXXBr!4iW&%YS8g5v9 z*YCpqjLb}gEwqP6+w#lYV28~vc$A9Jikh~aTb0$+UdF_D)O4{@gM2|M+Pmp(Kaorv z40>g80EDk>G}+h--m0mpd&eO^8tC@Lfsm2Q(212CBpr|mP!|^$0byafC+{jNE8Qvc zaSM;~te58sSa-V>a34mgF8l=rLq}A({xIhAND&4@i0w@>4fXZQ6Sep?q8o)i&*=t@ z6#-1I*Yh(XP(SND-ga@ZOpn3rc@9t(|EYoK0O+w&tVL7Pdwh0g|fKNXdj zR8IixI8^9vvZtCKqO>NT;Yly}6hvi~BS$up)sPtOLfL+<$rRWMA{U0(5I%0BzoLG_ zcAN={k@2aieMn?*j_}K1+$9z%_aZ9lt9D*0ICgLZFLxtN7i;G!aRuD^wVfqsoY=-q z&Bn~-L`Gh#T)1|8Cs3XB_g#^Ju`5LTj^3GrMcge|LpmG?$laGmreT#2NxdksSGCT|sKw=}fXENRCG+PmV1vT6`dlNCS zuhsSShiF!YV=}lhTOBCiDRh`yDf2Od)v>Y+Rv(qnw?H0EI+Xr|+-*|&WJMr>3`Ryq zNZEH+VY6qr8k5V$vrIiD=t%INbDt@QNFZ=O(n$t4z6VhWqV5{O46p}(67XiSzm81J z!^jeZp1b~hRb?eX?U2(mGE_|&&?n&cxKrjLt&*&+y9>veOevO?1I*ckiBX=D$~O;y z)Ftyn__bdED6K(3M=yVgRj4WNDSS0Z*SJ}UdjfO~T9uF5r{m(|O+LqWOb3nKq zzyZ2-aF9#(p4ivueu}r$&baXRse-5G$xkeE>;|f_UU+*tSEk z{^iC3stFn#beq1I=(|(F9zVAJUrf8a2U0NtAOh!n`t+%LH77(^fU`0D4l;KdWtx}g@fYMB+^sE?xdaSLx{;;1C*pf#bhN~lQO*Mgh-?9b&$-4@EH@$3u@4@g zYsa`_YYN)w+Ei2KMF9Q&Z-N9XPT0pXTWyOg!%HY?}~NK=ABv$OcBeYhu?{innob6B(%+ zof5A$4d4ykgDX4ml99}o1zPf4Be^`j>7%N{M7|5?O`;uv_uQ`J%fyio1cX@V9mvwY zmCCv6|HLt*TXhF3&)4S&Lq&nmjuITk?vl%)9kNOn;=)Zj2C~4pxmi;u6k9Baa|Gt= z39lM5|KNwuzxNC}NH5He<8&mr^hSqYL4H)`!`%hwwahD1Q$HbnT|4xC^pv@TMF0X2 zmFj8IWv9_<4MH$PJkXuZ55T5uEeR|*`1@#$AaxK0HM(ik6ShcD3=ip_U5Qjju0O%F z;AU_)oZJJfY}$rVqPx-2-Ap1P5gt*H!%c^xvN&sG^cEbfIzHWn$e-G+v55S@H1-Xe z>gcS1a0%)mC^g_>5!@5FiLTtnz{rTv>a07uaTKvcO>}b@eR9Ff&Swdb6KcZ`h>-q& z)JQLhaTKvNhWbY18!`OH233%G=p5t~6wbUXUvJL{lXN8IIrNn@Xz4EtZeWQptNBly z-;IE5*N~o>`H(UnQ92QeZl7OaVHv}+;?LYT_ja+u3vVciabkE<}DLi#y={h?q}P1b8tK>lm{}3pwoQBQb0l0ogrtsNml> z=P=I)7X5{QgAa%9!PIofjHKPDpZ`RlmPHiA`h`%cw_D*VGO|0&z2`(#bv04Kz+>w5 z+qYZd(AkIr4ukH2$V@yAvF>8{cL3`2-^2|b8E$ELhW%hV8OKLdx{uA?K(FX_x+%tr zW6j2aVMF~^!lC#dR$*D`1d#+j=8-dBP#jd$*FV4mrQX{D-NVy>02H9wwT^J1LE^r< zT>3z}`Hr>b9-G)2(2^OjhO*45VL6%^>zx(w@X ze1|?8P-4W37b{AIrWj%U%wZ`hX8j6%8DSF8%ebO_SXTt^w~=2DkNiT-lsjPGj#o)@ zTU+Bm+S|96Dy3`=0O^B@$KwvU3C~V=hAV7-G6N|6Pp^P$@TXS*3Jg{P-2(u4OzikC z-6Zo zn`DB5k}On)x&cM#ek6{bL4Ya*thn6*F^j7Pr!inksIS0%VvqNxopgbmK&2pd^;pIL ze}P`uH^_(mGO`jaz;*D|^1(2Q`FVRP#*z(l_kjh?V~x!g{-k2q2ntyJJ`M01g#Z3{ zpPosC@_qdLyYk}VYkAvKws709M#i6dhx1r)ODh&n-vd+us03<4PQ0P3#O4a0f-r)2(&3>? zDhCJ$bt=DKU%h%YG}BQv$7=uDWODRRC-KMX#f*iK<+vJ<7icPhP2Q)KNKQ;VO=9#~ zcs%gpkM4i-%>A1KD)07oZxNzSBx~2oI~37yEKdZ0=VD&yks#47Q7(eHho2&rO6WNx zi7fcfKYHs5`CFjCVV~0m7m|qhfa>aMoAGi9lwQLS35l}#N-FQCD-V?gQ-E@G({wRv z3ZPZZRtQ|mDMo>trlCj-9A~mYLDBd7_h+04c8hUNR8vrsf&X`FD)<97ot4mP!V0qn z;BIbmF`t*_OPBVbX#gurVN$HVgo2Uye~8SMd$Yzr);9v@LI-x1;&nm-=qK<`p2cNc z9@Uv-m8t=iKLf)#%ue zfmcuE>Q zAuulI{C82{Wm4CWb&sS6fu=3O5|t6@9xxCjc!U4art-=cim@ZmJJZ~50g?Iq8wikO$JUC|05C-_rq4leS`uh7PGDg;4 zyLy!h^kO!0%(3!}M-b0@x*-p>3G$CSs46L~@jS=fcMQN68KgeS_`AECudO78xJp53 zi8}ou9PG|RV{iu1ad{Ch*1xEOXH*`$&g58 zhQ^{m!Vyp${TTs8cvk&<8uhQO23stKQV0wM5Q|hr&lO|uSrW1j%K}F#!WW-@u-g1Y zMK(tMr2XVuTot0uocM^%Yxus~DRTiN(wpo#Ojmvr4bfj1wfS>T$l|9J#;(QTB3hN@ zd~nAAOK^Gc(;$|9G7{{)!&m0+iZbr&Kl1RgG3lf0AL?~ubPn4MMsP!^C@{)Rjj-;! zIFHb$Be1O*b5E5E*oBO_57JZj_EIBM6P^P_4~XCAkYsghHBAAB?CI}knAq`0%ztzT z?c~%H-%Ro<3PQgSbk9XC^b!>1CZoID@B6~Q1J{L+^N0K{K>jvk4xC&EqCViwn-y*B z0TGDZ)^3_YZh$uT#tmvrTV-n}=H@OvwP(KV{=*kt3BKw-x)Kx)(456U+~MJI+t=53 z8Ie*){SM5EV1$s(V5;PmPWs@LhwXvJ_j1F3BVOcj>xQ?NBtRrPQ+9I?pbe@-<@4M&!v{~h&zM+i3$;g zzJ7`F6?P?u#C%i9Id>%*bS6hsX=M6Za`l9aE!%Al&8=L(oa|!%)4JGo zn>J0ol-m3Xg~^qpjDT9(1_yRu13p`LV#>rf|J?t+0s23OnAqzE?!G4B1lLm zA}JFvH>u9hPWdFBZ3i{C2|eRqH*Iax4~z>wMc?v2DkS7o#a%yox~4$HN!dN5PDl`i zc6C2$mwTs&(c@0%tfnj9gL3|))BH(DV~Dev&T`{nT+c(OQ&Ir{J}OGw@5%A6YK7GdBSPF+3 zYw+c$2BeKni_zBuz`Jnq;=RNKuHlBpM!{cB1dp&B_k_U`WM5iiCZbA8+krt0W3%X1 zplu&V@&3r(8dQZidYcu`uOuWgIJA`%*|%e^Ry8zm(5%@&yB1Zb*U4|pX}lEG6%`fB zuwi(U8JK9c=UrXbUFjXrceKGy;VS=qtgC@hA;2p0J*729kkbZej19m#SbD}nKO{S(htpen+|S4IC02aM6uO#vgJx1=F@CwvRA zw3p;h(UlJv8XJp42fS&mFq(Fd$rCBQMV%1Ozzu}J--M4E;o;*W)-t5K1fVR|k22>S z%5(ye6E%^-dEcG?x0?@)MHlJ-BRg_$0G>ZD*S~8C|D{hPreTHGh^G}xP#F^Wlh9B| zm7te4ygB>@Mpb~;F$R`bSa{*i0}uCem~Fd{uIX=0G&;*UouJvo7vp5r{=xw)Nl>YAe9It05j5|s% zXkv}}{AfV#U9{Q=mfxT636w|n!DIm0`c=+52@g|jdb|sJo8ejO$LJUU#-FY{HjT8= zGdQ^0iW!1VkZ#%9M~C8|KSAab)zl0_B>VpTjJF`Y_vnDXXMs;#%_ViEaAH9Vpcc4Iag1{Pk z!B~PG1FR-{@9{1|1@w+~9Cw_x03D1{09%$vEIr+qr>-!9hmsf!LiX*AqG)P25bU2+ zV5sllVu)mjum28PvVh#v10nnbX!$PmWCVlQtaSczF--3tl71gHu%A{F9e>%+pU3;& zp=mQY+RA~L)Z6=g1yR|qL@y4_s%s4cnpV^eSNTiO%Wt^v3bi&gDj0sH0(?c02a5C^ zOhQK-RKuAaEO`1RZbrUW55d~KywJ74K+6T6gya)RnV03QWX~_Dkjeaw zl@(1t`Z=OsA$cEA-hAW3!NNG&Jh$hx7FYk&$NR4QmwWO(^*T0|>?kF|2H=RQsZdQo zn`_jZwUdCg3g^XimG$)4m-R2h_AsGdzkYp>F&wU>Oif#t@2SiN;b= z@g5}Q7dX(6=_l@NPyZy4tSoiYpH#Rph(R>BTd_|y|H~Kg2z>olgeWvHmQRyov+UA@t_qqtl(%Sf z#Jd?oA+v*=XZ!Yosm&hxg*S|hK4ZGk4a$)%+qXZgp25av!a|_m#uiC5+dqnN=*bZE z--PQw4t<4KM3n(~ii8A*H-H4h*NHgowD95l1hjGl-lxY8NQlv&CCabaJ`Ox>)U!c# zN(FF^1iA{i7d^}T@I7}{GM!2W%{uTtfS*Rl3RJ_CSmw{6$Jxme4rT?LO@aY>N2O^E zjPmD^XaqP#5GJdFZgdnFU;3h*XZ^NqJGvYMezH#qS|H#R;8MSUwjx^Mzr{Sb0PSEB z%QJ;%v6~&fbJl7F_zACkGEGnbDOW*^-SO?DXu`T#vilm6HJ$WJY@d+P$s9e}r;Eya zH$*`psjB*>=9o>AeH1uk51jl2lnrce(EBBl`lPdy`ZifMmz0{?Z`|G0#YVFdn(E<& zt1Lms(LEA`96omu@7~EKnZP@gR7pqxM{jjq0+My>`M-A=ck1g^v*rdfNev7nNM8fP zT15K*am5E$Mmov($Vl-m)0_tn9;>Ch1>h$l&(y}|q=?a87RltKq*i>zvjp6|S;@r% z9F9m7zLB;9HokX&gyHPOKy5?z2LRkXaPT0V|C-gSuRumo3mbF+Un%pyqlZ-*FK_J-GC?Or- zwp``+M`?f5qi~s5g+}!2Ox~pPuNulx zz+d_tWe+Ky+2W`cMb4OHoRoHtk*$?dw}*`wlxH?NB{VA=MiU*8cq8R z;6+zc9m5NSm48L%?urF#L&N@OPF|PTTnQz36YZIZfLl-ujxlyJwi6o=ytZY{3K_Qs zWbuj8_bxiOYu6&7617~9O6SCMSd!O&TL=;~U*b?kfyV?nc;rZpJ<|sO;;5Y<1%YxG z!Zw0c>CgW?(MHB(;DO&`X$G%R!ZSSvR0SOPyz+i2R!HmnPH%iortTs9{D;0!_X2=7 zh{?~QHX?bv{I@?Y%i`|*N@{u|7fY+mJbL?c7@W+p}=$Uw~5Rz4sz zpZzw|tpIL2jj(X{u_?4)Fhx0eMY|OE6hwQ=Xgsjkz(n)oN`Uyt#z#^FLGDA5>J+_P zFtD-xBEqoNJJhc;Gu77mtl#hyzU1O-EjLQA`2qtfLbITJX0yhDF3cF@BPDf7D$7QwRV7Qj?t#HVKNNSqe#vWSwM-yjUotx=9kzQYG$nm>hA%s03^1LkI!1&8LJ=Z zp2XY$h;Cy;RO!=1mPQOLj@Q2<^B3_;7A-ZEmB9P8FBJsBY$&mfNS~x@Z?HggNua4= zqS^;c^>GyGpzZHyh1Q%)=N``!s0OGB&OQw!ZQo)O#1(r{kQ~|ZyS@Et#z&-M%)5oVU| zVjP!PCPo~_*?=70L*asE8_*Dmu%-wx8SaF-lyO>^~n!0*o8KIx~i%0hmn zidePS+OzJrDJZEg?%BI?^Vzfh(izUq+6s0umeB&y{EjU(RZ54d6sk&XOYNJ-!Y+58 zDvb>20-9j?;ek6!E9(;Bx!(>wqRfSO`s*G&ZjL}%fObv!)ZVnGjDpsKjkGPPBVQTx z;51ph*%g4JDc=-jwFg%G&QBybbF!~&LB(U+8yTRQZ8F@Nzmv~Io%U46V@C6Ddr$pN z{6yov?YSNt0**URe_}QVG~M-;!So0G<%@C|PTth^5}K^VrmtgQk}a^eLreSBTMknN zibY$+fs8nsJPL}Y^OQ#^$~a;uE?FDs>wn`+ZS>)YPh-hl7%&YEecXKW(}uB}sq7=s zp;oG1Cx5MFXS!_(opsnjrRi)`A7k)GPqizCzj=_tG!w6Z{E8=(j>T{duYDUaw9i}6 zCpygT5W0+k96fA~g828+hX*;P_6-e>JmO`&Wy{|F zvoVyzZ!}V6vX@`px&OXAGQ89O#waO@7*#@BKodTt_{e4=ddK2?uoWt3U zFW^#IuC1zA5hiFIXQhOK2hW*GT-I^nO6yZjONkf9MGhDF(@pLn<#&58i3`% zO$O$p+NZ7Xd=x$M8*n=KAMNfjglP6LUSf2}CPB--O5C;gb%sy{azoc@es);Ljmh6Q zr7nuR!~*P54L|}CRMN0i2!mNaUZQ1<#w~pRuFA_Ymh0c`wu_}4PF6|ow>m^YMPadz zI*;OX!Yj(78p+!Echqkc^QL1(VsKNaur0^CLHv_q6}?cuP^|DEFSmwyj4eR44_CfCuxh!i zq!d7IjCy(Mc>705yG(L2Tb355z)8+WIh<+68d7ueQGw_cb7lUPyLngWYIByYG21lR z0TRe(+Ptep1TW;#j$;wHefU^6vfn0Ie57XYxX)nn4Yy{o5dmZQ{WI60%=x><<8(sEcpadAC*0d>D78xoz%5gVBfU)cKLle6`xH zmRnAh1rVuwAkPiCQ+uZ|!T1f(9fBwPOFR4WpnogEUd(j}oA%`6VTIE*^6_x9pU*oW zb3>^cfayJ6un1R9)PJ*d?01!0)p}newUlP7%LJS!o$!~~Fzy3QZ39E~;Wlf0 z_f=vvZ%a`IjiGReQxR{G*lo)SI_nCq9PYsfTnayqS(t=0*CD>Uiz57~Pi*V9#X_!Rm@VA#n z!=|#>AyK|64Nh3yejxeJTN9p2FYQDqv9hYwaU+RX+^u3CBr~HV&+cf9-BPZxg*!Rp{i_|km$a!d#76c7$isA7?Y3Xx8{!|&i$G_~*km5x3u zCuEcQ1)4?to$5D~dY3_A?>u%zEcSCNIi5 zYntYzRak%?ws*x2iXK0Cim1)rf}`i-(|$c5SI!n$v#=C(T}PSd#$qU@!sw+>?nPV9 zb@YO^V`XjaGi1*s^|mS0>o-o&`XTGm?i6uyIMr*7Gqp-=-P;71?G+PQb?1Ye$U_Gp z3cl_(#31ZogKP&sQ*VaNWzpDUCP+eD4%A|LSaI6fE%9i_6B)<8%QFa5AtVpvtyNM( z3WB?I-65See2@~D(KP5N4Cz{aJgY{X13&IJL7i{64LMC^-a@h21$wWv)M@fV#HSS$ zJ#2wqcz2(zOHgL zgVAGz>X#~4hA}uEEXCJkft>et2q)#ZaeWfPB2H{DS`NH55>;Anuepw`1*CXso++`u zj)ktP#MYPbVk-X|^y$F}(#Nsj@5W?iTuS{R_HYMt^6qdY23ComSMobVkx*|rR~bvO zo}$c{6@fF`hbAvcZ*hJmz3)w|`IoIqBqkI)@i|Nnhaf7QLb%d+MQITWvXf*bygQ7` z6{7*J@3SN)_f(rTZs$%?u#{8wzw8dPkH_7Ep7R=N(cYd)t=@<)a^fxc5&{UerdR;_ zo_3#G^EG&DrvH9lH2P3$K4QM{`5D*Ia&IRdoM@+%CaZ?s-feh|-w-{ju2X(Q74!^M z9BoTWuJaNWG-N5*k8rDsI-gxjcz*?0pPEt?^UBOqXL#p*< z#n88-@bK-8TNq_6Re)|}j*a1^CYU*C9*2jhm9Hy+*ty-=duE~GDHY$Y@st?16~DRZ zxs#g>N!p4eextkR|>Ee$?A$OlDC;vv673&Li_Te)EnAAWe1pGJ7g zIKwa#)QFzM;790$(wi~hgwTO@udU&~zc)M&rfQbyevgGrhW2|OWoeKDuT%S6{bpjB=`)Y8Sp zNXHYu1&MGsd1X*;BXr}J8u|}s7I9^6*~FPBtb$7d$W>E%l5^p(dRpSADP#OZ@uB57 zxl_o_0@=Anwj-4&RUOd7{%E;Z^<{jU#U6i{!)LN4(y~782Oo2Qn^8X`sJWO=_ zQ0uUvNc~YEBhnO8T8F~n_?6G@SbmY=AR3N6$k%E#tOv}EjQ1~sS?PLq)$2P6)~Ju) z7lm)=_k}oD5EQUYlyqni&R{1tdKv~(+i)^DO}CM{^{W?CFnA+wSd&<`3u(tK7tUiP z0!7sM4gtov<7iW8Ow~J;Q5?dj}Mxn&IP366=k))`Vt)Ky*+Z2v=j+S24I#COP*SyKHrW0yc6JQ+q zqhko!fk$=DN@FvRLn{^YO+7p9IBaG)gl$qc2Q&KP8zDVUN01)HP*tj36N>T%U)>ziyf$FAS&7$bXX{Djf2~->jn2z%5N6g*g}dN)aRzm1F~j z*qVW)3TYBIXY_C6CLari}FXY`?% z=8;cImcokZZj_oS|0p#p6)A7xdts5Kiu9tfKgCXa?us!J;5a9GDGEnfcxiMKOvt4@j7@VEncuzUWgBu~1l#6E} zDS%`{TOg+bmna)8Dx^s7fEYk(W-J(WW;#d9DhWC~9s&e)i*oTml!QJc-<(>SANzpn zE#SznBMYSdFxGUhk%umo)FX;p9WVzOSh3so`G2$kC>X@6o*zm?xatBIQ%oNIL#~Y1 zJvS*R?0yjaSO>aGT@uGoIi4I;UxV(U60HI%^_sTg{GfWf{kKXlSH%&da-FOdLDmIcO&=LBA(4Wm& z(c=SuMLi@7l&J?VN9h6qkJC*3vQ4c6B@Ny#>8@p9XS9Nj%HlWja|v&ax-SXfJXobnK}uVB({YTqtjkzI$X%A6DqxRs@(ia5bBZ<0MxO@M^sPV>`n%ifDf zs)jB;y9wi^g&sMPx-I0J4}?a+dF4CS*A`0VMBZ(|6^Lv9cH2M9Vf6c`_;ji8oKYBJ zIbnta1*}cJgv-9E7eM61;}f+1{Z0a_V0FUE*C8bGJHxYQH1de!K@yc7(ypO+UVt3U zi8@Kfrvs|j(iLkM|GFvW*np_BTy|bq&$Zy(_VM0UM`=7WD+HoPOaduYQf@dCYqsl% z^4VbrA2;rnq6ma`rc*);Mu}%g6K5XTDp%FYgdf9sd%F>1$ziBWuonFT%2>sOojm$~ zk!l~>NMZI+3)q&QR>**=X{^}PiQ5^CVvx`hGV@82w~nLjxx@0Z1DHw8^{V)W$VION z0%`QtBxsSt1^8)HrlLcuAPi;!Y|CZlAxR2MQe2bHe5Huj^BGCkyj*;Hr=ixI>P$M_ zzH=Q&g?7?{BcCbvQQ2jZ<^a98tw~zjeVEI?svAmaG%vco)v4go&dYy2J#ETs+MI>8 zRR_V1I%5F&HVlKEZ}3+0@Zu@|1_o{0(9rCUsLRJ-oFv;knUZ?Vb;Ai|H(9Fvzz_`; zvQx*$Ao+~~?i*1W6B}D}mzsXm%Q|Zx>G_w|Gn_aKC`~A9%lK1Z7N@{RtLH3EBy^+f zKeC(#E6U1H$lce4G1SbUb#5?DTWZhao;)Pzp#5twx4Vyoq)~uR^7A`gS8pi9$}EyP zuYb=+*;LC3P!G=&(^S}h66!+&nCN`{EK9rwhxCYPS?>GUEt#igg zN!&}RH;6?VC~FV`&zFum?iLW=E&^XH*9Kkg`@FtMvWGr}T=p2$l$?7mxJ(Mo4}Y3L z2N~1?;-j?uWXgue6xZk zFI6V)@`|*8V4P$x1Tw+N+N+Yy8SNA3sh*WO4&K@clpr7X2?1EckKCi>;;Opj6hyOFzVQgxzhI%7>JrEkEb2L23 z4l|=z7QLS&p(P7>kLXu`TIv8Xk%wu1#WW^ph@dr=S1KtIkSf8DTeB<1skXI_KM#Y?u3Nt2i_h+z4z1D zRj36j26CKGD3wsNhdf4sQaZWTqMjg5I8Pm@0g8~Ps(-UZkqat3`OdqOAPuNg<+Yzu z#0epG%+wYL`=bQfFA0Wb`MR_$EwrrjdOLJTfx=`*wxi-=FGFWX%TF1o8_nDFLxO+GLCPS6Itc8BlQaje)#Lbk+z=|CiKDV`JHq3lgYq@}KRcJB2 z%f%{ZGIRsX6>3e^CwOUptyr!$<%2#x^>K!9A9s;!;nKXK`CMhjquq)DS7~=Vu4KJ& zX{IG8C{_4nR8&-xb46{(2E(#n?G5wR#RzUzRHtFx;ZT)k zxy<-?El=lUu4Uvd$&cC^8hkC82#!zEn{n(7TdYX$9PF4>RxR09ToLGWSh&6ZS>-w3BR*_g34O?(=4(w%O=~BY(DcHYc$qkUHf)l z^x`^YGZ(3Xk(qVfU1}nN97l3z9r_IBIzQ;m@3|_$T-j+BeX-qUU6atD{Al`sp^(#5 zrQrLQ3(f^aP4y~TCr=hBW(97{9a?v4o~b}7u`#rtkIBM~CLog`_0zVDgeCdK^nw0M zOTDVOF=5}f+Uq)%jPF|!(vsKmncCMM^%Is(5ZZFTj&j>w7hDO-ED zhZ+?4%OsVX9@<%unZuOQWXdn#m5|PqS?jEt(yclkEFCUkkgg5=cuCx| zyi1vb$AeFFc^e;bF35;&Nvd(~%3i!sGF@J$GThZ4BPmrfSK!@EHJ7UwH&;BCkn?Q2 zru{LQ;?O|$ZoyFU-%|;thTA5FIjw)xNjRQd<5_RIp(r!HbYI*Hjhb@XS0_qEp=wUh zO|MA{F`f*k5l#sH8p`Fkv99ZARiIM^(?T?NgU-}=_=S>v*(o+UyB!waH7-=Trkl++ z6|)FC4ec{;Zi~L|yMeFo^QcvZt93k+n(#Z?l6{trOD!Wd%@yr76~%AV3PO3AN-cG4 zYZj&+M|KTdT2jG5=2(d47^vlLpRQ-j#mnEjQxd*#JQVb<+_#{|SrF5KI6BsLu@)coj+N1=zv9kJ z8M_tZwpji4U;NOOxQ$E0hu+EY#^P~3MW2q)2JgZnUQ6=#X&JMs7oy%<{nlN&K__Et zZ&ZF*=%=%4303uT?uBTlpW|;GT0M9kH4AUBcKi@R0XGVzcnbB|m>ApGFBg_5DawTZ z6I^&soQQg7X1S_0WwVQ^eOgL!ss2)jb$?B=vs|2~?~~r1SDLoe^@1KXPiST8Q%5@0 zGuf#cR0c~zFT~DY@lR<;u*^&rv~8LG`cmb@MA|DeTe%7ms;~2=v&JLw*PU~HtPHnF z)End`RWS~Piy8MXs8r0F?3AdOjBTA@N@?k{QL}QLRFIid*k)REvbxd9m{-YdA^y8_ zLrt~hbYZ(@yUmBMzSG90seVaXb6VFe#%H-6@o|bg5A7VBogJLD`Cwibk~LqMt2^^6 zmrb&7*7Ql-IY%Le^+M0>QUd&$%YJPz%+0nabBa8vx=8W>Vdoh5DV(1dd5t8w;35wUTZJzD@{;mpSr~67-B`9ikWC#U4JmcYnq<-Vx9{%}gSfzzwhWii-KBzLplV0TbXj*50DlWD!}Qbv`h*#qrkR11&>1O-ftnJV zisXS5-?6({6MTBvR=0LL&-7LD9hUT|tXlsgg&~()z~uN|HQG7>-k5>UlXAAXYB}bz zY(i6!ht*GTC-YL7_mpUrbTJGzFESgXHmMerTb$x3_Zx}w8Odm0xYeI#ud5ka)f5}; z-Jan1>nV?}0&V@I?@l01DedP47LtR#+U>76efVmY5!yaolGIY~$#*06)Eh(l-oypP zf`*EM7lw@N4XSYigIXEQLm7g(F&!s!evM>s&jrxb*zcc9_n+&gX+N-VJBKF$I|HlV z26ypsGQ9pZ*Q+A3?Xaq?&KWURhO&ApKfAEz3gFe`>vKDK8M zE^?L72c|O8oI{UKShILNH1sWa?CT~eCUQ(L8WoVLX!f%>( ze?eX8Yw%XjiS+5JaNUwOGci)eC5*GpzeV)Dx0zXtX6dYHA2;0a@VISn(!6cm_z$(@ zj0>$!RMw?y+!+0&`c9~d&RJe*#M?FvR0?Qm&RZ>g5R9vx-l~AHP_Oj)zY?@ZaLroJ4@%oMgx11nz|XOFYT7S zw*;QmJk`>Yy)|Ao^)Ob%DYPUu;6(h7BZ|Ud%+*WD^BJQ3R^RSXH3v!=thTbtGSQkF z3%>Ac@cEgbBU%#emfO3jr5cJSM5L+Ypyx6P9Ctbums<^*Z=)J6y+AZzX)k#@aiEdM+OvzgIf4@@$5!2d} zc5Xb)V{wXA&TzZ~Q@jry-E-e%3l z%iY}Y-y93V<Iex=tmgNK2;(*459Jl*Vp9#3>!co3c}Dzjcpk|HYpvLlo&zC)JKf z`TG4O+>mN#Tc7#CvVna=gIcp+kycSVUyi`U#qP+IrN@tghAWJcCRTK&WtuuZ4U3DP zke$u)c~C7;)M=>a_;lCXmjb$0Nm*Mp)XQ~eG8`SBHY=3RzSf-yTFQ+W$SrohSXART zQEug6D%8_FA#0F#eZkbT|0R8cb5)#oYM9DoS4g9C|C$e1W(*~LI8%gp?3rxLW;fK@ zcs4Ax2&j7-Eioyr?f*R6Q)$;bZ`WfZGBagTm2Y>$I#XXSxAs+?+S`ES7Ov{FtO3uW zt#92@jtCz%aJ1l|m4Clvdet`5%rPn3F==EmS(!P`siJwd=W|+P^{5cfK<;QqMGXpl z!#TZFS@vtc2lZZQHRaJ1bY7^I*xzoZH0iz7OUZDDchN$8ab)kW#dn>*l7G7!esKP+ zEjXC7a8;>VqH`fWV&Q6VaMP}834wNV1}yndniUl~CNk(TQ~1Eov@2>&&f`-FLP4y( zN_2J9|O?s8I}t=gbIH&Omxs9u@5s4t*nyS4Li)5DKYTgrxKs}hrJC58`g~>lP-?sL!-9_Sl&eW# zf_$R0QQc5|EmyUTx*~7?OP__S>|Gq30SN-#9DZI!#&5kJ1dI*!znEWCH0{4XlIA&4 zmOk+_eI(6Nq`#{jm5A)mk;Qkn`d@l}>CeGuZ1G!M4ElN-k3_t|k*`$gP_2kn&8&V# zo@t!dZe?bvu%5|wf0Je|yV2=)pE`}K1vRrZtL<{+dTko>?Ub{HRRu4Xr&Y~NXIxvV z9UQe>{&dw>mXt61It-R-eT&6Ov$x{sA7XN{Xc#g*(o8ey?N_XHp;XbT@qINug<1Oh zft-n1eI|Xqud#)5P5ZqUSvTfRD*JT2%yc^HX1w6#Z+bxDXK1_GRiA=w!hW$~Gsa=g zx1@b^T{F(i{4k;aFm*lCa?Yj^VS=xj%V>N5O?;5q*EiKo3>o#4Z8*bwx&|WJX9`;a z5_~4go1NYT7j&jf2}D};_SA%`FiSZ#e3>W{Y%cV_Wh?6FBs@1b-xBgY##G&p_0*Mz z*<*E23ZmnqqCSnJ{W5!=JyB-IJ2}7jE_9--?PS@YL*&?80oPQfoC9Z#1OszRc~IZY zuq?$fzZ9xN7CAq=Mw6MelnQR+wIzMf;8A(o#bg%hRlsDlowG)ip<&_ewS>-fA502; zFLv*jOkqCCBhoamRMfSw#=3v;U351GuhjO0PMW@wiSp5ffjDoPS&hi{n^!BG8m0PQ z&UJA_>Iodv>ctn`cDlPp!hRvHIPw6eR{w--`J!3e*LL3V%*kreq80C&241dfH*+(K zzm^-To%vdqak{!OwXstyju2jhcsTeSIjV|KoiGH`M*iS1~KLdUh3bJidzZU+TLJZ?eFk%3z zmVu6<0x9}?!8xg&-EtuqHe41d!EWX=FX`Zbd|8R2C1=zxK^M5`p_7N63t^|o1;P#h^5Bp(hx=^zI<4um z%V5s#qL#(U)DUnegvgo1$}V-YFI)QsS7#6zu@7s2y1C@y2=mgrR(*iD&44EY@#{r~ zps*VCG{~ASgpjrr2uN1RRm`P-BSoo#08Qik z-m7Nc1107ns3Z5a!l$g?MHbsdx_mBj9mMBNRRdH<#%Bm*>iiy@#G_rjhm^D&El*%$ zN`xqtewWD7m`G7eu0!AD@WN=}iI_Y4`WAxN`usQB7#b)ljTr~^G#npEy+L`iVk%`` z9nbs^3>d^l!G4f^+<&u6FdHS`!VQj@8jIH%4%i7->by|nykBy0LTibajA5_yTH6!n z&!rJWpe#b{_~;TK7+&hiH|0;8)_{m!$Cb8+FoQnJR5f`BL`T#5&1I6%QA8&Me~MsM z@^7BOXlC243W83BSU1~B`jCH1L^&@;%4`X!4;6$jD@M#>bXQY6mq}~Avu>H=0eWoj z1Y3!1OthTDTmIB+PwFA=A%J%2ZTA^|g3J8)%N9_oIp7C9s6*gp@*Nyx_=ghy*hHJ> zM^y13iGHims=-*&hnk+PBX?;ocO4Uh%fu(5E(4k*0I?*IGng0i*60GIJive0avW@FMdpX+f9r{G@UuSOE&ys_3}gO+l7zIC@6>v( zHa{LMQmlk?%laKcnz44~rIS>v*B>C~7wYgLBJBZu7ljG4mf7l5f}T9@N%YC$6-ft7 z%nj&`cpKc4-xt+Sq)G;ruUWq@Ee zFw8ItnCT!yJGaXBc18wh76MEQAyB(VI`4SgjZ1R$iMInQQC2Kpx~E$+)-tz#h9~;$6sj^W799ofjiPB_Ny}}^h$9V+> zzXTDC875z%FbP`Q*ep{a*5)66W<(f&p(85Tr0^Vr@l$fwf=x1Rl<&pe#|&R#6&C?P z)ghA*cU$>(4ahcM5JD%(69RVk6kmZGfbSvx!_TR-W`72ZzGPlF@LjE{PX2^qz=^4`@B4F&=DtemMxKyUIJi9m)>PlRQOjY}!Sx@Q8=M|`>?90^i{h#iR~5b!oG z5MyfOp+tP5tfpd~Z(Rf6dWz@_!JpfMvAJwI0DvBHw^jLMdFA~V7j!PT4Z76~Ub z%qoeML%8R4<0<^`S2IzuP|mY!y-P2>tN;KY*61`hKrX}sTI!xWgy37B z=_Fpgdv|ONC-AT@E76=a;|XqO zq@y@pY7fMh=ppw@0xHiTRCKHR0q90WM=>gX-B;?wcUUWP>wbG2A!@KJ86{zs^%U5~ zQAB{uR`=&agp{Kd8ZRS!BVlJuz@0{j;xS^H{X4$!Gor=9qb&xitBA)KM=;aC1#*AU)*#9c&oTlN{Z)>%b0sy+=Uz|Ul%pD`IJkGyj$Pw zUK*FdEI8Bxkl$(ScAD0y8h7E!?DSU~B}z!i(a<4>Xa}90dG*imhZftI7xzkzrk6T$ zZP&EX$){UkXin5=0rZesTcV<}y` z_~nSxvN&j2JO_aDl*g&Rc+&x4--3LOJ!Ww1MfiLN`>lcG8UT@OBsddBIYRV~a5rRy zI*S7>i=2|9v04j8UisALWY<*iI| znOtyAAX%I+LLmI!<4bL2+PqacNnaLteI~1^2G2sgb#`p4I|W6xC#bZ&nBV=8nlljx zqB;BkKcmkwc3ukIgwgx&Y_^yNME#&4Zl0YtqC#JUsVipD1(j9{4a z;!GCQO2zoJ8W!jC?4IN1;(TA!1XII^pP0crkzGDk){SQAfX|OZ-2)q<|A)Qr@awVt z+rKJNq=^#RibNu`L(x#FR8kZbLNt&{3#Fl*CehT?B1JpxL{XtgQ&C1G?fM;O_xFB& z-{*gLdfl%VcRu5~&g(qi^LQUe@t{rHx~-vZ_Y^K28#y{|O1Wna9lb)K??#Hm_iK%v zKK)75F=i~ixN+r?j0>61g>ec~fkY$7F7)ZJg`HAKR|W%)N+Eq2PhP8+x-wtCk(ZB- z$8op0akY@0ucZVDM1^dqQE)a$;uA=x?=>K-X$sYoOLBabineAbxxG*AzqyT z(l9tRtI{gG<>mA+uB@K3bh3&(<73$;_dWYyc86R%7y(|8)vt{x`IGbs$TJ`_O$h!7 zHqLSp6Gni&m_I;=aOx1VRF`|a()V#A;or|9hC2+ZOzTQ1DyCQ6l8Svlw286c@qo~r z!9xQ2RvX2m-ePQBe6_rpD*i~CTL3UY>r|4NZ>$@HL{)922BHt8!ZAtsbojNiq@S=jxo5b_k{gl zECAU=UAR)ilD~Obr@>=JpwySk={Z+zVBfnF!QzY^I&EjsNhUGtWnAIv4R4*29`|+r zWp~|(s^OIfh$~JOH|=1QQoGmcesBK4_uqinodxh*E##e+Y~$z78+p2E^XLbc>@mLd z{4|zn=#E;b@J6-2c*p>TZKGGA%cw)EcNEiF!fNQa6`0uijl{9IY(hitH2`0&TY8e7 zgAmo&n%etN0zEyUI-I*#H`2-o4o-+*hjM}JTD`t8nqYNcLK_J(96B6)znlkTah9j= z6O0^waZ(t_NaC%}-nTsnZ#{Ga@zsuH8?I=RPB+;Y#2LX!P>oFMrM8n@2T(L`AJ)!R zu0yFkZTY9>1sW>FZ}G01b1Skq4i>*8-NDgbv@zS9=w4)?pC}eCiHeoQdjU#6 z$E=r4CL4e-QGZ+b+6#Pq^HT`BB8i(P0T1v1(}{G=y4VABipi9}K~wqzwkO$^K~E+9*v!wFNBR)w@3)I`3B4#i*uf z!D*_65U9;ZV3bz`EFEm*ftA5#5>dmp;O$jt+PX&E@94n@>R_>WW| zt;j887(8-P(xn3tN<$zE?25@wk0WMV3}Br`2mvU7KSf-M`=pDGx)9hHw;q+IP3u5z8Y* z+caZz@Y&Z;?jAR~d|@7a%5757C6BKRX9I>~fgbg?-H}?BP8omew`8s2V*GOg z&_Jar!@uxGTgjK?5G(>>5Y61_>&EWqpWsYxJa!_R78xns(Ikq}jszSt8IPy#J4Xg} zqSZLm#r^v;i@Fe@It0>2HbQ%o)Gy!M`s_n|m#WMFNvc9D00uku%<5QqbGEQ1hdU~Z z%l(#6CqJj9rfz=dW(<&LdGnu(NlUsq4W2*wmSgm7a;4#f`he_4itcmj(}($i%hFn5 zT0?~1$c<@~2UGuv6|^HCnNI(CRQQgrHC6JF72*WpRgta8=xy0Gt$_t38e z8hL62F{Z&uAw4qh*k41?L@teB^a@p_wzUIR7bHZWa%3gnneVFGr+wdlcl#!_9d7fp zHw9_hM2N*>pK*wF3JXy2J3>)^gfrD?sMzhAhaZJ+x>?z)7!&X)-;2db)A}% zY5&hSC9iPa^pYcU(FTi9i$A-FUkz!kd9^Cxu6r?F#<^Z?KvLdq29P99JO|wW$pJq1 zpO}fz{-ItYhygICCu6f%@W$g|wA9{H(XQV}*h-5lT86H>dOYp+refgPqJ)TtCbuhk zBD=XGWXC;|r@wkSzKf8`M*~(vl;TWpnb))yZdoTOUxUec)009?`4@qaRrBlLJ0a?F zcu1IcZ=UGq6ux6F{*2g)vj042UE1G3`X1lDG9&M8m08Fi%DvOFHi*B!SAems^)N}O zBGjl%=Hfj3HG5t(M&xoRORNz<%OYuE7-P9!AWBcUSCA-LjleaqmK3$g7nHD}x{R@q1(?|NAFJ;NLI#_qVaWs<^uU{&5#2rL_O`lji+@AN0Q#OHpZ2QCld=6UJPm4&@FKT*O`ktKi`f zCT__Td}WF-0p3lGz+3zid0g-H-xDH4ihVHPP5Kyl(&{=i7!gG*sGwZ-=@NAgo!>*u;4^AXx89s%yYm zxSUswxxN#K%kJ`~8_{2Z!;2NUdr6~bsTaKShBv|ia6yCe#EWQitq!H!&kw|(8FX0; z0SM3;@k{5Kdl$niM|7;a9M-`3e-cY~&=fcNf|zr;U*Z_1d30TifU~3(yixM_?(d$+ zHG^8w%rB5Da@ox-apxJ+5VfBgU&sEAMr)k;88h(d z^6Se#V_romDJQPYI!nZaYuRmSi4Xys&m(0Y_7sz18LA7cHUcV2;GjtS2~|`|iYBsF zm*J*6D3qx134RB64)?8^DC|)bh)o1k_Tz+d&oO4S2}){%S#@kH7|WC`emck#=>p|&Z;nMlV^uv6S&^^7^}IUl>|Eq5Kq}q` z0&aUVjSPR>IrS!7ilzWX0jgj+AnEt$C@pmyx&oi}5+VTK4~Uy+D2RxxmS!JHk~($R ze#0p>i_masnn+c--1Vp)`+`-=_7;D<*)4ou?I$8BL;dIOb8Y@}_h}Hm`JYR;a^>ml zz|xi6-dv1qYehlLIR9j$78U-O5;JzW|H>E|G*th{O?-Ju!68-EAh%;{6t{2X`RLWQ zML%r`NQY+z1FdMmYLSb3J|o=W+~KPYB8!Tz!5ednN@-cK@H#mH#x#?l z&Z})~TrJHlkZW<1kD?$8qa5Jj?YrWmZ-ADTR?4v_k7}D)gZaVb(XVK1RysaDPEUP$ zarF+bM?RIyScYj_Wl);oHTcNYE34GZW^=_xz%)WnHD#Yt3Kpz;$i3@4rCoAcFg{)% zF`8cH@wF7LCHNazf~Y4TlgA-oC%?ic1fT9+vPk>O9%e;P7>mI8;Jtn&+p!%V>jgo* zK^}XRr_})!Xn)-~uIW|F9Rr#Os;j?$qp41P$kR)ojpoUOTGa{U@t-~7Eyk$$T$Svg_~i@??jQuDx{w&KFD@RqViupHhRSZ5$SvG#$Cy7Remv;U z?XzBOz6b|*6TX-tgh$xo(=A!1rt|b{MGrROx-JlDTxvG^Y2>P-k8@it@P1s<1v-#V zB`(H&mfjf=ViCOHe!R&?)?xLsYI8=rU#gC9E*g>CKf8n9B z!A(o<`jGHFYPhdY$WBOEZ#@wU1N#u=4$2VnVQar5g{H(Nlz#8+j1ZzJL(qR9z~hgt zy?r%`^(!dCbAo#l5QwjcfOchqN+2y|ly`okon+e(u*9Pew*t_HTdXV95D^tsCl`AZ ztXnkHn}>=u;AgB{dE48UUJDx1mxX7Jx1-J=j_V*l)&D-_6QK8{x2s*KyaZnjO_8JNLvrqGb^krOnINE}+`;`l{H4?sH(#quOj?vK ze4~4jkHf1i%Hfz#SxLF043mJetAI+V8*D96{aCWE4D?Y|%wB(jG@a`j8~ew_$nm)j zvL%WFMR7~!2|W9ZcbH2U!B{6Pb$jJH;Y-`;Tkc6ge8g&NB-E>}qto52YtzpXBcgsH3O6D85elxNgEn8C9wjD2UhZqp{fXZ-? zcP(w5FeNJ^GwOWbdpQn+2%%7QFS2$&qs70&4VBi>x?Ge2J;8ZX_4hM6({T`!B)S5a zrMiKa-`T+aO&g|rAIjtA&4{bw^+b4BbIjf8MMRIZAg#+OqLkHtb@ z%fw7e)>BO{u3iAIkKq-0y;NO#UgzI5=(_D8{{(^K&0wIaV!l)Rog89lfe>OR%rd$| z00!&Jc5HhUV<{Mivq2~)!7UIkmv8;0`rEr?8cN>jPxj!@CINw5s~5skX#t1tvuY^& z3emnX^I5KZgj08JLm{ZggIyNH zY^zsqv{y}h3B`);A3ywYLcsmPMwC_X3HS*eo0zB>A9}BothIq~QVrW=yoK*4Dj~GB z#>HtM&Ja-1vw`@d(&FYu>8%n|3Y9CpYt=QQB^e24CP=+N`$z|l;l(|16=Ks@hT2wA z;Ll!hciRc0K5RR8ObQVRN$^yWJ)|Bcip#=@;1-$Wo|YBJRX~(*_b}G${LHcUzwicz z!7rtXkV(;gq_Gw>`Jq&wL6!6Zq( zjl5MrU`G_}LjttQD0dKP*1J854-F2cfjy9O99;scZK=y&{XXzVdGIkj(=a+q> zI*~zp@Zf=&*8z*GJn~LU@N$dOr@JBQTZ0Ij96+%a94@GJF!71!lfy3n?!UI5sQ!=A zZ${zu2K*)2U2MlTU*vFH?Pgv3M%f|;E^iaBq~`C|Yw6QFvA0uk#JHm+&(TsKoY+Vh z{DUEYc*u6*=LuM=b<}T6gf(1-T$2QJdUPHe?IK>i*lD~1#$61{o>&96!e&VR!W6{2 zEzD1XB&>?L&LUBFGqMkx0>wyGf2f-nyM<{AL?ue|;`o24wf* zBifQY-I+FA()0NHFUgB4%59#A?EDfhj%E#)KAVYtCW41}HAd!Y1qPbB`};j1SqPDb zgNx=BRPh_YjlxXvf#47v!5q>!t;*QTq}2{PNXQ*Q8|Z^4@eR{~98b@;5_u!S8cB}- zXJ2+y$7P)+ey*e<@Ibzncd+9&FcUVUq=mFZqkBh4*B&*`P_ey26{Ce=@St}yGH!QUl5OITO& z1byN3(skH$W?Y}?+<6o0lwDHnKBp(PobYL!^`FcZc^xCqcy=JrK zwbZY5HeWdu47Hq)^PoaE#0MK zcE_&kzF>LsYQo@z=^16wFtf6*Ot8-j+>g1RBQm^6^k`<9?i{U9n+bc1Dect50 zd8b*v>isdYi4@NB#lOD4gc6%Pv)1X#&=IRQV<6dWPInXe^!)m|jWLJJCIaYEOd5^5 z*FI7_eDrkZTz%22nM=&iW{cRUY}>}e4q1-r0)cTS$6w0nw@8*M8h+vm2^!0hb(zqN z{B^bT;h_VE+&nLT%4Pc6nk6-V?ukv+{)~@Lmr~i6rev;IzAG6VI^#K z`INh+y6s)-y5>Qt?Z2#_x&4q{Vx9G!-r;J1TXpWB>uKMydFSH2&G{k?^K#MsQe2L! zUJ3^+r8L&=S`(@;C1yG!F?{(!+C)@xrCGD1_Up=D$@lIpC{zoIhYg#{FAwDOD*Y85 zcyl1Nr#b7@trEtv-Me>ZZ~nn_&n`1NC#PA4F%tGEg9Gu++I<~qrOVLn}DF!1n^qT7`b zrPGt*GM+Qb<<+lE^Gs&7Ukj^`nHXHZR#)bv-OwQXgLiuD!Ryh~);o3z;jMlWy-D-Vr!`9J z&lc|dT6EyC(O782c)sk*`lAevA8TE8QXD^~Om9~Zzi{VQYx>Rtm+Q1t*_VYqA36%T z+Y}{-4{v6vee(ntZ$4@_KjTF+u+?bjK$Pyno_G@`=`7K^cHB{cyWWcoGWPw81@KCJ zBj`VP^igetjA@qTXs*PR;g6!KSEF{ry$@{%>I|s8G3vcKsa7gsCT4~UZ>&vrXDB?K z*y-Q#?J-OL8Ij;kj}%`H36?sR1vzIt<<*?3kNtbb+2pk~Pm=>rYTlQ7+r;n1EBMvX z9SjW3eZN!3M5{r)^4qdQ!I3<4)NhwUS?;^MdVd_Bm(9H_a2^*OV`Khw&-XY#hnD^6 zrp$V)BK?Y&lhfM1rbiUEeH!9SXpb2lY;fH!#1fgJz$6>ka(|hfhnUBghdzB7UN%p+ z`YW`qDKD@7=sm{yaxC{}?=e-!V@FGN49b0+EV42zWaAg-lww(xsIY1}r^s!vjxP6y zq+jS%UCr&P^yl|)517+^f9YK``{?tzz^vGTtp{Qv#yS*7^|dU+zf5oMmpZ4-6V&R} z=9(29xT~+9w$;n0S|w)O%ur!>k%C4{#4fAkJ-ioESmb*XPW3)dZIAgmo&Be1mT!p0 zK*5-vhL&4~KGyAHiTZfZmuYSB^+O5fwU#!u}neAlkH>R!xGS8GPck9U6+ za+~rlUC*26nw9Rh%EjdMwZfh8CM{#O-6o}jvVldRq2A4@rzrQlr0Li+&9!09v$t_T z)+gJ}RaiKF?6TF3bDpX_dOJ^6a8&u5SN+S%zMt7y4cn+H~^@~h69w5>{}={WZ| zVvp6#v;97rp<}{y3wsz1?N=OotzCe);gl?qJ~dmm&w_DDSm=d)tb7dC!VBt2x<%?? zJu}76MUCh8)b1Bh)QMR6NxMK_`iNfP!dK_LqhDNnhF_UZX(-eAgc~;oS}J}skk!=g zm~CYA>^V?(Z-?kZ@k^|C@CduCSau>?E{mAcs9vOc?~Zu8ym$`dz^WULsMX?C(t zk(i!s^?Ej%dMOhIuH(Td&3hy9?-ze+I)5LJ%eo)kklxlQdE$g+feS}?+&InDuEg2x zjL|(UM|qv5~oNnUs&YTYp#GlF4qu*=koQC=}rTg=jws;viX-lt<4o#ewi#5@x z`uiwo8B;2YXT(*r14uKaNvATX%%K z;gc0)W`4b^yX*J~YnQ=SbfW9H?j=8c?-l-IbB{@vXquv5{}14elwYt`4M_R1ZTaPI$_n#$ApX-|=Yo?C*hR^EJEobyeyspSu_ce0Xc1{)fp@0>L> zX=_sa^Yt{{w2E%KrgDuqEnn>MZ`X7h%stL0rTkDSURW2rOp=^}xOS#Iy~26tq~y=3 zv-^7;6Q9{9Z!tahijI4COSY_Lk}iwkVV>=Y3Kse2$IU7oqh3#H+>7WRSsS!WBPwE7 z4X#D9#Vg!3Ym0b#*jOp8oU03c@Pe!7-3%2-)YVF15a=txVdED>U}En()dn->GOgw5mQ`mc=rQvvK5mI*WY2c>xfBTWV*4$i0ihZ)p?3WfVb!q<>B}dO)`+7fOrIe|ToW@jL zgYQB)?u2c77n;H&u8y-<*3rEf-O;&9 zWyHo(X8XW9@!p6&7goO5++va2&u^C*n3?NI=b64Avb>gSws$0Z=-f5Ym4`dJ-^DnL zelP!6%{YFjr6TVYSK{(-QV-euubdM;FRgdW-#NBPhnIVS`O$L|jo^q~5l0R=>Q5KL z=xt`<3XKR0$c!5gemF68I{!sSOi5A39u~{Tfe1-a1G6WwC^fu3dfB6+V=v zYC0&4r73cm9_{GUt#>%z9`$Z;@tt{oxLbJhO7ZL0R*uIPDqN{f&i`E3?jO*oSHHP* zm&JX(ttIMt7t)uxjK`U1gxMbrD#{oyI&efG{PTHfD<_`1UjrPY_ab)bN9dZoKI<~r zNXOp#_mPo!w5f@$v*dRdg_X_gba|KN%bu88F8X7e;(PI2kZ49+u`su8yGrf7J`=s^ z>=E5vy8bur{T*XeU$*zMi>2xc?!febBBm4LanGKs7w!}izmUP=qg%|iQ|r6m5fzi$ zY~wUlPC;SfioJ>IdtO=dXp28GyZ-L2;?w@q=C6&f+!wi!#^N%iUi^7;zGBRr61I|4 zvx36;G|s7Rj;F;ZT{{Pke#)^c-ZXGJ#_NE&i$~$%s3xx^Lkd40cT}WHawd9ow?8UywgIDW--?%MZGciPUo#b?V+>MHhr01Q+a>JciC&n0Ww;pmG%YEc^wd(8@my{n` z(xqH?BmCEj=s!$x+%xs2!D!m0WHgt5oZtF^6SH55^TtBcniacGd~vyKDxhX-{K*TTY*_ z4Lw@2XXD+^@Bf~8`YbfHXTRxY&38OZF7%o;@7;SJbH_fLaoUzP{yAD`cK~+D5eB@`C4-iuH)V1^2FFyN2=GHKhUfCZL_%lp#9VqgJ8dh)223K zUlnt%Y}U>^?l?PXF7Fxfa%Jp7tFt*km5<8aJWbJ=K2C@hP2rRz^Ep-pZ4Y*7L693ZO|j zT3GLrbu}y7s*!f~o)gXM$KvL*$)=HiYS&i(mU}$+qFHY2W@?oEamfW+?RB@}4Wu9M zs{7`ylg};l=)6jsz3Cg$%z))ul0e zws;u-X%t#mR%!I*DCA@(ZF;;M=6};uC*MVDTDBKN-RR$QfKHO7Jvv=yJnILe6Z5;= z@rIlqUPWPJ=MA!apJ}XJ*&FxWMex%2>K1o9&NGT!zwK5n^;_rHfH|o*Pd8N- ziu4qU4jq*?SkDSbXK*KbU!$m_orVon&k|*8W6bSw*Esg@mj;54k@CFy$Q`f%Dr8q ze%WTny1501eQ|HR6S!yN+g%C@ht!wc+)qR4ulb{V^5o@|z`&|Q-F|^*_Sjf5AO3qD zmBeTZXUS)i+$>(5m1dPIL`#`!RFtY~DlWeNl5yh3yL-qi&iF@p1l&^GX4uUX^l+rP z@2LyVzQ6Tm&OG}%ey;vWxBZb*W6-oi$~otjKN}DE8gr^Vs=M=OJ)duQwdGU42s=+{ zE$+K#c3tUn{(9~LFX!ni{$6SMSt1MW_d}ammv~C6vHLh@vWv{JvmtNo4}DZunp)B{;sGP`$Vm7!x%OC&|9FAsrie4%^Gmo6N%+>GS z>tm$OOdfVOy_GijK8x3+RI9w}@QYrsc2;3VYf43N=ab19$AYo0r6~FRb{krgV83@I z5W4Ea*`!GMXByaY+rD3d{|ILkD}38(r`)C_8rB1vuWFFDQItRTE}~T2_5Hi3oyCDH zInnM{RZob##&48vd+m>lIRy;gdLVz@45KwE0Bd~UXJ38c66Lzk%LhtIc~V|gN)D(r zb(`}8$eAWTFmo9BX`5HotZ-q{-{rF3&n(Y|px*R&bT;*v4>h*Q)#4g;6Z!l_br_h_B z+y@6O(G1v&;(G0Id57OXhhTIvSP*^2--FG9|5hw*Y%uPztSM2A0~N9O1*oF1p@Xsy z{H+qu|Au~Rd2=%xs7^#~hqMYUOV)Vgl?#k>gJ4B%p^V#D^Eq918{>QSw5YhQibYAighA0ex&Y zn&pRP0V%?x+!=>@9y()gbF0y=;M#tYLOFA@oriLj@#hy;$u&sH$Ou5{6+(5WKbL$s z#TFa|iI5u!34#=#wDd93=8HzvvI{c8G!%%fWIyCx;1oHCnkBvCPDQod;%ZlW#MzGR zLDzG~%^oUEiqY^YNJy!yb!dcX^kDww?%~;$XpW&1d;rRMugE43j{8rs8a2amG@#JU zv;6!b58r;Q7}7$sV4vcJic52fjvx`eN3(`<4+>&M8-4`_iM&wrtqqR$LRYs7?Og^Y zrX|!Y&@m||3U@<`2fHh=7L8QEvDbZXd%ObmPlw+poq-xh%K*2M*o+Pn-@^Xa0UKoN zMQD$7!{%Y|h7BL(h0e=ff#8#%5R`KIvq?Q%Y_q+?nK(2kCefAL?l$jyS5$vFI&nm1 z#^|Xf4O(;=#`(4_DS^?7oZ1r`0^$VhKs4bUB0N51w<=9O=67yISDuhH0T zNw2K4d&Z>k#@TXEe9KEaxZO`969>;$#>B*YaX$B z2CS)XKDx6BXbDj67}fYq_f9$S;BJ}^@7^8hQ}wRBk9LPORzw-1UDU~rXBQcmnb$~* z3JhKS)hQ1WOa{DJ1(PHa_QQt92|hzRZa+N+kvI!34={szQwL+D!3nz*(fyHv))vNM zmqR?7H1*I61s(KOo3F3d=DbW;z~1dbAv;AkX*t@OBN#>P#TL>D1S0C+*;f8gN3rKIo-c~>!$A};8In0cKwP`|tB2JVU|yyI&^ zvKSz_sPDI4njKgdCCDw};vi8eYWGyR>dx>XejH;SIR|%0|E-s~q6#Ba>j%`o@jpvk z-C2B{ZPh9dbmH!coAO}fNdy=OG+A(tRdcHtTSeyWM#b4^NIy(GdZ~V1dDs>L$B6QS z3?cJ+DGKT$0OAmpSE98oD<-gm<0hXC{YinhL$HVk(8Nba0iXpBsFQ(q%M{gqz3p=(H5955+9>(Sq2J64EWM7yU8(@?xi z_U$DP2)c>xa_lF6pOQTHc8UD;zm;e|(onz_l;d-6prO#j{VLNOlF?pAN1Cj*APO1wC3EgW8^Da*>cB}!BvO6CG z{DUX}1zvC$a0J2nq>Bzn+i!GK<3YNQ15gQV6p-ctjQ~>yYTBEyy*+3h6KR|mSBI)w ztNr@WtA#l+N5>SfA7S)kiXr2=8*A)E+Pr-XsrV?OhveKph20;A-RUse=TjSug%8ei zLhlB<@#xUe8H-$ z&<(`r@uQDv>N36>c4rwy^u(ao2#g#pT5m-2(=h+i29qKOe!CXsaD3b)avY%=3WU!H zMwU-jcrXU3Cz*L2R6cVXHSd({(-szdLPARr8Qey@^dGoGnRplgH!FmVX(H1X*n`ht zzgq|pK#h0GZ+&#*b#!!y(WFlP9sY>HPTyJ`w%`vI=?k>(K#X_?vj$58t5JnvkM4m1 zFEn~+DB_8a14jf!1~zG#_?{owS0A2VPIm53f;sJh{y`bK;4~DP##JD$BvJtgHaKAu z$}k@6fe|g=_0Ri<&~}E}rw{gd!_j+Sa5;e1v38b;JZ7?%0(v2!a;_N20Ic&3>>*kz z)1=rJ53L8YGwjkku$yvscjQ~E5Eq6fB1IaCY-`pmy$&T*!7Z+Kc6O}X+`e!Rv3O+v zz&c8=SwZ{^lL`@TYE1osfq^V&zIvt~%@Tl0D?*~Z7<}pr;$=%H2n8JkBo3paD-x5FU!nm@w7M-UgpR)B7Zp1EK&~7J z1vLLWFk`(AZA}#bbD&61PXWnS0gh^78Nh|S%J`YpK70YpmylgwRUnRhmPxTqfBov= z&xM@Oa9Tz|naLd7!e|WBLPlrjA|@^MYKW>3(dWuO-LU3EM~9$<1RId62jOFEaW->a z3Id5@whdiN#1f=~inF;CGpT?R(i1r)*{5bAn>RD!?ruj!aFRm?`%k&wySI)k=gh<} z^TDRL?40fzdyP~W!%2+U+x#6q23UeQ6#6VXi=+`71>L)M2mA2Ut4N98fBq=L++|yR z+ySvr?+v?y57=J2rlO~}O8D>tCNLWUL9rCOvj*h51>D=&XowjRT@PJ7u3hI>5iAF` z5FG`=du&byVlmfm07!5jqk4Y30rj=dRA8v8RETwT(4&2NQ~^OR>hRmaU}8gz;1tkM z6)#`vV9OFf2X=uf6TpFxzut7@ksrZzMLtk;3jot76JQLa-$})SP}JMUryLJrGR{bV zqY&zJC3Am`mn>b1Poe|ZtQx2VsK?S%mQArV2=;E_@%F-#VPap}DF4z*EM~A^J`W5| z6<%pO)V38!5Fs(2Z)$k`lp`n8IDF$aTFhg3)v~+Yd1S@bWD@zWmgfZ{G61NjPP7Z+PN49am}XyDDm8k}C`fJ_G;Tr%QNNXq(vQn~g^ zVaAbU=C&-;K;Rhh^;&(K9xElOhi!MAb+|8OON)I)#!H%>T{MQ*+t0e>zMLaF32@=X zn-L%byGucQiA~l@;7(UpmpeiVeh93>TkLaklBo{l4Ft;Q_lg>ChNMFgOGyM|Awy6) z=vQak|1g462CC&0*ij90Ef|H^T@CNy25uFNXuL}_6%YVo)<@&u#q9n9;9m7o5Wo3g zUClsCLAe8)O2Sve95YW?a2=gc7w=4r?GS*anHpr7F#L$Xd`g_2I?b7%oiUBGO7vbM=B)vs_32=K~4Y8(XkuWpk1DI{+N zHr=#5yVSdt_Xd6Rsk4wUA2_ip!?A1CLL2?S36I4e2 zd^_)9w!CW)q>ood-{26S|+k!BA1X&yQr5V<-z;R4i=Gsp&d!hm;oOpedO@y92A<$52vJtxYA~(JpqHXe1D$n}i`&lpy+}ElzIq2_ zoz>?Tt8wNgkrR^`J)q%CJ)k>qN|iX^{h@9@hKEV&3HDh|s0AE^NGAbI`ff;T4N?{2 zlC~29Or1lfW$@!pVojL6`^=`L4PRCJ!|kMQ>MtHgE;1~?Wv;h&1HbCP3%m`yv~ zU@P!QOT|q~R>@k$zyp)7hFf07!mF@KcKwsEm>B=WL?MWg(7|E61X5DF(EcJpmk&1~ zCdVCfDL6|3Zgmrra}# zMm7{YfJ={qa-Er%`f{?1vG01}245l^%D&jKn?U7&rl#EC@y!tIq!{OKgT0e5uVzBF zuG5#|^Xh1-Zc;WR*=O;AHgF{N_Pe31a|2-Rli0cBSqm(BkQBi4!TQ6IcfPd(VI9@y za;gK!_?#=>bnk-HqL1Wg8k+HThm;fj+?x4C#b!fR!ZQkRAnL=t#exlja>pXVSV!=- zZ_H&UL0JqCMjr5qB!?^KgHrcIb>{I8If z8a2@3#_ADSb6`FB0J4E&4tLAGBc=ql7&gR0P>p=`Kz<$8s}{QGhK5|7ZVN8tP{J%j zzdh_joDu!CYuFz-bchK@FLV&#A2I;0ooARz`$Umil;QaKzy$FE4H~l0+1bg1SptH} zLtu1QL2L~k0ZiDO?i&7ou>hwas$%A0wHrKsBVb_ZLTtDfQk%0A7`proDM$oiy070L zz9jwvXd)aLZ?@ch&{-^a@z)LEpAOKq{tEz%F(4#P8UUPj9o#?#P+?niE0rz$fOLZ@ z7&{6ZL<|+#4;~3C4^IFVHvy)|%*%3wN5R<}@^`U-@8WDE&K@$x<&psAQ>hy-fmtG( z+iI7Xco=4jK*l`0yhvPw@p}eF#(mfk6eS@cF^Qa-)FSkV9vZ=r(wQ^DWS5cv6DAb? z{svwS3>*8t{%~*AwXi~~*SJnCMa&VL29ZJJ5rGJ0X(+^0x3SD|)?Z3yVoI8-DnPc0Ud2V}wzxKk2P}H(z%gC7{Xg=tyUiwnv5AW5D)RZJTmAi9oe%2Ap4g?`f zcE$)EFm%CVaYe*F!ZAo#)UqN%zOzBJUkPmSZ0zhefrJ$j78Zac`{L1*s4l)fk?k;I zCV8=aRhX!L1>7x}ia@a-SWsjKFXoCXQ3&u_{MN#2%Yr86_XCgG1UNjb?ok+-lufn5 z)S)C@3k!?Ic@f`xd#o{iwq~#+U%aQc7s|=EP;BjiP2iGulC-jt>IW9ycc+$ufWT*= zo5P_j%86ka_t2&QydX?H7;!a@6S8eScmou;R2{-^T@#j~p#ru#u6VreH_LT+1T)}q znZPpS8yU$(?R{?7PfilaRRvTIDtng0PeDDNgpw$FiP%di>#36SN1i8a{wRyV^gmI6 zWouekZ8O`kM=*zcSP>Kf^^G=gP$=mDujq#pm4II%F@2`06T$_t_8WN6z3_4eF*7kc z0c-pcgk8508DAc~#s+ECm$>n4o9_LN@&v$%VdDcRO(+MvF2abz3Vwe6(HTUbm3Yw= zS5+~Tz)5)p4uXaP;v8Z%ecMpZ`3*cIEj9i3#~q-Uxu1RpgZnM8v$#F?r^kh(3B08;(e3PqIZf zQTgits`!(`Pu|$fO<$$lQRY%un7xcRPQ~?-mU7h_UbopBizrvbqkf1D?yN^O>^zhL zvLWGIyhT|`TAE){Qct0K4~!i$RnZp1#%9E9K@T1b`Ix>AEOJP}}}E730@)_pz3s&Kovv3OJ$*3%FV6U#$k$2fyA=|icT zVs37(a=?96XX0qFYB^^bx#2O8Dy}2P3N0Lxg=NNS>S@$v^4}=BEGi(NiL1vKXeS(8 zN!;=C=g&#q;F;COo2ZE3=?DmH5!89UQ9!pE&dPHyW(tjww5jR=2u#Weq@YZWEk)Wu zB!h*2FNAprPOYr2u6GO9)ZmZr;Rj?HBPjA|N3#MDY>}Z1Vj_{^+n{&}wVUI=lz9Z| zjhpSTo49scaeeyyx%rXiI^u=k2L2gIg3}~*dlc1fp#0ViPQd;&rX_q?F62bP&6D9C z59 zC_c6u#)YB~v|!5RQ`beP=SW;^mz$qncIK$O4Twnv#%)baMw0SI|g$dk7h zWVEBiqc?vU)|sg@6Ap9qVM0PezoN*-jid_&Q-&jYe#_T$kf9b>_&SP-t1a>*wnV-i zuX%5`&E?CtaB7fYva+(e!!T_wer6`e?xTFpGY9s%)-(aGles{kmG?-##;5107HSXV_=(--GL!^>Lig`t7PZ++qvbj_&-5t}V5@%j< z>17zQA)qYBN3Eb7AT&l|^}=hv%s}C#&S6~Zgj_WqLBC<%`PHP`0XKFMsVk{|QzQc= z?Ld+U;66`5W_%J&uzpiBH4A?j-|gpHHjxaCq)>REByvRR5r?227107TSA%`RFgLU~ z3>GZRx$XE~)D}r*4*e1)?2$;xb41Xd#4?MuJ@y;1B&XTWCs2(3DPjgs1PnNrDz)|X z>==RZ#GEw|sM>p? zp1&NWu+{hP-|ur#`}+kAFckLg+WhX?$G_#yuT#Oc7&Y=h&5FUgbncmM;ppGLYrr~K zF_a;Y?J{E@haEF&ZVFx?k^{-{&L2hAa#&oViIB42#9-Ee!}q4^>lP)2l{ zIfU4Ks^@T&7`<3{*DTq`>N-235{Hv&)bPx<_h9kWxJI1d{+aI``B^$0yU|51`GJa3 z7|+f}TW4lw8r&w(e@U8i220my4eH1nul(vfF)+fr+bXh6L6qSp#wFO01soYr5H-ly zqctC|_i>6jxOZEnTwOq*H2Ok64;`YZF=!q=9+4)y1KTw|zwvP7_I;4Ae*Jn4 zo@?f1UTO(SRs1qCMnfY)W9+=VSuHBK`t4R9w&(p-ubu*izymgSOaBGL`Q)5SUHf_e zLw7Je`ExsLYtqD1i-nk&7*AX$BkH=Gn3}0%4pY^G^=3ygA)`g*#kF7C(1TVX^#*0c zrJJCKH#_3>p_?^$t>fR}DDq`VLz$={Fp@XPN}|o6v+>%4ZE{M+-KX-!JyG!NMs836 ztKoqGTSnNK{Ra=;4vLA{iny5peh*>DYFP^bQM2R1o+;T3X3NmhQQiSRM+Su6o-ZTw zl}G7>MVDHnGa&U_iBTFd#7ch^2}Kd4>;^v83 z@zm-gJ2vY}7*5g}`Sa%r<^J#?Z^`WFAyVvS;gKu*rvtELu@fS4=m;`sP#>_8e*p%g z2{|m~xFw0q6k>voU@vT@Mo$L|ZY=>XVj!Y=QdT0475BIu)u)!n0J8-0td^D2L3?S_ zfL=n^qMWIDZ z3M61nK0L7eBRV{!+CyL%zt-(KFJ!95Op&oJ9Mm<)8Bxfx?0B}7OzL6UoEx@3BrEeW zcH2|SW?Hl=cDxv-nhI>qNjgrE$uWexO1*7jYrS}W&}Jv#sw@%&f-N6f@%N(AE1F5kHlwmKrKlZg#@FLimN)LGL4wA zZ{qY1rLee*A6bdVad5z(@^0xXgWBZI&*e43IQ3%M{C&Y3a=s?iTc>hDV%E9LjlU-* zarQ+I3IOP?(BU~<&~x5_RG}K)176DyhQ}PX!m!9e0+kVpLLm@{f!9Yb!B6ZmdS>N= zp=X-fhF!>_B4w{_BTX{|$po{36+@=-?uE>2aA^9&8q-oRsh-dl?}FfO1&*2oE)XR# zc8Zmg6DS86w1u}SdfoI@#r=|LzLtz*M>|}2sVh;|KDMK-AhR=(~S+@LA zve=K`#|qexFHRrnhcKXD2wX)KbC?*JzLfwhgCIkWW*#p`|4E>gDJ))es=k(9q(@zZZ@WhFE=(>;wx6#oyE|vhOuiQQq5mJqb5> zD?fkFZtG4=(UD*H=j?7HgXgm&eoC-XbDrW!M3~W=aNa@Ruv{88QPcPpEV{BMp z6K8{A(;THFvu$7-;F7cqYEKKpL}dUeQ}SbwdzkgkW7ziP(9_j1l86Je!l2Ns0RW<56}R%0eT^CP9EW;<@?N-x7RmJSp!Dh^@xLZd#tpSGSbR$!*+tV7{QV zw6xjM^or^shkgY_>c4i}fSR!;g3lf#HMu0sOBz5VupA-S zUBzUagY#R=hm2_)Af7r}gWAhBbbnIh2jD=}w^XEOvc`mm3j-s=KrPv`XAfE6i@c~o ztvTP8vH434PJ8PErLX*Qa>r8)9!D2tl1g2MY3YM4@_p}+p?N@Eclo7Dm(*R_J35R} zx=TWPMbzF~&kq~@5X{YkYW-ex0z7c47!Zy2i*{Osq3G@bQ&FGANiqEV`LhCRcQ*P?mnu5nUsc};pE2k@LJH1 zET=)G@+GpZ{x3x(sG(;r)v$;|LIErMt4!f1FI6b7^bEh1^ zKsZoP3}7FqbWD}cLYDO5#ntrLc@%CEF6%d9 zt8~N10+P0iME|Jr$D?_RGJ6eiYM7yHTSI2`VK-a<>SP|5#(LFe`Mb_fodt)9tZ6@H zT&r9p3 zP)~YiR;Q)ReSz&`^^RjIf7cr82+NxDp3b!h%K3G{r}D%5eScks*B%rWzHZ^OFGcKt zWwD#vpP~6Rj}L0u%JZ@W{(L?6{MVR5jdb$mpO;M^UT6rnsG(oBEImfI6e7PuF^co^ zGuBt9P|{bkpMl#+i*bKhQK2yS_i&7i{*S$K)}3;wX5Ab9fqfXz9yf`b!DCWro!e%Z z?GF3D@p%Rw2th{9ozPiDTGcTzCqit6g@wPHFLJ)DE!5#9W8Vnh3D^c3uC)P=>tSN( zyF%UTVrM|>9viPyu3WB(rU;6Lyu=BB)miimo!HybllZUINq|evXXGfeUiBiU!4q& z&|m)PXoD_e;ZZ((n8o|oUsUJPGbbh{j>-;xY;V^sah{s^d&Xms=;G!7_c^bW&X-#qB`+QSQq4jSbG}&z~Ca!$j;5}!I7s> ziY6%q!kQGGFKqi6_?OIPO{)3^d9c=n(w^ksamV?+s0ZtQi*qRN)Vz5Uh+2MJa&irt z0A#--H28|ppglmuLp9lh;|0eB8%5)49v$1hX~!dkWGK)Pzo#CtO%sa-$WAP%#9(oR zHZ#oJhf7sI@!IcwIf_KkDz>$av+1tb9FX_qNdf|yy|b53V%awbYybe(akNj({xd2x zQ|M;hnB?e#Nsj7qwHtWt52P5YsbwKLEqARoxXH$aJw-wN*Y&DUfcLh7FM-A9{m5fdK0jm*Y55APKGju3{g=^nMsC1l9Eh`$W$3h z3YiK`3Pr{=p+ts4N)bsJY7=EF4H7CEL{UO2sou}E_wRSS|M!0!&wh@*4R_!BdtKLB z=Q_`GtxMJDGbLku)&0g#{hbR^QwKiULa<6mR_xIuz#;aR*!K__Ccne|{k!ue&H;~b zJDU|=M1B@GIp;NB{JrF*FK;@kUt_-T&mi_3Fk!2C#DY^d6*78|(H4$hZ#DCK*8*q3CNG>5#mV?O` z@F7e94pF44Wt8e;kdcuC3)4$#BEpXEi&LmLm;( zI*JX0Nz}>7iPi0f^<@?2;sKE>^?knr8NB(r*~!l956TbO14#q@XFkd0_|QcMndGwh z*Jm>ziBP>M6tg2|*(fl9-syAJZge+6&aqu#5~iEU<5(2~fix{*6`2v2c*e%s;^Y*;+jOYSsu*6|Ru!3dfQQg=E4QLNX~nITu867qvI=QdG3~u4fTVU*+VmyeP1HIf-l)5eK=7;WW{5 z{iIuRAwxe-dW#|Va!n>sNl>9^-JPKZmd(@jo;hlWq<6`)o7*bpv3hA(bawvy)P)VR zhR;LBIl@6&Kk1Cv=RPL2{&K3$3)s19{Y@sa&3!ivI@kX@e$IF{#Xzl z_&ciY4w!BaAe+SN!BwN*&!8+9DzSvR?Gs>D@a_*C4bT3s7huq!K_fKe4el^F=p{9p zpu1VfnEl%@P5I{EsiO}&IL)UHzkbAp!?b^pAMHf6&uHu4g{5fc3<=-gq_>Wf2` zTsxcm_qyq54_LS4Oroax5dAqOXd1cYlXg@`OdNS`^mv{8Sj&Ycl$4ZSt<#QbiAICe zZCT@d=vnZvf1P!CdBNnr@7R-sMLIBWVZc|g$R}!V)9c?SCX7toy?eJ%lCt7$XCLf6 zBGkr%P&<0;Sm}~ZddL9w1YI=RNGdg|iXZpRKR!Im-Fg#w_eImP3$HF)UILLbRLefT zY227GCbhafcdVOxb$#6(qx_I3si|T{$9zH^l&A2Dac*blH`V1TKT}w>VMAEupR~aC zj~+dWdWL<$VcIpuo9k>XYtVFA5YV7=Mv)(1x21_F>69{3eb;crBJ~&P=Wg7%p{rN> zQ;&{wqT15tW+*{XibKlp0X%6zQgck|9yuMz?8@TJgD%G^(Fs?Nn(E5H}!SW6E<4Y|gN`x6%y2g-fQp+q6Suw*hjV3=QSJuvzj( z^A7h`jTX@6{&0|4+S8{8sfy(K_LWH+(CMyoRd0HrOpflBRq>Wn)d}6PtD}nH0MXMVHMym4FjeH1d-rtkkz4AQk}_2YP>UBY#_-wB zcj|#==p-DEdx)v_q>H!ySugCMV@{qrwUAefgZBs~+#Kmc*S?eI)3$c+PJL7trcl2M>OLM*#FzPzw9_=Ls zx3>%;(^jsh8^l7$A4H`K|C7Q2rS>`ras$Fy9?n21D2wPN!=XYj7X@4+M90Fgoik

    Q($VJ4{o=F{@-yKWSkfkerr%il@@CQsm&CU5l!dhmS%z5 zH*eXpiuqa&7P0KEu`WMsSfeJBJ11rR7h&YyhNqWc^$46wJM5N#y7ukc3nH1~2R_mi zV0tsi-1m7N=3MM|21s~N!%WRTj3NC)MTIeyhXS@j5H`~(rww*(l;M!PM7yVC9+vX= zM<+raj@5X_LS2m4&vEwYovP2l{~rnHb&v{!KjWn;6!~GQSDzJh7D=&EHu}J!&f`LV zc}N|*9lh4!UBu!Bg`PbxjO<1R#JLq&m8`PHC`eY`=pzeiIAg{FaDsOFdhLERR*5o* zg((Fgfnli=-BmdoMa*wf-G6ST*J*$G+R(?l|U3w zN`{a)H`5^E>;aUd`$QNdXc`Pg1+@J<#jd1@wR#O-p;q{=O^x%2dEeFV)#PoTa3ZaB zf4G6G)uf(w+4=dV+uS#7i237sfeMOXs1-EiqfYP}BEuK_ruc&dp5$EDBL6uzi=}dQ z7B}RGN@B^fWotj{KH9%f-iJzTED0?^@{Xa?&_(EA7s{Oqrh_P`4OTLDPnZ<%O$I%p z!JH<%3ZKe|!SW?3Pfkr3MOV)`sJOcxO~(-mZa~%it}dJnNlZ8tkrE3>AfR>)!G(!o zyrkLnZi`job*a;6C;=Cy!S#^Gq4H*m_?{cpldHzgA$Yz$I>dYDetAi!+D6<>O0*}G zka6|@MjU|qSOdFiom)GaJzG+GtaPG*Z>|YDKg4KoF`z;vegyS77{iz_@#Xc^{x}nD zSU2(2K>+(mMC&J=m)q0YOETNcS8geW?Y4k28xDP?NjZD;aNjX|5G+0Bs~nUoSjxA7 zl3zu3R-Cxm3sA4V)SAn(M3=^qBVBMS1UQ_4K!8lo+h*p?eZ7UcCtO%gIOJqUcCLE73uRBNR~4D{Z0?{8nfHK@g|-;sSN7(y|W z&?$TJW19~k3$a@Chwhzm;UhdRr%B5szc{VXYhmEd_xraGnmbv+5bn&r_UjWAJJwCwrw=YrX$K9ou=E^fWoW~FaUwHrnV2@@#$PH&ysK)!~Iz3F>>CQqQy2{4usp` zOUU?D<%Y{HG_akX+wVD+tn<#$CUFA~yc<=UT+g1ukQ?As(>x!1c)>JW57XU#+#4Xp zhm<#zo_>E;bnDdV0>DL3T$YcXmZT)nS3nXeCrhv+x*+$_t+$}M)d}n5KXf#hnr5mM zM$e|L4`(?g;4F(1jwm`t;s$^M4EUJC+1xIBcPehW>CWcf@!ats&96W$TP ze|$?Uerh+QcImZi*FK0E?R`>DR1{$Xq?8uBf*Ze}S|b{l8pzas5z#k14l##IKlERo znbIlEbk~HHsS@~`sD zY;<&`E}I7rqA3|aZd~5h9x8@=dJS7VAMp#h;7ae--&Og3BxWrl?vR#V)`wBbUdV|b63K{^)xK9)+XDm4|G~bU2*E1qAV!=(#WPie=h3ip)QQr z^Wt*c{Xet5EvC|0l;CFUN^aD*oHqnB$h~E6Zjm7+M3v}R4Cik9#=@qY0s_!u85Hrs z4V#_9TfFG&XL^pg-JpH=$dSDIg$!q$cVp0Zz{i(@8yeV}N&r1izt=T3HC;+>A$nI{ zKSXj>AEISCcgBE26cBiuv@Dz26j$^CsusDE}>J zQP?k!{i~0sAZnBoOIZJzwVV237MvEY=RuC`D~wc!JfqE{9&nIkJ9b=6EMD+;n4TM; z_$<#301x=^VI^2Gjd(pqORG&uO6HI6-$l=uK)(oC-!bb&G$xw)eocM+xILafQRcxC z?ri!!f`IYx`SZhY0B1F~X5W-sI?X`pJHCW+mmz6(CA5Ny;sykLrRR%DQ+?!AhftuY_FShw_@mgAdV_$8r8Oz7i%suyE3P^iQCP9SZwXXM~oPw*9DYusP|_(hN7w#0hW$a@dIURI0unt}HPq_v zL;$V?(G0R6h!5=F|5U^}dTkCqIf|=M27umP@ctM>1TP^~YuW$Qxb?q_#*3m1zqx3# zS+aC#geT@rOW|?H+}*wn+YP? z-SFTD2<&5N>E6i5ND#BX3$;Lc`hFoewJ0#6Q`oqnfUt;yZ(sRuF@yh`8ls#Ph&|9|PRWDw&@d6p zH1Bab$e_~tuuAsC`F)!@>67d7suiT9q;|TxUYt07`0&FVw=0R4_|XdY^=P$sF38CV zgmLM~R{yk}JnnF5A?yjp=&+JE-c4p^@@&CNMW%p0lkKYys~R2T?h7gGv`@o5Tb@vZ zFL=M>fsJ;mTVNKO;mWfo&a=m9X`Sbr>bsvSBA_h1tE}(gPTF6I|3A>xraKXI(Fr@Q z$}PE#Qbo^;R9c_zl-%PV<|mM>Q1SvS`zR^Bz<`ujESTczW;$pVT3X>AMfn?Ylq(WM zEvR|$0kJyJy**f?oyNSdfslp7@r$mfqo(Xg^Q@rTn#zWNG}*I7(Tl+rJ^J>&e81Ya z{@$+UP^|l_*RB55g&qA9P+JK2NHfF8J)(Dp-kr;VHxT57 zONP3DW^7FoqM(!M;#jYfBsbu3R@O1HVl93AmwWyZd^MOp`|9!ub#7`ZX_ro9N%cJ@ zNUZA!iwkff;-GoXzruN0_(?xin?qDiOILej46=PP;gx|+?-2LtlxPiK`}XZC%=<7S zk=uJNyS}>Jr%#{2rTTY1dN(|vK`r_jSE4SPqndVN2plgsZ6W^0t^@Qs>jQ5?a2AX6 z#!iK&GyDWw^$8Ry@&&ka0d`W-%p=~MS3~_FoL_V#hLWg`4w!nB0se2Djb& z$gz*`cbT2lml}A#=@S@k^!V{>K|@i!+a1j9!UrN+(MxN@E_7-6tAkJA9Oac5-~X;w zD~6guXxz;nJQO3XPa$-HT2HC1K?@Y^m4sdsT`$+2JHK-~pSr^OHESMX_2`mHkzr2= zia)J|9B{gY-7xbPBZn*NVd{k9qHTxp(=Ix({T z7<5f#GVPp*Ub*i=mQWf91B7P{ku{(W-|K>H?b^3zb2Sv{q0yY}-Oy^jC zdIM4e5I(LnqQ@<`d#@y?vhYsgpZ8O?f9(rBuq*CE6WD~?6&8N`@g8ZkTj+}6oKl*} z@7C*z;qbHsCNYd#0uw|Xp;y>M5*jI}A-UF_>vJx4AsyEoxdS$)>UF69f)L2Yz9?|h zBv)5giRf?#8Qa|P-SqypKRlSU@2K0G7zC1h<6y2BF@tq0CMG5~voqNg|Kt4_)(47&^xP*z$b2VS9^6w1-)Q)r_W^i?;=7I=cqJM2I zp8p$UU?krsc=U^^4hnXQ0&q4py)ewN^4SX(sOWjZ7!$ZfZy!Gp6|w{VpAvBB^YEzy zFlBQU=_J~w=vnN&1m zcIwng)Q<2X!j6*IhzCCVtJ>19vF}DK~bv+^9u>ypXH@%ya12Q+ebHv8l9CVH{5Fm-|eHk z=%Jus0+A4f(I07WHEswA&CQ}mZ45td;QdZNuxnnwb?Y%~FeP3*>z1%tUW}PQDH@XZ zZn)lQHUzM-J>()7Kn+wOrVjw{=m!1=?1DmgXPKenh7E`B+-d4yc>-6re-rH3coicZ-U%=BvBa zY(IJOXVWH~_z47a*_QrHiB_Uws9`vl?DCowTG`31+dOs&Xopq5qun0_qVq%I-* z`SZ?zdBFX}a;K$igbMtfdJqoGNw|Ds`LbnN=wl){o!_ov_?WtK<*HSp?f-u;h%Ijm zjo@<6GwO3(U!$-A1brc95Rcv-9ch?MPtPmbA=yWQQldMv7Z&c7pl;E@Np#p~EMIcS z3?|sQ5%fWp@y_rC-(zoq6g=n}!}`WU$gSSE@oKq~NMRLoehQv(=YCc1nG08}2-xOL6fMPa=Fv?`pjp zKGWF~A!gBwZ68EwqUQ2mdKM2Zuc4t)4h1)B&YZ)yN;}pXO>+4Wv3k>{xX)Ep8ZKv; zShE<$?$!^29j=R8BJ~P+`<^K`00(oEh>5JM?5piJotO=^kXI2*X?d@H*_rn#$bCaG z`WlBeb&-*oPqh+Sd0)HV5v{FdGijXEE%0DMkd=}UMzrI`QVA>Iv%{VgSXtMvfB#|N zn2hfpb+JT*Vd$380T4<~g*y_L=p{2Px9amH0s1QvGTOvyjRCfIO3N3_~fw}Z2E5*2EL|qI*@Murz{z@Co)o<`sp#< zA5i%T{Wnt?@5Bs#t5mkOVAf~J26lV7nt^-Eyl}m_v=`&hPJF8#E#{M8M?qSBdSX;u zxwnD4qTpKLUc`t8DsjlTG%C0Q2M@M63!yUSCE_V^$it^kJMzOuX!I$0_8Q_2 zXpsi;5P}0Du!MOaKQKGaKW`|@u6hVCz8R+7B&rp9NyKytJ{}id?XO>HNM%Tz-IbKC ze)F}@UZ>qzNjHe@5pJU$3QECz(W6~Qd3_6u6J$7{Qe(t93S|ar6qMzQ=FpH3QSZ=5 zr%w(YJ!XswJX6`r)BQK9ht&v)O<*s4cv0 z;duU1YXF=27zUBfojVJY1KlYb-rYKaso~O_ zC`a(FV0w9|)hk!($F4{cMJe2!$>T04jik-7*b13Pq0e?iP`{wRyA6@!5M^X(O^x4$ z3u}@$-DtQ;aghc9MyGp(f=H@92RVl)M>xs=%H>p7=lInD?n=BBG53P)sK9%o%%4k! zwrAiH@l*Up&@hYYz4g}ID=pGFpX&jXzal~2B=K(Xc|x1b>d}0 zjktmeftv2kHFkFCIczg2z5z9d*N-kWCWGemeL3FRlcI~>B)B@4C zk7tu$5PgPKbM&}ztkO{W;?D4;91yXzPjPr6kqQ@eE5L=zWk$x2(O zrBxg?r|S0#M`m=@JM=XZmI3$54WeG%lohLmQHeT?GUkfWECb&dGW9+xO-94)PE6bp z;0(VvapJ_4(;;_tuq_Unad;&w`S$1_@15x!s*v#;`vKU? zDVFsA+T8#+=A4}-J>pVN*5dx~j~gw0-|jfRZvE_%$%@p|#@5yY*wsXgtXHq5Sy-@n z1IxlOFRCbc`D6_LQEx6*uta=E4jabVJwRJZN3n$f+F#laPct4Y{^(@PqT)0lvqwKl zLC3bCw#7ld7Xw;Ux4UeL!fLW>!&5Sd5liNI2a3RS#Q*jL1~Nw}@-5oR{C3Dv?h#qknJ z1?}@8faLMN-rqL$z(tW}4N&K)yM!MUk%q75-4Ms^JBP_hOdF#ERfxU%PzX#*Im-_c zCRmWe2#ptd*o4F^43Z~`Ynu-Qf&V9N#UG;INg|3_F?wmlrS1m4hsA!U0vHFCG>Ey4 zJThHsq64rI@zORsrnL`>8N}mDBJ^}J7j$-i-a4$%Xf!7@h=0ia0^r_MS|sDYkJwL7 z@k1d)$jS=Akm4>}(5k{BK`6FoiVA>IXl{JL9=&=+mX{f*QNEAF#5M3#)(zfs?hM(|m^MMM|LFa&+>OTY>2+;HBbAKuCA@=)s&&26+Wc><;IUGW@>{Cw@!t-*BK0opTOGxH;A&OEOYoDAF6v@o`t@R;S_@IP2Upf z%kc7SZ9b9G+Hwl-K~&r!!nqBkDAQcltXt;`mIVWSgi8_;b}~Q+ZGS1v=EyVy86-&? z5z;=LTPlQuw?{P%Zw+pjYOpT+yrvjqOrsHP^VNc+N&z!JQWx=r(mtLhkN@ZZ{{85>~!}2d39-L-Z z3eU`Q5(1Q1(hmB-pIVw1p~`tVB4XGdI&k149HKBy^HHI~--o}2YZWDFrjLbggwSCK zuY&ui6sA{Lt3;^H=*Wo_`CgcP*+Zgr!3%p6D$^bqeU^SL(o&^i8&wzJh0s~?2%O^L z)3Y>X5YaxrPa2DoBa8yPlXwXQjM(vd;h3UDLp%XEcdHggs6y5xig8DfTVK32P>(D5H0?RbT6!-nSkbZ5wI-bNZq zGl4`hA8R}0MlIKgzI<7|CQV*72O)>cpp8U(0|E#U-;R<= zj2@T%7yR>j*-HE0wwv!BLe8GfPZcTfdC-85Q(#PIeNC|)3__*aFazIFrhqpE ztUb`VsvKbA_9}b(sQcr^ZP7$gh{JQ+yLau_F?*{+t@^V-jc)wSQkENJ(dGl?DVx;( z-L0#CcInIb@1p3D79$jv%|oS8=WHQ14Gxh>hD#MU`c_xZqpC{?n=gp3nuSG;L%iio z?B$L8Eo4-(kA2rRlW%8aM)ny*VZsb{pdB*KU|rqN4k}~Z#}02PyH@(M)5=Ab)~Bxf zaK8PG2!&&4tDPoS^|6(Ke~%B4coi;G~_Z0+T`DQdKaJ& zp>u!=SDf#SjUCCqyJwsWqZ&e|41qMjuG4NH?^4*u`G_Zd?y1i1BrCfLnh~o^pa|K$ zdIj5fz{cT7nu4q#hE92S=qL~JZrFqu=pS+mbOMF{q{?!{6Oy9 zg{Ol$YENgD1ezN9!)N#IY5RT$f7iJUEd*t;>sJh^NpF;3`>~u!6k0lip4JOk$+16h z_;B0Q2M_j8zg+3L!u^SW005t*)W`u(%$~n^v1RMl^N2}hPlIP4l4W}qQql@kg)h5| z8mQ)K;?0|BwB2FYLPd)9@is_9iIitYbGS|JZJ;8c9uJ`)au^dLSFj&)9eqY3IADIx z`U%J6ti_ZY-o7cr?<5qr4+;yF)~{bbLPHcRh7J$j9aVP-@Am5T@ido-XJI?wn<)(F zzB+f|0e8-EZJ!#72}X0dx^j7J+lB1{qJGQJkze^kW1nF_n#q) zue`h0^v^x4YLGU%H&%D7eKO?Wp6l0ZJ*%(bd!8aXWBr0=$$XQgY=7`T)g=G!Va1mP zjE3RBs|_3|@ok+1|CveeTw`T)oSv(dirzl7c9GzO`8+PJ#?8+KxFW6$xOIy+t-Ea2 z5buWfLk@}&leOQ!e*kKlSRI1$Jct7e3}im3eX9jfVDI2R8BeLDmog@lbg{@(cNkU? zL8nl-d}&#&TYH;$IcC@2hB;3t0#utOF*penXOWWc^UHHz5zLLifSADBo&}Dh?FXaC z2-4I(Wb7e|B-|E_nl+TW{zPrASn2U{MX!A>d)P%vmdN<4{=1w4b@5wTvvD^7 zGwEnO4&5tVTj&Kfc$5`$D-CSQ5*>!@UrcBjzwR2i5B2!-YZU=$z+DfTLa;W(JITm} z`w(t!fOFMOL{@AT3LIVAazf@Ab>rquIuO+PNopUFFAppMFNaL`!}3b5wyrJmV6JzsNYZ)aAn)zsxiDAggx zhIHs%D3f-=y8@sY_`>mE&91JmY2?5JO5JR?%!-&+u#oFtdHzyJVv~`kRbzi40YK-( z>6%^OS)|){UWu<(e&mXYIX~7OCmEU{VGHu!>i4-zK8g&=MoPmx6=Ag&){TOcNv_`V zWwI)Ip~5K+aK~2ulzIRTbXNR*(RpOIa>&4*;ctPr@ckVrGv^ODg~m(@7SkM{4pggL znXmq~uAU?B0M1EE--aO&;3zu1T|+39nRSG0vyL+^7Occm$*ZbI#h4}7N91b!0mRuV z7uu!v`*6}p(pxNcdm*5*B+*981XVyp7rhN8k0XDbE2NStP4}~Nou{G~O!m%Zvvw=m zMc!e4#jZ3%gLUap-CszG@k&w)bt8IGtHF%Xjdfc0BEcGprxO;9Ihn%^UAfR;D`RJb z%Np8?BF}`2hpXSS-FpyXVy<4jQGTEv6O4%b!qg+imNqsI$_gM4ky_A+2%fH zy)#{9J%3KkufM?tOn>#tpDOsu31+Py002fzOq#wmd~fuk=zUCa#+;OKQ^ef(a9|9h z9KyaPm+4KP%J3ct3*?d+>}ClbfR*%X6l{-wMEuT%b8G?pshzMZyLpTnokC|X8EXv!M=Qs%jQ6MYPHHqpCJuy_&cFGw ziwSIm;j#$H5?`ldT~qm9-VO5jeK5mtc55s1hDmr;FTn{|9OnI$ZerWwDt>p#cc|gT zLkAB&!0N$iUAyxgpjD9CIvMKm_c(c?IDo?puxzbXISpuC`!ehakC_`-LWL^05oBru zQ`1p7V>|haZGN4dD;APCRWxaL4j;>Zt=hQp1>+cv;hGYHpsKRBqjLb3)2J{4oh}Up zF7YvEfPTx9&4L*w_03IqZMczK9IH%L_$G_{_aJJ1#x+M7>-)>H=Egqun z6Z%b(K_56=roE#DV~v>4Ab*i_AMq@^bf-mt=zbA zE{mu2ejLom%@H6$qI^8|HbMGXong5IF~k?5cAT@NDd>LK2v~K|tpsn}_{RT+_y0gK z%5T_K=~Rk4X(dCQ_4(Eh^XR; z$wJ|T8~49ziN^y#yp;j`64AN}&5!UI@h|rVuopHzT}daEY*otJh`s+sTkrA0hH7V5 z;nb_u;O~=6st$BDoxniZT6^wj@g*JEt~*6>Q}X%qNfRQ1)9;#MQ#?P}<8C4A!+1*9 zdUg`c;46&1%2Rl8OdG^&hF%xvzul1`|or?^DxZ3gvipZ_rQEYff zfq)qL^~Qq<>0D4Z+41w{{gdOyjVq^WiD1iy1n3N7O2r!HrwOrNIAUQgi<+AJ!#Dx# znBWc8*VG}&QqX{GF>EUoy?pyNl)N#YnN@RU*4baRymK6qB2ss7ZIsHv^I{|r#aP|} zO({%O?-Ml_`fqRRdevIjiJSj?(5vl zn`GYfhYzO@j_J`x45lUuJz|zBHmHs1-Bp)!JQOh33rX~}O@4NEfKUM#`uHE$o|gVS zrE9A5fuDVcvlhPff^z*b5UQLEd2R&cC@vwb!qP6CJ2Np|mll{sgD>_d$pIilu6uPJ z-^ygm(&abT{X@Ld(g~JpO)v6DH#WQKsn|NNhwg&5-R06|o5{748gfuGZ_hfffkQXP zS+uL|&^vX{z&%!mp=Sp^8aXt7*19%rdK{J?qM8xxpt_))$!95Pl}Ra6A2@EGaOYH^ zjYiLa%qDfm?RKA@kG19h&e$ETW7euUos8=0>OR_*6lQe{?WjtwioKz!m6~$%rZ(jg zJd#T&gR{t3rhXq0bQZB!ieO`Q@|5$}Wbu z)GX-j-1BGEE&9)v-PwK>RJGAI`ddws`;$Jk zVKHC5`h3+-qSKeCOJ}lE zTAMfZ8fEqV>1L^cUzv%Q;NG~EJ?cQ-&~iav%}cuCejD$AqZ}j?5MIL@4ut3O`Ev1T(s2Zn&N$X?I6L2p2FN z1oT~EV-_eXNhC5Fu9Ei0lzMpW9+)LPS~4)@L-y70Ox}}m3H5CG8U6?SGs3rhh8u0N zw~IXL3pb=kFS&kRv;aOEd1rXH^KD}Cm>=ag!{8q=w2U8bV`ljM@!VgXX%@+)zS1Ur zkFdJ?X3#%#14JoCbvTr{ZDhwCyG>U}Z?3&@{w2`Z-h)OT(Zfq%`t;}h=+4ex-a>|@iuQ_<|j2%TTmuT%?yD&oYGWy~#&(?a+Su=vY>oG}B&k6=42MD{(salzFXjX3D60SWC8c-gg>|W@cZ%>7;UDUzLKv<^Cpr5vB zZ=817n8{Dk_@uD48qLfJhA?XVlb@oEu))SiKmU1;@#+3vi{|9yg2m(+paT2xt>8xb znw{WGXGT~?lVvNB7@vg5oT49MJ>-xpR|i;58BYRO1V3N~`93k_+0ETAb6PM;G&VHu%a(47gJKTT4iA z-8UTd_Q=K1Bjy=7mDgNeC6cl|DTWMq^G}Kxwo|ZERa)W>s42g)rmymCe@zV48^_NNe@L}> zfv<3x0h2C@z2vOePYb~?H!)zZ2;TkuXTD59qnF=OX()!cRwN9dFc8q7!IYs5`3iT~gG~7hyUJ(KouS(QY($e0^wD z--CXB`Ew@}%0Kp%NE#QxgpQ;5S`oZuO#TIW)T3x%`?T}V-}tZRa&L5+b-KTPiHj+Xv@4R=uR>62Cm_aqSDH% z3_LXToAUc4P03MI;KYSvqu8voMF6R)zYPLk&#)@?z_Ek!=elS~BtBA8B+?mOWmEO# zK1=nL9LvAkU#ZEpE^l-}zT1kh2ma3)^SWqbVe%rPOtynj^x_)0|VHt_z zWhvBr=jn!|Mh8l@N+L<@v!o?eSztkP+N`!N+IRYyvgVh>v#;5}o2YJg)ODt~TI;t8 zqqPHED^%}A5c_3b@OYyGdp;0oUX9J1e1Tb-CJXq;aoo%}1uXsd%%L{x$&!_C6Qb3= zKzXflk<*<&A1PtFNK^uW=i6bb%f=5wH;a1zLDCY5%ZM8tR`&3cYM9Yxw4Ar1x+F&= zy#0UGn_MT%?3$~u&?k{a*nc&qkJV0<;j*?~g&0Aj!3A#azu&C!vuASSc%!!7nbhog z5D<|UFMdjn2?`1tZP@mSXX%=n{$K7p##j%ZP!Jdppv}AxHmE5jg|6H0nDp-u8eh)1 zRhv0E-E>T8-cB%nesQMMz{zdY8Pi>{DRgtj#(Qym?PYZE@2(u8xx)D)9NDKU#)cC8 z7Cg*4g*!`+Ak0`Sd3xtfc(W89i(*$4T-4k$1}REJx^cJ~Pfy%p5MT~KM3|Y^ZSr@o7q6r~CSqPL zbgjA?ptY+Ta&PjB?oz)ekv^?lzo--P=5h`LBB)C%Pwyx)WBY78+EpTXv-|%Exf#QX zx*WRKs-t*xLx1&cE<0*rrB=LoI&|61%UlQ*7af~Cbc1c1?Scrx-(TkHnYYNo9$cMV z7BG9m;f@(o_CGv#r#g8yeM_B|htLbzZTV84MQ6*3nH{yE|KK~Or;72aSc=WdCZeq- zd3gR&$Pba4dXeDRJUYcAJ4nh5&vtNh$xl38<1zQd@{d=3ax|7;(%HCsr~dSbRsXQ} zmXV)hlRkxB3zn5+Oto^aH3H3zi?OvDUiX>Fy9pZ#7I-$-@$PS|Px8p)e+h+Ce~wd< zEZGQ*{{!7BG8-Jn&Rp3p53^oOD30M>la0jOm(U~rC98wN!eYQ7m3zDC9eeokm>ThS zg`iSJwm8~VCY*w*>h1ct;Go*kr=ZIV6uYk+z}FWs1H-^VMi53E?l9#jy%K<>bFtDA zeU;+{(wjT!T>L#qs;_=;HHq}JvmI7S^sQ?1rTuSwti3YA{!ekNQ^-Z9kDgje7i~04 z>)H%j<9j!HheCMOgNln)JxdL?>}!&F*=^3)pW8Cm+3pPbtm9cWAlw)Pn^DNKa6O)9#v`9x>g*pD8{6lW{n|;*ZQVs~eUBc9(Rq_qg5X^Lmfl=~c_;-S2b%R`KrU zCdOh1sw-%9j`D16xdM#+P_yOuPU!)gCO?zCrq{;9Z||F31#x~WOJ983GGaw>r}~{9 zN6%cS@yRS*mQ{RcVEx{Ke(M+S8dXwq+#Uq7G~ZaR_>lfPyXSANC$(7F9GQ^%=k~h$ zeL`ygSjO#JQQkC1GQP9XEyv3lt`>hbMhs81|MqF~#G8z{x5%!+ck*crSe1o;9{g)L zB>gGXc9QjtZXb@{xc_bQ#9u|{wNIN)u+>%6vbCCc`edJ$vG-o~)R`LBWmk(!;?GY$ zJr~H7-?qNQel)D#QBz&Bk(w&qx299Z|Elvp)g=8f%A%~LCDo@q!+DD4 z9akgGy0aTz8++A-HaAOUHjk^Q?_ls|*HTqyzhQT(TE13J+g)SV*sN@KU_w}Zhcexw zeOHy`FV+}orY9UKce`#^qdfPN?l|M(L(iKBR@JYj&wZLw{)R@Y+owm-{2U?Op{4UX ze)-MyA4$#e;(1c9{c&>2OSo6{KGvloP!dyGE~^uHpG41goK@=Ekq*&cl&QAw^agI}D@h{N07PwzG*f)sm&+JC%phcYVw z(|T(wJknIrE4LYXO@X7j#HEqu0LoxBIMyrhYyG&zhq7b+HYbTB)e#^#aMJ%hD&MQk zGVXPc|5;bC&3^g%4AXn=ya)ez)<-KQwcGok{U?Ngk*B)NJz0#-;-r&;Dd& z-yWZ}In%jfiq+cTA=mGupICb4W5211wGE+m^L}fjyc?y_w9xUE^|7XfGd2|c?B?kC zW6JyDma-*GXj&|g#V3^E^b=>^0!8K)%5B; zla$-O4d1%_Xq@v0z1W{`D)sI=H|^dr=k>P^v0LLicWd2s%-;yH|(UqrCYaTUx8E{MLEzPhIWO$_dkR_tGEZJjjQV0*rYiuL|aF)d}+@85l$)HK;L$K`6=hpLpMq^>U>{r>qj z{C!2m&pRJBCGEXk{jAV=-OF3nSxtfKdqmet?;J`TCxn?D+>Cud?IO8^t_JaLtQLs+^pykBWG4eje__1vl?YSSrAmCSl zUHBI!&fe6a*rPI;FCd~A7@cp2s-KHkA4fWW+gCv%$uQM&lMI&X>$S;jdk2a9lC{4t zNF*QpQudop9O-VQwqU5`gYORR8n(aFR_`4Da@&!L*MWO8YgNmN0{zd)DB06wkfPZ2kQ` z(c?z{>g&a~Gbd#Imf7Cav~<+c-#Np}Z42)gY-$brmM)dQ{7rr7*IS-Nqm1Vz#*Mx2 z)wE^at+?WkD#MMhHC=ae`KLNvDy5IY-^@|llK#HP|CMucY^ht%wBOxoZwGw)-Q`)m zYJJo7;!^XG^`%)S2Kj!g+7k9dIdgqeMfsMY-Ze(+iZ>O%d)9ofbjiWaIYAHot6x1c zHZ**ka44{8?r$WM%Hzu&U%_(Q_MLIOXxf8vq(wm_iJ}?qtP*-r`5_a%F3}9VoL(!c z)eFEmTN6de=Ih_*waleI@3xn}dHikjn3>-BjcLtySM9W{@26Zb$waxLS5CBIW|eBq zpIblg_EgEN8qUAH`!4tLp-xZOZOTP%JXp)!V9% z&uuG%w=K%GKC5)%lU{ao(0RXq|Am(0-+tF$58Hif)3v58UUdOg%@Y;t?F=TzmO1Hc z{nOmleSqqTclqh{?^^yW-!7uI*6@0T!u&%PD|D6}mAl{PWx4D#m!})=dezU~JH<3< zli%dR7RPt_HM> z9Yi9yBCrjLngzdGsM1Dfb>DrWIRg8^5FMR@>dju0x4|aQW$=I8z2BiwXd_ILe>@!~ z7yv%~#i!2_fbsMn-Mvz8N6RenDIO>#NwNuD>ZYcpq!4^}hV%KGjt)Af266qa=8B_1 z$;&^5nCmDi*h9v1i1P%Lq=+1TBqHwak6G}t z!=S4Y3%B?0(pgI0wK{!+wX>sL?-xOrW>ppMkWZYnLL%`p7*rQn6Z9jiugTWDL=xRR zHEHP#Q}J~eDzF6V?;7@uC%Mmoy? zbG#CwQtHR`DF^#h+#f5Ee1G(v%Y99|i$G!c^3r-~iQI6z(qR2A{z_fO)~qVXKHVW z_jJBE9WbL_aIX|G6bi}b%&tH7c-`g(IAJaF;L-pwtw|7ve6HX{XU(0PfR;IdnHJf+ zn+S@LD4s7M0#ZDh-Xhnp*VAX7Pcyp2O9@E3f2hqU?t}qdTTplnYfQut0dto%Ebgws zk5RCnslUW40TT2ct*&)LB1!r*toxe+>CuZOv#fXRZuc8>O0U1#Y=!*I;=92bh&gDs zBL=0NImnIfNc25W;f2v?A=DWpisr_Gc%uLa$VdwDbqvLP3q!T5vAoYc6fY)fn2kKq zTheiS&7bYAuE{oia}%W`k`2eqieKLDG27I%era)guR|snRdKctyT|NhM!$qZJ6zxb zv&F3q=~LBg)ucTk!bIWA7P$;(Q$-6|HbUvfql%3tWSse0|ZkCzfRY} z>=TyTLqw3J!JCGSHRFxD+!5?F%%279AezvShogf|p1dqrUj|TMxV<*XFm)8)ftx7; zA|U(~_I>=bqrmn=QcL@hy*Z7pyqmg=L4Kc+o&(hCzP+>H)>T(dWG@8;`)%I9jFQzm z@3rx|qKjA6EKs6T5f@d>G)o@f&qyMGFwH_%UEpW1+K z_EKJLzT$<-$M+LwVdY|k9P$Twrx)PLdROD4x>Rwm<4`&?1v;g_N1jP>vq#;_tCdwZ7&S$@balX) zGqH%Y>*yU553d%5-|5eXz1?yNe5WpmJu)h%s+VN)E9ucId%ZotCV679$?)Ps|1r-$ zz2VtA4ysr7D(tVi>CLriSfi(@x9Y;Z&wvFo$GF$VIG5YC1!+Um=PezFH<83kmNER-6OHi8a6_|9P4j8!GUqB3M&g=a$I0AM z@aw_B`MpLg(;l9`9^G1Yy0-qxB%Q}74>$^3&y!7Mnr>@`HOMD&)u91-jR@lVy(VVrBMGM`3 zzR>DCU68}1RPhpV${W!dLjVr^#UFmFH2%lQRek?dOl^&VON4ix18JI1IjM~lV~NfI zY5UA9B*2_D%4R;}V^@WCx!W?Q^f|t@r7q6XCsHx>1V->;=fj=G$u^+-CAYRT<#A&i zn`~|X(=aAAqevorv^?6|lhfOGb4^eEmE@Jh=jL^jWJpRvH&5`w z10r}6+|XeqAP2X*?HQUrW%r12;}*f220Z+DO>M3Ga7KJxVSMA6s;%^g^xwD6D@F|U zLOt`IT*yOpKEt)WxrQws zxM@&$bf_|Ksc2h`RKvq=Q*+n&O}R+3mtt@)BtDIB_XQR!wiq?EA)@#aME=c^UsukG z-R~Hpe2)~Q1&z7XbaJgXmw6BdJiowKFNO{!@2cl$6W?^F)W6?$h1<3mQF$Jh`0}@h zqG7Z;Pv^xZY*3c5;vN3t1+)7XIlQ@cPR$-gQDj2Iq|0=6d7Br(wF(tvn1PX$w(GCY zE9QFsd@(^t&Yc!&>krP+uFIOuZD-M@SY7z6fVkt2$wV!ZLR=SVbCq z_~icwGgg&5d@gBZNxdeQeU(BAs}bk;)CDO?*}fZRzWFa%{ePjsZx8hus-qH zgFU#=BpF1)FJI)*F|Fri^Ibgjaf-!njcPxZ9EKFfi`Ebkpf(^h2Q{bTwK%;699 z8Ze+{+sU{!#r#e#_d5xZAa?&caoZOO0;%Do&`ND@OC)ErR2yafI|Uzi%#?Wb5;BG) zb^J?ZuhNp^1&Xqg)E;UlI1O(el%+dMGDItC6<_N$T10SAPz15XoO+9~Ubof0u*`W7 z+c8zKcjgf(a~K98ZbHogWZE?Jf3=NIHu!IS!lN4y{JH-dL(F!otd40!A(tT&zU$u5awqT|0+1x416i zOL~_g>TvW`g%3_! zGs#6zgJa!xPf^AXCd~f%$uZ0{Ifdm!b;z0l3@J&Vt09I^V(S*}T3hny50`fRP+hS? zTw4(JpF*tc`dKAkx|7%De^C(;*{ihgzH>mV70e$?pljv=4;F>nNkk*?$$3unC$pQZ z=jKkE+|(rPy2++`Ey{S_MzTZ@{s7p(fn?G%)U0{)7Q>Kmmd?!{nPeF7i*jc@{XF761(310h4l+nPLTblzdOZX?|-qSd&B12 zy`@*pM-_R&Jhs}}T5(F%gdu>qWHmo$YF+Naw|92L1*@F*5=sJud%tXLM4Lp-e)4NE zjbfAg+_A_TFMFQDMa{HtRQ$wCsOT5|~I=)&W8MdO~ zdhmZSYOGC05b9;?;(`SlVuBCFgsH%!3{UvhwVUMF@_p0({m$+89qyFk`MtB7&ej^S8HxAIkxS3W0zEunKG@9=B*`X_x;)*L#3-+5he17o~yfRw2rWND-n$NefXb zG*DJDDiTR{q?AG;8QBySnPtziXG_Qo4J&)E|M^z;_uKRQp8tIu&+&Zk5ueX>z2C2K zp6Ba)We*gseR2Br3%t7s6iCkzvhTSr=^ZDGSksmAEvGSg9GBKc@8-Ki%Dnq!>P0Xe zwtd-SBvf#qQhC;it#zb*LRKC!Q(AZe$BHCy(6lra0>dT5mBX?-!l>Yj>2}bHcu9-INKWlPBs8ivy7N1VDst?sHO=0i#Lq929|?2-(XS2J{+~>7apTC z%k*|sk@S!19O9y=(bjbfxkW)y$L^ofLNHSDWW}fKSdS7oXY&kM>p)5+j3UB}x_zP;@>2S98x!v-Wy|HnOL3t65P=d$j!^T! zCW3oK_V927BLt`Kl}4#YV!wDU)YVBklTp|koUZXpk4IfE$1i*-a&IK=V?b`?ZjC; z?uAM#7wspr!Mg`bc%?#Qu+13T63@CXnNYcQH@oWV23mZYQ|EiVj;U|Hk4}J6l-+lN zS}pUtZ@(V8kW#<-I})vWMo2Ik-G9^Pz&|YBPBeKJXIDDTWFwZTlGZ}oamEtl!cj~a zzh8Sfi)qk46;bYtX}TQ2W`J8+Brhph3?KD4Vz!6KaqW(?J@Jir3`ZI0OukuIqmxsZ zl~X5$BwEdilWaW?=|b)H$J-^vTSZ(BJ4;cwxPGwzX`kl<3Q<>4PM7xgA_tmzZB^Wf zmyvK&aratk&?o+u&W}AhZ~2}>kCTC@VBtdvDdLVD2le?H(o!vp%I)b(xzbO-*ILtW z;M4JAozUQ%LJoQR4-@?hXgZGsh{-`*R3Sz}KUlF0$bc@nGSa@gdTI1()Xryr|}_S=uyttNwRBIj|y+QqBvAV!YUh-##kJsDk##*m`5X z?Z&B{>y~?}Io{1fuCBHeLi0)hBKS3jA=h+dNZ;aL*YNHF6u%^SA?LHEh^dHrU=1+l z>Pel=r-&_9>Ay0%g$Ydmy+m0VE-1*fz4T{n{4}rJg`kQhW$;1n_~B^}P#_Z_1v>bc zVY^rUc|;E65&iItmB2c9N_h<$K5Dhu|HuHcbsY56>hm~pjx+69AtBd<+Yg@q_;tHV zk=+4R{q~6}=d6$hUE7h9`r6}!iQU9T5{Kp7rp_qGKIDA^&E(Rcqhewk{p^l3oeQea zu&dZ}&Oh{mblZr1|E<2HWWljF+oGl{gtDRsj>mp zvdJo`qS{Vs#`GB1&|KT91DV%0Oy1vkI6YusT*qxswl8!o zuANQGk0X&mr0AM#;bGEuSWc~hIslX&%_yNIsPgx>uDQ!ec6bu_!8UA`qbp2 zzPZfr=CN0Hed-uh@3alAoV4(a{+7q&P;Hl7F%VNT+~9?$W25B!w6>Zu3OSr45&gAdg{zI30VQ;c<`QRB*s zns;{@1eOQvJ(t0E+h*fv+Qtt5sOL-6`fREO7=w2lxm0&{l2e5DP`spcySc{?!R0@u z7|K_D-J$*VoDC0cLAO@U)cB1y(MpCPwf=Uwk_Q)dI=j~Hs*3Hdw98U`x>j?|FO8fj z>wxla#xr(>#*e?`j9ljGZZTiKyW+)2-x58?rPp`a{1OR|b-YtN9MBTZo$@-~pt3OK znn;U9nx{c&(&a^|FCF4{9rSgm8p{xjx>#szl(lDb?=J74iDrV@a z`={XA6`hv)g6^rhbxK*`1z+uQmyHKowdl|m1xhvkNUSIx{Nxt9@kNw$8^2mi zv1#OtE$8|nc_3t|BiYDg|YwF*p30V|&K46stVTYh=|LC`*-t~e#S zTbsOwJER|=mt^n9-_+ge7NrvIC6Da{vWPp5^jrS5ZV z@BFC`x_j%9q6(1>jcJ~J8uBS0jl}m2eGSuh=1OzFD{Nx?M~~sV%+eb%lnF zd6N>!zH3i3Ubp31#&25PxuDQr@{jGuLP99A?7SeMke^{V9h`*#Si(@K0w0Bk4 z?1QaGAN&XjG7SwIJ78R$_}P>z)q%&orPkeC>1pBRQoYjXfXDu2oLU6eBseJneeK zL(7V?Re5ia?Xcz3zB<8=SJPHH1@C6tH78{-+NdSL8({mo~WJZGLsb3uB@2P$@Htn zzC3&T)l7@aMrRid&O+6WKR}UHASQ|FU5 zvJ@y9-$$Q=gCdG~fac}Ui2MepCpoD+dh*05-L=SFPPA3qo?j*~b)l#%3iCID%5Cv> zvi8=D!)^%}EJ-m}QJ? ztk>rVjbT&B%T$+t`5ozouEe`6IyB42gvhhym)rk1;9{F?epk?(f926L{-2U*xQ`ih zE>$<3N77gG{Ccg@XZ%E{eQ+%;l_wT-j{4n0{<^n-iq*Bv!h_&m@jJ&XDz?Jk*_m-H zqHOq-+wN^LS3sV2@%bt~;P>S393`ZyKw#?Fv(|tA@js0j%Y0=Q`z@Yz*O)Bp7rYOr zH)Y#6WMtakETJB#o%ckE42c{=zpN7FWbmh7|9u?)V37Od9RdZnQVEY+Hn3d3IsXx+ z;&Yl;95kO>M^VP_moNQ;d*v*q5@_eYX5H=i=o`tj0*`Xb@7SBPA*FxqHjr~qrfcLC zC+Tp`t9Jc;E?PUw@qPasuzwH5oAN&=VUw^kMO};dPg(}Flt(Y^fKoh9;`hhBpgIqk zx}9~!8>}mTAi0_VG56fKDW~9nzh=xkRYs(9@yII&neo}U`~Ht~PLS6#{__{pWzlP8 zkdAq5f4<_^I7$3gd3iq17xQRVd{g{q@?=qHAE1E!I&xne7XS&cmIv{_lhOh;=?e4}`DA7%d;rH$emi{Rks_xrsO_ebW@(DX@ zLfb=jS{?#o?zN!?`=rT$i~70csi1AT;9C4>10inE4_PkDtn;PYd;WKZ`gql@Zb9oA zREbw10u3wLf}bs%-my{(%wERm7vmbxKif^}-nA_;Pc)A|xU(i6{#9sY6$s8ml){G; z70n&s-XLm843Nxer5=U;GF~4lK3~|{v8}uV$U#}boM|DIu&USVPY@tHLaeUgiC@p! zXg-4-R0DC2j{g^sSv3Rq2%a$W(d1}zu5gSM7o(amx zE@Ph-5ix#u`799}18P-;Q1fQUcK|lS3bS-Q*S5CQ?r#>?*BqbWee+8h!BK2J$I~yn zK7zZwB8YscZrZ%xhbq71S%*r^f;Z8avy!nJ+3h%+g)auFeb*!`2rTAtr%Me{_z2~q zu`?1O*mjLCm2{OeT?H7&BO#3sKSXu9F9XZyYRS!&8E;*{p1B}R;P>r~+H|pT30e4U zS<2@(&T$Rb$4nmCbW0q~e=qMXEqo|o!{>9~dUEWFBBr9~XTw*nTE(Xb zob@B{{KXKP~Cwt9De!hRZ{b-_IA*TMg6$b;{ z9ky;#D5vEX{GH9(7Egz@vVn1l%O1tKCgVsLEPe%$Nbv)VOz>lOkpA%09alFc*t4SX zGk9#Mur!YVPdNNrpv;XeAn3&6sDkwfkgHYa&rX zl~D^6J_4GUOqn^ttpb#(TT@>cj;qDK=Xw@QmcCA!z@C@09cH>Gz+ot3q#G<~an|y! zvGgC3sFHiXEAAs*4GFS@r-JCe=9$Xd5e;B~9_T^|s*9P34T_U3bF`~AkpB|*4MkBMqsR(4HEup3A?vDNmHPo>J^!+5YG?32#7X%=Sgb7I5 z8sT;jL4(t-XKU>g`c4c2l|t;#ZNwOowv?g^L?*j!aF10a4pQ^9=8YRR)U8=IC_Z+_ z6N+}}XBQxK+pI{)gSec@i-+52DM5ozsp%^hPz`@F)_4u;p97)p(?mnjvHV-e|s^UPMn~Tyag+)?R_6S2m?T&;{6F+I9hzZ@@Znx1ixHDnxXdv&*DSA2#Jk^6D2c8 zz%lsN#qj9=y8F?4n2;k$<-!j);1&FjsQ0Ki4NnHst(hlMO|{631b*D)@W*4X^$O`Z zWbD=PO;m8fEP-K>MVt^DsHY4BN!zG`xhA7hgb4ESS^Wq`yF_!1@Ol;4qU$b z%0GY^B`gE<8Z|hjL@7alQy>8uJxS%{`|R$|TR^m)Nx?q=jE>;NZ3ezgh0*!@I;cn2l>bEq5Z`(A-F`3M^jJ_Bjl za*gJ8;;BwG};CR1src4z-knl?cI=K4JbEXFm6Dj>4)*mTgkLS*_ z5c-h)yf|2z;Hk;$BB>0ZTPL8h<9Pfhf&My`=VB_AAZmougiM_1skCf6pAu>cP(@rq zZ8GSj7~uZp+m2w=(I9sUgQ;y8kUu@QW$kSDnzWEWg3=O5%38sj;#y7=5yF2e$5ET*Dj(|!JsK&igFFeP%fCA z4}iR-WvooeqOLB89^T`<5vjtuLN<5&Dq}#{WYojA+6XEMSULQ3Vb$*c$yd?vhto2~ z&=O~8C{7#vrr&|+n+M|i-=ObLjAVABS-tso(C!1Oor|4lOHo)FOLcpBPxGHV^!0f% z#vtY3?n&+#KEY>ZvOvax2#V^HqZcu*X-#&=)$!omefltVCyMoe75YRldW_Q&nH2)I z4{q2GtAIC`Fw;g3!H@bQ3;YZcJ`U%X5UAy1 zD?V=9j!nZ3kYNBV7+Z4_ za-A($+!6dVLycNM%p^MD(*mxBKTBuyV;G_X-~KM{OCbJZyGKs=_U4eQiCUBd7aWZR z!k(*VdqZ(1FeQ}#sN)w$E%@_jjEEj2k~EmfVhezf=fHBv3-RX8V{yV`8HbFPzU!#o z$n=bwYT6jNMK2NZiOBa8j^0abD0VWx)7}gwG0ob4WvUF&fc1rP|4?~HZ`TS^);vU4 z5ugEHs(;vkTL+WaE-_z6!H+(HXx{THxokMaJ+?ZCAj zlD|c0xrn44*Bpk66@lEKg*o9GH<6s5lRW`OAzmHz%F-zR$Ox5S2-wBv7{((qGG@e* zCr>tzA4N1>8%X(y;fIu#Ma`%11>L$YzZG@vdRf$fQ>9s&OCCh_SaS^c1vp4Kz=$IR zZ0c+5UfvBlaspX3o_Ad*>#OALmG)K~0Bg)$K&dp<%1+E9SizsQ6STlGkvS$pE|J># z`iw1MSYdzl9*aRAJ%0QG8Su7)hSQr{f9e&sPibepptziWP-EbwMx?YQyM%sOZdA

    0-k`3nAc*w=ch^$VCE5IQe*ISan*3`jRhqy08WF% zVaz@FKuiR_x05j4AjP0Lt8a{ZVbTlRyTcLBecoHdeFVikjGxdAFD&mTB)OApfyatz zvnPlF+9=RZ0*EJzN#|zAay3>SB9n_qqnXVum=nABF6;(oFJB-$pGTP8iN{CoC5jSb z(7W}c{Oe*-+8N_wAyVUDWaIaJw`v3te$<=n90a>9*pOslSN+Bh0Wu>+5t0z{&v6Jy zc#qrJjY@{p4WYZ)J=w&IMrJUQrHrp@S-HKIOmyyq89%mJ^kl>*pj%nSCMJs%dBOJz zDw~?r%Q|X<_86}wvZRyH6hn(bgog;7anYgIcQ!13=wdgO3;qkD)3v5)`;dof;7~P! zY58N`SFye5NRXro1R^d(Lk3!~)*AiD2N0SY6v4`Uz(t5fea}-a4Y_C}zH{a;CMcOs zq&C~e5Pbw0G6uJTK|7Ci%kL0bJ<;P4rAv#yg>4^?&(vwB#c%%^xkM%Stv44S2*+yH zeH69pJ?FpBM(`T+{f6@2pkmRD#~aOI!6Ufdr z;X__CY!5Ne2+9_eTB}-IP(T=1B3~}HCUJ?V zF!5=Ll5fHoG@|&OpYp7MU`eR`c1#tP&UPP~?ZqH1 zZjg_GcBsQ>06cC56dz+R0H<{;4V!7UZY~DGa8eNJFJk_a&}X~L6qJ-ck-1TX5iHJh zn5=f3jl|ZWTUqz_kKpSa_J$smbN6`b&3pImeL$)u^PGxoBZJt|1x5jbsquc=wu<0` zuRIz+xVnfj?bC2_B1R57nyugRj-rrA^WH-;6vUa&Azk1!Ux)3A@jQCs-t3sX>b@OI4yg;sF^8$)RY)Z=Wk|PxQ$tj> zhrHoI6u?JgjgW)yNkkt=y##hht{}_xY@zklx*LlRt%hqVT?7TFJCx4&ab) zhfYkC)PUNW7IxFG9MwUPg-+rHYQh(2=;Ep|#QXxe;gB~tPhrK3wtIrxAhY)zxIQ~! zG}70igZx2Mq>#(|8tg{&t+LDwCnWA}+gHUii#GAzm__!0W67OY)&qLT>_oLAbFQj0 z+f5mG&(V2dgnlpII_kmVdDb0(n2rMtHL<`5Anri-QeEbGz|$;zJ^#twdD=wF+I`t5 z@?tcpkFbNx`w5zwLZbtx=i4$)n+~ShsUG&w$z+IWYgFHUnw!d9VFq6dc<3L%Up9nHwErZe!MbL$>*oaxq)62@B1GNOo19)58g%L~cqD{|&TpG0l+ zHQigQ7IWE$!PVoCHw0n+PuFK}fGklKCTFBe*tCf^-wt{)srx$~;B>1(FIMqkO)5$i zBB;^q3(lTSgGGuLDU}s*w_iiY@69)%=1p|bM9`xu&ohd^|0WelUKY3i`A3@Vh1aJM`p6H}au}(3f!qr@&eyJ` zHlS}In(*}*pwRfr+u%>LS(X5Q$?WpQAvZhn5IGC$7SE{4J4|A{wZeOPlOj<|p=Hq8 zz1R^=qDEJ^)JaIxNcrLY3b#UNj57$!$Dbo8D(3T1XDq9Ekh_7?jVjDO68k&^dl4=Y zm%TN!)iTednT2;l3Tro|H2dhunakNH2@RhOGtlVbe&pMXU%RK(LVw>`mvgrE)Er+lgm{Rg*eebU$|}XDI&q<07aQ83J$bm-77%wYF&}H?WoPd z-i1lf|GyAvw8(;q{dZULX*$~Nc=HmK2GN>96{iMVWQlqeaK+xqDJbXG7oU9`1?x|u z*+BtNd6`#ZQ)KvayY}}%71a%hfTUIpokKi|ZZORxE>nZ&?XUj`wt4}TsZ_`hUQg+^ zi<-Y)YNpQ_^;NY;2#w8o=HBL@latddZz@qXFKtwn6|<01G2L?Ubkxj;vQxWXru_I& zYH|90ajc1yLDWx`q!VVvTPzAW-frKgvhN=+Hvbl`f*FH_x0%=$56sw0Tborj);d&f zw`fV$9CL8^b&SH17d3?e#}@$|>{dmwNs(>du*2z*IhwCHh%0sY`IK=rTpb|I+H|EJ zUA(DMQDx{Y?RO|l_C!t>tU6Zb5QHSS_F>>T7}^I`KJ85^SyrvjIJ*5OE7S7_N|W|} zg2ej>6^U9$3t-cHbVnv#EvVY;5!$eF?xpe>11ZB&uEP}e{>Icv5WtVDtVGp{H?EvsV^#IzE)z`Om?f5DhT@#hK@WC=A=}j_(2C(jU%)~y zG+R50N`YNqx$4rA%vROwy5=hO_V(^SF26plfx?V=k6#HkZ z)5aw`g_&NLWIaVGu`P{d%vSkYdfAVVJ)0!$zGHu}DiF-1kz@ry>CuSG7 zDpSB-FAW}^wsjekNebx?f`c#lG&P#U$6PJnl3J%!B6Ppz;_K2k#);~2XdY%6%9Q!ohfhj7$hz8CTY(t0Hs>UkiZUDm(*2A*=j9kMB3M7u+&7q``@xZ%up@`gL`<7iI*QgNz!hA-wspYCE zCAf2FJx`nM<37Amo*lw7OI9*5seQ2Dz?685CXeT6n4lhn-yiW{@LEGcOnqi%W)8g=BkG8IbVpK$jWbY znk7|L-vKZE!2cDuw1lEAEa+ZN$I$Vd*U#agACHG^H-l z(MDe77@qOSDFl?W&E(ezX-D8X7LXQpQt@>FAg_!C=9@@P zJanYFBhJkF1MQ~)C#7jddsUI%^kYm@Xx!-Qf6~1+{l0}K-`&;ZfQ3Eq>tf_(5>Eja zNwc`QpbU0K-!cS9nl;l@s}F|x(~K+tG1o9v$n=YfrGZTI}MWqVq=8@!}5|&nKfFaqcCGPI4E3q(kG^##bEcW zr>m6)>IhNS2e;Jp3aJ zV#SU{Pv1Xtb@f>>DZi3wYBeR)CbV<2Fb_{vSd0jsJo2Etl%!WU$br!T1!k?~Wq>O&&@Fo%y z1%AgwF|AP@*#ci$C%GWG`CP|{T<2PjO-D%pY1&6Gr8XHR+anbyg~~LgHQ~u1s1@St zm0_$?UtGlom9birAKJt<`ME$q&Y_JZ%Vcq0SN`*l?r}#9j;W1U$9-2g72zE40;%|{ z4}&3v9-D?_@`fs{19YKoo}Sf~Gn%q-JIW{_9@Tt}m;T$@e8q+_E0zT82}nED;ZceW zjtclIJfn&|8R)t*to%e_*9vj)I0`7Teg=aE`i6$I{XmaNQbT=3gYdH%2-)7|HG+GR z&CDwdli&MdpG|Xf^V2S4m3sB~6Zx^ZPb*E%n4N(m`wdKn>R9F;`YVhfn#tlaA@f2c z`nkk=EfdpMGrQVBf0sxZj2Q5a*S>vw6X6vIL;-+qRe^Dd_3Oh+B+f&B#Kcr9c0=ag?>oY^59P+8$DSK_My2{x z-}3C(S-A=pwMOHD;x4zXdE%0hAkXo<%FMJ2zZ*t~6&22{dJ7RXV8SbdP4mx`eIq`7 z`V`Yu4x2R(lL927Z$N-VfL%m^RC9556miUI6KnD@LMyE@7({Qn?(qh!RkXR2%zam3Kq;dw%2lDzkmMbMU#QTZqOacDEEhzC z`GF=+C*lhIpQ1M=t9LN>6^dCvvT*5KJtCZm55xVZz<1U4GI3~&)+DzMQ4O)t6Erb} zct4v45)Y|jTmf$TG-R0!i(8@T3@*|jf+5)litJ9KIgx@wSToJ+>t@?aI@g`z3-!(- zKvTpJ)d^LKj>_#X#x@minAq6Zrhx+%^?J%ox+0}~zz^aHRWmO}m-X!I!e9J+e2>z0 z_i*S4TyAJlp=(LKKfFs^Jh@=(Ny%&dH^a3PD?CyWxZYeGI)=Ki<94{p{~5V-%hq;W zc($>P9Y8=E=-5>ADa@C@D!t|N@ZmY}(m~=y(V(4gvQv)E=&{mhOE2oaZDrtR79we# z*|B?fFi@qpzuF&JrKhK3b6lxuFbaXS-+-;Mf5Z1#`wg7a71Sh|y{N~q-)0|}FSf0E zvgx+jFz!8Hm$3f94jOxO;Mcm(2(c_$!KsAe7Fz&10Mb_VJyD>0%9zK)!`x_T?X_;x z98!28fOhu=fSzAbGi*8$A6q1}Y11aMoE9TL;%I91YU8ob5D57z^C`4d@>1KjeG-Vr zw7TgY3M0-QS3nP3@@1}AWDhn_uR+r4*E(=10(g0Cot>qK3iKTwF4yN~tTIR1+uF!_ zYnYgAD;lB;okI_BILql2)>HxJi3WlWcii61q5ICF7A+dM0et~{Z|QhrhPAAkzM1VZ zaHxn7!s^pd3~tf9Bl}xHg};yqP~r#7cdk(z%v94g^e4xAk_J;|I8G+COwhEADm~tI z7oN?y4_s(<+I(alUDZ7Nggd6F9)-O@(!@qYzAJCvoj-xPf3XAaT~`Nsip89TgP9d~ z>|KqYoF@OSU4g(n%S%MNzke@Ubxiu~@r}rAK|$*RE$=<_@hJd?>)s$|z_;0d)AMJH zDs&Cip`vGk=B9t_k#G>)#Gq;e5>SVE*T6UmDQrw!QW7|Yc;lsB;pI|J0zj8)yck>80+B3{EGk49QU9bTS z<}rnfr3g~Yq|2Ri_ZNSAcI+<$BBuO|Be}i;K!!%DDF+2tdTD%yD%+h;C3N#B)HFA; z9NIBg{2l*=OBcqNKP_RT)}XIVXE0<*5BaxuyO_1*=vSOboGOn71ROmG_+7dl75Wz< z{ebC#CiOIo)}4=BYq3ZC!@iKhG!7OPL!Skxn$XleVBI#^lU)5pU%S!@utA9ZprV+# zI1RQ2S%fpjA&iQb;cmBs`cKpd2@clk@E^HI!Z^x5ngoM#7N7?=_vgovPzQv2BN~4v zoCf9G>kbqWn>EZi-7|=e=SY}Y4i45po0|yxxkPl3UlyMAeLB6j1xKB*1{CJ*jNKVH zR6Z9Al@ZX%eGnsIZk3vuz#He&$dqv3alCtvy;CT#`+?uFPZ{O_4#PB*R3=+WdHbl9 zEIulh28cgkUAG$*05ZTPb45LLG!miG0OYl$th_u+#vVaIHx#ox8`DR-YdyhTudZ*#_;LW& zGg0X2H?CiQgM52fpn{H=Uy}y!Z$xqb*)mbX*QXT^9~Ml?M#Lh0O@*QO3Yl?kjL?Xq za3Vohpb`vejsD%8wu0EqCpj1lc8q@smi{fNe8v^mlh>1m;(S za>&E-&6_uAu$|GWGxq8ZUHVZc_wBad7!$*CMoO=oj`pZozo9~ICygy^iPrP- z-ULAxjDz?Uc?n}YpPom)*j?_qDoli3{)3NH zMMSot4rN5fQT;BgomGMm$MK>YCk7fi>((2K@4du)=RW}b%kd%^^T3gyl|2}4d*j9p zl7fLAKEMejnduJ#a3mY!@1pSerVw?=x?TWA3kH)uC}FFOQHafLz-IUt6Yvml>rsR3 z?|ehb7C_4^6lhM%3x;)!N>E?$ai>t%s4y$3bsd17=k`dbG$y0$V|k>xZ6B zF)2m3--~+e(yy`6QA6^(U`B(EotAjvg4xx4=7C2wh$``)fBsQEA5f~V2PvC7sG&7> zeNCCQOMWiw9~x>$9o2^F%U~tNXmg_&^c@@gOIlDRuSeqxs5enL8??z*JPBNHlV4UA z7VY3E^pO!{<>byH{3s}JqX$u5i`S8bW&>*9B&A7hA1s1I^m$7Fz1fkT`k{Lbo4U`j z7<@&+@(p=~teZgug2WXO=t8(Hv2PN|>ZgT9aA86{77Agy)*dscq+Z0W#&Y5_KWDJi zumn~*WOW72J;pCv$bm!^YXlN^8lK)pP+(DHD>5Vj%rDliT=@pRGQmkl7?Q01TbMny zc=tP-|Nqxzact}t3tKdZ)Fb3*ahK2ERU9_8+ZRNrjCmS?@^~-}U`H7#F$ogOq zOSPb$-32B`4-6X)uM1=}xY@3FlH}zhCZIIQEjUMKu%3qpBN(RGxQ1+!*(Omo=`W|T zWXY0NKmh!kH{S#I0)(>wX|{i0V7-8VD`Nh~WTRs^EH?rJ1HDuxk=D^&fk{6eI7+6b zF-Pvd%Sss0`8)0evIMTx0SwzB7i~|{IiOwiGr}jex9=G)lg!+-1)c_31%>dp81fj@ z>&oy1hR}B(V0r8u6A_y-*AVPX^M%yIN95GI@MGxz()V>9eBkPu=G~bz$HSANbSmcL z051<;iDRJp%TuwZ1W`x;m3#2;;Z1Y^CK4#7rLKS3f5&KupFVavVe{E=mw0wSXR1Ea zeUE{`2llbM73vLX4RvAF_5Fd4`?@P6uAi2SK}eU|2I66MynO|QYT<5fZmyf%2A&-+ ze99cShgSOWd**F>wJ`+x2wU4W?AgxD+=b0tWX=5d?}iIM2n?mTx^{o#s;%U@{Nwv~ zunr}qrCW;{fGhHQPUx0y9r$+mx_eqfbjNKu*^UgNu;;{NGPg*=BosYn=AN<}x&saL z-Tj?wmL;vs6)S4MuS(0zZ2$W8tax+P9B_>(`YNk3t`$E#?=pnk(azm?=SJUzF75qk z<={Z)Ajj~3yt*G1>ZSh@P7ta+Wojy%w>|x*s>VB+Eju!Xi=)gt%XJd2rZblZ-Ie&^ zI8;qzEDa;bs%tqd<@$43ONX+p9!z!C?Qc0~YHEsK+hEVyIi=816rmCb)OQLkV9@%x z4KLj?afW!V@TxA-W%8o0(*Iz6Mz&)oVZTZ10gMV8ehQ1D#~GxsUZq4}he=&O`|wfO zLwW=#@a*PQ*f0C!P2!j7Rhw2J?8IuOdm~(sGY37>*1$?qtl@Zn$Z@bk{UQ%^S+nWn z9eA!MKvYjma?&#dg~uwytN&qTUF_uN$BLGY0mYl8c|85$BS-jncxau_zzrb4`((UC zet7_u6|K$G{=Iv@x}hq{4TX@-4;}k(M%uI2qZgQhN0^zs2KToR5^EmSJ6I?uTfjCb zUYee^7T=U-2T#n_y4o-u*(dvxPQQ1>x1D?iWr|^S$g(^T^KT#=R@2{&M1a=7qXFDt zZG;_G_Bp;-EGaT3iW?~&#Uss3zlA$Q^MC|CkQ(JKijIP-0OEPyc6M3T_2#t ze%Z}cGa4nWzl_69QcZy3BN!-@QL8mlfe4U110+|oUHhJb`JnKd2yR^_CcpPm=Qr^J zK76ghiS`JFmm*2TeTdYaKR-QR#Vha54g3sgfovrL&KrNy>gj6u8i9~o7=|1%+*AJ$ zL7(;?X6BRO3!M5OTvD^zCmXakQkjWq6W6c@0M_(JnsT!6s+_+ccn31G1ks$3@E1*tEg zIlPOOd;!@6NtX5qm6w*Dg000PK8`#(sAzIt2^(`?TR~F+a z^c|Pl5yR0j??Z7xk~%UMVh%3K#nfQTSUjyxYzf@|O^t>3*pCkV^LfNI>>C z%5$PAG!6Vu)XwjkxKT~$b!?Q0GR5qVQDuneI9?sOhgI8?G|0pUE_ zfe{p4xQF&MX9torgtE0EHW%Z0DVJNSK-S^kVA>Ggb9AenW%EfgIz=TPc18R7C2=Voej2arjak0S+lq?&?;qBm>8^6;O z_71elP?=!-nrhw_KvR-ttrTcV(x`PnmTWODrTIMR%fX{TlKDuw`=R8moI$q4ErO|> z|BlO?(C4iLEL3H^`RO34;XuepKcqPTy2BwPOMN`1$|fB)w5|DH(uS%C8$Hsxf6mGe z24RH1YD2(nyPh!Pe@NaO509|!eC6UTo&rK}mHMUGyFT|y_3qC?ZTB z(o984m1}l{HPR5=Y6t|16p@b9kr?2DbsePWr7#p4j$2lg1fqpKKNn&LQu>p!zoJ43 z-vzroIRHdpG{A$byM?ljTSU?ZeJJz*ci}`?nAV5YeT&0DD@r(k-XkvzT@6LRHBvF5 zpMuU`7tgMzA=MK}IC^5tiLs+{L5u=Y!$@J>V;Gu` zENER3Sy!%EqkwkQ+`{4<@I$N&qWCiC^2$+AvV`BfVqs$%*+f(~6i z&(^IFa^ENLCvT*QBAl&_S4{`T>+acu!XFg%+?v$2+s^MrKqFBBK9Rt?Sb+6{z_IRn z9__!|PJ)xuC0agI+Qu7kfit;Y2?_f`Z5#)p=MOwRveS{m2N8uEBYt|f8A~^~2ZrBp zu@q=93iARI0IgiaR{GV*fa!b#t*g7!Wn>ki*uX<6#j}B=9xV*yNtK8SH$y|YaCOzP zj`_WYP%9ZXaQ_%C-z>N)61mPBY zMs(_OzIzx1w?;rCDbm;ygLY*uavAX~(yw-|M0HG_IbNg+x&P z1D62u@P5hZb)vcyc8sk9RPQngfaS8DL}0*9%grcN0bQn*{D6*9o#cUE*ZZ9OI zLUf32S;_Py;x^j|67so)xrRnY;&|@hkQNY<{}2adkBw@;6c_H*)#XOE$A%a2kIx1A640%m{}sY-snE?uCTL z2E&9{Qmu=j1+elgW>r%PPd2c7{Pz&}9b^8R|3VFWaI-m4$L|anL)@c92q;rp}|N>CA7H| zxLwv^F%K z(br0pqbf08_^qg@$Qv`$W(}ko#W2hdoS-O7Y7uZ8NG?r3@{iu@@0Aa*Xi~sadQc%e zHUs0|tH|h%`L4~IU(^*tJJyO(nv|upE?Ew`sGy2^r%gT>JdYjq!Vg@#uj%^r>m)l! z^hr@zFbRiQ5nh|7W( zWV~JLqA6XbjiNVrl2MsTT^%vN_hj-@`Q50Z7(PQPR=(Ju6?f35U&wjruyi<;>z zP}*luDOZZQ6(X}pBjs+#uZaZdNz6#>>4x`ZAdosrQ$_jLH&WzY0iH|0Wd$SSwxrS1LM)i)=uyr@P%AY20?`^i17}IY zeZ*Ozlwcg0kC<;EYEbMaaVpf?loXOJL7*lds_Z+?>1D4=Fi{}5 z61T|5A3%*6YD%kT8Eon=Fwiesw!O^ad&O7y*69I()`XrdN*m=qaTGX`mk^1IUk7W$ z_eT-Mdq0EfKsT|_2^B1!1^RF_rwE~^I>d0;18b9UP77s15aKC-M1_lrz9hp1k5|wb za-j1Vo$wmLaMNWURw4CP`kSzn8p8`0Q(q!Z4T5eQ{BT%=xjqU~ zQ?e26+6>^V$e@6LPK7a!QwTLgJ#q!Hr#A&CO+FxoVxr8}Ycj^J=#M3%c2Y*!p0bA` zl5_qerpp|RWaepG^P5Un{-00xMTG^)EpfUvl4oQKUW0WAD$o~WTDfw+g2EEQ69Ei> zDqsjgw?ycD(8t}#Qi|tt7-qt^lrzlg{TRIh-w+FpKRlJV5ruLBWG=1EzC^#pQi~QZ z#z))-V?PRfj4nnyfM$Kjurx+5{RZt7F?T;aBkj3PYCrr9ANU!hLIbk1xN=!8i zU3G*s(cD51qvo?>sAaRVvk%9rou*5kV0kpNLkEQ_>QG+rN%)w+`FvOExDoMVrVvIo z1$JEc&_QpjiCp&LtQhm0qMGP=Nk=>1M@fwb=?ymu3$Mw{LT$-{&?h&48vkeLg%I^$ zqJ?O#@K?EiNj2m1-`Y+i+A#8uTmj-4(Q!#Tq{xW)v`Pj zoz~iKDEpaKuRhVX6S_N8vAT)s>e!zV?qqt9xx)0!7w(Qh3|laPqiG*OekwWzSU9NP@_CAzWQ?fPr8%iHN_+GGOm7M4p`bazyy8E zAzj@tCW<(}5^KUcwIf4A;$;B=0dk+QlbZ=`I%yeDU_Hc1(bMArK1-3tUCrlfO?9u1guVK5a>t~W_F#qjgnUY6*H9M31yAO9l9*hgF? z-R|E*M=t)etDJ;Z;d5e(rr3wk=P5k(cNHN2$Y9@p#~Tj4#I2B@08zJjt8PLV5Ki`Q z7!F*0CLXdu3WplwcZ6T3-;&t~f({o)5-^33L|R>Cr3blGLSM9%u^aa#n z+hhv%9cGSfVPPQX1WH_JCw8uG?4rjYoBa1$G~$x0r;!C84{_|d9)xJ?(=~t*uN!v` zYTu89eEE?-o#f7)WcfF#8#6bYOURyiA~fcO)|~yDb6;>oL2)s-)wdYAu0*`y=rWeU zU5$kHOe)jT3Zf4^JHF@7`gqere*WfDzW=M}qFwbH$2b7I45!AN?Oz;&gb$RsZ|+su z1I-BezN@qbBM)IrC#*3c%dh0W7s{Z!-2|S8^+tP2Hse#|zErPH3)~rb$_)4_;^XEk z!GJ0f0h)u|#*XhTDVIRNd~6{(R8utby!nkvPhhg=xCCc(hbh+O=AQ8EYi~b*tV5HAeu%hkCt9umnE-gnRQftfgu^5L zYHypGngooDj95==pPEw0zr=*i&HDMm^ML&o^t0|syi-?|l^>`yrVTc>?mj+d`)q&g;=$+6bboUdTMH_*WFQ&aY0x&qP&(2 zS2^E42H=D^_@cjJs5t}044}rl=5_!NB=Y^g6{2{OffrivR-}K?dd7M(2 zpRw`(QNT-UHqm&|AO1hV=gmVwB=HNXZ?D4S!j|BhzG8!Ovn_M&K*fZ#v(`94ErIFQ zQb7On`ewXhASSC%rvkAj>IOa;d1N*SqO+M|iHZ^W7cG++L?1VT?GkMul$M+h!z#p* zmh>P%)+K?L5H=byiyEJt9E4jg^F;u!J29Zk2tWeqqy!_3O1KB}Dk$ioiL^i(^UT1& zlCi`WfSe2gY|v>CPy&TAaJPo@;%MbiJEj)==%Jrz_-AlZLzMdq6QYa$U`MIGfdNhp zvc^_4S|!Y5?Su}&Jo0q6&KzM0P{Rb0&kWUsDi8r=FO5V!I-D^Iq)rG1h_wdVeOw^4 zTJsGP#y2nLOx#B045ob-VtCnAE+WPx?KiX&u*iA{c~B^HTac(PAO$=W;~4ay2E|t8 z!qvtl<*ee=D?r=iL6dAUQ`NjqqmFl3EoQ$O}F7&sh(V(df< zkZclcF}S{3L?nJ?!wLq5NKo+zJh;5>?%{F}RYErFK}N?BG8Wj>Yq*uYI}MKkB7ne~ z)IMMDM6-ZUEfmrqvR`${gTQ!%T2dSVR}R2IN5g@^1r4tmxPa{eswft9#aenZ1aIKV z5%H+*HrNOeCIJds+C0cz*T~pgKM(1{$ruOS~ErhP53`ckeQBUlN zh;k0t^v7IBM|%ecHFoRkkAjO}E`0(-L zd%!|)8+jlMD=ATcq^PssBIh%7Y58EYoU-FM>L z*dY`TX6jD=X-Dy=GGbOQZ3y5;Ub<>0{H+NSO1 zvjSZr1=&J+8uZ<&?}MK=vKkw*K;BTWZQDA$RSXpX1Iue_;y`;1D$>ltLOf0)F6KVY zg!Zg?)AYbKWF4UIfcnp6U6KgAAXdhjOqXL@>d9m^m6p+fyhn;oO=G_tjiZyiT)LK4 zyn+LV&t>&?cHYGsgQ!=cy?1&K6H{V*t9|tJfZ42nTC2^^kxYv<ME`x>PmyJ#@imYob!_A${V$CG>qE34EA;SXb8B_48M0fXeiM+odcabttTO=s|2GC%gy3S~N zIX0P@y8WsDGWyTl`i~aizq*CGR16kd!?@I#?2Q1npM-9UFjhg2aA@S3c4B^EbX|F8 z@%YKDyY}tdHz0MxJR2gI+_3(2>t@pZFHE@Rj&dj~E72>#?OEbRMo_;oYf$>?sC`^e zXwQGO_^VH&85Qdh|4cMAK!r|0?FV>*6W(nnuazr@GC)&K(HBEmQjnUXAF90k(1x;` zt#~jrPKje{;%5#3qo496Y_12gKGYob@(GF^I+O+!2hC0R7fw2!LCT*E4UE}Nfjpapvh&?HO=X@C*~d7urlFBYO12 zhf6o9IThgn6w|vPyym^On`H=7VaRGFzrNO~&yi@~MX>PsDJsoUe7F{YKS@MNB;tN! zJJLL6J^Uf0U9TpP(7&L#n7jV3ha|)lBgLw4FQjwG09$0_x(qII1v&J^lgad^ zLVL(B!1yowj;j)5jFh}zYid@R)y8Zhfvb%ishpJ~{mDgA1x-dbyV|Ls+(5Vri8ncG z&DiqP@HHJ3T1XKbx1(ej@dF8d67?OtU#(AUpU?6tJWNE z4%+32`flZ?XStVkG&QpWM}-^{tjF5~WxzbNGhHs1Grwg`suI0EA5_vN(#cu2pOP*fem&=pn zdPrNX%oYr|Vm46Tc`4$_U$D2rq%|v*8D41o-SiiG4jtN_?<$HNkpk#)LGZn2JiOHr z1!x&%s6EXAms$pH1O@YDmcR+8*0Fn2q`28;=wdk(-A8x^P|E{a3sn=hr#(uD>-Rr5 zot^gtpq3dV=e?!xISwh81;pRMu~Y_6ZjXS9&f+eH@Q-B({l&JTp2B&-b zrG$`h;h>B%Xat%`=_<-dT}V!d@!Lpso}mK5vgg*ld)sLkA7jM}XFBs!^HwynqD{la zXBndt2(c3{UAjY%AGv)r301r+(F*9WYsBFx9!V`N?XWwTjWgM| zpUfude67*X5QPmtTgX!AYyiK+K$3zj5O4&1hcHfoOuxLQQf2k()fgRwimLsRM~Rxh z-dGb8^uv;GeJgm~JxC`IR7aR2W0~a?nqTqiD6WQHelwb)N{BU)Ok<-ONMC@`C=+C1 z+o#^5UT&i}u$1N-IC;XviS{H;G0lio>7vDp|G9r_>4@a&hu4G8-p4O;@uM%t-j%Eo zjr%wK&14;CAQx9roW?ZiqkL4w{$D@i+SBdV@WkI>dzecG@c zC5&UpX`y!EQ-->XY@d|yy}?Gv2=Gg3M;|P{4v}nGWBn?A+UB^p0X!Y(lz}oI&+=Pv zvS;nmwgm>ZID7UiIZ{Zyt#4VZt5SWNM;9)lkQ5k6&t88BN(_j(!I}l2-L?Wsk1fO&ZxvZelitDaGF1c5D_C!gN~#upin@ z4jJoEUcLiu6GQx6=DhVU3f6ePzD~$!&aC0jAjBL`cwjnewvElJva(GuVSwExB>p?e zzZ(OYTigc6+H4S$J13?_F8%ItW$o8vNuT-TNvvjDSi9xaO>52L>DmDuyKDRO3RvEWGZvdQd~mOT4kw~=J{C<>Oz@NcQ+I^nWsMQaADqIkmINOt{HGw1`>HX5EJ`^P~Jt zWUJBMw%rF-Hc}r>95cqxSatXqv`)Qx^$G|G5M{kkEBHq_eQkP~K7YHTHQ`=fD0Rc` zF!ewoDP~6e-;M@WgkzI?djG+Laq%-(0B<8I$Pym{Mbw@zC zD@t7z3_N^}Z)S&s401}V1&xFo{>QPli4RWZyQZwK9Y|J_+>EcjT#8FFGS0jWce>|5yJ=?u64qbG-K_P_UOzu@ z^JZOE923<}8t&t$xVmZrHK36QhdNw=%!MF*w7J&X;2k^EA&vl}ksr-@ruTvLFjrDibp-rTuC@72e<<+EG0A1;%Ab zbDxxVD9ep9sYx#}DnAn2!NgkjaHcP}GoZuNwsrZlWP6!bsFqAHk$v4qGFx`~o-1Yi zp2aKQh!Mx*W{nUg+%{jJZ6ZF1=o;*;J!HsUp79Fgq!lRuKBWvgq@;|XSV7MpM8}WK z<2~%cji*hUcGN#QM-#4>hqQP1Zi!!5m^@$lR(`&G{LCDP^WkU_ff+=q=JaC!kZ1By z?9Qzt;fLLU(>clEqYd=uS`)PIVzomJf@*0GP?DCG)_x=3(O_o+2x9_Gs_JgPNU=W8 zszv^Rg}y$**SE@p4#EZUia5esApuJO(7-kZ<4)1(Qq4q9T>2bsVyxsNT8tb$`r4SN zVPnvdhE@RViTwm^k6lViIz}{S-QjLPHsRKdG?7Y$8|)+I$1*Z9q-}PSFhL1ZGe;D| zloKTac_g5{R!J^+Y|6K3(}q4`@ifs@WtM&*JLA3F5Ay_Lf(;cVYV{R$-y8+($8N(0 z>1H0N0^~MH)3$7*{U@g~*t3G!SN`co?^n_Z%ZwjCUI?S6jVEg9UVfgLDFu~-y%mii zvuYbD!?<~*Qb&vhv}}@&KWdzR=+_trjyRcA4&p_mBmSlAC*yi$o9If~^t!od%E__oiYlfWO>!ke z|^74+(jN7_xn@MzTRNi~pwr!7dN`%@daOtEbgObe5 zjo4f_)qd|I(oG>pSvN7 zhgG^(Hz-c zn&H`{Mnn~ppnjXbj|(KwwEMQBPr#rl(td%1IWe$M3)a z$YoPO+O_(9@!~~wiUcaFZlOZf&%lie^}8VdgbS?F(Dh%-%-Ap}@guZwsz<{Z$$Xqj z%E0PFd^D01!9YSCb^Y;UtN!Ov*;Z5v=9w!wAaOq9i8+wIQnEnP)Pv?@Rshu?xRj8p z6H!h|Z@k3q-`>;c2w{$)haK(w^!w`ScJeE*TfYO4shb;M@FuFrycct2pvmMsG^ zw`qoLLZCH|glHt$C+?#)l+&gWrBEsPew zd>+^yy&b){v{&IOg6uq(6sm^)ndgx}nw+aSuyB6GRKpqy^g*arW75~Yeb56s^pwS^ zu##Ec5LM!XCMISzj2KQc#lK1m-97_BeCy_tgJs@G+-_aJzKIL>iV+jr_`WoV3{Nd^ zbTlKSU=Cm!ohuBjiKa7LM%5Sk4p`yz{#!^>A!z1$A*x>1^qKO}9-5VFq;z=79YT0( zZ@tihKNo&d)<`|!0Ug?Nh*MiSWWCEJipt74#DvTEmhJIf57+sVcr5h{CTfpV1|uQm zn9WGQMXCggX>)RIm#kI$x!y7cyLUN=3vYO|Tx|k%gqhXL+Vl=4T{XSdY4tMQ8aqbq zJioht^F3??(WC96^3~YYqeqXNi@#~y#0gdPki3C?vwK&nKWo-3XyVwmYr*{@jmPD; z{K_nR2QIqb-o2fLQR2qZ`B^#d#Hyux_wR4KDs_|VA>+sx?~W<^)?^C1{;$I7E$c`% z#vCO7NR3^jA=`nzE%z_=wVge?iUg6^KL8P+0N`6TE7_ z%oEr=FbJb7GmiAcxj455=800J9XpMM+c48xb6cg#VR0~ew2EZ?`t@*0mM(hs;5bC- zlZL-Z7`ZM(vlsE$VR*vsh>;yWxgWjyH%^4cE^KP`{S7c`k=k#t%5|gEB}sUAIQ}9n z=$uq_)_)}ew9P&=dV{UaK-Uufx$clGsybD_FkqNrmuIwkOIsx?)t`z{42#efcg<2( z^@jO1xiq~KwoFdUzqd$!{rPjeTQgMygXg6+z&JvZ?RW9wsy`3#6LT=#qiy^&p9}ky zLH5!VQ1UOkSnll8ERi?)W~ISk&hwx))3j5%@fa`UxZ}P zeDghS)j4EB(KQcn*ik*D_$|q~UDrVwr75I8MUA(VS{){IQ&eG8=zYY;h52Ly)awQudqGLIck`>V7tDBst90d z8ReOo(`qTqXr%ziC3B&8@!io#z;0Q+^Vz__K;uW{jY7~!iV!1E^j12a8S@uMxcaX1 z@}m2CzEFUur?N73!Yz_(ChNXW5IJY!{oS1qF(D4M_OY!mKE?fEqSbYbr@Gd-=TmxLA~y zm6@Q74fD&VfYJ2Ng2%lj;I8i;kK2EGNe7d;q|Ug;FE^tIN|gS`*ukL>t--7#1wDVd zyEP(aIxJ8R8rv!~xJvE`gKrl{(i-*8sf}!d9zk`$fHr>o%L=l;@1L}a<;a^vyl{3U zU{{cS1#49CqflM*h`Ccy7ZTOMKdmiL){&&S#TzO>?bIhZ0aOX_eVf)2d;3h3GhufK zQaVX)upHa2Dl9F&nv&$UXwh_slwWtZs(OSdFG4?XUv0>&=Y@s+H|S+VrGHCoq_4^T z)+lwdme3dZ&1XwMfc5jO%PF=(+h(B_50sfL^n?luGGjRAZJOUyxNY5V`jo|ER6U0> z7d19?t*7XQgE82>FMdX3?1Pht!n<_yK9Im>(FyHHxOxakGo@iJzYAibKpHZ{Vfq zck<*(&q&p#Yi8HJT~$1qaJg33=wNb0gp#oP-BTfs0~*U<@0Z2JDj)@_mBU9dtGiK` z*lNDOhdwz>>tvc?u`3*fo`(vG~e`=Uc1CjG_8;Abw9JkJlCLmj~<0ry@pWnIWlFy z-c5I(DltAIw`pygJXA?6B#|z6{FMLjNWAZq4d8NO=$C0(#jM16Sf)~Twr*?AiG!jP zA}z)a{QcTywHdS)G^*!2@AK!*9VKm>T|4VLu-v&%_C6zHNx58e{S)vGB5pal#Vk%q zO)aaeoQkQ9kh5iJX{*c&k(v!ww!)y!Tfar)N2}>S!mi-=`e~ROC3xuFGpHjX)%rQP z62|uwe4);n89r~`yf*hgwC-wgU`A2Nyt$EPM$^7ErvpZ+k=ar0=;@*q#U zALPrTFG}0CMep@Vro7Oqle7I3A~oLcXwBK{UamY**8b41PJKZU=Pf5ho=`onGt0Kt z`Nm}Au)0eeZQiwX&|CcY__J^HiJ(#|4d$h^SYdZ{t)TqTD_L4kW9&UV<}X;-d_(=)O<%5!ImpTGpQB#*7DcMw#5W(l4Wc2$2-t*}DKKl$ zrQ?J~`IlN>CD!H6n?t8it{H}#@6Mkddc^0%gEHM$;ZFftLn}hQf40_?=f}+K+sKv_ z^P>e1ckbM2_Vj4a3C>#4%O@t?lpa2Oc$b4pDFmAAB%h{w`+AZ>XjH~QeUI?e^!-pj z+-!^73oYM#{=8$y4mr?ix*jp6<6lsHe!Ibl5lRkz1GmNg$cM~yzYrPLbYRDh$$K`w zudn#xe7gE>VPVR%R56`IVJvxeafu?AZn|CG`<2+Qx5;WS?7!6W>^5@Y0Ki?lFEt8l zA}1P+T()%S*>82$M{3o+E3Mb5sf+=)NqqLXi(=OjloPa1eqgakkwDM*Z@e)k?BKyT2h(pg4gY8XK5GY)I*4h7 zBcc|R;&yYoF}CNE*@qhZRf2_0^|!Xipa|ZA-w6u?M#e#TZZm(>R_4<_Gx{Bn7|oM2 z-wa;;>0NsIEyw)>&lCaLhB`LBzNpn;-1JQ6&yV+C>hA82Y(QS9IE|ksPC6ZxEVAJ61qjcWxR_i}a+r6hzl)`#>U|L8GSVS{X;0V3;TXK=P=zNpt2-8 zJ>ihi*Y=@jJX&rp*kv{^Vc&(Oxhe%K)l-h-S2lGCbIgD8y*P1iC}_p?9HTX zN&^tet593A56R^^VHAGDY33<^^1-MiWD zMP6S#ozD40V>tWWSs-re%9<}X#vb-v+&hY$CFzT9^AQfC#F zvkn#H@NS|VS>0r6D<%Hatn66FrESiOwv(bZuKM}eKvV{8B z$DH;N>{9alQ*nqPtVf@6$mb##vW`W7t~+-M6DW>p|H>v%Oq0e;}8 zT7FAvCtqt*ts2=|q@X&lFoxU-IH9T%MMXt1DE!#Hb>5z~8ARFrdGB|ttf{O1{@pqp zt^Pwk)}&FHk2sEX5TcTQSk0=^g5T7`%6G)64XhmC~<%ymQ&F zH+L7G`o9#wz#Xx|6a*GH1W6Q=aSU+8WG4!lxH_FX&o3MG&k#b3L}02=LK!ae=mE_8 z?x3y+fAdfygx}^DB+$P~7ZL^`n3>HfaCCI6y6UqY05M@=$(ns0`7Agx@-|x2-dY#hE>g)^Qp+?-8boJWI zxC%z9W~r2v%zALrck=vDEWBdow+Wrp^v!r)+PaI+mMm@5``C2f&seXVv>*L~b&J}I z2FTUsbAl&5nVJ>(=w#yd`?t1k->y|-(Ed6^ppK3XbQ22J12Tk1-nu|>UHgqis^GF=Yrh#D}f;q~|kd3m2DDNku^Eoh}|7Uhn?s;RVZ3UgBdmR)|Uq=qdCq!!YL(vknHogKE3w zRN1y&yEk+^j&Q^>jyVSJI&0qfea4L*|2DL>OvaLgwA-MAJ@1y5c-L1h|Ly0#XxqA7 zHT$Yt?pH7arvz;mvrtU^Y>A0cN3&yXX9OEU!8FWvJaf|EsKP{r`0{6VQtnB6S=j|F zIvaQX&S+*KaKD`BAl-6wL%>aYcZOxecq#Fv||cow@d;Z)PNk6 zkY-Q!969oU8fC}QJF|^mfOir4RCP42T=of{8Ry8CW3#T3uWwVQ$)~JyMR{L=%m2gV{-9_P_JIbEjw4+39NGdv2`^i zwS+7X?a=kzJS_~DuFTTu383`V;p*N$o%-DWp9Z5<*7p5^;~l3fnY9iaWQI%$J<=X_ z^JzqwZ#$OnS_gm{v~%aoBSeQonHet#Fq+2aX+aJdtU8@lPY;(Z*r})5?FHi;?(gqE zf^qIWjv#9BZI`8itRo7VWhdHUka`I_1d@P%)IJK`G}>21iBJ*JqGc~Zp^@#m+-B#O zSxP^g9RnTe6fY+jZd6QZOa*rDv}39E^|FHC_8PdaS5ckiA99%?cXV}p~}{~#u5 zD!$@`w9M1fN(C;^^nJe*Cr)(xJm2-AZN)le%~>U1P=#yimVV(aW^D1Y1?%7nRPTP2e_?eRs_ibN#MHgkm zOx>Ezfr0%S`*I5X8#=0g)%X&Zy=*l3deZxrC}%XJG63VqK~Zy)zxL4(r_A2T=|oYm z5GFI-pq1o?n@;9UncG6xg$7Z|>kfLG=DYQK1$;l>Q^%{(J*87;lc3hU(~YTlI+V3i zPp|)Pzg`qQ>e!s1Y>U4Nq84{0bKj33wfsR+>7kU^khkRNnO-UV+`!{pFfA3ybMyS6%r=JU5qz|nl!~=zy=g*(7Bh`jw-Y4`3 zi(8q`Sv@Dj<-Lar3pd7q-1Xvf)q|IRJKvq8lXhH7$0jL27^=@UA_!rnpmE2W>>nys z)qWCc-O%dk(Yb>FL8K$HFW73&_o;K-s=IbpDCL;v>)Uepcp)ipHq##;+WD^*EoI@R z-e!dqnN?f^&4O@X98nz#1x|}3sgElS0Bq69ETDogk4&W7x7a`E=$Mz_hdYz5LdH<+ zTSeUiO!k7Z4BdJLTKmsZg~ko-(Y;KEox3!~s2BD&sJHt+OlLDDQvSRs3pA@?6~OPp zalyafd{UB-1EAI0aPG6l*~n2$l{;>Vf}tC-_;DZgk>{_W98qe%1yyeSp8XEle`RU0 zL?P_=xW!3LZ`Knw%_67PZ;azo2y(_xwDxm9_=Z4q2R-h_S`T_VDPivOtE8!M{>H5> zfB$aqI5Fk0t=s0s8|rGuBG)@>5hS)Zefsn%yJ)6m-MizFf0S)L{tCp)o1M+qMe~0( zTh@*1WYX2yGFPrc**W#UQO|qVeod&Vt$hm^`DcL!5TvlW6aN*Cr@Wa*E<=S!6ZES8 zs`Z%batLR;r12)pL6j-exFefVw)17Y|^1&!S575{X$fpG9;)mMuT-PqEDY>KJo z5KPB#Uc#60I#Wbp=C`1YM@s(g-2^75C`l>+w`D%2UcM}-d6R~9{84AtrF1rVHjMhe2aUo<9-wo4q2Xbfj27e~*&OT~&kR`H{ z`QAePhe$yzb)k5CjAJj-7m=Q+VJN;Io>_BLT|ia0*4LldlGTC+iGAf=+V=c9uNv`f6J<%A>vp{^g2;ANa_X-7n< zE+JC)AtBZ9MCM0C@>HajA&W*0H#f?SzaV;LCbl&$oaOQ^bacE$PMFLE!`fp;(w%pZ z5Xu6q3mH5-5?f}1WADG#q;REMmOFl4wPMA9A0Dx78_p*Qqx1o(t@?@$lb{+5MfIgs z1aM@|aGpz{kT{6Nfe($iSK=G7{`UsQiJpMlqp9TiJtqwY1@`yEm>wiGD##Dsu#-&B z?_$-F$&mhZe}jSY*j{N>dJ%@`JdYOj?*mQ=+wPDf9DkI4l7K_I*3F^HD%Ki;H-JPp zKq-MEXY1mmBf{1FgX1}5t>a6c07ztSlOF)xtx0z7&1#^G_0Bv2F*->Y3T>Oo@s-al zGD$;TC;zg!z4SkfNDs~T%MV%;(1nQx?&~re5{RqJDzpxr6>E*0dI+Br&^7o>EejE% zfzxm*YLC*C$xOWOG^RbEJw`^`&EnZ~rF)S^k(835z(u6@uY`!&bBuAyNCsspHi z%@mxp#rQU6Mp+<7ddGT5#zAE=__i*G+qG*awt&H_t5y!V|Kdf%#uu8Jy~0|*_xJ-! zZ1nE(cj={QEHYHc_VHw>eo`4G`^|6d$`yFU@cQ{PXS^>P)s5-yn}7mBd&#E~J?z{R z&p<-rLMNwj5Pn3~Rzj>tF+Z;5khkk`-V>EB;vlz@Ylj(X#&Q@|`)?jTgiD=A%G}#H z4_%#@l;V&fh+2xn`vYnYp@Ta;qYWAc7;&=O_;X5z7=~_RUK3dM4KY_}RCbK>2a*uf zN@Yn;Mzu`}+>5V{fa&;S0Er5X(@j;s!!~~4S5cUq92C!~75Zn+{ABjognTXhYx+U# zP4bg!hMazw?Jhb_^j7vLdPF@bc9SDt#C9VX-i9$3ch&EAAqT)k_dTQPkJ%BXfkqdaGXt3-mRkC;# zFgC)~f)TRlL+MNx97jOHCfOYrkBW7FA(bwjm#th`PD|^=*%Cu*U?POM9)EW*UYOp; z&Pq5E;yy3N3Jb6WU)P5G)xb`VJ)Yj!L3rmAraCDqjwcHu)UiIh1DrS(k{B@UB$Go7 zHt!OU(y3w|eYFUah;D>Jm%oNoRJcTJ16k#;=+`qrA=m+>?_+ zcttyzzAb40I_Q`hWCj8`L40h=@B%J0)Jl0Y#f^!Ade)N}S~2L4R~rysvq>?R+O%Yt zZT!>HD^5QiIyDcR{W$afrc?5}ocmglnvM;nfu9zaPa(XQvc!7jikpiDUUc=y%IdS? zm4k6e~3i)M?~~D{u$OQ_#lw;`)`#W-_%~>W#_tH1fkGq{7ePX zEzNQ4>Ydvnou2ES-Z$Aye~#fB3<1wL+#56s?f^Pi~ShF9u7?T2FKNl`>mNe z@z|kwNJwD=#wv{rI@ImqO*EQGK zo%j^og0}T9>csQxdeW%4f4b43l73H{dekqN+s^;@BLCJuo#$yES+%>BQfqO(;hvUO z3G1Lc;+%z@KEj7z_v6#zL4}WrM;J8f>{~rLh)c)b-N}^BNYO4$OcqluGHts`#sC-o z#2&*U>F}0#q+2j$&0^A>=B0S5i{XroS0{Rl<;;68ci;C>X&Kj_n|Hatp{rEMk;((SeQ#GLVH_6Se7j1&Y=hY?cv+7?DDr_9N z`^rM^jg@4+Az*-V*MiF%CIs~hw(#l$lU<7>Uv~QL!hIYb!#9H7VmwQ@CU8^k6c=C1 zN}|V{E|bNiW|RFeOT)~+0nzgD9HmpsIR54*3V4x|sw#VzBT5$@!A$!IW;EInTs=W+ z-*KaKnk)(W5%$1*_8(?#ZS`M-F(s6Nh{@FU0ORU*Zy7<9$xH`8>PR&xA~1CdXxF8T zkATp`>ImT{LEDEiD2w%XD%pKj17;%k$&0F#^{Q_1%IDll}+4JgWP1Ds|f0PeKSPAY-8d0|v2mC?w8kGd%lWoNRg_QqFHgmGH~IfVwQ6b)#G-uhn9ReC+X-9Ou6fbEs3q zbdE`z0GNf-g;08vR$^JmJMo2L_wH^Tetj%09YecAr-!Om*x}x%FP{9o-PhxL{$`YK z3yNq++&dXEa){Dk-ueFRLLmzsvV@eUpx{*fdA}2ZNqP>2_^IwTZLsrekaks(P@8Ii1RL6=Y~?MCiQmxYN9 zzC6vU*evk}T&WS~3`vCotpAtdv^YZ}K9XQwpO^Gj8F={n`M?gx7T)!E6yvmL(OBx> zAi81N{JC2XZBh6~3&32WX@Mrz4Ay7GdiL7@RTeL;p$#b)-G!rG#aHTgMq>wFID_(p z=Jf`SHt2;_J*3~lm5McvdoK>|-FvJJAK{Abt4%0k(kw|Z|4T)V;BpOW5wQU-;b!Lr zWjD8iWbcEvmGff`Q}g_^kAN>~s;YkI%-=I1Yk2fu(hvvL2%g$X>dzLsx7u|Z8bpIX zb6T*e&4}T{g(C(fw@`!A2NFdUY?Cqgp)F9z`h9TzR41pt3~*$xAk4nTGijL33y!<& zp7Hc$=evM=gAhmwn-!!33RfNw!lX_S_7K|cfkM4Gmbv2*F=7X9oSMIH4Ky#>FGV&C zZ@hZ%?TNM$c3sa1cXxBMNbb?A?On6oq~2}EQ!9P>u6;z|yUo;zw);QdTbymY-MK^$ z;UjSwt3YnVE1iC2wL5|F-SdkB0JAd*xW^6-IHLOR4ulDpvH1-23nzXu0AJA&%OhdB zd+eZkb{6jhULz47bRix_rYkNz@BT|o5GzZ+}k z6YYhe81gk1K^+zoG?OOfbShYr4&FeSH&o@obYN z!py;NX1r1{XMx^CP}bD+n5IU7XTb5qJX(cwl5o*5$QAmv^SyRroC)E&qHQ^;F02MVDdxTLnj?R@- zaoTdJ)J;AfqNxLNlAsw1rju2^dL%T|6y_8{wvW2{a_|Wvlc<+Db(vgvDsy{B#~Ch- zU=sWRvF(oY$HQNM(>PVK5zS06!Cwgb4;?-%_jDwdOk$uDE)q1l85y1+fYXmyDSA0I zRUtKP88gz0Z4x44$AfohQCwKo*q@+l+pwb`X1qPEyPa8 zC+=-6=jngdFP#M284Y=rHxEdVrd%i?C4crqf*iaGIBGeir2kuwqRW{a53zMjbW-qy zv@~I-rfgWecrm*Am@#uM+G;cDSwZ}OCVI^~<#L_7cu~7XPsI%Euv{z=Kt9>Rj&b5s z`L5j0XDKWC%}ZU$*lyypi7UmTRaVB$uUJm~K>B0L-VCoVA~jPOK!0A&I}iL&r+Gp+>!L-w>cm z-mH?ITUUbnz;D02pNXM1$2yYFsr(O}4vz;)yu-pXqMxGD@G}h1wQgO8QLtHDez&XP z2M(A6Dht&#I2P=L?uKz)?%clpX3yv!=AL$=Pv5a~{2zAbFIAK0thuC^{=akvY+6|( z)DgW@M*m0u^?td4CQJ;y|D~WX&nzg|2b4ft#a$NB)GYkvdFS@K^d zF2>{}Fu3m?$F!jo?8A@_)^foJhjFlC>T|xZ8XGjILs)jzVe7bj;l?eB{4sXR4$(GJ zHvuCn3paUCBaZD%RlmWvRrND8 zyqZxxYTfr~;haGWtXIE1%g+xZpc8=vAU?vgTvqtF>vnyTlQZe=fptKQCjNtf*j%fI zi&K;;rcpuKrC|B=)@n07hHr@U0$?13!!FM+^oQ_xMGf8^w@?g{q`cnd3rdPN-{xhz zaz~vbM!wfN{W|#Y{{6|Vj@-v%@cX;m?Db%iW^^3OSFPemc(RIv*&|a>X>_ydtS1(j zS(f`~;p-6%$sjrc9xl-+lg=$z&Vp{u^<3fY^q*yI{O`)mojdm(dux!(Vb8jiT75v~ z2O0=av}=|-gFz-V-&PZs!xq`Yl2W%y{7@ArFr^A$O&>oJgsPd?U|~KAK*QHzS6axS zeY?J$n`JZ6!}|X`xNPh+UywCO)&EZ6nswfae}19szk8m4rC3Hwl>VgH?c1AwOKMUW ze==_{P7u6!%vvceEm3~^d!j7j9z*C_kmkhdVRDncMm3>BBQsqrBf^?eFH2$oTLn`y z-Q`ilHQ+ljtSBMHc!37d*6M2vVPZnq&r$CQy9~HTwmFJayRga053>n%*@x5ZwJJ%jFw4S(3;NI16s|V-DR}t zTArdrKtL3?Bn@M0>(CIXVQ8H2D6{Qv#77;sy{mnP1wNqi3@FETXE=eIh7xeZZp8qB zbt-7A@a^!1SxRuc7SA^b^xnouwwhOME^(qX6ZinoSBvEH45W!4(R{)Y@KdTn`R8AL z`Auf>gB!R7NC*oW8L3Rb9;@QL|C-|bfD?x^5-lQHHPKs8GC(+OUcR~EuypAIKXGGxGvG(mn;C7?t_MT8LYN$LI+uj;;3K7%Q%nUfRSi1gf^ z`B6bI@GSg^ydvG}1OdVWYwf0^r#I8)&-lhb!_+%=%ipRSKEGpE(eMA!tRlAg6VI%> z{wKnra217ZFHOI8broaj{0DGPxGu}ltxztHqdo>iMi3r&{_Ze88{OjAwqo`d=M$8l zcmx6?-ZwdabeySaRIZC(NDIl9z(Am~1h+-F;c)n0H=SGa_SNJtuZE0Dt(UbuT>7s( z7uCh>+!^g@QLSfwH_JS1=4HRq$<(s@O6zgPJ#1QbT)wQiy>;T3A#Kz5#DpqLi_*Sj zBGu+4`EdH~lZ=aItPImj4EHT?pzw-=sUv}IZgA>SA(+a&Er z-N!4IiLltrjgP)?p^JcJwA&q7?7vS^g#&oE0ADFgE?Q$!Dl6!+34J>KE1PK0dT8WCztsRYV{^RL`(%LyZb_0c7?z@J2zz$XcHqM8E7glr>CSSK}s}x zq%cKCOUo1|L$MeWisr+`Ral`(+?(1{p>|%{plShXYIXqQDS>JuxcRn~tRj7kMGy$86& zCR4S+Da8jJnbw>Q$$>6n)X-tWsA5YQGZ1swe#y0gd>*yFePzgIH^j*BX^fFjli1f| zjMZDk_t$cNFX72}DZNpSwon9Xj@@R_olYH9W4&wiwQE-^BO21L%Ku0!-Z6huP*7I* z+R>dlM%h$SOXLroIAT>Y2LMF`IG1Yk2@{D;2 ziBpTrcvHAzZnBNP%~z>{KuYKASm8=}6pB5c<7;*w|2G_1?N6@&Kd^y@bp+ol{u4SQ3r|apTnW>qzU*zUo$%&b?UG$IvxE+S>+b75xbXj^=z8tLJ zpqL@l7bbHUZ%mN&Zsy+bfMY3^UwbpTgcjjWv-XC5Vm%r99vSzFii%dvWC?)_n5OPq zFd)qQ9QHTDM^EA>i~&ZeNM!22Tyy@?^lfHg?K9}ttsutIa#x$XQOJ8x{5p_ z;7b;?SRjmd59ZF4j9#y&eC6R6{gDa46EyUJyAyvrFEZ0oDA~S+jf^K;x*CXOph+#{ zeCPI4GqJIW=dq3aev7IrYU7+M87!5 z*!x|{vbl2)O$#&_HENztK*XLsQW7rzE!fFm=+k3F8`j$9wh3@;^1bl+B3IP?_J!nR zlfHXf`5s)qRMORYV}49SlTzo-d9PBVj~&~MEku;|+UEyN_CvU55Y2>vq_Dh2Z^1Sv zQ#(7Ap$D28cG}t4Yz20Bji@9;Y^`FK)Vqt(4TnSnbYsD9klNA@AGU4YEYn3%F*-H1 z8;sYe`e*fJ;(d3ze38HqkY=f-_Mykmt)`}L21_g)v<)?@zIiyW&c`=h#=^?_%qF74X2YtUp<)0wJe#`DB6;YTXnx^=7X zfa(u+4!TONOO~v6I81%K?oP+Fv@{0Xo1v##yMBEeMWzn{@z8sE;?BaS-4gWY@fY~;11ZA*jHF`G20jU-1pWAfz5r($EJs(cd`kEes`Yq7-t zpk$h*WiJb6Ecd(LpnOL~IS$je%ndDCw7C8qd|kWsk;TLG^`n!M72s`qJfMwV2B9aL zzj?Zq)$WiGY4)j#y=&k^w`fQQf!_odc(f5ilP8bRZPm--W*vL0T7TFuthKsgSf;^Y zu($6;Ut&3X_9?~ZPYy5DQB{>NP&=;j<2|2d7iQ=WbELqA@FUBd?~wW=``*3gj}$cb zna7Bke!wz;XwrV#KYBvulDM=PzmrYopOQ7g%td_SDT;q%`SQWAZ~JTyJoj`>PVkom#eN>&6~FaZf7AZYV?f1v14)r$?Wh$^`!eEFDr*M*>co3b?&G>^Db=G%+h?Xyj}{yma}GU;mu@Kc+O4t=|Q5~_v>!_q8tID5tvS-BWaO8@ zE-zhkq3?SnFFJjC>AZP|&0g4>i~l3FKr)*$ml=bvtg^xzt(l}t>lXA~dmBbg%I`xSf4{ zH$wYQ7n6ZFEp|s#HT%kHZSksNthUl*mj>%x>+q(aovlPdWv>uFc1`;GFYC7t-mtu6 zNNv;V^R;QexBgW_4E=m|YtZ+Vf^IG3KfT;uj9wWxO(P&%C4BC2t61Y@cx<+*W&YXrYUA_H(r7imPw6^TUN!l9 zfR@^^Ih!Zk{H-U>gIthm{pZ^D%ePc_>bNS*D)!Tp5ms<3$uKN@O}|lRrq&T5&(0T1ugL8h^`oopoH<`< zTgw0>yAEC$kXxsHv|+C8#~}#`pVzY26A>mS4Y%w+8$g0j;gYGSo?9Z}YYt1%= zGsen&&V6-aTB~Et_ya0km**jKN1}Tj=GfrkA*X*qm7NI1{S9wnNp zZDjX^nf&HeQ>XM%`*40}x5PW-3e%OAmP4N^*8hqw(e-;2zq}flxm)2Okbj^74?!n19#*bgT zP!_S?P;9q&u`~8VNa~BBFf?d@N{)U0uv7RB#GX8I9rsMi;z9Tqzh|78~QxnN_N?MS1 zp+h2#IVGmQt*BV_bGCsR;mh4R)_N_w2enU!6wSdNUWHnDlX;8@)5@TgT6TIE{ekx> z9I3p1-Grn5vQ~S#{Jtx}4JtO9{x5kwci*2dequw5(t{KEr`fIB<49CY+=dx@cS_%& zLR)v#o`3oDY0Xy-nv=M@{-@P@vSuV7+~4)TRqRco-0uDRgUHBK^Q6<@U7u4^Q?KXc zbq1K&ol|k@?AfPn9J&cVG<$Zy$P>F=)hvVq!y7%az?Yaa7v%Y#p(R9{#vwO9f z7`w>;n7%*LJw7(JUM77@=+Cw5TiG=cd^K31d zM|yrA7zyE}Ze*qibyBYYrEc9^2PL|W9ovkBV9Kv5!D;LPV)|Z+?sr640?OLy$UeHW z1+3$6dh6lpy2)DebD~w!U`DTe_9f?rf;AqkcQ-bcqD-Qe*0!_LUv@fvXPXP7`q`#d zjz2+VkhUT2y#E{9Z4Gt>|Bb??|B1pa)co$U=qst+&TAID8iygHETw)rg_y^Pl|03F z4SHB=bTM&x7Lt)@(Kk=|<@^|{qe)4fsDTeZpF$ND-0TL^I6RbhPgWS4I&|D2qxR$S zpEEM1+3#=0D?grM9ia98OR1^0vb|RYPUy1hCiMy68DIMFFLVaF3t}KzsrCB@(K+L zdu7yA*Iv*vZ#o9w5~8(hzw4LGy|P-)^

    O2n!v*wF6+oxSnk4*84SQ{(K#4Z<*&N z;q#6vAJC$vBm#$WlXRAda?UFf_Ca+QrxG zzCn<%a9_d8c|3SoIXN@lK0F*7Tz9gA7bD;qnqkvMDZ0eToRycCSGQnYvptZ|?g@SR zzA&FURk7Fu-_0klR9n8x+>o&5)A|j~(wmbdwQJ(5_XNFrBf@p-;c9(5cC?WjAQ2nT z3b$(ykd$aqly)8JGVSEJIkPmnoH}#n!tg;_d+&aq(uWXq8PyBufzwxmi%0DzHM`Lm zW8S9Ys=fcoz!&7MU+*x;(&NeF$D6XVv!}FJ$JF1Ii&Kz@aQ!!Ma9b;cDE*R49S>Kh zW?&#BG-4AgD01^a6RABD;BEq@TnyX4U!%Dn6z^7Q&kr+-pR8gZxbVQ2V3R7~l{U4v zZr{FMSg1sK&!V7P$jp|pYoV*VGnjDSON@oI#F*m_f0Dse;YEaP(CzYHs0n&WqG+=S zFv&lC1&Cx4NWtI!HU2C529Z{=rW?So);MeK|1m7JGWL1K(f%Tl7yGp~k4eh;C=}l$ z^7fLStRUD))7b5BCCw&Vh^)7KrUVzxaLw3k`~Kwh)yeJcKm1NZ250{qmBP_!vUxp5 z>5GaCpFrgp7?ircwEq4-S^$al%$e*7Hu-h7kb24 z^}jk^a=53e@uW5D?{BCry;iWE)^1zcwEtIYmsg#)t*t=i@| z=z>PI%2}g6)XmxXq+;vjK4b1Z8f0k{ZT~KSIxkCM=qKmSFT0q>JT6^pF<$ZI>%sG0 zm6tz>RZT#}eBA2DgVlLo_1~#r|0$Lm4As|vP4`3rt}-e$Pb!}rDLnJIIpWwcTt5OU z46$fsU3Cm+9f13K$)s?t+>s~Vzk3(te8fuz>6bu}7=#HB9F5MP6V{sN@R4g5clr01 zHR)s5tux>TVf1khOFS`%fosKeLpn;JIk7ZG>VjPPWn9aHd)5kcgq$fY5dbkLl;9cG zRTE}W*&DC*J%E{ev0jnu$^n%sBRre)8ceY7EH-4E92H9|((d=A9!r;g`L>Spvs}nM zxk;vQ@#4p!VtSu8o`QBE_f_GdKEiL<;A2ORN(m@bNIjRYOKqYb8X*Dnm92NCi?r*j}KN1!J$VeT#PWY3^i9L(TSL=?Dm=# zFA;daWvF|}Dqx1iRnH5rb9k|j*Rrl|#A@gebc~r<3r$T;gNuisFG!4$-}17k$e?C!2TL8bvIe2LrQRf(KQEm< zVf;SohNbb-Ylm-*QAF&c^8XR`9`IcD@7wrggshB+WNVk5ii}F6P?84Og)%EE86O#u zCJhY<4I@%nk)0$JvWl#yuRc979ZF3exKtwj`KLZUbrgQ zQ6l5r_i-L9p>cu?i@5yJQj9X^hn09@Jc$_C#iXQgqL#<+!-<8TXJILU=8~91LD5+x z504>I^s_g3bw4h3fv5pB9MBm{u*zf~G)nu*%1Ro6JqVfFmivv(dwfjA~#K+?VZ|P}1{j3$zWuVM%?uP)JD5xp@OjkcGhN;I~}1d^y=a z6j&&KZ&$)jOWfX!@-DZdM+@P@J8Ooz?H&)HN;0;ABB>2P5E@C0+;QM6gAT=CmutMe zdqoMzCY%-abYl(*tfhQB=jtolj>4<3(}?djq;OT8X;1}_h9&V3+3-cmWl-EmxCX#D z(P4|f`Dj?dK@l1j2s|C$qgX^)KO|{H8zBG_35d@Kc!9vpM)wAGUgC@F?RO>2Cw7nF zi?_R==A$%_1L0N4b|?8s3RVGO0lB5(!*RSf!Q^+Uh{79ybBsc(cV|~ZKQPcXFo}iu z+-<$R=V5z!_x^p>7Hu>S1E?FY&*SO#3)Wzli-zW@Pm%ycusaNz;9;L_ZvUEBuY%}! z;deLtZymK-*9KX1jmyv>yby_-mUAo`kGZ&Lz(fFW%PO<`_wLO>(ZtUjd`MmppHF;M zOGCpMkP<*>O`hwYJUO91Cm4wk&$%Jt`>BwJnsNRis!rs4HFAX(Oe+oV1yX@(H;Q%e z_19zKAFB9xLKy)=;eU7T;k#!N!P07SbS(r=f6^z_aOycsVfuEN;AIgf91w{9sD(&0 zMS#%y9)&T5>Csa4g^UffjG12mAFL5N!D{=XMF9H*7CP_*9?D~E3_?68JxB@Iu}x!P zhBbO*K!Z#uImu{hz!-UQMQk#yRobFGHP-y0n&2!LAV4^e95YA56G&-+9-UeUU@P_yZ}4PZ;%`9vM>ytT zfDkxXF-ETlObl(wqIE6>7I_$ZAv?rh0xjmCHpxCsLZWeEPMmmEUak-+vuqg)I>j~dMU8@BI5({mq0WSb(WM#X*K$w{pMH5&=hf#7Y)7B` zk*7jiLSj&WTJnVd_EK4Szi|Kpd z6W7_Vc6wnAI~N)@!A?cF=lhoK=pg|Zk_1`FoZ zGyxtWvq2FC+oCfVOm9W?1{T@yT3uB=gcP5#kD>^QnNXmxb5SYawYdOjwXhHaq3sWm zgDCPUKw<90bI@5?!@J<(wjAFZ{W$CW(5SXUB=-XH5(8snRsg+F@-c#mE5hW@#p~A( z8<+rot(lkr@FuSu?X=Et6~EA`2j%Ec2~9G9zmFxLf@5Q2b`B1KIQsy&@DBY!OITyl z6AuhIt^lc+gfk$WZln3u=aDUEnHqK9MTD4kch5+De% zah=+ns^=Z>7A1PYyStW4@yx~73oE%7R*zli7w@>+EsBh%!Y5F7TccVShcAki9h-SsbOtJj4>QV}Vt6dSv+munrnsu^rk>^$0IBXeod!)! zADuy4=BiYe)rvfFH`vtq#v9QKp`W_A?Vi_^V^7cz8?5MPuMvvp{#n6ls;mPmj+u(XQ_B3zQ#m zUlw6jJ2AC)LP&NZ4&{%d+f%d6T{9|kN@mUmcy)<#s9nG>3EZyPmRtQo$oPWkBVb)7 zH(-B|ed~{M&9$|#<{;VgW|a0S{$ilS_!n@5P1wy2y^TK_rJHG2RKJrAlFcW+3sWSA z5`ppu&#+gwKoAgXt`FI6E3w|rA$Psz6#YsnV!5=m^la?-?q_Xn{ooJKL#ilQ(DV~c zv`CAVDe+6etO*&vNJ@E-NwNnDWs1TW@kT_ObD1F_PHMjM;%;tE*c}Tx-_Wv|fVauj zWn~G58_oRu{5a`1Da8RZA_&IR{NMd-XoD#)cSk$7wZuv;y4mFH7BZ9)62Aa5GNBvV(5QDvedC?$NqJ_lI ze7+_ItY-1;3xD{wIg7YqDETlL^ooO)6py%=SV5~h063^9;cm6DZ^UO}1P)Nl7>2@t zbm`j$-OiIe%5R{6H=J~2P{3sW*l7Z&`xNk2M7$n|0 ztqa3_ye&gZvu6i5&)x58X$8EGG>gRI=Hby-sI6BM*1y&cbx!Al4{VDiVw?S=w`v{~ zVJP^g19%8xQ2~Gv)Ev=e6XcUY`8nHrU?~=L2Vjd#-l)X%^sjt{noXLnY#^IE!*G7F z`6u||MXs=G2}wy$*U3JN+Ji*>6VL#vjZRm)5AO?7l@uMEom)_Fy}E@*rV-~(iDeAm z=c>~CNg^Z0g|u{a&nB-83W;y2PL1{{uj14?)Nv0~=!z?e=f^QwhL!?f0u``X5|=rLvaFie<6@WG@?tW z0;tR{UA`O$z@ovE4Si6~KDx+pG64yC(?eMiXKUX?CaT`600B4Y=*)$+?kckfVPRn< z{+58@fDAzjoMKopr%4%+7Z}UM=xCV($OG7@L5q!*0GDRbX{7Ojk~Q%Ai85CVL^iry zyfq1lO^qHIkTD_yTf)O3qj}LdHsP{i8?6f84_E^B)G3pO3WdP%aL~RteLppu?$LSv zz_|+Z_b1#J!gr;d!h_Um%R=Tow@=5#p8hlutuUKO$$X4ftZNzs3j(*8a>PL zj8yO|zEX6wTZau?pAUiLMYMJjUFhWCpotO>713(52T4gu_yryBSq2ABfY@|mi81Th zA~doZs+;ZG!^W7v22cW3$xz|2qq+vxs10r%Hcw|z={0&i4G96@Xq;SxN!`Gk7(NQY zaez8r0)HG$P|*;EJ{__i`&8gC5U+f~mqLn0K8T(k2ekhoc(FHc<>QP(B@ zy1G4JuiNn&UJ#C-l&Iy1MSEC;M8O&1Et7D8xqu63PC!gTyCMPI$PTqJDPX)g!yk}X zQJuS>FNcn}71{^vMAv}NBb*HaAXIr}H~Jmj4HgUwQV19HaNX~4QAI@xxeda2AuQY4 zfS2KwKOgT*qG;fP#DPx|wKU?c3nnPg-h)7a7x+RrwP|>IW>wnw`l?}U_8dz2-9|=* z;2KHq3JwT+b!*$K`x5Fqz=a?qu7kFHq_+w8?*ODY1fut7KCu+bwa%fR6-txCd_Mkp zXOj}zGKz@4uqd~x%~~ur#d?lK?Cq~@ZFJE8;VkZduB)ea4sX9F9kugSXFEF$z~n%L zaqe&4yh)CQUF6avlO0>O1aWoOa*XlMpMNJdmVTjLsj3Zh0YFseLw^YkIt%6*&!T*M z(`Y#_=t*%&X#9mi$bO!m7$gk|r2(aQZ{CCxEb9`r8~V28%K;$+(-qn5h-`%bz)o2} zXbQ565d#Z!lqZ(2RO{ z0+o@1a+ka`dxNQ+C_B9HC%OLR_Ya!rj)oc8t0dH#G6R6C>a|K+%P6!k6KySP~D z%phy901LeKaJl35`r;I(D$((LZ!9`=3r?i~T$FJ8XPNMXSnhTZGz6h|S`BNF?LAVXS)%VwZ5oQu}c zK;C?Q z!i9)p7w|_H!pdPC?4VD8QL?;^gH()wd+gaF_zFCWVR~bM5eXEoj`MH}mklb_+9<3GB7u9>8MP-hl3mx)24(R$y8|8<7#Ocv!%8awH#Iv28o6AE`}fg zr5afJoe8^1M>(gFWAjo?SNm*ejmS_nv9SUKfX0|KToy=MUzJW~w|p=IcgRKQ;~fZ6 z?_Ry)x)0SFbI>Nsv>UljktsgQo&i53dqMCjEKC;*CG8PCXHrJ{lcArnif5ayzV3aO5x!pCaY9tdWoK-rLqkEUJ@tN>& zp80%yF{!CsaEo8IY?%fME9y={0$C*Zs;o@TZpVaAs*lD#m8K>-o@8hgSr|n2dtEC3 z%FjWwJ~K=2dLZ&bHlR8h9~xiJ)$xBif^i{#kDz~?4DaxA;;&6#kiE3E(+imQV|eYg z^zT3besdf~X(S z|B$`g-XKgdYUJ=hWCv0SS%L=b3FTNT0!Jg#SEA@8ZO{Vg12jO&$loNOV-!(isIhep zLN|nmT(=`26(pO)}w$iF5on#u8xlS4q*NKMfr#xDr9E>5Ju?C z6%`dJ3iAEa=;OMK{EeXwMc+mAx4<4*9q~@&mg&0krqatAw4l$N1K$Mwpx{U5`A&*r ztFDzF?P*vOM`vZ)Q0amLin2C1_{z3>C54tSLyZWyJ7j|_yJT}7hO^R_y=VozP7-QR zP=}FswSHIdsN%wNE(S@pn`m!nA$@(CQ)L88)D}6xh`dT}xBB$JJR%-6b$X;S^%Cf# z6&PAHPldSl(w{O=e^ZV|VQ`6rM4M=~&|JT?OU+DA=fe~m-?S6{B>WeVat@{D5^Lbf z5np8tRplNcE3Gk?$Cinir-jH&5Xf%CJ4J4xLp6*!hBgQ)ULwb0^O)t&XZv&9lewmA z!?#MIC4Mrtl+RK88!Cp)2@Wf(@`%83;03R+w6>$JjX|2o2#Y7NOIyXR zY(u0L=Ly|uW|s16N)Eg~L3S!C7Bt%aDrYg6lUX z=>(|$ZyoY4`uJZKx8?!JGL~xGWypb$@421Gauk?j&&9xO_8bj^dL1@I&t zl&>&MJLPf`IPTR|`%mH3qsnN5S#l7tl4h^2)wyG&StDf5Z{!B+OY=AKEw+EIkDrMj z&PB$WVD-2wD;M$ZQSQi%ouM5NB~`Lf7)7F|(9=nO;$N_U8RqB_T@takiy={*I*nbi z=tYq6EUP9FToJuvS&JL;aUW6^Xx0V?)6F(O&Pi}vL&5R8(Dq0wx(7TXXlG2a&#TNk zcQge0?@FRs+Z3PaQ@IxE0|C4HrFM#3k4yDxoH2tyk(o`hP6b1JgB6!RYT=oAWGDBI z2tmdQuxb0X#7il8R|C)Du-djss-51ZgO)GTGCd1srMT zo;|@(r@QalLevuYoX>am3?hM-0LObPy;;-e3e(lepE&AV0s*;MlXZfeIbk6by3+0h^>b=$on%-~XKQM*Tg>j|lreLxN1H__PA|H1k~ z4CVze7cNQSb!)3dT-W8TQrI{gXEwSw=R7>!xWN_@ot}f= zFaxzPxi^lZK5w=nhIYFZ!s=5ve6)-snXq`-f-(cOC-H&7T#R5E*)@mS602gKE`5|c z`Log~9rzj+i%A6MCM-iY+&^KH3D`T;P z6%bmWZJPG>E5Ut`Hv*0$;zD$YlL(R58)`}zJlI@Jon;F28}C>e&`4tSlXLg)FS&gA z@}0YPUwj@uvbng2p{U2XTAz8&9KkdLQ&Y#CxqDSijg60FzfR$NypI&WapEmda3vR8 z?7P5A(BDp5OdJK^H*14(3?&Eog#EzO_ifn6Z;|U8CkJF2mrR`!Q&nveqi$WlKKD+t zGZm@JEQG3mx-C=-JTXVt0*^vx^9HS5VGFvCPIWe)1g z!@qv@)!1@#8)Odrff`1WWc~pzN5kkYrT53LgXDn$l852ts33sI7L{3pZ`oAx3F#vS zjRl3P>YPz@5r;y=XUKrm=m;4=Toq5ex7V&cgJoe-x43TIxN+ntH438C%Ta)BrqikT ze;Z8T>V*&G3+yCkq~Ps+2cyR*Z{yeIFGv07+3L@Hw)w%y&yV4ASvKYxE%WR^ibr(1 z*#k&R0{S0ag;dZff66_EUdPSNYUGB>UoF5I04BMN`1l4ps&BVG>hhcU<;U?2v#DS+ zv$tFcN=HICz~Yf!f2A@NT^CXr=7#R$5ds# zUnoIqGD9>a9v*ncL)3pLMTmS5Z4Q~F;Lo&7#!&(PNkgNp6}M4Ki-}B*=1wTc%Tp9o zcYsMD#Mpv?UEsigEoEDvx)1C?%WF9fQ4b1TibgiNam*ZAw{Nlv`@EFusxe)ovRzV>!WUF^1l;JomM zHyHk+v=L3))%LmiXqz8=baxHVK*u1QaxKJ(lY|2kh?F+%`|zQ4`AfUa#oy?Q(d!ZP zo=iEJn1rFniFDWzvs1u(Z)XTbMu69~c6YM}ZSsdC4~jE*wcW|e`f!K-addRF?f?KqOEm1BkDnv8&*S3={H+cRSU-dWN_1va8@H8@ zl12OsXlFu~vwg=7ZAVAw?d%N<4H=#tkY*2#oAB9VBK~|SdOn~fHy^&Tx3xWuM~xDf zU>*P;H4x5!4h{wtvQjK9ZuUoxxWMcufVBu(5H04HbJ^IcPpU7Gc*4g~usIsYaLtb2 zq*{1<(;DteYD~1yhe5O2HzsJ`Y96Gi&(&LNhn;WBbRU^yazbADG|SZSkhrxnYal)Y z*_(zsk3jvvCCql#MIr{{c~TS@C-%e|Hz;ZD-ShgzfsBu7RV~mkuglAi0!^7MOVk%H z-olc5BWao~ElSb$jFapKtZV(^EupY+9$q$TdYfx*$Byybcia3$^PmaZN=={8eXD|@ zZwLQH3aZzyx6PkFpXJ)*q<5Rj?Zu8r9YrN2TOP5xSX;+^Y~6wg3(U*_AoGBG&a-E8 zH-?SSSz7!3va{PaOC`tpc7!gyt${ukg#~W?W7GxMSWz8I_w-?{vm#ay^JAth0BTDh z6I?<{S3A0mpsUK=D2zFZK#D9%;o5T(!Zou-&>cmtc&Mivc|=5{cT3foX5=Ex zu!#z%0?^EL#KNDyB1)%#knv@gSXNx&!71voQIPQT^18u3xG)FSUDs8$?DTznRDb^b zNy0e!<-+lwPoBu#E>=<3I3F}Pt4BZX z(bLtPpU5D*&P79pdJYLU<+!x#?XC6I-CnCy>9UfRzS`gA_MT(ZT{EsNN6o;w5H)0t z5LBgwh)ACjWLlkgW=2>*p$4m~T`Z;t0=WYm4}xHUfR z1=)VroKEG>y}eFKvfclgYl+j87|9GBUyj@jmn2?Nhog;?K9EI|$s47IBDC9Ozx}X~ zUT9bt*_1$006#WS>#%Y{!-NJoCq3wBpdjS1;v7PAGmpYP*}%#@6I80xOiNQ!Zn5K~ zZTB!`v;_|z#cbJ~l-{Eu=k1E~k^Jl&9k-k~u^!(z7@DO0pP0CZRV6}vC#H&1^Lsiw z6W5N0jpW?!b)5*?w<_;&V=r)am<(betx)a^((*E(vw*!=+1P?;E*m%cH+!Rx#k`vq zqHmSEZV)L9RNNk33VF2*j53OEgZ#q(a~v*qmaKf5q+PQXI44Urc7l8H(I9V>odVEA zw8#9J_Pv49+x4BQO*0qQzR%{-s5L$PxKj|yVban-st#$&S>j7#^;iI17A#FDT25~^ z8$y#!eRb{YMOUBHb%EjIMdG})8Zs^n&6M2ndgKn7P{Zd8gim&QhK4(RNas0eK2TiX zFADoQS3@$R3~n(vSP$I7W(<663@IWz7ZIokG=**efKcGJG4au-a}8$rkc8m5+&Zgb z^PU_ig&d~zqWI=F(jHGI&Y=YkKx+m$1>oVJ#&kOL)poyU9>{hQV#5NfC3KdcHo2$~ z*xw3!e2S^hz&I(I`&X>8T>mwq`;J!4IADdk^`KnQ#}P8XBi;fB?=~2422d-uUIjjFZ95v&18dtdL}0D z@dE{jIu|+$m>&#aHE5*iH=AEV7>9teJ|nF|FW~M343Cc_f*<&m);)TnRB3=$=optEnHL1CSPw9nI$lh;J_#bS_3X@ z8D_vMClu`@hLpQqA%7n~)54_A7fNC?1PD+i?N{`)G+%saD;Lfeeo4%t34Ag)GP<{b zrH+FIO296T24EEDp)vy7`00)?4roLh#6Qd}HAl)cYbFj;BVmNCivB|@8sykZNcd#- zK3c4)Bt;+j2Gma1>?;gDAYF>16qFA)pA-*2$US9!Aa3K_!39bUPpC)slgaMg2QwOW zf;a*ILQg>>P_1I{aX#2YMEh8vzQ7|8DTSF%!&rZnZkO5~Q=nq7;$Wi4pbSdIb?)5) zQ~?-k=!?2s8Xvwje#FZ?tVdE|6F@f0v{TLqCWUh+zrm@F#pqzz?;!Q?ISGd@nW;`GUNlZ#Qx+QL-=yEA-%{>^17yu7t1@jePtYrEY9(9iHf+j;k z;Is*Vh+$j5s9U!JD==g$V5!ywZN`o`py^;AD6BlPt#sPC6AwAhdrTf+#TzGWGqc;N zW`;g9?{3Ih2Xp;|^~-XsO*;j=a1tm9S%(Y7-E)!s^SFnV7WQA8=Yxv`HC{1rSN7g& zPO*cl#18D+7XmiOvN=0j8DJL^1ekJmFz^$>30@<})f?(B91`!`Hin@}%^JV|YJ!~J zD)@&uoRzfV;l5N$;JoO^z-%!2LecQ%3q#ZK$cW?(;|!d_MPT9CE?rM6g#7gakZA;9 z2FO2T2oW7OI0aaOY(y<{$JiI=m2GnhM$7WX*?zd3aZFYD_7JYKXytVZ`9DNBlyZeeS7<)G8%bpJH@Mb$jxJ8 zQ&>3Eqf2Gv16C7|wV(htkwyex5M=z-WS}nz-2TDp$HUI1z{H z7EflApBhFDfJ9#S*pqsy{=(HXcQY4g$VRsP9 zmcD`=QWEmBlaXx(M@gB2FxJTn-mM=T$@b9+pvL}DQBlnsU{`SpTE@=K&Yin zE!0y@#IGN)g%j!t0^9t>5eNjkS9lC8hSIa#rdf6d5_}@vBQyq%_&iuG`y18aCB|8* z=aiz8g`1Nk2A>db*JPPXU+bE4%8j82)hwaZ8cw~yeY?&y#Q)NFUM;N0_-~y?m)fmOMZ|$eUr0ea-yp zdH+WpeBB*-;64kn6npt(?!hu1$OmpZtd)~9SZBFUNPlE#=mk8TRyQlzqwc9OMZH?& zik=;%!r^o`?y4EcR%1=f0Y%{~oMrNc8BtYbrNvPb)XaG81jh!QdUuz|?LIewU1G5< zNJ4Egeq(F|`(TXG?I`n&!yNI>k9&o(S=reYvzvihKnxxG@F6=IRf>kl8ZbtZBzR7Q zJkT$66o{3x8690+VNfnfK$d{H8x*+`L>-Ee``j^dEMY>-TH6E2KLi7kkv_Mx+hI_y zaNG0qT=3(Qh+o811NtV*^kFC?UlR==prRp#I8X6g=4j}+$CI6Xb1_kwzu+xQQIU0>R2Iz{lip5aJ z6=SSuI5EBR2CgGICgMV{F=6-TD39iiAepgZdLHs2najoiZBeKZN^MW*TR9Tvc46R( zj0<5Cdl>Q#IiO$!AjaK@JO;Cn9vqOmgi;y)umPf9#uVZvQ&V9ya>R&2_x1)syqZ77 zKA8YLgsp!xtRjtcTq`fn^INUG5uyrO#_Jck%ek!2)hFaY4zWx(A7^S5i+d^|MkbvF zsIfgJG6sI7h~Am-VzE(dHQBlI&fbAUNt8|~z;OzooPc*!#!tx@kv~J%Q%mquNRN^S zT$%HGPnmB!3g)9JIi+Qh*w8# zlx~*2bKY4gTEPZxr+lv5!|=FrbI72%ZLYPe6JppZIwfK||2s zeEHY+u(?_k5KvxTj);4uQi(p~?ZtKT87SJ8GZA8xhP<4}Tn&fgwwh~FD`oZBsf#S% zJinip7LlEx_op>9Hntnr^|&Y9zpv#tu)r?{sY%Q9-PdCs_U02eroYcjMtecFeCWn~ zTm(nhW0<5LxiUQgvzqLV`!}spCS;~R%M68?Pj15K@i@c_!gBdpS^NBcdH6j*@laaJ zp977;6tv@YwrYcdQE)6lLGjZo_k6i;x3y^XQuQ$%pq6vXp(U=v_7K6JGtZ>B`>I`i z`U6C3X2#TKwEZ&=ag6M-qLoN(6C3brn&JJ~!ag4cA|({tZ@&z3x(okvVSIK@J#w99<*^8z<$YINWe zUW#oek3$Z@Fy}tPTeLd- z4@^y2f3^?Z%2_O%2A_GjW7iF6@oe6_S-h}tgla>jH#X&~(_a6vv7rGfnEU8Vm&cMd zAf>IXfIRT$m15T3qWIS+9HghHRJ+Pzih9H0ElC%0jnu z*Iiy-*^u?eKql1W)s>9ka}7KbZ+(}l$OW}u&nh~KMW<7Jhm*`ZFkDs-(gVIte1~jo z5}!XmfZX_~8LE?&l9JX%KY^kRKaHN!RiEnE@pag%wyH|}LTMZZ`+tCIsTZ9r6kP^w z`Rg7CuWAs~RzIpw0(`Mja;NO^VsMH^hK6xKaI(tDX7psL6{o}=4n~G4=CN;vCKOHA zHhae94TC;lRv-1B?rE7OrnIli%8tI#2~!!M~)v|>6V!! ze8SDDs;WQ7ykEb4TMNs*hk%=mcJJ2RSEs9kA8S5UYu*7lf0|SWLR(@=iu)TEc8h7b z4%>>8s9(sB!4Ke(tN1>+f9>I8tX!ax!_ysbNX927h8yf3ZMhtA^{UNqeUT_8LqFY_ z8_6m8=N${p`SXt7%IZZ(&XM(REq$S=cm4k1Lmz)mOyLtj$Xxy5LuA8A@9e4kv$mcm z2fFq*992-4MegLCOqt6_FW$07En4PF&bPrG&xYDJFVFTt`O>2AZNotg7L(r-#Hm*J z&R`)#s7`AlrIoqMJLG_tIsd^Ub*6`|+(QnF&7oM2hacFYDXPb_W z!M1H@@bEr4W#a3A^fi24xfJ|Hv7lzuTMdNGI;K&jHERyT9kurfY>+pdI@v>)hmptX z?DeeQPPe)>S@@}NvAp^|Sl0K;WUA-!W4S9n-U%tY2`pCO*tZn01?9o)O)c{BJTpNB#6C0gI<7V zZ5u^NF?pCXrBbSx%&HqieJ)kUNLi84^^}Q;i5%jLjMsg?N{!BAt|HSZ%9`d3i7>7Q z&nKQ$0{52(h^(b34W7u)*DjRUgZzU=Bi-6&44Q!-pyJNc6|G*q8m~M;(Knz8a5o12{#tHb*29OoD8J`AOUjzdHqWJ~Rc5ys>8S9~fvxxul)zTX@bfPnO2aBr zoR^CHg#kgkIaJHB^3^MVMjSgwi79V>Svx4JJf*Q=(l;LnnJ|MlTzT9u=blxLYjI&= ztBJAkHh%Lr?8SHT@op|Mwy(7mXA!uB4Md4Iow9Y-Hn|$U*pT1y2*2mWvm~yetld|R zVkR*&b1$Gi?yrm!H}wk(aSVQX3K$1%p|#whqY5Op$jql?*Y=-d6jMss#SmI#bd=JN zz~wL4uy(_SRhf;+5VsAFjC3ON#Nu-=(-|*TpDdQD=bU}ITpi&0!~>FXzQBm!S{%J% zEf9>r6~{E10%zpH)pSzV8KWq?p8y?oA;VVp9HRpV9)b((flafOFKl$TYNV=aWIcUq zcz=Cfizz5<6qJ?VqZZY}e&>h4q66qA0C+Bb9#!zLb*&vv%+{)ZZs)%dn6WpH-Qu>r zgG0^cd8&6IFv9P=->(IQdb`+aDsuZP>TJm}L?Xc}MGW3IZ``PXD%@i~rss@cL-6}F zfD7gMz$3=VRO*2bY!L&Yl!3nfc|dR@Atz7@a0>?eg}BlhYmy zh-t0|2?5ar`V<@-x1vUtH;RUz-!G-8eRtQ*rKhAKxRvJ6b}~{7p_>l!Q)1j%6Y{hZ zPB>=>CgO$p;IhU)FUVhZt^CT18*~LP@L_{G0op42jHltVK~?+m<;%~~_RxAD1CyWf z)aD#J{VKU@*YC4?eZr?LvqU*_?&A}57fmk39NBHbLK5Gu-%r2+h^H$W5we7?J1Hl} z1a3>`mMxW(Ebg3lS{+6F7xx_A1}%#f?4g_G{`s`L?U$$*T9oX?WoLOAD5+EHo1evn zFl7i*jnWSVlMD4Nu4dJYg`lo(?#-U&zo@xv9uIITCLix#Ch z#qx=WeL_ms5EDB*X@i0L;i~`xl0)PX{qW&`N16^3>yhiYS17{*%zfyn;|wi-Zr%Kp zGYk|@+mVb_*qp6!%VcLU;UQq&C_JS5&8+btcZ|BG)P@-N*Jz+`2+2 zM4rNUc9jlpLS0J~8D#$*9DrHQbrj`a{=cP{|9OCMu@w(eTJm^t=g)JNQY~P!@Zw5M z>o5@V=OOOdb07X@j2VoP#Vk(D6t$J-U2&=`+{AxmccoOj)ti1_myhWIDQj}A9y};D z?!};>GRzVHgYg(>VgE=?Yb#2{X9o_xe_3;#=k!5xrH=AIGP*?4ft8A3p_q6IE{43p zu_ZATKVhLfC0PXokw>28gGg)Rr%w-o9A}jyDZ8=vBQVy2`78U(woXn@a43t8qQVR2 z=X+boL4CCsD0MGBSI7ydLf@l_5@ra5;Apl;M+K&g!34ltA_j2QJOiREj)?`%2#cSe zi)<0-W27j48U0f@+b=w&sK?wCyA}PAFi{7zdZJt;D+eP`ttIhqCL)nHb)oy%~L11dxV@&i{63A^}FWB zyxL_c=(9QixYVNS5Hbk16nI@xabe-2TM-cv{YqAx?SCQ=+u!=&KQB<8VnCeZ5TtQm zK;DRd_Uxm2josV7S^&9%%xBN`qr}3|iil|ceH~7nqDN7Vm$@%c_mn<9Wq9G;XpR?O z20R~j(Lo{}8VOoRn1{<@9#?N?XSkxT;gfgo^xfRuJF(<1bQ!>yl}B6%ox>iG_x{vN z=Ssw_OR;NNsYszwEqX2?x&n<@7o$aJMLzim;*%UkWVr*2E9Kb=p#vvF{_W_y4=7E^ zbz<-)tqn=sS1Fc48nQD*4Fb)%jXa5^RT&{C_NE*NeI>AHat2_IqO$S|orQ}Q)j&@e zgHla0_AF+lufUd_gG(P>f~Sz2if-ukX!4OhOR-QFb+tasr#6xI$a-l%vU_W9Ie9Oe znOaM%0SiiH)&D+RSQUvAk0BRi!2m(mPfi~6CiE7&bPbtQop8&)$g)?pFxfN%=yz*B zx3=@8kn`Ed1uTrH-TBvO5Ks2-yH!;N*xs=XgQ91a70a?iN%T%m))Qa=hA_6_gB}0B z#k-o?=FIA=vc?B`?8cJJPO7wQ+BBOmU;iHV8L^rz5M3JVL%>lxlZoS2(yiZ0FzzSokk z_dPpysOC)}nC%ElmncVl+09Gvqr;eNQ2;&jcm8woS@)LEQK2rw+AauX6!r81d%T7)VB2OZ%IJrNAHmu4-dzA?)0z$KQN``xm@JL1NTL?FgT zAgAXZ)UDo)`N*v=El$#0%*~^vNL!c>uZ3Y?h-$Iy*UImqkx^k{2B2;aLET*EcB_Ni z7KM{qrbLH}61#pjbvYF%L5i-;67p=+MS*{g{)P#pQCCdr|BkGv5K2tz;OLEF1uDdd zk_EJbH{{XN;B)ye_Z_47Nz3Teq>SUE4_JD~i^-T6adg%VavE95$$Ds((J~`?9C384 zg{)D)Knvx9wTlaa4@#gzE&&hbu6LAt3FQo}dnc&r|qS4(Izh0R0895UNv#5TAlfc zM^0wa#s!5Rat2rro%f@|ckvCOnp+in7HQYGKDbB})gSr?9Z#X}*&(gwz5$5tVY~Yu z#$zn)f|1c-)bkBk(1eIB?IglZMQ%B;U=Ej%?ft*6_#pKs9qc$)@!b$*35pX#!w68| zTps(ub{jBwQQn$znlCpZ`ag`SGU}NKZ%O^WRngFAR2%yq|ceFyl0T1W|;U^_Hl%NSy_5t9Qs> zKrjB}FJt2`gJWNQO}ODCMWI{(mvd$rmOR$~&h?m(ynb%UlCzcq@_GuNoeNL94zIP# zeu*&1{kpiL;>>r^!!#T``jYcd31O7xRBy$D^v|EK*2hP&AoS!U#D1*n;2zA zBUg48<_BBuTU#8v1J{#Z2#f53E#m=xfI5g$8wlO8HGKN3`ScdNdsuQtVT1rh>K%N6 zA%F+)kL~8;;c#0>!Qk!=JSDG|iRK3w2>7DNM9E%Q{pRRa%7*jb96hG;=5buo2O?EdoE(*J42tp`&M6q`1L zKsd$evxypY2B~QT12L7gh9qjzsbIZZjhp8N5m->Ix8ahOk*P-x<*id&x~Kn<!}BgRioYJ=Ji%OC z&zs~s($o4pxBVmMyNTl6838`32AvD4ZhK}1_^5|jt9)n>GRO}Z)=gE{G;x0&9b>Vl zx2#*m&~t}%kBWG7t*83tf!@aI8TOLF+xlM>=2twH`j#jB_;&yJ+dB8iAnUUEYMXf< zmB#q$M+aOS*0oXz?1|=0F6}t3oZG`SGazP_f73-JP ztF+^6EnN>@np+D%lqvpwt5c>4H2U@62@*<0PU@mK+zrDiKnq`h#nseE>14aKotg#m z_U4aYkxBptfH$4^@L>%GP_A6MBu-IQ?SDg2Nu(z?MJ;*DejP{Kg8%Jl_5y-H25_Ns z{tYdJ8e( zIZ=~6zB-JC!+R-kZ_YBYMeOX-t5+MDnKfVT6k%_EI@8k8cI=$3#oEQf8gU zzjsS9gMAT$ot3ohjNevT+PJ`Gnwvi#POmK%r&hbJ|NgV5d`n%i zlFaiwg9ht)E@!e2Y&|Ja&$quNb-0m%Ev`oL%ZXc!Ewa|#%#TN|l{w4^l<)To%MjIU znzr=!m!r3Be^e^fY=5$8>4cezLrz&VHJ1$CsBRo=$%j>pb%;H(z&ZaN%*k$1+QE_O+b5G#paf zTh=2JGq@x-e_h?LhGTVuq31V8OrCdFuG4#-ALtZ4s{W|{TVS-L4(o~AkfMMHRE2kJ z_+8}Kl>(T&D@OgAHa#8H=dIl`_Ra%!H|kuam13SK$LgLfps4zP0x&hghX4I$*=z|! z+poAlo?@n_L#9?iaj2w}2({4fUiWtdHa1r7+OJKCbv$I}!b^-aEv#y#Wb*}rW6*oS z73v5uKkh+{g)KPtRBfUimSWuHw^cm!VJ8;4Y^j1mwcK%1M?kN&lwBf}pQZcQvoDCF zN1i1lHqy)Ml_@fWA2y5X?CeUJGqTRMH=X%?hcRu3?78T>{WO)XSI+ak9QBS;y;GWc zXusm4LrXcBq}SI}>~X0XU!NiQD#2I3C&VZ}DSd8oMfym&OAwRA{+?q&jLURVmNl+? zJ~dEZaaiT_WXoX{7011&d-y7*d35;&cZoK3Np{*+a0>Rg8Fa4A8`W%F**vvgv2xWH z-6b#8gvV}c?k~MNlJ5D-$G-65uVcF=e9uJ>dsfb z_3jZ+eb&D3R^!Kxbv8-nKRoUa`nDbu3}622KzrA5L21F@FY@diFRi*hE%S8ZW1l>? z#8WK;6b1+Z1o2m0!@!jFQ6~O|d}mV})Ek{_=A)-T<|beQCkbB0=s=CJd+d!H5=GdT z3)=LunWV{~EgzVWqQu0N8&stDs!Nc!x1Rd=hMEM&6%Ql^6O>+CX?>_EmKy1!$AT^u z(3r!V(W_UkBtYc_PxT!;d+01~|LtEb0y&tOX+dN(fuNHRE=hbNcp2nB?(AF`!@5-Q z{pnTVg$v(f7Sj#Gu_4F6%0IOC)4za}u{E2&;Pd6FU*q(K>f_s^0W%J>Fw(O!;w&kA zkyGE2lsVO>^+9p6k4kl!bN>4g3`{RvByf4)waoB686O?d@ygTTrmI&`Z85rK$`LH; z^H`b2vYVWqH92*3)&LX!dTf9Bho>|8FFXfHaU$0YUl8u=grfu- zg0saBNGdK#IbsCnHRp3!_S}Pn-bRw5zO5U-{Tnj9Jm&RQh?0GfmYJE9k+DbSdH*T1 z6JPl_7Wi&7o{=?GMYfcREMqTdYHH%%?;TJ9^;NrwZYBUQz6A?ZZ2DKPT-mN|MMbhl z+#%S|LD{jR!UYnSvBC?54|I=T zh7*`AYQu?LEtB8YUO|Th-m{vOCGYE1lly5-RDrjqxsZm#ETkCCh9U@+$a|>BKore( zO0M?><qP_e5uqqq=By^C zu7#}_WR>^^RoZDr#zuy~ircF8tC4S@y@W8}-d=N`HLk}sLjVC)W>*pVIt=BvutTCfIMg4!JDK3aUZ4$TF&d{V47%n zO4m3eDl(}OWnrOH$FUz1_A-F6QAXj!;ASPDH9@0=R@DpcQp3<3bRLhMxJ3#bEX_kr z36 zr@Ve~p_}50hMgBw6^G#y$vsG#8)zC%L*4>i=zEFi3ft8u@iTJ4@Oxn+o z%m+Azd}QG0n2drHTU0_r4nYC(2pCGw$EVsJO>WmPioFK-XNCHj={cJh%tLK6GDm^( z8@$=_UfuhvA=2yFiF5!u7hZi9@;2MOTk68;a#!l2>%S#?_~C8G0Gm**dKHPyj43M4{5Nn+LwQw?)Y6SJ6T;Spw8booCQ5D3RZ zi&k7dlYE`%bw@W58lpaLWDS_<4)|Fb96EFlk8AV0DPUsUh1!&r^+9m}jQxVpI| zAViTvhF*Yl!}2Zd1MvuhXz9qPcskVg$SGsqYWM=ccuq#(IoJ9|RQwd}3SCxQoM`|n z$MhQZ%?SDzSb7n<3`t9R>{z(LA*$fuEYXVELoGtIp3Y(qD)^QAJfOoTp}UIUgY$_o zkSb<$7VN_GDzQ@>y4fb`@QP?MP?32vQ~5KQ$Th>6eiNA(B)<#; ziDXPh{|FXx+Uj0QTmG1NhUr0-JiRvCWK{C;NI*6{E&1jcf4tVxw|DdAfahk9Py^Rg zR*K=8VsLlm)_n`}*Kd~Ersj_eJ3i;jlYQMn>Uw)azg~_S4}bZK2C@W zP_hi`Y)Bgn@QAv&6>ZvnT2KAT0Ka)^n3qk)1w;#^_dfkiVYn-tyH+mypr(qEAAAS& z?GI-+Df>;;`_<-8cjar<9Ky)d9$6O{7Qae^paLSG&<1vjrZfJ=Rt^05G1Z~U&7Hly zbqI^Ii3_qeee#?_`57JjL_{WUcDHx|wm>@GZD0^XIt3K=s0K4n`2m)bI@faRE0jU+ z;ZMF89XRIe$W|CM3P8nk)|JxJ)>p9Hq}NzRPxEJ#m6CW0l%TVtqY4|fAHewbb=Pnw z08Q~h`~*zPrV#!cI1M&-)@_)$@IX$G@E+8gSPQM#nSN2VCG8hHmLt63m-y+q;aEa(nGWiP&dRei+F0FL8<{p=j-z;r=?a~ z?dPR~dpSZ((vC;>CsemsUAaVr{)q_*5N4f|g6yV@l}XKeG?j^&8JZV2g{zOyN@2^v z_1@fHW+=c3n&UKw5)1zulIB`$n^c=ig=vU!?Zh!80SW$gxiE;}_J2+UKd^Jd$vi?H zFZi@-ljXl@f+dl3k^1V?s-1sB&Ts6Dk}~$>N?>yFy*v@5xODit7PzHZ0LF ztIG44sHv*LoT}GWAcJ0CE@_9GuCdrw6mY_N&b0EBpY(F@CDT(A>Hn0O@JZJuv^{^{t5%3qG(9m+Z$P0NG6cycw~~#;ER2Izyh73N8;1eOm#1=FAyZh&g^>ys);i@**ax zlGzLKH=hNT95>$kMhUfIu9}X^)ruu_nWpQ+N?b$CN~LW z0PIrrV=cpy)phGDy;;$B;3gvX<9b|@!a++!Ho=jA=Y3sk>m7U!f-hk#zoXoI`U#1c z81*!!BXl!45v%zB2eBgSjLF)rpao{BPbQ%)4SX}Nc}zO;s|T5#^QZ!GfL|D-iv<BuW5yOH28An_WtW;*?;Vo}^seLEpKi@g1L z-p`Ogh93BhKk$P4Hc@vqfwqKH4TPc|D#PVBSAJIyCBi`Xbl9U2!M!+QXSWl%70CzU zGlIRMiXtOnSa5n#>dMuti8yiystr$VFM#(8|HMk|ix;>6Q3K+t=KfKijnqC_-D*Nr zSsoh0&}Yc2pEse2#wq!ei?Hm{=*bEdHJx`2_?`LJfXplC9vJiHrpw_~1*f|q_sYV5 zIP0zVmscwef&E=BBeMe+#uyyVlO*gtd+E*Yg-wcAuxIw3N^h2=RWnROG+(y1wnIF( zP*^zqYEMUp0Wely%*bn9j<|G*J6!I=G;BD+8+&G-kMuS@y;`zv2ESA%dEL$4gL+Lk zZeDOWa)nHBX^t25ndm5xZE%BB;i8L2vJ2HM9uB@x$4H^7)FUPLFjVKS+XsHYoHCW3 z$kpA!HcDkOQv7Ge>X$Oh=FFnxm#olcad2|tzQ7L*yM;ZZ59V14WTVqSJ(G+mf_&=e zbRac*ym;ko*w*i^T~6l5e*!i4p1{~M}<}o zn#HYsrmHH_FBp64DO%Q?iAJy|D3hN~-$r)>z1_-!@@Z_H>CEKjEgMq;!y% zG1eP_m67x1WVl%3vH$T1tsl1{y&E+lS_@|)3O%!|6a`m&{3}54(9wa+*TZ2G`(zU3I0W6Q!#N~ zd+{U?z~ixQq3>kN#AQITcW=D32-d~jk_{vLPx#>*%6`+6cTb&QW@0*c!?3R`yQw$c zU$jaDk8WPV@qTU=#`!Fazi9{5+cv6-^PURhoUUSj_uUe`5#jeS+brav1C#Z+b6Gg& zak-DrfDf=q6sKq>3cemoh>zb27{B4!aoZP@;DzvAl$lsO+}(}q*CDhIdn^TSag?1? zdgaQSH?6rT3sw=YAL3uXfA4}&9*TiG?!BK9h#GUefLZNgcOqS6Fo3N8SsMPqMt_%v zkmyeRyp~@BspfW__n;M>4>9M#oeCZJ?Js-Kzgh+A(TU9m2o41o_+VM)16eLmR=c54 z#H4%3A@K7yE6bhXBnG;G=ZNxLtyho)P)|b;!T4do9)p87f`wwAcG}Cc7gwI)Te*bq zO%9gp2tMV$W&bacS9YL>0IWM9+P@z%Ge2b_OxI8f z1^;$%Lsi;HqkoVSG{O7VZeEX49UF!3Is0^(AVe79vG8$CHvh`=aQFRAM>`SruhfjN zp5b3S@+YFMeEo$V4l#=OAo!~kf>+@X;u}KLuw$3r1M(>UB!lBkP&H-e(?*s+)Ho!`%|HPu5E4>@rZ&5L^*-h26Kt)ANNtTyT(rrhT>-5#fFtF zM175B+W?S5w7T0-%aLBy;k zYN@=b9%tSm=2f!)EjH24qpL@PQT|4=tKxPAD}=g1-#z`JW}Ed0I)55XLZM8>EH-D0iw0A zIz-v@)6=eh8yu^tu2x8}XeOBKLQMyPac?bEu)CnsDWyT>I=Ay!UC}tL5|nFz zQg@zM_p!9J0y0977J2|(RCwt+?|$4lT+1x7GH5%p3{bx3rzmWTc)>4of?dplZoK)U zba`Oi={16xd;~;&P zbe^B-z14SaWsn);61$qTRVh>ykg$-;WC)s?oCGZ}6&=O_QmCQ$Ye}(l3u-nfEGldd zoA45(v;`nffx=*oVv2KUrDZroV5Q8DxG zT|evZl%)u(d$G%rINK31y9-521$4HYux3K)wEa*n1~egD2sZDZHWE4{hv(bKC~Ef+ z6h43l*X;hoj2s60-w1gz3&X`{eocTg#osKWTw(op6=;E?$Q=fSN zFCU2ZH$Zb6WL`|~X=T`d-gVUZPJh-4R+Zz+z;5?j6MeN*b?4fap!F1_Lomci#Ez&^gyjG! zITtV4OaO@xGU-C}056Q4mDQjOTe)4AH~*+W8OM3x%RDEJf8#dAdDtw?O$w|;+ORI| zJ_!et?>FZqV4u_oL$Yj`)_{R^;N|-qZFFl^ z?fwBfybF}et1R(W<}#VH^wH-hiar%JmoHkux!lR!B}=UnNVNpMv#*4r47us1~teSPU&8y~LPBrv7rQ8YZ+!Y6d`F@88$r z4@2sL;NMW7BAptbNk36ZtR(zTlZ!t}8|}=0np{$?_~0u$u#^&t)J>TEq!LFB4@`0S z=Jj-G+djuz$5SE$$c6>4BopPDBeo=RvB{)Y0mjLpxANeU?00s~Af*_1B#hp2;woWx zHa5MxNv9~=(7$5n%=UeUgw=-y-sVkFD2c6ZTWGglDcgQ$7S&qJ#3Y+dqN)BiJNvs{ z*ao2YFL?Rwjn~BQD^Ifv{eBE+4fI1?nO~-jl58=a5o60I|Cz7j+}`2WoXMfC9N{Y{ z94lvfCuDe|MJ4Y?LC8BK9!G`H(GYT;xv=i=-p;eSR@&j)Y<8AuQO0o z{QT+Dov*Jbl(%*;b;#;{RmacJg&3mooDo1f8PtPu-FfV0^XRAxS)xHbaq5)TXZ{?Q z-tRkxjFy=Go^AD=jsTMRY%YwTha@3j1gl~=hP4=j0$R7$j0+mU8UA3)MES(wvx|u%#_YTAZn`FkaXC3cS6ho+ zf&Q^F{B9p2Yg<^&KGQ$gIZAteIC8j!`r>74+w~KAD=BR`kWHMKq~_}ZFgEt+T+?0h z;4a42y*23?h&mn7?#cd&Zyzvy&! zOVxGO4{2Yfi`s&(TkM=|7^OA6m3?34eA~{zLjQC0FHPy?n`qyeZtHpX)HNU5LS>?^ zko&mkmYqy{SDD6;hEZKOi0CG&_w%my$D7rh)Rpx;Im$3Ked~LCO7+>K(c~+m`woX6 zG1`!*dQGw3o+=b7@B2@CMEb{Dk7f#TvLM1|vcq<)bm;4&T;BubhfX>9vcztF<7iW+>om*j zO540=!m)-uX?#}4);BAw=VipY!o(!kt?!O)`Z%?Dr29-&r&eG&dxOiNAMvcK+eX4N zQO~)^vqD^FYBpL5WvZBbJiuT{PX3^q;dtFbykXT zQpJULn>&A~NMbMQ;L)ISj*c(!s`<`rq!fgnzTE|BOf0E0EktEna%3OjH}2glFwbv{ zEE?ZJ`RC8P06hWbnVpE=acF`PPUtT#;Q#jhJBe@@N|A94_GvlGo|@zv19Jd0h2A4_ z{~@63i>GFH-YcKcvkKyqC^+4lggCxu}P*##e4WKFmD4Xb4r_n9mRK+E`X6qxgy=fCqG|uz{ zSey?yZA074@T$-FZSK|YDuah{$d|<_>}9@8Q-MQ zfV4?bFSY0aPa84vez^Gc=}&&0*l^BpktdD*YU9v`7iwE_d|A$xOxMJl$1XQITT(sq z;R^ToWU-_7r!AD|u-fRWp_RWUmbCZB4h$)uKGvvQS-#TTOXj`%502b?d6V*$DJiGU59LLV zq(^OFXkWsW>pN(uduu$$?lJX{m>bRfPVm0rS)H@KEb(eLW+c6QE{(}>+@mQpyPJ%= zcR6)!IM;9TbVjmk(DZ#5SNqf{HPwA-x#qpPgU0OVQp#ELeOHad{+Q)1A2i(=v5qcz zBJ?}^rL_LbRwXya#{y1MPl=5(l(aT2nDVdglk8#U@`=C!IP~jYty}kPS2tR=FFpI8FO<&h$1ly)w-|9=UNx3qUyB;gVR(%+yp}6c;RU!MaCetrUMq6=Qi% z#EO@4vI1Q&HcfkZh3l~cPyM{=zn8Z@aIj0sV@yTpi0HUPcawR^GuoiqtX8Boqp9k^ z)Qpl#PxL(CG!MvW+;n(jm<2or6)Eh?&#gA0486bL9bq;6hUv0*6B}dR%x-!=I!$2; zZ%BZ*pMm`qUf{99s;Esp`rfoV0m~;33vDXft$eb@f(ZzofF7hnQlNh-TCMP=DBrrL zadV+m0p`Iax>LipS_Lc|Y+x{?vKh0fzAt+-YH|FNbllmreF{|L{+ui4CYt%UZG2xn zD-TI;DRun3s4ZC9TJfpO?~!Y#uRW{pc=4=oZ)ISf>htps8S5s?EM8eBj+7j8wI9&y z={+s8`P+2qh}NeFtEzD!W@hG*{8=jPpMnBE(azPhzQ#_NZHG;^gpT=IME2`How!=| zWqN8^c~+{=E3tZ7Y}sYw(FJuQU6ZUEoN7-;Ss$0q>%Db%MAts&&X>HU*0lW5?;rSO zG@^75XN!&a)P^l&Tk0&a!DV7FiZlUb4;AJ*!tOKX9t!oIv*3r1e!_G%d?}+K-KDs~pfiYw~7O=@u{V!Rsq? zdmj0+*EH%E%l^#rDD+Z!k!ohN-?hObwtkJZ`AOO@b7h{#;0TOBiD22=m0p5B*zX{u z>1pFB;lIaOi&~t#shvs3nZubBHnp*Lo-0!*o~)-%{@{vdH<~ezsXSLYK3T`v_~M!& zEwDY+VdQn}^1J!XFKddFWrX6@s-|cemiJz*`#BPtscP{(g{FOYl+{pZ(Gz2Dqgbc} zyAy29cWATkhV2tWV>v1=6W5OCTf{4y)8Y$TZ_JEvO|z=Sw(j};ec6ZsT^WB3e%q?MbeEG1gbon^0guATf`IQy#XS7cf1 z)v17GoQ3(#-nO3Z(J}P?+jiy4#x*q;78agnUV_y|MJA?_N$9zLW6fAW;fcTw0gUCr zG$#!nTuM_Mfo%T5LK={MF!dI^rr#zHqB|LOltc(ciF%J03w@5aXq1SSW*UZqgz4Q@#L&ZIOLIF$Lyq0BYL%VW`v`KkB24 zwexgs&?|2IBGX<}Yr5(>?L1Sim+xOGeBT@p8PKQ(zPI1{g*C=(X;&a|p+}o-q z(E9j;v0Zq(>85E43*QwlXM2YMb&sda0axXOCT3=%1JYv!QI%8~+ksl}wV=Vu*EPFg zLxs7NUZri;FYX04G+#I0x*z>aekaDe^z$DJ&2(sehx#id&#&}!Q3~!~VBf!Z^g;1d z4OfHxIs+aap8Q6&NAnpRsFDNoV&?c%gLHGIW2}_L*O0w?dYo9LM9GaP#abO($a>8XzLC-j*qVrz2p1-xpesw*e!3uoWVjQEM-+t_W%7x!r8amIk4 z)&X#mEjf1Y7a*b1oa6WAvs<7)}YoKx76=pw~r> zd}l^5`lezZ?3&>Q%1~@$KNWlXAj}e2oow&RiJ?Prt#=4s#^D8x_zgY_wjDGoqvYuL z+tI}T<_89n88CN?#>!eEiY@}VLFpmf0Nuq1TAhPP3WW84>Cz>XMn0i8uS$6BcXVsA zbK8_S@Y`=9<;j!1>?#99b79Ty#_{)?hv9f8_C}AARIH$b@x~XHfhGF_A~3ti{5a^Q zLa+$(88rO>#S7F->@$W8v1{L+X~{gaGjU*>=@hM)d3A6Uv-UR#om(*V2eF&?_4h|u z+Z##+nUT4y+=js*+GV;=(K2^Z27^w~v*mL}dEXk4rwH>AuK3)@0YD|l7yaVdN)%bi zW^YSR6D7TPJ+H2WBZ=gR*L zNKXyY)&EX3o;-QON9T7`3-_OEP&Avq;QYHWNk7IUoFt(h!8Cs4}^g2RH&E0!?0rnH%1vx4y!-UFd)T$l_VPOsa>;Gg`s(a5*M!E{((TGJeP4up zCb8y1Oa*ijbHPfm# zdr!0z{E|pI#;#&im^k1jJ$U!18HCxF3Blcmc&VY>H z8!PZIJh1IIj7fU?B<^|STn>55wSfOwzJTCD?f8{Lg-|5?q+Q(XUknfoM2df2Qmxrn zxMUeO4L5BzrYtVRXNRqrpW`8$J=1WB@#||(Aq2`^R4g@hAlrB&{_I}c(A%L^^XPh% zJX{&!qflE-pH=|cRxU)y$qaTF!baUdtS*f&0dG!cZUYGn4aoGGfSbSP;8{AU6WEiI z<^0p<8AKXSd)#!X*QUt&O@QWF!ZJSMk-GxG+buiZAOL4)EGKe-1$AuulxDyXX|c7) zWbr3gsEv_XHXvxx-D=a#>?89Lte^$B$=4r0Y#GO}UkwZmv`sYG&p6rtL-SCvNyHnFu(Vh+mk8ZiIh*M=*z%GJZqf=@VY`9C*a!Zd_sW-; z=6M3Jd;+#&cPec%bp#hxl!PkFecrvHg3YOnJc*D44ACy$=U=ozK;cegWQ*H+k#8Ac zc*}fNa+FVObE~+^Hg3zr_AzRuRAT{vnK0Tcd`98PgR<9YEaHF@8zo9c)`T1!d0dhb zM$`=mcLk?f2EH}uE9SRW+GZAl7Hm<%X3Ifuy3?>`Z1W25K8&pyLM{RjWIMz{nY-4) z91A-#sKyu@5q{zbnWS+t93yiRFcjByxMF&@`*Ckevx0E#tjaX4In`lOO*Y;MF$o^2 zFV6cCKe=vDnC#KiNEzbm4gexs*0hrKH`%#rm$>~E|e)_2KfoGhqX|KLH7t-nbe{d%Xe z1L6C_Ez?)OTV=+zOE{22_=4YhWtSGkn?EDiHz~hYa&t|& z*Uk--dsck*R2>|Q+-GwWg8HzUl9iImL`VA+dZL-e4hr!vxl1I(5w1^Ai>Qbj?=US5BvX4U25<^qg00+D}6Iy5m52YStqsK&CBkBXDS(bA z>|MWVl%Zp&@<2A)#6Ha%+wYrmkR!GG74Ew1dO1!VCZ8W-i3T^LqZcMug%U$Gc#_}9<`)t9Fn%jWLaD}P zQ}pMyE8ES=yPFp-5r?Q@eYwa>AsCo4uUHb1y-LLW!aYxW{NMnM>-|j|{p{7%i$tXs z9q0l5rucRK%vop=>anHcAX$H~de*{=OWM9)-V#UOSF?!JCa?N-H58vHSr z&Gq2f+<0_MV~w6AISH3q$;z~bhCEL~`X z~*GpWv7*Q~KzdNWYMW08Pck0+EW8HQBS zzAmd-vaCx$P%y4S<;I>hAYbgb;ARvBhny6x#M8nC`X)YYVu@A=8zFOclwdvCW38~v z5NgD33nmQ(dWJT0>Zmq)E1PF630|!LS^u??3Qw!gxI0>l+&&!F5I`G@@GUqYKlhD! z#}a99Sh+g|2W-_S!bx!&(TmlG&GvJ>^l?vT%E|fHb z+2vTPZ!q!!?W6F8xR#`3L(urEaPwMdn(RMvN2?I_j0RK?rGsWs{9*lmoIA?$r&CS z)3u6Yxj>IJmdHN*^-Ko*7g{oRYHnv-OdmF(%vpH?F;~mXY!#)zN`aWg$U}!yLC#$5 zoNjV?o#r8(vk)EeT2qk)~GW=y8|3rJXn$13rX1+jI~nVOxw5>@5-LQ}s=D;Q`zq4pBx zXRyAMIlMlsi7GuT$+_cRI$Hr87_Z9WmTHgJUyVyeD={mA06EH)<73C*SgK}J;Z6-4S5PA05; zD@N;svDLwsv_>qk^C{N+W%=uCY8Jkz<^N5qKC=BlBa zA?gX%?1pg2)?mrP4E2v=)DBJVuP{lW!(F^rNtBHzy=`yFSuhc|AZ)-}pcR5Z4NgSl zBGbPj<^hEje0+tT{kg&OVvfzwnH|d3g=sU{n%Mc1rL*-ReE`do{ zY^6XF4+?YRMh!`B7DKPWcYS>YfZCz_9hGh_a@*$r#LityDC;OW#cTzd+;k9=aAfv@ zd0b^(UAMC*!Z%vcyVPz3P&v<0n_Fwwh_HMbEMoG~ z5#vIq!{rER!P^=L^ZkBBWY_^Lt*SGaUE$;J-LbwjL*eD0xeVU7egdmYHc=Q+Pk1vwr8aXo0gTqqr)QWK%5df zp4JT(jLO5PkQ^kgyHFpI<+qW)rFmH&f2Ohc%2C#ZpfIc7Yj%j>_9mv*D2@wkHfbd6 zZ)y$}dXHhmde@_xnvqAJ>5hI zKCC$$)fgDK0PYNMh%j{Z@+m?K3knHcAa0d2|?0l3RfH8)9N2WOe}JD&<{*F zMyx%N>n^brV`H;TF>5Xm!XRQ7$Wf^b6X%^fog3n?_8zoGjGTwn00?GHK&mzN>|p_K z`=@j;xiRVx2VYX7W6M=?uB!{f3Ra>002CXW z?G@Gct%gJF6N|J{+Z5H*;Cx**x{tauV_!9*jFFXZ+;MEOzgrw-QeWZsjsNu z0BwEoeCz^o*}WlUzXb8;bmet}XorpbHU&mfms}`5In9-Z zT%4VWv1girlo|W+g%?~;eTr`G>qhr|FZLWh z8nNMWabBne%74Eg?VWic5uj~LJ@}};&{WRfOh4I7K5^j&-Awz&QqBwP2s5<^EvtD4 z&f3_J`@O2IHBIly65fIJ5)w_}3W*XePDcr{LY)5v`(!SDG8A_`IC&0F0#gy;-J9Gb?_lSw(mjRhj==shE zl;Nm%C>77skwP7QTpAA!>J&wC=-6$FSps>YNcvnPeX|%}bMwUe!qB>t&L1a-lK2pZ z!ILxm&)$me5jOz0zve?p(p7+17ui^|Q-aUYQg+@OWMK?j#IZp^n|mwX2}4i-BD?10 z<@m5rge~Fa*r%<1CvZ)I)hJQ@#|~~F!W<47}*1Ymu)(ZmkfIt zyyV1A3nwS;lP``QjCM6O6}B0Q2n!ohzPs-08r-Kp_a!o5Uve=9^@ET*Sx&Z;>wj^O zFv5uOkGQ0)O}YUZrlqeYJo~hG>Kq7FjeMcQoqgiad1PP;^bXkT4=C5&TdRkU;|n%( z2M+FkNtClU+0^&}fFoMkow~k7;JrzZ1A3lT*NZU+JK8`qSzh8dUDNB5It3@utl|RD zY@pg6g+_2iHzkKR90)sNs}CYQdDNXJAR7C2nZ6-nZ3MKS2vKh? z)(REp|1?iGpl9;J^l4FWF{k4S42UFTWR|m%#q?Fu(za;pthyW&`F)s=U&tEIYmZ$B zH&2+)?KU%Zv4yoY@~{;uSh%PO6ZaCE#yq1wM-pH{ic+wwbkMZsOh(XF1*tW%q;q3k zcp&iTvu}RQO@N*>J~fxml>h-oQ2>A+R(FwbDurZ?O_TM+IFvH}PR7TdtVEM$Lo^>* zsONje;+^+6ciyYqx-Sda45kDX0t=0E+~nXDrd_>MN9|wb@zuSE9;iUDLx)d}e0VU} zlS0(h{5^?v31a9P#Apr7r#LK3jZQUa5_MHTN)?qxPfI!gKTT z%0b3KL;)uf5k(;u^)4eTnLLImZHK4rP6vl{(`}i+Xv?X*mYZVW#}xqU@dXt7-VACB zIHZ0%i(B18Lkyv&*T=@tU;Ba?k;V8m+BPC%1VfZUA{d7=MX`2U@Vyd++>0V|FU$<- zOv$B?H#G8rsbjk5m~B4CA?Wt$N13>Yu1@UigIaVU)Ywq=mJRfC1CHU7ZGyfJOLl{x zCL8Q=C6tmR~xbdk=iV9E4MV_mzQE2Q1P&tqk^Aw|hk zoG)jN@Bnli;S`D@7zT&jCL;`_9Drgd@>!Yxd1?8gwgSq{k`>A-D*Ue|#Kpw+u>6Kz zr1~>GB%ry|P>{nLrWh+*Sz8Zf89mdps7%~}5(F!bUs?-8#H^k&445mvYWzZx<(&8n zcif&tg z`35K&xx;hG7~Ex&jDKT!;zF&>P3|@Upy74Xtt~CnY#oc7oBdVijwQXU*?!xDgLD*Q zIHDMW8A_T*@~aR{m8+G3wrNfEX~jDUX4KH_@0fz1Zo~;Q*jE!=?;aNxZin>5!k_@% zJBq8il$`-#f!t0ilEz0vnJ+$!U_F|Nn63DoE1`U&QY~;qB%p9BtJ0>=&DSE+{j^z` zprD`}+w#)V0#IRy30|&oIoEoQ%M3s!4@dyP2rWQqawsBNIzNnO{dvR_j>vprrt=e9fm#<#2%yog-&c^lKxbX-w4Q#4WuDdWkkbKu{KQ3Uy)z#wp zJUSGZDPWvP?l#McI1)ImJmB$J0B>0eg&Z+Dllk5cA@y^oQzC|RPNp@>R=6ngn>|@2 zDY@Ip)Zj_Ah`4xgg4u07U|NWrt9aQq-O^SB^Y&pUYEgG@=6*g7Y^wZ}JHwdps zTV6iC?EnRd-wLcH5B5C|2{8}Y_Y|D^DEC-$d1F2MaSs%hStJY>T z%LqjXQXig?Wt0)qgM*TXGBhj01pGoJxc>lMi8bhR&{4d_J7b%#-CzkZ@L87gs%Bhs zBRpPE9?DNEZ)Xc;!2a-gI+JT37Cfn5dqxQ@H#|_dSjT^dZNIn-XNAI5@5wTk?5#FK zx;i>HxZA4FWK1W*SQEdB`e1)h1Z`$I3b-jH5TZRX2NvK1y;0Svi9Lmmg0$*0OFXUM z1$@+r#MqT+uPdzF_yym+nw|BTe?5>J)ATOsbWgNP@Pkd~sHoI#8~FY3lIMR%#eFGd z0EI{k)Df<}Su2wGsIb$C>_Oo`P`$ZfxG1Nh(&HQtw4K->qw+y@22og)Cy5>M-{{=r z`0MOWp{kuGVE_5Alr;JRW#nqn#pTlZXpR7eBQiay&dQ!Pc6hgpya>`W*Nj2_p1@yy zgzdf+9F?`MN9CFUx*8`Kmp6h(EhjH8az+V1&wQDS>dHZ!eaEtx&p}Yt-R*DOC_^tM z0{fMNSCC+r1F-s2%89HP#}#5n!hdnyWo}ZxPbJu zUxKuj^XUmS&lTlveC|!yg4cpQ32+s@*=0@Wt)L<^SLB|rwc*()02_M*oOv(-k9T#B zsAkcBu!MI$a_e^*8s2H76G)Jrj`W+mO6JvYK)Vdr0SX1{VOQhgq|fd66Nb0&vl%?o zLxKu>cOG6%X+c4t=I>w*GDK)%*Vs z*22jJ9042I&?y0kfZmAtncg~5-5ug8&TnUBWz7u8MUx1oI;J!Ssy>vKBH#d zc*@<7a{_*=)_kg~t6TYM;>jE|f=VXo!2^E4*Q%2X%z5-2(UYM3gylAO=MnEX%$##S^y6^N_In^b3D4p!}|K!5zK@Dj@MNB zuj{eP*gR_*{QC#<&5*%MD^7MlwDDH}BCDrTb;AZy5d*N`gy@={&WW}!G3g%sdZEt3 zJMat+uF!}Mj0#NRLcfXv1QjhTaMJ{M6ZT77fvlb6rP8Q;@<`&Q527~39~><+f# zl%^?r?a#VEIEc&QM%)ISVtC#S}3}=+Y7H-w-|8JVjih0*-|2jr@PVfy9E1>_0+byvbw9Q(?cL_igN<0sXmCHS^tDHqoo=Qc1CE>FDJ2uEl9(qTmNBMj*jRrIMW zE~=zWL{=_U_MTLDs`rHY!F?-3@rujuWfY}0Y4T}9hT(pJY<_lHWF+$^riW^xE7 zC}8>CuStGnnwa(!oyH0|7P|uzqT%It(Fe|#x&Q_H zxNij^-!z=+;PJ$!6srCQOzv7cciyc&gVZAUYQ@}(L60)?Q(UbOE-B&I@+Zbsj!_!( z0f+PFTqQ?N31ojog*zl9$$qMkUF4t?s|dFyQ^ia~HORuvN45R?o2un%HVEIrST5ZX zQ_Th6QjFlIu#-|iR#jDgm#*fF5yBPy1e}iDm3JKJXvCT)60=88#xfZSv0irL(ZR$5 zG|e(W7E`@sZYe~{xhpFudK9-{ly{WCzTYu7Zw3K|Lmo49|8)bNaMw_*i2Noh0Edqp zNq{_LORTTasgPwX+8dB(LLmbXX5gu(95}fDKa~6CsrWfq3UDsw zmIn|yiPAe!5BdX3aaJl=zOGxthzhPb)c!&cx@z~9wnrbD?eAiy1^^29-B%}=UV}WC z6TW?rbz%F@pW`#-(8vvi@)awEjCg>@g_S(x;Cv^H`T?fv1Zn{F06H!{;!*IHeGe=N zQ0`*s%xy_$PG^~s%67+kS31o@JSMuQS-7fxjR7@ta-D$kNDCj1*<91rbu;*6mvIh= zXyk?(H=BgL6PX`)VEE8vuc-N195#j6S4GVaiK@47VL!tu$%;!14M0&wk9TpG^)I2l z+P(cpeZAqs>gn;l^VcK&gY&@*r2Sj#2+U8=OYH{-&E8+)BSYp6n#0^Ftmg^SkFILA zFTmj7OhyX^Qi*Mk4zI=QTB9TjbIs2c_SfO^i5t6p_wGg58g6yXerLXjmrWI#1XDi9 zppZ5I(ozh0sOco=-FH#th{P3KZ?QEn>jzYdG>$ddt};NzR%d;}e99QC4&1!r9QUCC zxD7*yKY%z${}~mGw=Bk#;~q#+s23@IKsQ`@GvVk9aX@()Mja!T_;^jt9|+`gJQbFP zUz@jV;Uf|st`qB_HbY|5ic~;mAOX`uXNZYnQ~Mm8O-5sXlg2@{Xub_67cvn$h^wg9 z9=#I|{ZEsCfn(7o+FWWgm``n+eCKmmqLnMsFX;fsYs-Ctv;^HX{{UGbAtGm-oDR=H zzZd%`D?|1?a10K5w;%|pAj&}A72$OF>CpTW|79`-$@d#@11GdOS#3s=N6Nqt!wQ!W zQIXs9AVluh*GEtyoD(p#JQ`9CuXU)kjCxaC09^%34HlM_gqO4b5471t+g0*-FE1sj z=2zG6Zk8Dq=LupFg_(UqRc9J_)GpSdA{RN4dCv=Yu?wn%06D6xf`hvT?4jn-D$=bO zvMg;;no7Se+pn3waOCI2gNHSH|2rrvEQG?k0ZAa_vj+D4&E>n0+ES)bnG^Z$L9L5=GW}<0C(yBjEbt9NHqheOT3^Z z7!{$Dy9-4e0%l4?1LeM>=ujln)IEvTMQivaXut@*sI%c0A9(Q5rKU)2JKSDmQ@{qBhG(Y>@uOPfnfVDRaZYcjnuDeQAMhkMy48suv*`{?7v8VE||BVG|yrv zglKKho(K5kFEak0iSd7^E8GtN+Uo4uHGqL3N=1@cs$xLK#AH7=Yuv;5)5#YdrynFG zB|iRGOo3P0Wh_#M0p4;NnfR{|csESbm;AnGmsvJrB;~ z-;VXYU_u%HPu-@ul$D*`6VcR(KhDa^;9g~BK%qH(F=nrTgUyb$bT(_LO>)NhOrE9` z=xlBXRHIFl_tn{KiZN+7r9MEu8y;K@KWR`+K?DN77oW<`6SWvytAIEK0ZZfHLo!Vcv5DEc_%9w7^(qSGmiD#Dgy=x zM{co6!hT^0xy_fackbNrqh-4foy7q~krCg*KE}ExY{28xSex=se z_pptCVm?ptJd?5K_BTAN_P(FELP3jVaw=xdskrpi_(Q~!jWUN{fX2p0bxI7y;ZHqZ z_w@n1zd#lE3uON~>h$OBNN~KUy@V7@0X^_77SH|ylXz8EKcCcqP7R<*a4(vgngZJ- zor;F`Q2N~@xFlE<26vo9KG4@M_|(FO)-@qmy?r2 z4=~rTN7#vp+-5cLnRuYgngcued@h%V)n}xRy(|@2m%1UZ*{0gUYc zBrhR1R{#JW9hR5QgGHUDqsIT=hpz&rdie3uYuUDq7-16 zfM|A?f^GPxYg`6kah`%flmKp@!oW~p!a&OCk4p+u9v{Qm({xGy8BTm~YC1<|`zov0`OlHe|$MN%V|u-RC@<2CS$ z;gmEh4ruA&{Z+X-W)}zBsOev7YD!_h))fI%LG(?)r;p ztHcQYIfD;fprp9=zn*}MvACts99IW_>wxh5(da$dD3xF)>2LN-FYM>fpR(&6tne7n z;xkjc+Lap%VbG&^ddP)OKwt+pS4^m;)Ips*0r3EE;W$~D^$#C5ZToZ!i5>;uyE7T) z*wjR}t;w)njxDm8z75vjq+DH_Aj_=X)xA=DzkC^G8TAPA4!d|UQDpz*M0U^vFD zN+wn&v`PIOEQfdW_m5?Jg8+w7P-e@;b+Vuj@~uS$<}+Ui`80SMkpWL-)j#0vN=viV zyxWYq!TG)N4yZy%06-p3s6JyRf9nd^_b+OtBtNbD_33T`>ir4t!lhmES7nU;98rk* z4j{*%%Q91d$!r6!^wY9GSBZ1S4?I@%ImHg&%gK@d+))iO(aN>{{$1eov#wsxe7q2>_gj&X1`$qo*jOI%wIXHKN#~6qq!gBIc zgXT0?dn$gSL45000VqZl!%`XildNd>hE=}*$wWn&^ac1oT%h6(;A*$xE8daZY`acM zigZEqFEBB#=Ll|a6cZW1=(~z|cIUFN8W3`N9XFoaF@CypMY(8#pWVpQ+1A!}K@@7b(LW?OJWxE8-`zh@#HZWT%9Hs$mZ;P*`P07fk6We^CBis& z!6?l&#)M+<;2><I;YjK6f<#)*%^MWYNEW97|6~J9d(c3pB zhBcC>CI$L?Ah?891rZ9Gvc*b&S{?+89=zfb6usUc>Hui?PuVMS`yeQnnwW-Afp3W^ z=w487R(+Far)batj`P05F6GWjv0!43bg$^iBGiF6Jv_PsdwVb{4sW&=7Ktpz=NDp> z?NW$AePf=t&ujf7N1D-EkiCo(55w;}I#UF5JupP`Wz9JD8Ohy!Zcd*-Nn5v|r;g68 zFm{lF2Jrp_j>R53g3bA~sr&}tb<)!Bv2l}zB?v?NLPmK#Elq_9e5-_ZPxyEJ`83tM z$*y&vzwEt@(mhD|>v2$Hky;Kz01Blkg7{TQl|YO{U9V7w%rlNL()zM?Z8?5Yc5ra8 z?=&QE$v?7+AvfLe{eeI2LE=;+@$0r>PUso0@Fz`DGX;YBSge&c_m zM!-@=6TW7ft}Z*kqW!QCRZXC2veoKpYqRn#9i2W7E4!XTVf^#gJ_I8FkLl_wW`c76 z&r67?$%2tBg>M9Mn1wJ>MP<#A@G&&Rd@ufO#705|O&|$q)NUP2%LK8({3%||RXAW`|c%C7p@_>QPW2=F1QIKym@I%MBxABoo z2dbz#;R_&|K5AmWPi}~`41f}p0@Q)9y9zF>3818P3E^YY_)3&^Yv0l+29Ot z|9;X*;jJ2Bmsr>Tv*CIE#8%H9yUyBO<)u4!X7SvreN*wURXrkE6%uwMyH#d8@+p*8 zY6l_~w@Y0gR@8Q*#NX{$;d)<uyxy;}8|e7PgRVz&7=x|7>iezWuW zs2x|b)hkt~GN-}Dca*(mma2C5ej2N@Z^LT0_>fC634soVm#ZDB*4%zABo|S9c!e56 z_`MX9^S!hvhy3cFTW6b1Dr$cCB%Yuh;eB5fTD_jup4Rc*_WjrvshjRpA@hKk!15yp z-+j;QTzb4Unbyj&to4+z$g4w*5r?=MX=-m0t*4r2pQP~zZwzfceL`^TgC|6Jd&LG? zIaiKM4M^0SdwqSp_ekF0KhzUyv-&gLpKHcCSKSvAYaMEL5!ooocu*)J&)>(uGt0EI zQ~i|PW~r@4X`@bs-|Kous(yd&&z(6{a-_Sb#nI3xgDpm{bN_)RAuG1vg4X1;q^f6D zO5RI#l66}&Jy)*S7h5p+O-vzfscK$NQRE&k*9NBg!QOtY6NXFryQx3(9m4yljTI3Z zPE?^|6*GE$@pL~Pdi2qvPAlGMcZm2j`=qATd;0P95{rsWfyu6Up|t6#A**f`YR*ZQ z1Cqu$?W;aXuf2BceP&6ufxu=XG3#l*@#+`6Tb=kvt#8u%<}i?QWUyxzlWVLPFRdId zB&c&9smW?=Ul-fH&Soe`mU8(tmA-CRd30&&c$@DsmIzAaW~$NHITP20^3Gv*THj>$ zm~+DB$&}^ilAB&~+ban)<}7kr-acvBGdr+EdE#5wOh3zo_EQ|?6KmDKt+hOQA*uUF z>Qq*mX?Kxb!=-aZA&;n)Q=B&OjSH~mPx&}p#_3xql%O3w_<5Aa)O+DGq5P5NV{sCO zLdJD5V_)uE=`L=~vOdROeokY2aKOYkmAzWzn^sf1)_wdZjXlRW@6kWbuGBLJGT(2B zDA`ir;h-if$ff9-tzp0QlJAyWSDwYTuKsb$eOmqK?UkC2$!#y8^Y;j-ULM!`#naG5 zSLWxC@!L!(bMMR)T{nJ?T-EoiPPvP%TN%XW_f7b4oXc1G8 zjgQd8(+^(`lq}x{!J8XOTx)fB4tKFWRJgVO@rH!(vhxRT z&}E3>ua0KE_cv9hc~KcmwOUJ*YP3G>($3|6cP?)5n9RWvi&Te#T!Ap5RCPO7!McpM zg9aTVmA>^XTlX;vF`s|7d{Ldz^-ERjuUlfB({7VP-=hWbiU)P~}P~ADBGRV)Yo*I>2veB@N&nAk+dWmBcYmhqvrZ%4%~`4_%aHFq`?q)tZHjEZ|?FCNXgGOYT~ zixm6Z2!2mv;ezoVTF!D~8K3ee!riM3rzYNKH0YQbvSq3ksYvf#(N3?b>-GMZa5+~# zHTKaaoOC@)o+|l1iqyjyR(%T_bK98bu&v(F!)EiUl2%G9g(9wL>$*>_e|10vgMU=H zueYMNAk99!%ro1#BzWscG^c*xvkBUYZw~Gvt$t5bsa(oA@vFr*Nqgq@X^v#7r1$PK z&19*X;%T1QQy8yb_)2-~sCTImp_j`Jb}v@A z8~US9G@^vQ^+?E|Vq&Xb>4=E4%BXL=)LH(8;~s)1ycc*IFEA7mdGAjtUmRX$=Hnwg z-Rd}y{APf*u_k+9CIK55^^b1_3t6?Xq%5Zm)>vezcdvfyLT%>VCS%j#!kVynlhc;q zir$y8*#$wi?Hu3l%viaOE)KuZE-62-`tuHh2Wwf<8g{$KW%l*u8s85uiMzn6w9~%6 z_Ht|ZzMgY0oA2Ihcrr`BgGI2yFnr=8zyAnt&&Yumm*qb*uXfA`+C050xlwwrn@`{= zL$>K0j#;(Fc5lD2^>}M50P&Tzha zb-^f4VSDiPU);)q%#+hCo@>GKh9cCT(dnJ~sMYscY5Ypxfnx07BVw%$B+>kp^wapSQzquW(e zIv4Z@Rm1uQPk!ufyZd6yt7_Biuaz;m6~8?ij0O@$kLOXk>3OreI<~OZRqFViTj0lX zJ2LyO^cyY&(^swea&F(mPrBy{8ONWMshH%DXdFtW{dWJ_KDob7&Uf&BDtm&*%uU^< z&o8r88{4%iJ}Zw;auiSfXkEG3Yq_qy=g{#l>D|qI%;$d?xqbS*zJAPq?5Ip(+?aZ| z*>tO4|5x=(o`pBdJI^tv`r1$G=-A{I)#>y^l(BiLNiE5LyDhnLX0wj@nuDio)E&R< zd|3Ve*!vT=nAiA!9G`@&WnWu3h7byoc7zNPrBd2Z(oXw6S&pnlsc03FN{yn@Iwhpi zqD5)nw^3;~Ei>Q8-8tv;eqX=q_b0r&u5)PA%yX11Ov zXYx?ynJ8Xs8$Qevc&5xj)Hq|Fgs_(&-}NOmeJ_1V^yf=7j9m&_x*$P8*Krk><=png zm{~P+c}<`@-}8s8i}M~7#&fmiY>(=nn&cb)ZSA6F+aS2y8U>z45Tzq1Z4$a2#kNn^Nja-@?f9tN}T7>MM2G2VF{mg6P&JXyJ8QJq3F zv$hR|Fr5xEWEZar6#dO^ND94QBz~Wj%MzZGp>T6WiK8z6pn~-9(4iKO72gZDocU92 z!_F#NDJAS9FTP2J|GwT*uJf*8CqXCouLw(S+Cp}^qkp#a+1_(>Uuq!2!x!dR*r{Dy z-FE#xZaVPKUJ)eI495Wag%rp5n!n?%@WEeNgQ3^5_fdTIY_LpUI;2qMI(kri>?6acv0`Pw)XHXU z5p1Yh?&X%c{E3pBk5iMs&mG{&YrjMHc(kc&VgU6ac|#*RsaU0)qUqiY8Gt>wr1 zA901ZZOvzEOGq5{?70Tspj;17IvpM^R2S_J4~^G zE78z<(#iQS!o0p>T?*eSr^9rCO}dST^4b%kRX%=Lz^xS3-zFTsDCes7@KCO;d`S9w zw^o1Kx>iqDv%eIWGevyXUr3*yH}Q2YS@*enq}h4Kj9IJtKm3x;S;We<_llO=;bR># zAA6~`2=0)>YOYJ7zsvNJNuT@lcAoj2s&)Di!kzopaa<+B=>loYq{;@bO(xE0tx4cvt_rCQK2Sg1&uj81!UrkSudRDZdVv>Gl z`3L29hCO(uu79uLbL+X&g?pbWz}=J@$>|@eaQbBs)#Rq+%aK3(8(ZycNiFw?@Gr^Y z|6u`=(--Z&-_W}BOHZ(Oo~YmzhZfDw(`R=spj2Ob|~EwMWZee>7CQb2;&- zvqM4tg@mTOl*XH1zSx>9J${mwgJbTsqF{!X+Uj4_HG{0azAxOVZl3{ouzlbrC#TIm zm(p-^zW8wC;w373r@|jxw%Xe~`Ew<~Jcc$^d>L}duJVdrr}<^|U7i`TbWyoCH(8<& zazBYUd5c4gK+vG=)5;4$!uyI#jhuc*7+lP2G{}h@692rLJ}#bGxLP!8$I(4oTIVZ< zFI6!g%%C?@4oLbB3@xVRRn79f)wT{)EQxZWRz0SVY=jzZxDV4IiJo6s6lUM$BloyY`!jSzH zyhy;_<}dVrq0%t1x8%1to=W*r{O_;1vphpjM#;9ZR*x^AM@i@S@HBNpE{3m4*LLAa z@UYNvB}UpGAVCCr@a@ZGl6&{IcqvY<2W^3uayHpwHK|~re)&~b`!d16dknu2A$NO3WJbC7cXw0G(q?NlQn(f90=QmxDZj*uupo9 z^?w69w2VRuG6X(<09Bi5N)8{|c5&xYT5<(SLVuC2apuGywY!3irSS(Nt~id2%%jZL z)onJ=^4kck)hkf~xEfqYah-ilUMV|EQ9k!$7>{9)hsSt%cnc8ud=$CiQl;v|!%Y@e z!1`8XXH%fo_&4z0lum~QilfyRr*&vn=s>c7KuLf#qrl`8*b538Z??uQlhCdH0{1`@ zB5nf+!_I`=)6@%6Y$;BK%=Q49`_DloBywo~uid-&(M(ck9m^V%r(|#Nk-H8kV!rO9 zeFUqKY`GR@mI4$)z9Q~#wi+$)kZOjkJ>YD76beLa=IYa@>>aP%y?r?ix&pZ=StHva zt8xG=0%#?XmSy@I(;O+vub;E3chC9dTtAexfV)J+;5&WI`sbTl*%!L)WHO6iHK*xC zoXWOJ0f8}bLY#*}sQggHAQtW(P=F*|r0;Fxl?;z|el7>TTG>hh@>JWyEmOl$iuPV~ zYxu0xLE(Ov7Bwul`3jR`QT>*O(4zij+n_t8_906h1^Jz}2W9@P=lvyPf-3%#J?1M& zsc@2zhM#`fx#q!aapvSM0(FJhA1}(g@I1J1LU1DH`{m#0bhM1tS}TJU;w>zHS2WCN z2C>bkiv&N5@CPT^CG;b}mJvWS2Du5fr0M(LoelkokzccaIS(wDLbCP+jGHAhSu=i( zceB$wRU5fc-NsOQg1Z*yT3eeD1XNa`#AXu+nG;jM3gmTdi}p~8Ll+LBP#c)~*Fc!t zAZ-%PG&3o{P`6^f27g;l1C3SKq9J27>);Jlx$3rzhfC$IvsakDKt{9yj}O!y3?R!orF@(p>m?+v&2b3&rK;i z?7Tr^CQFCbdACD!yI`w-Na7utb=2%VBAHW@X zm`(*G22HNFVCMjPG6Oi5eRf?B>o%&)zjiP?3-BX;tnWLQT}~J3QBH3I*0^sGqjY|h zTC^RXhaTax#-9w_ed${^9O|B-eG6X8mhtWRxw*1Z*7VHJUf++-& z1Nnk;9d}=L_xI<)sey}9n#E5Pod2gAe~9W|Z^cK!BLg*gPT89YZX9v~~Q zHl(gVqPtMf7cpYvAL8j&hgJ{a>H_3X0$gh0l6EvRKN2V+Sf7iDViQOZ1X)iQL#GeK zX|_UoEEktf8cRSeJcCh0U*apd#*yS!-?d=kD!Sp^%_hlbtFw3o@E~ptzD-h0X)z5BFESYlxsms1&Ez*Y$)^TPoKD1(4>ESDb@Ph+*>43$U`X20 zzk=@gRL|jOWY@zU8@QEqCKm1}1Qk4hcpRld5a}*|^d*y!t4C12{sM4iTR2cUw%E{? z3oY57yALsa2spF7=n8&=*-^b9KmmunBrWV!T6(uE{xE2t#N^$3a*1ceN&gp=Kz%J& zCaaM)UcZl63m!$=6Zow`u=4AQq_dBp0xz#P)vfAB%@ede0mY2;>lnn}np3DBKtl%3PpSG1K0@z~dt`JfyLP%t0^jcaM0z~;VoHHDi+U9%w zF8|zT=kKrD`4>^m9r9OlFa6q*x!I)xmA;Ap>G(`a3_q?VaA-|oCE_`zI z1@TniIDDzruC=v6yFAD}`9gO|R6CgRYYjYoDf?}M_FcWe4=Yp*!v?^~&w*q&`CKWc zHX%BtgDO+LU(|3zy_y2kSaa-JGcG`uZ11> z16hNU>%9ca&h#2?8KwDcGRElc*cUXuT|1EqhJhi*f?R!(1xU{{Uo>ITzVPDv(oaMO z)d--@r=V|>Cv*D6k>x^adZVy*xxZ%5R-iLeK?fZ&p^usz_B!(p8f?Ao?DW1gF`yWY zu6?IS25eD(WrXyo2;qDPJ;t`1OHXc=dHF!ifR>Z}MP-JB#WS-PlRcMdz7V;SBt}n( zqaVFmXH-|$0SZO)MHn#ocysP7W%ckz&S(nl$EF=p7bo1S^c>0D%deSVUGxD?IuweX zFi-U!IK@yrJM6Q0_^32M9tX(>;=gVCo{!%bmY1OqtfW68SBLQ9NX8Y9;-|iAuRj?Q zs5+-Y|H!7|v@%&JO3vlM4Ud70=>TnRjCp(Zvjv{x(|6-kPcH8{yMU(@ned-S+t$S$e0WRO!|-9wy# z!!&j0I8IBH{qJH=P#i+1BaQO|j1Dmww?&}FAoQ6Qn9HBDOw#aeLpouV_Qw(89#r#w zQ}g6%p4qiv0e4W%m7~KkD;masq^uBJO!2=@Ss-zA#SYyk)Tc7`W;u^2%U(RDWWcd| zr6A26@-&Y|M@OkFaUH2(4C*EtS-;m|KMm_^rB%fEi(>d^Uy~=VFBLdt)tpDeCD@We zjVxzedAFrL_s9JN-UZ26>Zx)DYi2I=gnQsB!-tQTG;TWa5uSqUv*yq9 ze&rGA8hvamZ?9jOyhYI}*=$3!0(EuHRlN$tT6x)YnbLJ^hD7$dN0bE?-?oN7uC|z) z4YTOYCDv)(uVx)7Q?%{)wx#4aWj5aVvel94KUXP$pvM@TMA+6gq)w@)2|(d2vs_-Y z$PmGe=8GLKq3I}PP5DcjpYKu1?8}Fic=F7qZQ*fxSG1Qr|A;CexWlYXO}9w+jspS^ z*eNR`Gw=ROdYDtoox#cXrsebQ6N^93g-Mr+f~fdyd~@ptzz~7`k!D|JHXVy(X%=0m zczwE^U8XcfIm;M+HWMrUfik%jp!~FaB|EzwQ6w2^Gk(MNeH@w2E8Hr+su%rt4@bNO zpCbGy(1t`Qyb>9YZG=IO(#O!-Z6uH4jQ6^^6eVLEtZ2SCyd>d<$giLJ_hJHZF`^i> z{TI!W7dP z-|0*L{fKM->}Ji8cB-n~>ya+~_fd!1{SIuL{sc)TnEn4fqkCoY@^E^l>r* z`0M^5Gfb5dhJI#RHlBj#r6$GCc)t^8yyukzPi6SesJsRy>v5+T12#|7UvIBIoc`Q@ zza@VxoPG}f>jjGBqJM7me_kuy|IhgR&nx?Rr$^_1UiiN^`oA&4Liyic|2L2RZ>|0B z`9S$6j7T&=(@#50MApIL+N1yX?{9am-F@kVvj>V5)3I)Z#FuPOSL|B_L&28G+SeXc zSR-+5XOrx76)`QJ{@Q=>bw*&!pm6M^Q_cdlq(VSK-zgDv@vN%e zx5su#+~VoYdiv*OVsW`YeJ>;A4_iUlj_f>=f01879Dcjg6^K$l>e5XoHt+Kt_xBCN zQEWG$#p$olV)f3L zh@Pda#)JrMz`uJNdH4MnogpLd_cG*u%?ZeRy~7!26ODL?;qDr7@(-r6aW*`Q4gEph z93(EsN#e4TjEa~ZwH~#hdEPHQBJY)h@nJx&9c70}qf`IvRYjJcZZB?U1CKuApLFxt z}%vtt52Z#Ov!UI zu3*ez5Hmn6dP)g-BQom`aCZNtk%zk1oGX)FO%hqp4vn-ZlY85f@uWCg>eWXYxl@hg zu0hO~r40hCYJy77EM?x(v&WmH74G9Dp0KnE!@rT78(&?F z0?|GnLFq)2(jZ@(1EZ4t>}#B&AW8-f>n4GE4zxs$e(a_1Wo5nsZcV(jAaMuJocCsx zF@qUcWd95?S$3HjjKirPRb;%>3nu_Bzf9M&_sQ|{MNAxC z=6jR$(37)^8Cqd#~$Ao{C*TUy1((U_t zo@ISF2yHE~#)?*{RpeRlH{N4C_uE2Yo)0L`)(TL_lT!dTG=HH~-9xH0;E0%K9^6rD zZUEI8J_y0vldGRMUEcd`wMob$sxyb(X^ZOL3c=|U`qcSAlJ4P`Uc`((hyeIOk6wRMdv< z#a9H2vvx-*fA`4XOgna(vNk5*w1*h?)njqlvoCn7LMe57uB8mxTle!=Sdj3e6<;Ad zBewzj%TN--eLIa*CZLbxU>cL$4}+o;zQ5k)@=Ify1aBP;b3*~KBpux@D6WZzPqv8; z5o_JUUNdp!`-QeDi>%&x;nUj>muBJnw>xE;Z!RSVr&pjSYw5y-^F#5_BOf=a!FX99 zNLq|G*h-XuO?Jla=pNUJ+Qu-1Bt-y=ziDL+`U@fgl46+5HqVa`(2<}eVx5RSnm_wg zoY1fBsVTz^h8t&8`BUoD6Rq2?e9qiBlh@(|YDnr~26!UC@@pANQf{ztCN9Em>qiZr zsOt>s={6vpwJ`F(lfE#6np8qHqyEgmSesD4lk!QK?w3SrD;0g9K`r`-7AbDsc=j+^tib%x_r!b@O;qIrhj#dt!;!kqMm?E00wz_F{rliP5o+kLtg=8K%X0r4S zdyxmYf8nK)uu%8WpQ1DyRKkpzQ=?-0{=z>{dIr!9QV2BgaP~Dqy|Iv2KB-Cg6*1?u-BJ7LIv1&|{zSozl<1ZT@$WxR22R&~q>>DfEvkhp z@S;+8(4TWb0Ulco#)ik%#`IY)s$AmXIvzba5nsr=z!9r zF>I--TtZhVxw)=?mLvvW#lD_|6vKOG3(Yn3gsVN0B4VV zdabLaZHy2yGbZaBr}S_!VUy*GQ|bzXk9?L1X%<&}U&+~Y{z;G9n_F!(do}aUrpBuD}WL3;nX3k#KcjUnu4Klg!_?GLDGWyl7~|opls8PFakeebqx!s8I}Dvn%0KD*pd!+VB3KEa@L>>U>b$?Z z_$#Ih;!7$OmuvgInUrx#ZxkR?ajF+2AxJ`(c%wu{)f7f|MqwOUrM~Z2mNRbrxBB*pj-X8~!!_0H4rfG@n)ot;l{T zwvmEz~ zCBGs^R%X`lX-=jP--xvqV{PdeCni(HBTI`EpNSA zdUmS4C)t=?&+z$L&|YHvt=e*^v;Twi24%|{?qL7;O8X?<%s_h8$Qzx33w;wKr?oT3 zlkV3WO=PfzxB-hde9_p#m0{5yv>RyAwHxk-6*2>+-d|wfd+OYnmuS(QVI%K8S*rtxTG}QTU5=*AejE5W?FI4EE8}u3#_3m$M*Y6Xb(B>o!2TtwahK(0q z+suuhi1o1%8RsN=kAH7;rn0jWnA=#9FE+nn z{z|)8ke6fVPiLe@6pk)*qie_MTU9&TZl5sKqf6gzXEyg5caE#6DoU458FNR~>BWI& z`}hk+p0n;A8+kc8nwY3Bd62H{uIN~kk>-7)rhuvLsF5`3HN{p_?KNT+(v?QlD`)I@ z&D2fN+qm$DfrA;}tv5`;n4w5cAoqHt?NG0mLO50WV!yZv>uT-DyUD80<v zTgDkYm@uUjFu7C4ovqLE91@SwQxkLzUTbn#wbvGkaZmQ{e=ub%zWnmT@k0HYe4cIG zGS;=N+#FN!^oqbTv)H{+ycGtcPJ#>c*^UjWqA)RRZ^pAh zhK@l2dDIGvsse@e1}r?X{zOc+_;a_=M-5c#WJMasg;rO|m}O5C3fEp!sLfkwEiN_& zxrM~HmNW&qu?g*rOU}t_le9U;g9ED-FPu0qWgO_DUXvA58NHz-B{QJ4gJT|$%qZx) zn4GWJ`zPYQg=u$WSVe=uC?m|`Tjz1!D%DYa&e}3n&7Z37qr7W>7>w2n3`e>DN^{Rl zSyDNA&SxU}%V2-+2jSP8#5@O^4SnLW{`A9icEqfdwj6))whu+4UuXF>)G!A7Q<;Kq zTz0+hJl;O~GOX2*x0b8ZQ@DR5aIFqEHaXD!JvVbCkk>Vf~{8S)q6J$uFXc zU;f3}!7#7&E`C6392j*F3|y07wYD_UvrL*}^WxFnFOd_Y_OA7;tGcd}{#PAey4QPL zW>hO@3RUR^8l+6M|EaC=*Ge*#5n+b5^wX;FZDn|YY5Rm;AWOS*(A;1w*sT2Sh`ksy zOZI!&C__8dnf=bd>FU)ZjGnG6k%<^7jaF;gSnJ#4b?(A^(VO$`E{WFU#t1UaWmD~0 z{YmD!n`7M-m)E3ld(q z*XQr=cIr(P9<2_qFq-1LjuWn0LT?XB`@vKgKFd`*?JYkXyZmYeBZ~9VBUF*e;7~OR z6Y~1@=^2bwhF6%o%X{?QIi6_4wx#I|rbVwbZf;TWeba3|a8h(&YAf@uLDf=6)5GSP z%pg$__E}Aa2R8N%?{bR+O`4zYbkEZtpFGpY*k7-88Or5XHeP1>DnsrO-&I^xB_owkHNoFY?Bl36*HruAss(kvhuA8kq(DU8d zvN9{`4ExXBsy*RVm8U#L@|ex-TC0_#7RLS%9y#spF2t#9K)o?0;(3WBPXJ+TFK33L;&JddORKC%SA?KggH;gc zW!NC=2fu$yBYrANWOl3~t#U9nRk3@SbM_ho8or+Q^BR@{o?+AZ=R_Y&%epzRSFQekv!LTR?j;7RP?)+M_!D zB7W#vyhwOYa4qX4#X3cUwUs=Odwn&oHes|$?V2MF` z!{B@G{-@nC+qY{Bq}6cr&hb}{DXEqhOqC`XsEALzsC~bT9y2B?q!GmmH1F>cq>pvE z1jRo{$t-{0KgiHkZSRb4q=yzVYB_ys^0nzFVgoLk($7d|AMZ8c7BXz*e`Sb_@5n0~ z)EmniAKYrGJT}ORdm59>lvNc=VRjCs>5M9ma6Y)OHH1@4qiqDM%7it})Y~&Cm8Ibp?UblqR(G21NN;yTpB76s#$Rh9_BfXEUI83P zlQINiH=VcktSOE;e$9Vg;tSguSGJU%-k>x1_fjdEfb!w30*MvBwbs_KrRYpl}NXPNHz z+{Qm8<$X5Dv@{*17Y0ndPRUet-I}G-Gcdle%aoTDKB}q8$7qN*xF|o8+;ML~=KI=E z{jv0hfSQpq8+*+^-d3}!EqC`wzZqxrw?6N8k-ORJ8cpvVb!l#^UUK@ zlB!0pm4`dH=W?VqMp|Pt;^WqgcDkOyPnr+JsjEtz=JI!`(q$j#<-3HkECtGSSeCu% z=bKoT;f=xLF?s$IFIM+hjyZT_=h6b}&w0oXS1G0miO6qn7`gIGH=|zaZ8@ukWt}vo zXqQKOFtWFjldn;BJhOM)CA-H`vAA&DEW65DrG6xt+v_?eRIz9z`5PKx@{0+OGAsk(97divpUhJ>6|i^FYv*+d30NWiykWGyxN4a0)k=m{h224cE%pF{^IG?#1Xrt7MmR7tnrK8UHj@NA~g*Z$Lb zJ(faV>Z-xDDK(C#cI$IrGdQDZ?6nnPj&XUJVS$x$+qd^AJUrNAS#>Mz{hrMCt-J=- zEYqrcnVj!z`w_142%8)2QBlPa6q$-iQMw{zlxwfJV_f0n-lmK<-Y#-ZRf=Y^Ry}NC z4Oe!>_bVf3t&cOecetKm^t!2xBwu)NL)Ti2)n8Bo$qTQO`rn=6$yh*un z)ou7qgG;b?+uuVT0q;ev<;L}XUTREnY+V1}3g+jG_{1~#qTI$6c9=0zl&*%@Jso9D zl&`C*-5P7arwSaTRp5n;-Y==9|z?x_m62#c53pj5ZwQ+ z)?=b~2$=E?xCWXPD@^=)p3Adp5sIT@wjbw;Qfd4Of0_uoY=iQT5#6T;q0zG$ddF8d zfDEBJ1drrS@{2jAmzx84%m(l;0GPEM0D^8-td4?Nt9irkTT({oF#JTVb+={B`@u;F zobJBx>Gq7j2sUUHhXdo}4PHVHXQ#nH#h>mho$oz|R9~FVC7EfUr0SO^LeD5C_Koih zbFQCB@AZIFvUJPs4K^?X?jZQ9bv<7a08J4D^pXt(;}fbgq-CC-vr63vqnYjd600Z)bY$m&5@QIT2fL5eOYsR_+0QTg z>#ZPqVoHmy+OFDp;Sj0Z8x41TCpA%|yRpr=v5;6aY9kUK%=k~*cB%o~L%lrT&9 z(8VD3JI9v1NE|anE9~oeFCk4~jaMk1s>+X?VQ+cmuZXcyLBXB?^{OxWv;*zNO3u34 z`h^s^y8~9qVKQ1IRcb0_I%AM1DkebVw6k|!{IYDi(YfDti~R2_o0*MelR$v`qqsPh zHVK!)LV?fy<3qQkGIEp#TuC>G$f?mV9~8*^dLc5knN-&jz=yPFxaxVZ3k^ENIW6Le zSDHVP(Vbo*O8n94+S>4HrtU@zG*EeZH z1z~TH7GGMNE3jl5OK%XM9-0^)N0S9GX3xI+FY(j^w*ke|cntkeXNkDzsOF{#4xUW` zYSJ!x9%QwlZdyrg1XS~7Qj-1cWTQXOmdhvpGNd*w-JdbE3%E7}A%#>>X@;&S+;ydB1I2Ov`{Sor9zXl{Q*OPOhLctv%&ROf^y0jS)0&jvtPUC z&p@6?2_AzlRXfA!Dk*~!`bK>~qeHD_`o`IToK(`MKhOxpev0Q2=;{DQwkg;`?H?G~ zXHv+PdC+uj9Pq`HY#uXt%zz@`x6kg$cZ>>kDERtlD$74?O^9u=v^1);w&>QhlWISf z^Al2}MWJ4AFHi>0b6MX>OPjz#$sx%{%*6vw~& zB%;5%LQuPeG$KfCo%CA^m=nR6Uc?sW$g$Ob0ajK5d}}yqIoG2^=CqA zrzAQmEQl;~p$i(Mr|rR=XbkKRpQx$I3V>Sf^sVVKcyIXwt%z-b41n|FU8aSpNjE~~ z=;E}HBp}YG;ZcZn=#M@cFv`x*S52(cJhxnM@qSAVK4*_fsJ$k+PHH|LQSfo`%=hQR z4L@A?eAf-}pjeAJUOD*S(R82R$ z_f2J!z`R3DGzgfzPF#KgiAZQb+39!yb@>w#fU%qS0>>|q;ku-rR%|@o2{qj31f=RN zH1kj9XGTsOf@X1D=O94zmRO8H?;4{)uk?1-a1}wqk{&%SgB?i3hn_0ZJ&I*mZwM}& zUDv4)=yy_P%Znoqw#t07N^bO+Ap8o_owa4frF3*Ea-9hRmGsY~+a4<2RqAYu2Mf39e988({V&=ph9f_0DP)cWa){uFg}qbf$U}3Bm*hUhsI! z|AaBL+@pHF=0xtY2Cf}OD`Xg~Si*`PZVr&8MUW%=3J|fkjHVHa<3tYoUo2)3`MWcY zEixO~0ZZJE^DZ8~1bBZ;P+K|%<%EMr{Fl*8w4VS}y=V z^qhV=S*y0w;Hj(ZL+9k}LYeo)blDMTXSI_?7om9pt9=~V2&Y6`)~3%f&*ry~PV0PQ=^Fg=VS`%XZQB4S-v)NT4jDl*GpYH2N~e<$=Zw5@Lf3*>&bh;EVrc7`sIAJuP@N&x`m z(>=WEY|3~y)GqT0!kC(mZut*O%1TPixqYLV-DiIW_!~@d%Lb*qNJ>L`cI+sE;!!^~ zv*F>*rnDoJzSG@94=4*t^H-d+cm$Y8WL(^K_;j84-b^_&g7=h(3Ue_NMns|JV~GZk zHX6cmji-Y1rF9V4--i(~j!)}}A%D-WS$vA%|3h%;KhejZ=lw835?H2RDUBXKt(jA4 znM6zbvEQ}h+$%xyt_~#0g{nPOd*YclLXtRkAcK_l6wEfV8`JkaShL5hG=;Pz@0R`e z(UER_1IDY)OEyrX$R0n<5&$3`joV(5?0_9`MrAk@i^^p+eJhQGX-$>E(7l#A$u$Lr z>TguS2t?&6HWE=_!>?wIW%e7x`BHl5+iqJ3;I?5SE;fw{{c&o8B6BFT{~Mf6LJ-0v z4LE~=?~um0wQUf|uhcRKB>{}=Mfdm@KilCWH+a<91G~_6i6x#LWh1qx3>tm*o~fUk zt--6KXf-hV7O%wQi7+{+`F_g>82&E*tY?1MIos94$Ip;6z>CRrk_D5AL)Z)}R%tsD znqt;y5~DrHJU*XLkc@g2=P3-_QEkKWu_L5|>l!D7qb`g|QaR(S z=>!7rR)il6cvmbVMz~*u7h(6B<_i(EPJ-?sM6(c=p6FD-6JVzEP0+6NfOOC67d8k* zCJ4-jz2=_sBPalx??7vw$uvxlw^UB2On&YMBMIMYe3xc6`OaRup8wfmlG|d$ycc_3 zyOn_HMmD5Wa90af_C%?MhtVhV=oTNM7Qqp2h=f^N^LvUz-h&-gr zYfPj5ofFuM6pd=h=ruvvPg4O*uMXU1*JuMo*T9~7{w?2GOzl4`K+qmB0_@myGUN&7 zg9ONcE=TUKI=%mWQYr*CZ4s_az?xx$-`_o5U0+UuSh^596eXF&Is zq}n#PpLX)BIo;u$EhP4N=BcgWaY6>fn`Je-F)(X5QrD^ZZ}*06Bp}>~9z4*kx70lx zw*lSkk+ew&e8_A8q3R_2YU5OW zWBZ$T#RYJH)h7=Yp=}Fcl#v}I1W*uX=$zXE;MF<3i^&arbL+DWH-GZd*fZ?$5sL7A z?p4YH6D9eZec78R1d11|_7SMVXP04lTYwceLJlI%Bb8cyZ`_aOz}hop>B)T&5j(z? zgexk7a!t!Zq%k6>RNuJdnyn;%A_Jbbui)9LJ!WSJ*Xb9s+WLlbINKr-((ov=Y%d}B zo;Pt9kr@?Wi%;9Gh{{0Bi`lBdd*e)xTt~XNj%?$DI8V!yP!iS1?6YSSqQdabroDg| z7HB72IE-_S8`-x(lT)@K?7zh}D&*L93D4`W*Xa*ff_s3wvP<#uP-sNkhp4+W%TY$Q`0)^8R{I2f(9oM~t_`nvSM75uD`7Dxt@ZDAl z&fRa@Z8@_kM?zw5_V)Tql(Qx%zZ~_A*)WT;z@OyG;Zwg%hH%Q-q#bqxd~6 zy10X=O(;S}pmV6~xVSOUu>{vfqAGuv`rz@Zftoit7Ok>a;R)? zYb1LNHeC;I>5eBc^mL>%9gs^dA~3gUpd_3)5`oilgSf^N_h)+l>#gy9&8>~cm-6IX zUw(*(XHUTEI}4ZY`Cff$=bELiD)%29x|nlUD1B%0?P|K}^J;U8oP+l_`ea@>P;pA~ zy4uSWXKvGZ{rJF3&vm~~X|r~87KhmOg%vhkC{U2i8=9c^;PLOjG^?fR4k{iX`jtAa zI;@{?;d7hovV(Kh-&}NXPDCq~na)xl6Z+>bUpjsg4{USu;ETQ>5x&q3Tyj_q6A%^1 z*+8^i!e1u=0GD$ge~jFB5UKM3GTL2Mb^EqzzIok$Dj_jZEp{1@$-edJj&@Anc~k?~5pyV=HF(aRUM8&I_PX=(%|+H} z@GwQ<gxxFhmAmgnK^Uj*T(h#PT~P^d5_7n zdONV;UK@WB6x7nu@hXey&>NJNLFalvI)2TATP`C#?XsFjj?Bg+JBV3sY_Dt1qDfd98h064YZtz)A0|JcO{R!BUMCLSh(lUL+9Q}?7R`E-aQu6;-5c%zS)mA z`8Ve-g)&5GkL&NI19f$EuK`8He6Oyp-EH)BQC}l7ynie(5IAZ0B=YP>rrlk|Ft|2> zsb3bYE;=#=L2z5kwJTTVA)hdebO6 z);M;~SSKm@81r2{R&)EY$D6PD`!C07^&&R&Lx&HyuXcpmFCOu8c;8??UAS=JI)0$I zxOl-T2_i4iR^tepM6+$UrPO4o&R;+ow1QzE0FcqMlK!tdB$)B(>YwuKu z%D?!2Sz=c~$XZzmiHFdsxN!dbfxqW1zg!hB#NlvcreGzU^Se1WT8j}jKC~4eS;Ph` z0MV+Fq~v6HuwUU!I@{|-t3{Sxmc+x1VLgBGqOyM{la#Xq#flY}6wOUd z`yp&C?eyC)%>5m=I5IMl=Pjawj9r)Kg9i)A$kx=9Wx6`@V`+4rr8xFCkW!N5tG!mfzpI&LxyxiLxT)6<-hrqeC))DHq>$;I{W}3boZ5}{m842pz6Nm^z)h6i-qM~ zh7EC6m;{1&lHD1ulh4Fsjzpzum{sM2BLQ4SSM1QwI0}ou=H_P1*0(MrW`O2nl=WU~ z#0Fr2q+Cx;mB!*|$B+R${t#E=3llsa9|27G1;TPqU@F-ydx8=qWnBylJMB!DJ_`ojoX$z0r?_(uVtotF5yivbkoOIlB?RW~o09J~F=_0F0L%XWW%X!qd{eYNEf z8gsj&b+#T-_-n%k`>nI_c!HljTL+uLpCNHrANqy6)eYc(@96 z!_`t&f)rSqT|_XS)w5Dq_$0!lalzw=Gtp{2BR=onOIlc1RD5cISxOA14{IML)O)M? zHJ*?|O1xCG#y*6>N z@|ZtyshV}{rH4L@k#LFY*RSXKdgA^hC`|^J?_*6YTD9tSY^)eIp`wH$TvmZ65AWa! zZ}=l!Ky7NcuYT=UIUjtPAewzhPmjIRiBR;ZveI8a)1^JA>)fjotNDfHz9Mglde@8P z`yn;;DtcpbV=NGAE}9Uk?I!D^W!$YQ5|I1D(EEeKx6A`fEtUuCB}WA5+kWR5rivxh)|f!43LGkl)`@vQH<) zs_2zU@ZePFy$25>tsApoEhAQyFh15_f@Nfrp_vZbEF6*21x1&AMR>@;Y+z$04c*uN zCo5UsFcaECI+d>P^i!-GH_6G#HF7ZI1qr?kSZ;4b6uT+E=y})ilP51>^w4Y!EG<1n zfi_n6&v&8-fUl5wxOhvbWA)*{)dCg#Qw#xVSy?n?XUI7GdfnNDE$#)jX5-9uawMO;84l75Mt)^XIDr zEr$_KUhj6mj$U!I=~sRZLi93m{ftwis{f9ezDa$W{Y5acjEszk68|j$kzxoUYzFx! zY|18hPd%It5Vzhs4P2m1PEJ07G(~(X@|Dwi#m5%SB3^YtljexkI2*u001{$X#`^RS zzmH%P$NC#PA==Q4R;*cK3q+o}>(iy+jG`r0<-JzQ8+|6&d$v4Zp4*gjLmQ@&51nry z0tO(6%!Hvc3@bikbG-fF!RN-taHK~A$c{Rk-D41riGw>VrLj^_9<0lB4J?mReX)67 zPEO8!LFpw}deF(;v-Q{z{04%bx_lfp%-`Oz1`vIdPZ zeW&{{xL0R-OzEcdH)IAwKJHB1F5P%tX*~R+_zmaDKRcP6aWUAnt=qKe7A*D_2?;&$ z^5R2gN|6zm)K9a!1C|vu|M!DL$VN9Axor#Ln_1;gXws4Vptm+9$yc2x&9Ogz6BngS zpPih)BeGE zXcK&zno)2@(BIdXpg+1(%A#5#w9Nn$Z)ANToCS4~E%K2{@w^4+28$Gq>*p;jPB=O3 zgYVv^efw5@J@G3HnI3wYT6q&CbPoI_cOhf%K(>HKJyh}}IQSwQvq~9{UcRK(q*#|= zkyqLm1xrPN(E}MrGQE&=9fIQ(4o7QMf+U*})*tWCld0Otw{XqNP24P;oifnn{Pg9E z4SaqOA1P;<9`Xntt!Vw1_qgK4Tl_+IpKnI81PF!FjoAw&q@+ZVdcZRp?h6MI$unI> zKIZ3dDQTQPefB^Wx|O8o{QR0rUEhh0-@1A8b>~DXw%D5|uUr2Ri@FnXbCLL~vk4cR zoSY<(9>Iwv573HKI#&VKUi3dWeGtQrCvwiaKpv_v59#RWaB_9sjkSkGb|XAo1kvM_ zdelit>xK|yO6DpJn{O^+=xEMrLV)O&UVDE+ZTZiK5n z68=+|x37>VZSfIN)I{$3*qJ+5&NIXz3F5Qb+E0lp*n-m{sP|J z`&aKWx?PrNd>qHIBP_?=jKBvE9+2N88fb!f03(mkIY&g^P-;Cw-YuxY) z`z%n|RwRUz!*;@59H9afugVp6-I3U(^kVog?mC8o*`TyhU zJ;1sA+wkEVk+xqdC50l&NJC_&iI9@LN|`0un@UrYie!_$GP7wBGP1HoB0GD8_xx1P z|9#*8b3DiKJiq#-@AtkxpX)lW^E|KXs#_RF{9iFusjQ*lcODZs7HT!y54FTtY(8+wuRa4e^3}O_xB4b=FZgg%wJu-3em(7>oD4}m zww(@|#VsL+ZrCJRqcqux*mM^BkO(oPm^C9B#0>V;C&ZEOZJdjR6bZrVz^G4gR08c* zvF<-gMc57EtY)_H-+eivf(^%s2$Jdmydfzz zKTmgqPCwg}aXC&@Ol%jnD9^N=5!tuz46uE;&0y2nP10_;DcB>`4IZ%+0bxAPTsGGh zckXGrdBZNG&NJ@Eg;^hr;$8RY=+{P}uaOr5&S}H_LPDpo-Athyt6b{sO;9`@LG{00 zMl;_fEB`P_lssV?o4Kz)dRjFj&3EqHxl+jI&!VGwy8%DsWo54e$;OkT{qyHfGq<6F zUsk&)<0s1tWf{RE9zTvW^d664e9Jwi&Q(yZnXw>gWMYCFOO8qcu9X!RFI87pmptyP zdDjM8v@infOkAl6iXk-Qf02$2+vYjlbN~K*WU1({@^K%KRn zpZ`99wdsV&{{0as%C*+tNPQls8gu)yE9c#5S3*NW`%)4T23Jf7+`;RJTYsxL-MknX(YAs_lV6jQJCO7c4}G3L{|JOo zJ6NfXi4HYUYha$J(i}!6!+yr>L8STd;dcGj1*k~sx(ler$+fE3h@F5WAY)N4UV^Cg zkNXvsydp?pD$?PYm`d`^#?70})30LQ9_EzRChBU>TLew*dX#lz>6+ML?;AJh0J%?R zUiq4QNEcvN7(k(J)4Re#57-1yRWKmT-nnB5j`N_k-X%45wk^m0(bK0- zCFWT8)K(rpUd+Zf)AaT0x-WW+oTEspC4lw44N2@Mq2D$)zeHt%Nfbp0Tb9<=hNM=G zQ& dcdsq4lY;n)vjZNs{)Y(v4K<_kgG@FI5`9EC+{P#r-L=9vqyl|9&E!3%Q!tt zw9lziZU>hYvIf%QlQrU+TaA8~!#N>$CyY@+PVO6|!}s``zkb!=7z;g(z2CEwgK<+w zauDqfTxq+HEsCHJ)EhD{HdP--Vp#4o?N`0w^~UaT?MPs-Lr-5gk=PNKk$SE^!o zA?N&3^^3%{3P!PcOw*-|bBK5cK?q`PD zA|jbO%nFF}(L1P2lWJL>84(3sjM^m~pj&8%&pdzgM%1>kscH7+T+dOJbrTvCwm<3x zHH;9>1WP0dDTPecHyg0l11n2k^ozoCr^4(3r7a>|U~Uh&b{IwK#a28rKK>oaIE(}q z*HP#yTWuX-J3YAd(c>2m;-Cu1h3=YEw=GXMtJ~FJD5tWHEF{J|yYuK#<-Qj!IO%|r z%o{c^gy*ItKd}Od$Le0FN)chjWvI)&X3rLr`afx$r=N zL;IpwX>v(Nd>7$%FbI^5`3IRr0IDzgR46U}N3bwx`CpLrzHDmb+hL3L`~;ug&Fj`3 z0d5F#MHoP#U%BT~Lq&zsaODq1&gB*OSh$T~u-5?e-@>s$#yW?rJkXr^2Kwy^HhP>zZ+d^S$&Ll*j)2O=ZDvrPcG@lQl7k_GbzZ-fmSNUjoM-#l^#8 z-Su%5j0~as?C!4RPP6bc;$~1!(%Yh-P$t_b{rA~;PK)>-xLk@zbNBxJ?>O$$b92m0 zOoiY<(wlU19iAMz!GLOadB&CYhuE!Ep@A4;1jnLTN-xGzrezd={FnlUkwU&b49r(| zSx`_=LtC49)22@d_9kBfo#4z6LBGg{ z(YG!!01=13-lty_t_)S*VE5#MbCrauN6f4)aCb-Pa5pO}EBiB!K0Ei3xw*NxGUU0> zsh5#itraP^v&AiA4F^+jn^$hy%hg^<>o7YWqxR*BnVH$O+4ZV2G9KA2KnpI-_P~{j zRK-H83KBdv|+{_4LR&@&$Z- z)vqNU%G(7#@1+0!yBOAS4=$zG$Q58rD^W~Vtdag*h=*)i6>_bulUX*`F=ed>-q>RG z``5CJzcTpz*Ly4;H_BKmdne$a7^Y4vF1P~dcW(=23M)iWTMWkJp#2crW5+|_jq*|a z9Pj5;a>WkOi+Hc(A6?(n;ew!&-E*;Yonw{49g(NU!b8EkswV2ZcqF}`VGeU2E6P@} zvp0ab4{K;_yyxwhJqI)(sPiU7??m|@`ee`7PoI{tu&|s|R9tb9{a?Zf3qkddiaJy4 znFtq`C!o|AaNRF($)n>x&v1;fR)WDO!HKf*-ZeNdFpYY&Zb>Kdi3#^dTx?y%_howX zEFmbA(BU44?sbNecv=aALJHJ3aJC>K8Muzs08iibb$u(2e>jFIcz@>tNM-q;?8Pai zA9{KAgD}s*vrM18^ZG97-HmQ!c38X%!6CM6G2*(VUdoO!x@Z(P*Jg9U+=wkJ1Ouxz z3_a7Y$IV#z`{$C9swTApH&;}|6}Z+O#rh0 zDWdoty%emzb}UZpN6JvcI@Q0LNGIOMlBG+TH*PEe+(D^RJ8O}e=$OmD+i3t`Vlx;R ztWiYOSdp#^QfQQoC&`ewG;nu)00nVupb@;Usqq1mUlpmi8TGC*w(51C+w(6VDll)} zT!!K|J$Blt)&1e!yPs0Y9($;x2Y1YfiHaIrx} z&CGUzATfadl@z8?`WPNkdoLI?qSmrP1f(T<*>wgRQ=^pHakwxh+aoF}O6!TL$~q8L z?8q{Z#dTASKKsXfYUZ1GMcZ~QCD%eSSa z_fWK8Wv$%FlSIZ58(jGO8pM$+k)Qxxmq9vgkaifM^!4>!TwNg%g@aDGzeW5x(0^uO zF!x_H@jjs)t67?0b#olEvnL70ky3X#W z2y1K2CCjL?fBom>g_<|rU(qHr$$sZ`-W$M0t>7G8%g+7?Dcoy=z-hi5@I`xo*2V0H z;-|hs9OnUBQGztI%H#FxJvfqtG=u`xFD%9RzCQtvp*BHVq&QZXyc%OOw|py0Sy|f0 zGgYQ0CcG#vZ~;!n6@ZfiV~1#mF#9?+_3-wd*uP}N9bXQp48@Pw0cu}MFtemWr`cmS zpn6<&&Uj}qqo#|A0W{03%5f6pBxCac~mPIwN--_8Y*YWPD%MPi}rn7ruk%sOZN zTi{ru%P^abW81dtU?lUaHUb@-3>15|K|rgcuP=6oo{@40e{Ytl8tr8}&__7hi_c?X zcH%%@1gHa_eHXPEQFF~)C*d32c+iRqm%STtz)|g7#b{VhJId~jtgJuYR3`QLmF<2Z z0Yru^n^y;$gaa=VQ3yF>Kj8m?%S}SY6>K1W^gG_@y)Tfo)2mB=44a7u0J9a;K%54$ zOdH(f>ugD=3DVNiVBX(C2(9b;{_oLdYJydo)KApOVq=8vMwx=;LO95&DiNnOq>N0p!Qs%z9wW`MaVws=cMsy#PB2PwFBm!BKf@dMX4>8xtOOf%H5$~DE zm7pC%!AJh#zxnx3Mx7r4M?ly?b_OL#SG>G;pd+nj6Acl*g*SwWg<^LJ3;uMsety-Y z%3l^-C2bzr5x#8Jqbk$z^J<`4xHd;h5BOw%P5(0N?CfM*wW?0e2trI4NCI;5Mn){L zBjppC#mGv4+K7B?C+V3v2wu#fqwv~FHqpo6U?CnoC@7GIDAx_3A@jpF2;Q6fn9qM6 z>7v7x=-1gTv1j=pi>r3zC*>gJ8D74ui0FGS%n~>T$zVd(knAf!iI$s}hgh;*LV}Ht zk1wG#fj&m-=^1fAQZh!cGF&2B+y}8VjP~S>!LGxdMQ` zD=YH?D_{lw8I*}UP_3Wn)orMO8_GOyef;>57zb$R7&^MUZzAtONd+Mh3@+|9L^|Zf z6_SF0kG9|5(%Wj1f}%5cCpn}gEBAtE;)9c-B3N4a5B>U|Y_1V4E$v1z8{TWzuF3p3 zngb$m4}g*StcSiE6lTq20~#<)XN>3e?%US|==HIt=FHk2(8U4RS6*Mg0WMsr+1~95 zmqBR(p7e7qMQxRhodV8GaAMUBiia1oSHb}aut81Lv|V3pdjmG18D z>yA2xmM&LQQ!{&3js)KQ6)K$+*@EqX@?sQwHIgA+a#&l1<6Uo<9y^JAe!Cvm`5KNN z_+;$HVP3oTEllszpr@8g1Ywy*whLHF7oR<6PM^kNA;GmhYG9*W;F#pc3ST6zb`~XS z^4BjFUqpRZI7=wh*QyQrSyr!P3@>t<8}E!Cu0k#Z@*>O#xvH=|ZxpxVr?7K(`<^{} z+GFLhnnhe({Q8X>AagkZQz2ONG%cV+&9bN|-qSNYTnUwN*@YeZ^xs%=VvrH_OxVtaS+t2#CgHM<+o6Po~*% z^f6uq6GX5G)NE3!faXEa+)9E!XoxRy>bvu}Xn{NY!Gw{DdlWgv8gW=qKmQ~&!Cq*V zIH)z*kvlw@vJSd0NKmL)UctTP^zaxX=e@|cf}wL(i?dJv1jM-brLJ5w8jMf6CkLC; zuCxaszeIm3!0T#({*4p+Q(#5}If!5uG!xWAYE5O zcFkX0a0cihL7Z{fGJ?wxv|nTAHvTYNA?yg3)iJdM%VK6$W11;5LUckV zj^k@=6f&StqZHc?SO*l#$jJ2P9hzBPmO zroO&j#)#Gu3LwJJ(hy*ugL-_UzkdBOwO}eGz;+MoVQ^W~(7o%X01mX8#}te#>f>Kz z=OX#J_-uhW>UCP$`=%!UZ|`pRG)~%feESx<;DUZL`}!n({f>MXm$ZuC!I2y;NLqgr zXkEsBD57wG(xXvbUCnmT>WI0nn_TAZ(s%D}KxR0P;ofTZU4wwwgMxz0MlApe*RV_R zS4~49NeIfL`MWsbVwM&5&}2m zb-=}rfr0x-OGrqFn%7{iBt`c+OAOmB0Y(k12yh#Q4qoM5Gsp2jHCyAK}{ zX@oe(K(SQk*k1vh;rdj7l&S;<>ua8~2syfceMkTkM-g|f+S%b!2uHkn^^-dT>Nz1j z2_p()%wxyP(fB};H`r_;KUGhR)fNl_X-m<>D7A1>W&Ye4qsQyJAM$qY7Esh>g7Mv zM%U`5;`5$Eaf4KzjHLaYwWdD|NqQygeny~u>ek9lvY<%+_!0)}kz$abVs}K<$EiQU zONeO}W?e;ycilh(0mSe`Zw&&MAJH$;X2ZBt=_&7DTHM<{yMK({6@G3mKvb)MTNMD znc0V}`NxF&gMSqFLMbB8>+ zA8)4|d3lqBgAghh16cgYgEBP4g7HBdhQNSPtpjf+&s7fUJ)YR1a2f&Jmu+?S_hzB}4I=oOh)XsK-k6ngr z4emL~g>OB`c=G7<+@X=2^5Hl$81Pu-h4yI53w9T;mCYyf#n7sUQeV1SKNIEc_^{U$A zNYH>xA|iiZWgEPWux8TJ(G4~y!Ekxn#{ryM8CnKj?U*rwH_RBay;)c?@&R-%+QPSQ zJ6{d;;6B!NBXFCa&HL>AfX+lKlT8f>+x4;Wp1Jq-+pte^GtToRZuGq2bEO7`Y*;vDKThHj!_ z?7g=no*!bC`Ghh4v^YM}m~8M_CRARLFqu#!nS%Y>RqTrHcn0XwXWQ+6e(8QyyzOrx z&ie+h_iE?+W%Y@=WhkY8)+cPX?W-+%`}R8W;TQ%q?}3kil)s>{q2;OixI+X2Y!KTb zZbv4eqhzJUO9wQTLCp)kn9Lm@1|yjCYH}T||D3PaI3!=+T-^?1Sr`Hoc$Z%tMRdge zfFS^chqsr_QZK5idJHP=77{8x`OUj`m*Ksw+#>cAm+UJ3CfP@FjK7=^gH)2D6zIW{ zPxst2qVHI&Hi`IC%J1N#5tWn-gyE$FGJ4M)Po|ru0H}m}z{RFBu&}6rX9r>g|HwP* z-P$;OAOyd|aH26s-j`S?H9OxhUTsqopMo9L$2rU{TEWMx{( z@0@m^7^GI{3Td;fn>M|695aINE)eG)aYE@_9qUYvpD^S!W+7r>9>;@PMYv z>_Hw6ZrNRsw@iT7cqJdYWvMN5ZPn1w7y&;}jS>y< zo4ycIB7&s|ioC+=>i?LTnYT*0Km@v@*1ncoKG}X)Px#Q@98ieK@D-9Bbf|eW(#_T* z=7!_k5!M&k4Pfs$>Wd~~>e9)vQ`|Clu@5Y^^!zw8n(D>jiras==_$%yKV-<$Xu?=n zn7cx3eV`xfhPmUiEe;9jW4DASO|qCgAKMRLWn|Onqj@L=GHK<6D%HUPhTL>P-wb`(oV1lc!JL10$m1 zEE5R=jcf%it0G9U46$JblhvnzL`h%{6Wr1fSTG>IhQIvPF z6z*AU8xTMdm-8zr6ggEQb8?-_#253QanrqSj_epTFlh$!zE zV}1`$-CWTPYH7~J;B~6Iz<0fuR{zR`+{uaPCMcsVosYH-rzn+VN*+(_o zjle`apzEb2D5BGflD zfq;#8#uOkaCkk&$Tr23O+NEz&Q`6GQ_v}HL+_yXLi_gCd+fL+Z0JkncJY!^Gt!8g; zZ>#vxQ(zYfmx*t=Vtf-3lt7qh4Ug?bk|lL0RO?S&`COByn5Hr;EN(DQ7^9)@51&YOb%<2N+O_+&^Pro+=OQp@B;|e2frQX z^8+a5KB|cBuTeM_@mlH2d3d69isxaXLedjOTLH)3z1}dcz!w=_Q}OmKEsziMR zyEgXRgpD5O48ApTQYlfZ?7KjW<7ta#!xzD8VOYo3IA8ZVg`t|`>+NoO1#Mmmb( zb#tC0Xu-EqYuJl|lin%0w6^vsLcm^#97L@Q;|2TQH9VYDlYyg3EC`U{3VJPAH1OmJ z62a@|Mg@gS`4TU!FAZ`Rp%S1p=cj1=BXOH0@N{tbVy3pG^2{8AIli$0j!$v%95x@9 zEo^K;d!1q){fEP*4ch4;ju?@GFn$_9+?)V;*cVnJG+ab*hd&~B{L}nsS4T%7z$*|i z7v6UlUf%#L{-~NrXvT=4{h&v5qxUT1)Z0x2(-4=LQPp@2mC9;H@EWf|Eqy%nD_%I) zbGj9h^`f*G{-Iz;%D0In^9zGtqYz zOQha{N2v8<+p-0AAPLaDJ}<>^1=slb`=5sAgm{Hg1r8i|4m+ngH$5Deq;)4D!UKi^ z@BvXu8=mMwtb|=kC2na0G<{=Z;}<7U0h6aDnezJeIb0&=7d(1z6sGRWHG4WEV>?U$_(>5Mc?;hVlR*sQQ%x3nJs05W|S% zM_GuvR(O$c`(Sf)> zlGCR>pE8lA{QUg>xMtore}E|mqzjtb$r^%p2pN#yFF=GS50(xF*u=;!MnL%G!h+D* z2!jJ|?FD#2QjFp#lIu-s8kkEG`ZYi(9#^Ba{6EUtWq1wL!@sL!h?x6?@j`7xCk=$7 zY%zta5VXKg{y@N0Px$+< z%H9dX!q}rx*RQCB4U_OOs2?hO6JZI|KMFSi*x|u=V&^O)CfroQTztpNi*7HE{`km< z0miO4#pJ(y{J0P-gC@8+d?MRoTc z4F8GXCYZeR^z>kz+*lGHu?MdmXFAfiFB=yHBFl~K#~()b!(2()oq^b!3ud>U20>A9 z1_u&%e>c$^t#E_)`Q&T;>nx!otRfD;p8{alZx9{L0Jmg$x-E z-&%PNA%Mt7z%B5LE1^n6SM(lWDuFZy5R|w_?~wedX!NlJg~L%9ruYZQY`%o|g<%M5 zYB31{A-SKNMFpVWLX?MfT>OTHhIn|ywg)pf|F{ETm@s9HkV&<+uwh6Mkq1Ha=GI3{ zvUhxY03yUb6`=s*l#jB4e(<0Q`mvCM^nbej zB?^9#7P9wMRZM>iixQMe;Q1Ixn~u{%rCuM>{`xnC&U>L9Ft+2R?HWN8V3JqL9^AZn z^x-pdvtMUCmla2h`az@H2Cb8DB6r}^ zk={!5<)Vx&1UUJc>$neC-xwzgevJ64PB3>tXi=h0VG9YVXz#eo{XKjGIAm#;n>Tn6 zo&|Ba|KK)Y>tFvrhpq>nJ=~aR*)R|N7{On;QE`AG9#Lmv{pxSCUpO-_cxS7oJ_j%;LKxLu;et~q_f&cBx z%R<*#FlyV9_U0?e?qct(w`SV?;|^ti(?Oen>DH>Jf|zG(=S;~-M{;UkKocE;oJx|O zB#=+toGI*4{GPq|gX_2v07;(~Tn!$e3uxf?IEgL|;<|-+e5y+hZAF+%fCVVpfnUS$ zit#{iV?aRIDMQFePH6orgmV+L9Wi#h-p1EFszq#?G0O@gcd)Kq^K_=T2;u9cps1(@ z*laYtYNeTkwtJwN0c*c+!sY!02M#4C9qCbQYik=HY@X7eSD6e$tQ;8|BTthUzWR}F zD{;{s&~Uh1U;`r2(KGV$_v%k}H!^#sTI}ye=jW0BL$?Ox-r}x0efZZ)cchva{sIdE z%bxCh2cRAe_i#|y+MC}l>M1;p0MYO#_LXS=b=!Q&7I~ij8~v9ObF3RTLYwGji<`kL z&hr;8s1g$lQ>P-z$A7L97^_!O=t_aF1D-4vpaQ;H2MnqzM^~!`S`NgXxPV!L=DG*> zeOE1jb&?YPA7N_&){Pc^&&;kqj?0>Mq9)^%DznF5)57k4>C31yh~HfD_;yd;Xh1R{ z2%zwGt??i|k{|CEp@KoIWzk{-Li*jlIM0rfc?T~qW65v#53Q|%Af!}K63KcUB@doY zN-7AV`VT)gyn5Y`J^cLqwYS+*co-U@Rp|Km;?#4O{yl8#R^1C5!PXHg(7X3ob}J## z_z9bD0Ea)jS~2%L`~c{W_}zb%3)0Nr=eC!7#||^@86$Ue9E-Lu;G_}H5c+Y>pFjPl znX&US;UjSA{Pr2IhJA+G%M(Oe36cL0(Nj-#Wx34kMF!_VOx1;ozXs*b?SzEOp&yYf zv(PAmu9>AB@Eb$|CjSj>83=9D|EF7%>u;LHXGEaA4Lym_rQ{Tr6eBPbffKqa-QL~F zr1-}Kqf_}VGqPUW4<3Ah!e_7jkWPY^Yq0C&Cb&oi$Gu$fAlmf6Old7E(kwf4=n&VA z9UDyUL*9?R3mwx_S4U^L?fF&z4owvcFc+5HE+lr8_QUUrE65h8B zJab`}a`C&eh+?P5ucLopfPX3)|4#4cezkQM!097f-NMPHGk^^MJ(O5RblqQu*OONZ z8oV47E9#BiAS(tfJ`CE9QvQEwF%hLA2qzC1c#^^G{Q1I1;iHBIgkTrb|JNlI3M_qd z!*S5UQc_Ytllpm@kiw5(0j%GC)3xNhrjcszPA)I8jG8?BR0IwbJB$)!y1<#q@eq67 zU8F3uSN*;>^)EtmE-wbG#x?p_5ZfURUluUd;@a@F|9*R3K~a&LmzTF#J|FtmOwjR* zibv*tmjOYnSmE^-L3Dn=ry%BUV1}ax1|iw`C>)3o3B!I;)p&ONF3JN z9-xDGFKXbGD_4?>|Gpp-y&hbN3#E7 ztFRNL+4fJ*aQ~s~;Zl&8)7I4N_WQ04k0=56rsy~Z8aS-7ju>AMVi9`oW#tI->PVt}=2i1fn2Hv1k>8VD=u5Y<$Z@gm=e3wQ`#! zh}d)R)kN+ z%kTJ(o`7MiAHW1g6;swyvAEB}LzHNRMW#96y}z`3K5Q!-a(!U^adwh01M@8Mmdej! z6gv}`7ovxWWOwE&9Fds(B^*g(@sEh=oId7JpsUeTHYG*2mv^g01Ig|Oi)VD56QB^fHBmYmC@$t}* z6luy(XSePz5fK;HM#<#$MGI5#^7S0M*9++7YM_b1N_h?&+~PnF{lxs42U^n0SF8{= z{J1g?<4%W6$t*oACXE4rjGmyA=_d=PX3=mM4&Js8qk>HEwPkKM?Ab>Z4A;g-b**PN zS83J0Krwj8v^jLG!cd|^-f3{mU!U>tDa2!V1S%X9r0d z4R(h7&{MXy>0J1_ayYnkI4I8o0@$9pQIzH0n8ZXiH@AFK%jEvCy?)TPrwo`X3p>C& zUtQ`zzW-q9Pn%u4cPrD=(+lhpahbNf+?st>ElyZgk~}$&D$zitXTH937k;5CP&GA; zVP$2deXfkQKQ*=IrjK`vIMP!co{*-`fCR0_AfYQ$X_!TKocIFPVCZo4L>J(3Ee81g z*lG@qEu6er(uIk7BfNeM6>5Izk}A5P*jC?0$8|X76~*M`ETOh+-Q+gyBG5aiSqCqhZ7vQ^!^Ad zc{m>97{Aw>(QIL^@&cnl`mqJ?;i*UDcM8>y9=&P0qrJ29d|h1~JwFCcM1f|k;b@2U zmS#%vQn8$416s9W&@Lyw%N3G&=5v0{FeJR}8&45H z!rOoUAWnaOaGC#+qf^z0H$T{tRl_6tCL}}#HJXk4Q1?wD$6_l4VZ!$y>|VkBijFREJ#6ic&e*5^{(bpD zoip%d`P7*`_;baCF^-Cd1OhUWU@8sjqZy><+2F;Q;Aof0`r29(2+3OTyHBI3nPHI$3EzLxlt`c~eV6@#J9&1;P1; zd{ea&cH#OsIXSI!qNhSR4KYko_?P7`%929891d)MK~?O zV5-P0&mmKsOY$wSveT*YQpTOBb4bgWHkq-29>Rl&h#LzJn=s#hT+u6k*yPZymS~7u=A^PyZCnn|$iOr*F*a8tM zFsSBdEkzgnaI{A*rr?hlC8 ze0&OofYrj5$EvlUsO#Vtn#e4e|Ll613;mu@WiyezH$K~JOB(tiyEh<#atpUhT)>zh zt!$eZTvnD}lQe$fc<&RW-4la-p9NtG;^fe3%4YeW<75CT*a^o}7}y(=(v0y?L(Vk6 zxf%`*ISlPur%#VPlE=)e-RVFh+=wQ*^T0)BU__iSIv}dF4UK4jfB(mQC*USFvO;Y zM5XCKc6Rn8XtE}t|5XOoQ+{JxBhDW%xhZ3SBN`VOc?{}-(C6=f6r0jqzWR9F%DIva15TJ8 z5(YZ$aUZPFkCY88m6RS@SzAAYU-r+V=^Dum_^)(KriSXcaOTvh5DZKFJPdP1k2#`; z%D{hA026;i>mD?C;uz3T!=Hci=FKL+xvEjP5B97Y{rvg!SzM>^WClFzyr<8f zn_*g@6W(uKZ7r9aJcb-0rwYS+e`jfDeM3V(hOq^1b?BfutFEr#jawUrc7Q&ZAbLdT zIOH=dT4Uj)mGfS}#p)-s_DIm~kzp{PdT9xan8$O^EIU5#nPS#!-;I)ge<uPnEM{pxd|xH<++r2WZ9 z*kD-&ek+mWqp-_#kHNP`p%gDQOOMUY)*}9fVL=+1sH*=9C@pzSBO|2mI`Is97Iw-t z;p&mm)&v&(Y8jO=?UZPdcyxm}^>yrA2Ie5@Y8o1b-}Caq&BF=5vET-p zAR<1Vzvfat^ohTr>d9bhjyl#tcp%d31d@>R#zz)XKfCj ze}<{KYHK9NAEOg=d((lcXNtj6x&#jGQ))8ODMtZXi*8XotdSyTPkv0J7;I#6UBbHD&o#@(qM?WeW|U0g=X zP^AI@LC^~_pUofi12d!Y2%CqU;f50P4deYz)0@lRUR?>Kfj5UE?9VWR{>YlZUlqZ? zKNpRR@C&2Om>SRM3lD=i?gRsDQQAlb9!B``K^LJE8h9 z%yq3op|MS>p1JoPhTqC!&hznEWVS@|+VgVgsK8^z<&=vACCXV5)+F+YT1ka&1Pa)- zYgZb4LfC`qN+SE=S=?!1nAKge4t2& zsIn@w%{p}RY^x`aD;pTh$8u(AU09$d%!;ocRLjQMogWPi5B>qYI` zyW-gN#@NgR?Y3jY+k+J$ya%+Hoe?f z(xY7-4>ou&I6XIS{I!F&`Ez=EM#mVZC4R8`m4x2`Bm8Y2E2pZO9({Lf*12LX%~RgI zCbXbNq5($HHa_2THEUnRMnAoTlkY|uDH)>lR??0r2L9HM1t`)!R+2`060hSORQv5sady zyKKbLou@2nIyz1lx1ETaQ4X1T-gW5C277&_C3V?NK1WmDXkIX=o^2c+)gh!yer5F4^_^XOVonwz9z9vb*`tlf&;P zm*viDePK^MpgroO`LI}RW>ERf)D3Fx)witn`9f#6{#oY4`NGTs&Vi*vV!3n7S@Rsd z{aY_dGuE?LPTdM_;D~Ro442L?7WO%?s%*}}XJkNGFUeQpsHOX8UvT?^XSOtb;~M{- z+bMc&W7|h&&O1p=BoueL^(9FcvzT0U|LwAnc2(MPs(d1f_N40!glFy?QdfU-!(Eq7OJ~hg|A|w~R0y5r{11x_-$Ba8 z0}gm}8={PO{@e(F8TynAV4rA=>e;hD|Kw)J@Bfi_?;U|a(u(E|f@T<2vu&)-fQKL& zdm&Duz1uqie!*UFoAunjI%{9sT}uo@p#z-l9RWUFpUm1tDMg7rdH8~6+BM2Za!b;* zs8?SJq6H_}jxkOy59-RG1DC#5p|TM3L}ekMpRYqAG`g^M$;rc#iYj9Q^Ue349|RNH zhaspwpv5D-z1PZp<}py$wS7kD4ir1b;xD7#%rG%CJB=%0YB>VAaeap|=M4a2`wWB1 z@*)fvyN8cG0zM*pSL#4PqWSv7;(;jEiTCD{KbTme&Zv2P*iQGVSYO!qN7`2X3M+}! z=pGk!Ca<3^>OwEOr(Lolop(31KCO3cU{IX=7j+uwdgD?4w zXR{ds+ee*N&I>oX(PTbqa2cDI**Z3VxraIF#^TJwjya#6$rbevIW^+DCyp3Ni@pxd zFq)(9Q;wUYlb%R(kQQ~jbhpWkY5dKXd-EKHlc}Yhd)li@opLkuJrq zuy4GkaJ-`5?~dM;TCs zp9q)gcEbfO3%cj&S_uT_e!JzLcpO?ciqNpM4ZxY-RCIL{$cZ3RpU-M)?);M$u}i`R znt~Z((SPP}+#bO!T;ByOE6RzQ$JFmC2tQy&Sa4`6hHkRxSw2cgjEN!so~EqhRF&fq zaXL!}H&d&2-UDfe!YOJesuOQj^mkTB(kQtpMV*1)J|5F^^#+5%0I0mvqdQw0hq3QHEyUWNmDx0@b#-P%` zK#n!Ys3vu4Tu6XrdhNZ%epZ2;@h<^Rm1{$!d_J^(p37LD8}xiCNw_<=d8|*JF>dqc zhW0J%>POG(b;}mCt=DqSpGY?npKdLnwGnYjayKt^Oz(N(m~yoH`tr(tcALdfC;g>Y zcIymV8%id$F$^u(S2eV!9!wf!`rIHrZne-P{)8s;Vt2V`zoc7O;^VRz$$ZxS6%o4n z?v;J>xk)!NSsb>6TLst}Gfe913l&KnkF9vQ!}xOETyD8D(+Zjb%45+Mg*^)C?*x12De3NVEzI{F&`V?a- zhwr1eg1MRgU7f2aPkvOJr^i0rLNMUw;!3lA ziA_sW#i-_tb55wMQ&Lh|Xo`X!VdC3Sn>^49!N!yN4f?|!`Z=vbLG6-7VKu2GiO5n+ zic02V8~>}MI+!>4D*vXZIJ^OuTMy*{+~4A8htpt*fHX{Fc!C21mp+anDhcv{iX}II zkW&eIc};;5-Kdc3;n*BUY*PiFXU}tJc@#W#rXc<>pd=8km2l9My|8&V;Alq?o(opx z7EgK;8g*&}4uGaC9;#~Qi1$^)%{%y(x_qCkI6>^qmHX<9-uX`n`1{Inw_RRc2yqN(+fg>{?=++I?6^u z>5=)Gpcn32Ru}(r+#sk-=~kJeAo@EOfTGgq8nz7S_Lyw&I;s{|=UTHtohkXq0Ru{= z8Hvags3Y=)3k*4IX)a*+NcnAT{mBy_%mC7hUctgd5;+qIx;bj3s}4aw$aPYatdh(A z;cvbl#Lp^rDT(+&E&dIP0ir5cqC4cByMsYA!QXj*@w$XZA>muw5#^&~7b=nyeCS0aif~WQR{7uZiXMb`4 zA2gn@$uNN9;XdPnH`5{;OE302PhOfpW5%{YP<=K>V1TTG<9!^{=o^Guf7+NqN|P!o z0((sG94b5K#@N_h=o*v*Q@%H$o!{J2O>Kky7`=yJIX_*pF(stVgQy!;Dg5Sxt=o@H zzx%(h7N9&f0N)XwdhV7Fe$*~O!FqTC$I)`eAkdy_tbEwu3h3sP)Kp=N{hPqRh~?(^ zAyqS&wbuubSfAuJ!6%80Cr+4ft_muJP%us)y(TcK{1i@S1Ke)!nk*2X(@N z-Wa^Srxg_+MEtm9kE#1F(O?{d9-Z5HinweQrQoy#1Qa1Ik%ewX*| z+vA7r0Usd#+tqxreoUn@^4b9M(F-;>Wck~`%GIXzgSP$X;3Hoq1*W1B|ACKF140{`I zlK={Poe6F$tE5w!MeeU-aB-``WU|uyrOa`I$;~f6oHtzvRQdvvv$duYHGK5M3M%`a zi7}NSN_XU`qu$f2t%~gynPnE4aWOG+06rjNYpweO{nHQVExWp*F29k-EO4pE!`N3W z8C{*7s`~oup=}@tpQ-CrLq=9Tb&4bApv(d(1_`$WkD+H?9()#Nghoy^deGO`$0dg~ zK(XYrlJo#xW4ZH7JToD6ZSA<3V$^eR$k4-tWn0qcac| z!1Ln2{2RRHW_fW{t7gD_Ia^71(u$oXo)kj&5Mzs3sIT2l$AV;nk^k0(_i5x1@3m2i-ap9@AcNo6< ztu%hQ5{l#ZF6NI46AxnbrR1LX?^e5XDgGPl-Oon*bhbZfvUBB<*yQo3>jn*V|E+EH zIgobeVwN(BczyU1S-FVD5_!xOB3(Hx6S~LtbBXB!ICz^=V(+kt08OJ;B2HVT854t9hAO6m{^9;m#(pu%b?0|jCVwF?9L zUMg?F8`-;RWkp$87cB>6!x2PN^zpX2o4DO-@Lpb{x$p8cC-o_r9?)<-3kmh&FR$?4 zr~+C7JJNbBFQ_OVS13g*K}7?YiAsC^;e0i=FeG3wl~z*Tq(6C$Gr*zJ#GoV~a(HvuCjIsT`|T9e2Ng{zX6lQUFt0*RbsFBxNoSkQ;D zqx(+Uiv`9;M++^X&!N4kATQt2`~v_d(ew!C$MYSE z{t*yRO`-kbLswxD=?X%BI-wf3MNf8S_5)1NQHH#5$=dzeiR{jMe6p*l16?!DTZ(XJ ztg5A~v;t@z)(6=e*^07RiL#|M58}Vzr%ofYAz)6lI7JyHJWzLuSDjL8kG9=PDcM2v z4JWH%4%D4{t&xU0{Z&MSXN@_)rQm!TNwEz?(s7<|_(Dfg#r7W#5e&p2EtFJ+; zL>ELsb!+GGO6or-(glLH*9jYP=~~?v=e01V)VT@xEs+R>v2j?+aD^^$FMQp9bZV%W zQ@MzKtr#okgv-%VlbAniMoN)e-Lf(I-iTgO@UR79HIu*)50e1Ug4jgunP#?JaU2g+ zMYm(rsVZAG`Hj1cUBml)mA$)Xz1DBu+@F8!d}<>y%3CK_u3VZzgz&t^sJcKJj|#NN z9wYsB_y}?R7v~y zQuaoO!B#}_pZ`HP;tswAy3oB{Ky^e$?wAS>4Lvj^X;@dYc&AR&aZl5hIWbGV!VNWnf@JON$OM zDxVX;52>n#|5c7?<&ed@gATyeO}-IX8+IXG>u_S(*pw%<1XFZqNr}94#FPqRG$6;$ z8--#NJY7Fg6`sLJTG>Q>@6plGaYVRJMyWSjj&n5qkNHdxWZ%3w4xEY5BqNpmu+;O{ z>2-7-?>5iN_SsWHa9-sExi2^dVotf0SYSeSSp`Un8piRJCV?b_qX$4ha33jNpgMR* zKz1SUiDdoR@n3mYOVA?ia^3y#1e~EJMCStS(prOMS)qX9>ST?nmzxlfqfCzv1SIlZ zV6l`MBUtorhUGgojdU>7jdV;td{*TZ$v~^posrjy9335r65pFmBct9mFTUBA2Tv@l za@(hNQw{A@sPI~mh>X~0aH~VF!4NnU5#Ufi5zyLySBZyXNSSMRGAZ$UPXeIC!J|;~ zxauO33!%f)F`SQ73xpQly1%4eT*C;r+#dqCT9V#nKerF-)qAn}rUnAR($8>7AyW~o zynx-Yrf@zIWPGxD?~0F~Dk~cdA4x`{i$3%G=WD(2=(@b5^*}2}wa_F3mHk|%;rO;M zdK!EGZ@UL|g#=49HEZcq7^PzLk*m&$BDql91Yo8!j*eOF7bTSWpdQ!~>jIvPt@2Cw zz})7V+jsHs6sP@$0WJ}hl{zddk#vWD2WI3#BO(cyQ+tvmSoqlHr;DY3SfGNVOni|3 zXP3~ktXmh2F^}JKLL(z0-q2mwz0qT3WrdUf%Fl14Eqo0ncEezkhi(H8T2`$M(|#?3 zv`0}#&V;NieDdaUadwbL_;&B!9Wg-{HVEHy146O(*-7jYG__6HLCK8oqi*w14tZx%>p${Isl_^b zaR^f*Mw!jRM&%nXqpS01Hwv93oPvF_d9+$aMD@+I&@H?epcIuqKdDV#GG;hNAbD`h z;T6>2U}MXpXu(BN8KG4)4t#>ae2^Y=24V!l_N=?kO$U1d!ifU^MxWvet#U>+v+3-33?=_7DnWdo{uQFv&qy2i@paw z-uU!ToorA#Z+Ny@%H<9D4PwcMAIPI(_|#j6gW_hCrEI{_^ef&d+RM?LcnFKFLfcnH z8ZF?wnPK?je*^28{0p#)WcJr1ceXDnSbB92E_{ADRv`lq;;leilN>xo23aWWbzo#v zs+!%h`nI0i%*8(*E0HU9$^}?zwI63#7mEuyCz$bM@4$AQLFzR~J?WgzBj^!2oY;jG z%D+Cb2K?jLC)ubbeXo5~&j*vPuD=hLnK+4T@s>-=%3Ns)(8d(Kfr?Wb?$nvpJ?1>@ zk}_>%Y|Mv7Vv4-KfN^;Rg>*=+q@Enw+=?YHGO$+H!nRK|=W%;a1aM-gI7GJzL+C?r z@%wQceQRC9E!0P@3K63L+$5}DQe@I}5i@6-+ZQ&Bj>5M#3-?gTrB&4BBMeX<-V+O( zB=Q`m0PzlCpe51Z-saKLin~lFBa~~ci@@CG=$xT!1@bcqDPc2%0ZgaxPxdElA8p(t zi&$p8=nhiJ9FbS7C%{^Eh-~Sq3i>D15vLBcc-h$P@JPVkggmIJsriRQW~F4lKf(K> zI=&yr#~G>oX%ib3_Lixo-$@S)JGSXO?%O1483HI_XP1FK;cdAjl*)W3j3s=7)i8ye z)z{xGC$FSbkIwJIyWC00M4VdX#LN~|6GJLN;@t$YmmLZQ_6FgxJJ5Y$hSQfO>>_Yq zHsqbddJEVdSS#G1!(0TByy5?=_8O~f+2qk2!TsV8jg7>_#Do}9_yk5jGw9l(56TI< z{lcpFIFiw@tP5iAh*v4*KWXEba|+CX!@wN*s{#uve`Ec4G%*9Xp&&69mOKyZcKLU!y`Mg!Ei3z7$MjZx$_R}0BL_I3J+WVS! zG;Q*rYyZKenmDGVWU2k3orNx6hze8&^!by&uYTMFSLLcV1GWvi#aF4pA!6T&%O4;% z$%uJ-I6$&tB+|}J!fK|ouvh!O@43j)#&b6)X+6&%J||BUE>xWR;zD-E^%W<3*fCXx zTr|jB=Su$gQ!oll&KsBGEG9U)|L$VHl>#sigTXkipN~&C(STiA!6r__U_x=s@~2pC zWe8D-PDrp_Wa!z{s|{WTC5Wf$aj^2OFPtS)r+;*JW9XXRUz29qk&r!i@Bcr1eFr$! z@B8-0$Oxf9Rz^diQc+S?w96=E@1#gHjLLY-NZLcgN=1Z*N3usK%E&6RlB}%k{hl}d z{_p>N-~aJCzQ<8t@jTDx^SSTqzOM5+uk+Nq`WR|f?a=JVAP^${o)q&3?cN~(PI@X+ z9a=u?9)*N_`Q63<18*;Psrd|3yD-i^(qJU6b{_ZPWl#pXoYgg^6MFD=iT9Wu2!9v* z5@kESvaLbbBkp$Oq+XlgiMLYg+CA{zw~hV%$lh&|UASfuEnJxsXd_*i7T)}?Ak$V; z^U`v3L}iXT07O+fyqA!`)kimgj9HOw&LYOxzIyZuN>m z^sQaJx(v{edP1HPQzlL!X`st!Q56*x*`6V12UWW}qJQ#gNANWig2}Nz(E7yG#`>Q(ipN)(p3hn&x}DtyJkgk8oy>vuwr^WFEVJj zTn@Rp+fv`pe~MLKokW@pBMidQDFZp@w4x`r9&(b~dCdW5OKFRqYlg;NxpL*`{p%2E zP*?Y993$lr27Mbl$1iv?|Gu!J$9-eTCqnE>xB2(_zAa@6o*KI#MiEy8oTU>+sa2BUZcl)V z_`TO7wIX@Qc1W+|dzSOCgCOh&7{1wM8myE!Fxq5$1lxZCt7&Am^!mBLJi+QXl{~s# zjhbe3pHkW)%^J~S1mu3#^=0umn#Vq;0l39!ToH3VpLyx-p--%|Snl;2E zkw#}vr?F&xn5T(k%k)OZb8moTl)XnyvUSE z1@l_qX$N=t`tiUlOs5DMH~BMpYqt2iL>UL>(gXt z*AhXXCiF}c`Nu-AcwID;$`hP>8wjmsxr`I$LpqV5`k!2~WXbsVQV+hHsTRwqKVyBy z*KU*0LEJgObuCAa!0mT;V^*UG=N|!KJVW$-S+<61Vq?TSd9nkOe3_ACcN!W#1T74w z6mXxdBg{O`lNWJYdECL+D>I!t_mAl7w=ZgkGUO9XX+}7q8^2mfsa`T@y;>&T&}4r^ zlUc#=ZZk};J?erRFaLRLVmpkJStJ_WTIMlo5iF`=iX_KEzmusJ@N7F!nHul~xd?D6 zvlbHXAc6s);p85M8%a>3diOZ+N zP$T@a$1zP=1v+RzC3jNgPJWYPY*bI(yF|b%0^p-<6~5;DM}Ri`YkgnMw#@98oEuoY zX79-vMj=5@GoE30tD4T5N86uod$>GT$xJW$a9CPkzW$kkN5yvAggv_+95}~+YPxZa zI$LV~F_*!F;&<*=hrQ~Q%OhMSrt3}{O*C}bhx|U>xTaTKcXeXqW7{(m1=E)sGCMB1 z+N*?*w@wK9znPI+U-NgW&~qZvAuHSdQdNcK#C3;>$ZnOeq58r4OV(@M47s?5ZXH%s zYM!{*+duR1r;}E|$3Iz`Bcl6-Mnnx{-h}k16bwhD&3v@^8F=z{q3GLWqY95biD~I0 zqMj3pr5wjzO8d5GWe?Ziemq`!-%M&?fW^Atx_o?LuSdI_=7@36mZ^2sp9MCp*g90Q zZKlj6xppWtrNVtgJbc{eoyxYc9fYoAS8tRly07qhlxf9O7WbD1)_B+Y`tH%ic2#Y! zs-*K0tK7e?GdMgUJkOUh4*4Dp$7~6 zS=QMI+jUkPmoAJ+i)Iz*5=>H7v2uTO|C}xGgU(H^wkM_(l$FZ#+sx|!#;(%pS-;ot zy`>)uXX=>7Ruy+yGtmL%A95W#rOe%Z|WtO@;B{aw=q)VtHdFAbFz ze3M=KbmRc7e@MJw`O=Bj{;-o>uFj?X9pYC{avPduk1nu!FW&g;zJ;ODb&Ce4dFXR1Rs8P%Yp>)#?}rxSpZhxBN{#5AB8kPPE(WOxak`IG zJuLOVF&x<9X(-6rVst4 ztceIfgA>i}TSPxCMWDU}C$+CB^UTNch)QVw1AO*1XKe7G<$J^Ia4J{Mv z!*rrc=RfrER2S(IEc$k7#wsq@ijB*PuWI|fH`Z2{nXa3h?g-gqrLx`Zvg1_~C1t+G zbElp*j%%g&M9T2H$t2FaE(=S%yt9Pw8tdjd=bXa2&05^nlUbka_+muE>Qd$<8U&4; z%$icrQEs|a&^v0->s}j`l{4I7K4BZs+k7vW>2$ub{btQ?W!y7eLPaTkH?FOWUpCW_ z>UzCTbpK@5WhRmRlfBoyM&4>)U#WJTNo`~#yU?qte;xu|s}nbmUiENIy^Fh%;Qe0{ z53J7`4;h!3c(&I`{%TR(GhxtWI#MmnDs$_nvWNbLsEv~ae0wItME6+dy1vNN87h|i zbapDAH%ob87|tp6fbTD-$0od+rgo~?dTiaqQoESH&bZq0tR!R5rM;!w_PC13{kn7P z_QW-&Fji@+-buG_qYgDreHb*5lW9A>MRjIssCYn={rHsPhQ@a@Z+u5n=RNEV>rV6V zw>Iia73}1?aOvW^t{Er!ZmT#my~J*TpIw6IFFhJ8R%krtc_(`FpF{?12aeFEiE-aO zc+<^(7yBovBuAPRjOa8?(evxJRkoD&PhTDywNh*xS<$H>^t+2ctY&C*;GS>|(--c% zE?ZZV+_T0GIbDLCXOup6b@uoahMv3X(tUEQOYl(E4yA;5f1R9qW_Fe2?XGVV>apIs zffWhq9cVf4N6mZlQNMRc~1uH$=@>9)7*ks$6}kPwlPO z{uc4;KWw<&Z4f^5`i;MUvX#cc!iVDq)k!_tW?g)h{HG?}f;u^d=))Brc4l@i;f6`w zSFL@5nTEHlsxb-A-{g^9>e2rCy1;n%;qVa!yWVlb(J+VnQA?|tT2r%cBagIewzRwU z@(m|08Jf3!m7k#*TW>}6Rfm!8@ZMx@_pHssU!pU`Cg^Pwpo<;txg6GgDcOzSQI_t%gu2L?5zbN~2gUP#fCq78O*#rFcmgeId`_G1lT$&*_@kzer>k|+gCB&_D z$ffhr0m$FIb7!fyw@E3I%7U=KAJC?0sJd7hCXw8~I74u$DGs&y3rbkVS13`QjyC zW417Hw`XYOH6;KCCxj-3L&u#ztk_#XneSb}Zx?yOOq3mczHP>jgMTc1?!vy1|09-` ztHFw`k2MX17Z{*9^C`89QBf@mm!n{SOh1LmMe;z1d5E5wnZrZ*6oe_(1;RHfg;kAp zb)OAL8Ap$o}nxPQe{6!Tl~*dhz}d1O1%TszCkXofDI?+ZnPGOwR>P-EeIb z|G0@w|IJ2ibeerbcNQ#iDjnd_tj66a;{}vRifX~FXP=g)cXrwWpAdReo-%#($dSFb zZ0+pm(AvekU{&-aNZ3CYEq;vt1~LsNsF3{ZVu@%?QJlT~$ix-b{Yz8D8bi0a6rFy@ z8c#qe;7wx?VhPGc34@BQ#pP61#hTOV^UQQ98TMuet+zQNz7-$tJ0=9Gd{lI4YGmM64C#%WHgVJx`EdY=&|En1~ zhGaP8I2U|mEFGoGuKimk#@3YPX|VIqrrXRsmKt{d&K=BpZ8#wUUe*?_*@Xf;c5yWs zdJ9fbBJC5q zB4AY9<3*^3A>$YeLyJzJ$QwStt?QOrvjz$iY18-a-%n$u&`fxNNm??V9_dE744XC` z+{DTa6zX9d`*}m-P;&E>6E;%ihYbum7BzKUgj0pwi80fRiw}L;t61y${Fj`!VccR)|KNpk>EL(7Sh0(-$l$&CoAO8)ORxO?_b9m(zDu%zz z!s9@E=lioFRLmT|648pmIH%f^(H%(@ngb790C`|PJz`8H zdT8doV$IO!BA@PNpA(>0vGK=OPg903las6aguHByHbTG|pA85x&_;E~#I6mPr<PM^#}fI!v3=7;qOUS|2C_ zU(r$_WnTCNPHsPCX|5S0G}knf}8giWe<;DEm8@H|E4 z%m%!fhFMatBlr2mu;l~ryOHZ}J=j}ie=(UyfI`IDl9FmjZoQAhGo^SK8q{PZkIN<# z(0UhHdR;H?iH7)WK8#{0FoF@ zLnJ`=IW9fj7@|O1?hr@{aL~!$<}B<{o2*LlECQ4ZHb+QGf%Xh@L(`{ULAKBy@xGiT$(G-gAV zXV!`r$;n4SA1(*4(5)yOMF+?@gxrC-F7Ux5GEb`-ow+c(Gg7|NNu+k~C?-4qzc7Dc^MxEH)e^KBXy&2`c2%`5u1M*G}#o+X{A$h67m3j}_F( zepSpuFEZ4*_M~EWQia=Z@OM`ud6!egbWz@|r@*MYDzsFp(4Oi%?9r6%g|Jt%Tv|HF z>$Ad1$GOk-k-B>A7@+OvYME%b!@F3&>~C0OaE2(LX&rs?9#psYdIIwFeZ?f1ky}^< z*Jv32H#d+$0e`60R0E$11$Ito9d5rxw!4;LAam%)IcgAD0v#f!WJ1LM&C$3cm8y`Wq07R#CHt=%B;Zz@7y}3Q0m~?~QKX<@FiTaWnx0xU z&nKwl)&E2=1~ak=Q_gsh2bp~UY$*)2IAQo%fE)w>xn{E*Y|F}T-&W)BL_-jmcPB#9 z<~y*l&^vzoIVP{>K%MfP|1E;~$AB?Z4iM4J+l^!X{J}3<8kyHNqBDW6A`a(S@&Om# zlRCdzGjj~Z_*m6ux~FN?L;9zWeLhxqH7MsGwqHLHFQF&^>MT}x`0aA8fE%D)jJO;u zr3hmi=$^`nF{s*(GmoZXP^G7S+uZGnsAw9;(`(mIptD~m^A`$|E-C-#;^EQ6y2eZd z0!!r*J!6XyvbL8#?iLVB2RCx>Aw+Q^N=sUG%1$u45c2j`^6_nfZ08$~_K<%kW_f0w zlHz?VT40f5a~cO&M`auKK*(DUh_V)qw7%H+V~2wu7&*TxhiPckQTdp6M{O@$R5xSfjdrp3^R`RcBsJ%0pv z{s{gEy?Ij{yZY`>-lw3rS%{{P&dO}{t`5zX&P7e+G$(0Ovm>(%>4pCb`8P2}^6zs! zGmvp3IWtX-ut zH8o8@zphjpV=6~6HSpZP2mHeo99t6pEc}$e+R@0hR6e!vFFd8osl6M(DCoj|6^%=^V;V{HWFS)$SBUYnBka_F8 zxqDgvgLmjlW%T88+HXV^ohDnMoA2R|pS)@h`dtVzU`(6&*wsL3yU}VpqHyUvfFrGoC@e zH*FKeBqC6=Oz}B7CnrFy1iV=@fV)n!UdtDRr+SR7$BBqn{MVVl?5DxWF#;qVk@p7n94#L!?9Za`FXd%``b&2f4 zJ%yQ0)Ns$P`*1If06PneH(+)rD~5X&wo>@-$WAkVmPL&}=%vuOkQ0qSNs z%qD`DDH)QL^S}l6VW2|W?0Wg|p&%L6MOB1}D2I%pdy%K+s6TESS)qAr2N}Y0!;E!7 z#fwfjAUh+Ry9Uo0_mLzNIB;#dpu3jg(L0UafnZ@B(nlv*S`DlBs%Qk zK1AN@7iYHJMtf2p?fhF$p_}jAbFgp-H@Xun+*?mECQil_?yks~{96o?hvT`8sgWk~ za&jTZiAqi7Y?8_Ef!GIQkwRmR{rh4p=2;&H9-ZZZM<`1b$3_f=02F%-h9 zLSs3hG#&ks(POg(*<54-%{&n_6v9zfw#E`T$;Jsa6eLXG;5~V58@lYiWLX2az&32t z8O{De=TSlwAAdV0BLrxIV_k|W+Jc#cLyX0`{}#Huvm@yc&(!I1u{mELVAGDd_|cg^ z_3p-BMrKs{3SU$#*|~U0;9|cRPIYmk{mYMs1O>kz{dV`b+qYNm^^ZpxoZE1G^QmEx zYU5q@SARXxJ{ID;?!5Swb$6~kKCjs}vO9cWI<#VIbn)TmNm9ie z-ZC|OQN^q@y8fz-sjF*>tP(~m9>aSJBMuns-VFyAq*J4djdp9yEDl!6oyxj-V3oS9 zZEUqzBeco%Cc-o^#gK#%Z3ADZ83zQ!_%C*Q7f$|Gsq{#IcGrb2Y-zUso7yf74UO>+ z{Ep;b0s=Y{P12lC)FgoXH~j!5JNaaLh}EO- zM|@+zqs*9NJGXBW5n+x2P;@>Zo)~pIOWb5b^w|uCq8H$0 zN)?jDM5NhCjPXgqEi{b*9aFToZ#SK?x8HzEhI}0r^O12oR1u@UYe=-@k89Mh4g12GU3BzZ zfO|$$&^~3H_6cX)Vs?O#GTefspoF)n z(0<@XGr`G7zSaerhd@e*1iHA2iYRm^AwIPh=X4P0`MKY}8?+@ODD1*a5BVNsV-`Sx z61w_}FtShv?!{nFy%4$mu-)*pU$KxK7Y~i;%P86wFIl3t>UJcCV~BkaQmV@s7mEb7 z%yt3_8#xfRt-1%v6k-KJ(ZJ>)wgeRM&G7a2XQW`q(A?D(N1sCaN)+~q*BmBe!Gg{E z@k1DT`!tMW;tu@X|M zC+jzF+_(_a>Wmb|%K0Esx&uFs3^)jvwP(dbsI!w>L8OyGdOjM}5?AV!*ooW5#=)WP z=C&QfPz)3vnWKwKA?kLButpvwWGW3*?6q$I&oEMulymI)v6b$G>hD{YrwUYKuOoAW zoIEq~5ns5>kB{_TM?M&V0R(wlX&v=u>ZyFR_Uap8LCJp{K^Sv|mHOSfEq2wMNa+O` zGEGv?dj$s{TrM(?$l~#qXYsTwC%b@MhjwP(c;Bhx)KNhAvrD z*16v0{-G>{k=WEc@#db>YLhE<~oYtvq$mHI9 z@PHkv&GD@q92~E~_9gFYKZb|k2sR@eySbqewhN`BQ_o?Eo8}k_f|PHy{{679YsiEC z)Ti-7CO8)|5|H)NZ{2`NGfRkJXixT9rvQ>A_BBLw)ORB;5zaVX8WQE-l(Atjq?rQw zN{_Kte#rXAsxg^hPMv4*VqYYs^j7H3td^1afZ&hav;gX=6pGx$Sjg#uD zekN*8;v0gck&9WCSf>g6s*Gv+Qh+FeUD#6i55u0sFwynWrR53=OF^HfEBvh0$#{O( z#|YZ&7C46k0t3}7EW}}r(bU^(X03!7n~-fT>o8zab+7o?#_bme*{~H5o0-Wz#$3;Q zl&gweNK1%YhhZJD)X`q;JZ(?($yiSj<0dz;o%bZ}zBD`^%D1CuR;7M0#Gzv-+BA^O?fMDSn*t6ZabH^Nm#l)MVEYVCQ zxEqzcEY>C>KR|%s;0-9L6}D|tUv;|~tDpF90Cste(rWSI#Z83Y{Cyaayahz03bs>c zot&0zya!4iGxSGoyKrqJFyY^Uq0d8C>BgsHu9Kr1l*fK8f_sA5$782#Y%U{oLLk8s z;?cQpK!IeU?J8)Bg{kgBkkfCLHDG$w0>}*vkMWuez_oAOzReV<;f-=5G9_gxl)TFf z8WHPdLBfUUnYs*L6k0C$@f@JxyrQDq?~NC{H@*gr_7gzPaAnb{!#d_9N@9H%peZ8^ zjT1*lN1DFOuG6R2f$n_<3dGcsoMLdi3NX56=k}Qn&3zhn8%2XghT-p@xQpUeQ;7X> zT$Cv$40tASh8YnTEx4erUb99G_D%Sp5!$P<+~&dH0VazYHYR|uc)c6k-P~l6U*qU* z!3>T9u>fwuS?6cGj^DfENJm%d{o>XT$jceNN+!!=`*v*X0AF8b3)$!8&uf?Y;YP=ltyiUT^MzT>bdry*3b4`2#b6`R%k_;G(+ySSpFAQ^CjfHbj- zRZvjKuBxIJm3qfSRyz4kkV6tcGvAwFmHmWp*bs-|%cGC-`D2!@h=F3vj$zX(6;{^E zhTJQ5kd>~X!F6?Zt!wChdi#Ju|LF#`q3kwhEbgz-1(`W3X4mY zGNxG@hWk&c0`HfF1}o&bB`{~s_Ui7wXZmT*@!B3(x`vyYj~_cGCM(MWU=mA!cs;k;N{tM#4)bq_8qs=ld}t48$3V$x&EJyJMmdz=(HHfrA;2 z{!FOMMjphW{(%r3#j@&)?090>MvoAX3>Hce*gT$7L;PS9S0$(&xxe1506f}x5kG5Z zUqW>;zOxI)FJRK1!RZQv!kqGQ9XodHxVitk4q&_xVR<$VAC-pfd9ZV_M1_j)*+A>XnA zvcJR1yVL7BJO1f^XT=wX(XY&@sybqKFAGQ(IiQ!z;$;Nzfp;8lMwPK#N@}0I(QAE9 zEZukmpYHDN@O^x5koPu$5Sfj14-)Pvw#9Fe4f9zSm{KP|&dumN#I;NJIBQh_wB-qd zc~{dj7^qBx!T1xy#-z46etZ=+kt{|~BM;!QDu$v zT}@3iI0v6#P62?(OG5UIcs--v&aG_>6gf{7`{2^cKn7QFPsOnAfyjR>DcJ=z1Y3_j zd2M7?2;Ph_qgx6~OSSAX(8t8<`eO`;ks`@3*wI;rU58lwnX(~Go^(8Nq^~aQxyaz3JnggOqi%ZJ^5xyOY9%a3Q$rBqV|P$aK}Jp*8-L@)-~5(6Yg*Io zch}9EsF~6VSN51SKmS|$$y>DxlhI{ZpeRj@tW3}btY&bX-AW$AeGNg^b(6(Z5djMHV2Dr(bWO~A^BJ`P6^?V4o`MyT<}8o3ViNxTO*a-O-4Xs$hB$j?7Tvt z)R%3T4Iv>1zLj!sc=dJ*IJ$u*0R3!kAkKo;P@sQ>><8&9an7a3hVKbqEbp4u49+{$ z2e!!dY!dRp!+_pg^`&OasN$U0GujORR-Vy~99W2Y@maU$LQmy~S2JFSJr8*rYTFBO zhK_nJ7H;0Pe$<+ro$fzH1ZS(0@+>1#2R=V2gn0R4t={UzAJIz?;1R!HOnlIdGcGP6 zyC9|ptrxp$a|~t+T5pf*hv7~mMvT2t-m2tBvx^LCvj|Eta>ImsedHA zj=;OtN~KC8!tkdi`w`rD)phqd82oTN+}BP(byt=ADKC#nQY(y^g7xrD8_JPP5L6@n zF!J-?w;g$gS}Zhl?dRfSZ*1Sa2u5}s`RWyq>dxawY;4-3iUH$Bz+G`J*MZQKYsa(u zN%x#wTxtx^{ba{2)z;T%dvJioZ-@BgbfAU=tPzuUbraQNj`6CIF$O6Qhr0-EN%zj2 zJEx9kdjr)E_!1gBcb??>Gu+q5^ITnBotRC*_GclE8XXS4cS%XU&z@P+?Fah%5rMo) zhJe3ZMqP`(huFq$i1cy>Kudnph=4LOf59~ZByDvdM zUXcZw5jTg@5M-Rl6OR>Yo<^-P3bKO_d}3Ja3z3>REpP?L+pv2WZ^X}%@k01d-3^}x zp1DW3Nj1l1A`s7dPd&+%F6b4D4-a|wuED?FRF)s+S~dG)yh=hE61>2(0)X7xGSf-2 zgc;oB0TNrc8nBf~qb5U!T*dh04p1TbajqV?aiMy)t*<8T^=Li9l9Qdxqg;@oC*0hl z0-b<$2cXnc6SvOVQHmzD>CRF91CYrK09T()O^cjgEZqP-BYz;a+E!(vVhrs9Bw}|& z57`-@5>(iJD8<17BPma}aOb6_X1vw>3KZBc$~Pm{EMcVe{&*kt*4Qb>BKEr%1SI`v zr|d!dfliSZewE}YII78UOkCee0y9fXNn*~=&q^Ui<|14URQg6Io% z&NnkNLuSE9p)%xww+u#{Qqt03GS7j)^p(xFYN!0Rq;;@|$=&el*Dp4PY=n4Nu}U6* zgG*IxSgk9jQ62GMQCUbJ$0TlInPb0&kh@u;>V!ea4pLGd4_#$@Ak`xfqav@NgnOzk z`JlrDXd*cXQb{c1d`p%bNy~su8`w>98^@eGzRttBT4A(}JV=76@dl3eh>$1u;sT<& zw9yyxP}fV5hnm?xJ%_vn*yhdQ3hKzj<*KVzj7msKvLZ{|(e(Hhjz-c9ZfQy@B5uG) zOoh;n&_D$AYyA@%5&aArP`OFAj^-vYEFnjiXxBmO-?r-wHrI2sOwFyW{m|Rov*MQG zyI$0D^0ndXFq;mTh4o1kz_AyREHdtSvmT+!bCSCK5MG)J}j5RQcvZ7hFu3kzEB- zjqr`g&dE{xn5{V%MRl#NUdK`UWR(U(!IJhovb_RBS6<91B&Eo|ukmQx>X!nLEDZ+e zZub&Pco~{or2eJTf+4;~E%DOFDz*K-)J_`t0oPuS>puU5M@F zhZ=x|b14m;l`YUi<@$Q9udh$hAq|6pKw`A4-XnhU$>`HCFT7~?HQ^lOG$>XhoY$g{ zXo1D5aK4>~*w2T0WzP6^nbN2Ie|K~cW6)-7%z&#`iP-|GYbJ{fU8#JWVMHOF;5|?t zF^r-I@44HVm}LF68VLvVWosph?{@&Vk>vln%Anv7>yxohtcbCwv(Dr};K~ksIv+3|V zuoXBggdu%SK!uW@;kK7oTFMQm57SU0m5k5VLqWs5o7myXnxHa@ve$jfvPGkyhI|&| z6m7O?`>NO_rkA?q32ICL#++9wlYKr7b(Ai1xXtn7^X;L^>PWBq)z$_}EEWnepQI%) z<2bPvFia5i4=f-mc4N;9lGUF&C8HUtxbheqxcB)`9|bl3rXN(70+chC6Cpx_pl2iwO14W=z zkPUc`L_PP|oGjGShMUHm;hX6ZObQ8n#c~a+kP}H~Whu0xZWb_CF@-O}!`l-sIKlGo zDaLHPxyKiuFcJtDJdBuVkb-AgqLz=_&8SEK{beWy0D;Wn-5xL`866$1ROINxD2MM! z7Z(?-^LCj>VPOkk1RUB0ocj!HgQ+D9L9t$m_(*&9?q#6hO+);ak0i%EeadY4dMU=8 zt2T<*U2Nt&Erp+pEmhcSI1FNbWS@I6Nnb6*bEmPDscQ^eS_lq{mn`g^nrNO zPMO4u9#S@k6S%AXWI>)I7bQwu{Vu7yxp>Hc;ax}j#IK2}Ttk4=OACby5n4J;aJ_=Y zSQBnP@3fKv9Dsnm14oxnj@$d&wW{>U&_H#K6RNaJ7K%zr8MVXElGp-}nH`7YhU1?@ zF1laWkO1y8S|H@m1eiBO=@L0Ef%x>HQ(UQ-w&AAoYR^E3vj(}2bziJOW~(gTq*oKc zI2W@tg7oh{tsvU>u(?X1Mtul4%-w9;# zM0_67c&sBo*kjSISYho}7!G5}9!Zvjf*#xRWT1LDYkZw>e4|Ub<^aYZjv8D>EW%AC z5IR&28Q^A|n;M(Y0wD@Zh@~$DcL~bRPv63(xw{Xz<@^DnRrE$lgKOttRs(C*=Zqmd zqopbD-)|U&ks|q;-a4qjBZ`GzUQw`3XzIkDZ=6%i)Qpz9VtvO<%l*0YeD)_FZgd}% zgmWi+ss=oVs?rpnD88lB^P!`?{4)}rMdIS(^7H*`-`a3PNPf-diP6y$%-u(w(R=>& z`?sx$?DzCbT0zNB#V7G=w6LK5Hk#m3|NaIpk&@D0aNTki#N#8gFHSuc_tHs9m|t?p(2Vp;z`LxtXHwS`xq$XV237L zO3TW$LlP!KVIWn2V+0jI@W+oIr4k2#Ik8n>Czl&sixFQl>db^2k1u(rKc2G(weP#l z0sn18AlJ*J1&gnPI{|k0R~tEq%gHT9H(>`QnlP#B+Vj4R)ROd#XqM_PKPjZX?LKs9Ar4is!Ktx{iM*Vg$lBy1K=+;| z*JI$Feh)5D#QKRRV7@9_n69;@B_og@D&<_;0s!fUo`K; zdO-uTic588SwD7w9X$2w&C!WGPHBDIP>Mgib0Y{^v*D9+0l9 zeQ{WlQUwl0C~EQHL&yR8a77#gI613Ut5+_))4Q2G3!w0{XU|#>+jGx7>YEK~Mo+7d zzrV2iGok+4)K(|?q57Y$d5woj&~sntHNrplum}I3LrDA^H$cGee0v$mvVg4E8t{JK zrl$31&x%|CHb?;0F{?d~j-n81sl`#pfe&=En~uk(4`>FcSX}*mpp$rj z*mIX*=)ep2K+-4G)m{8|V1R*w9_i?>+geGdMbYdcSramGAQO2g=lYTIMZp$Ad-YPId-pOT08xO)yBoTq)$U*|DXSIP6)yI1Y}`J}$yCUA_p?nFM?BYMZ3 zd)cyOeQpElm^2~nBec=q-pEhg%=9TpLt?@9e{k=Nj0A6E#%vQ#KG@weCY&<2j{D9V z#qXv=PJzMT|5}(Y;aI8)2W2!SxlxU7hvF$E^~PL^sZk0&h^a+O1qFY?sVE20fnARLN-QZq($&Bh#$g}u(80SMfb$FU>q41Y01BO_pT<@ z9XT4ox5=8=vAGIt;}7}yC+|3&JC{ciL~P&c82ehX(P|RS3K8!YP$_3y=c5pLqEk{^ zD~Qh6D0tg9@7?o9Y4Zfj&#DnJ82RYPQxsAlX#KOCh8kDP@aXt>E_(c=97Ed`vjwk^ znFOB&qKLlrnRp*dyS&QE#b}K#0gT`SjD_?EiDF_g3o~;B8f&A_jG!p;F#>p(chYBI zR4iVWKn7Y8AH*^a|Gk}!p$(v!1bH*ztZMNg=f`Gb+K7bSH_Qu=`cv?1@= zF2P(7(-?H9K%`7ZrwMK7#c!5l#6%r&0KEMo(x07KfgaFOxf493y@)d!>F-ZmGrB@v zsNc}4YMMhIa|#Ptu{Y_ljeuB5hnJ+dfX9DgFCy#_^K~Gu8*l^w^3*f9j5;#;)OT;( zI?SdlMpH};`}WvI0VqZVyW$SSfO$zk~?}Nuoz}v=JaNycDkjy8*YI16)X;H{Kc&FLYR} zDRODKxw$-ieEz`A2%`lZW?#e&MW;??2L}fP7ZwDdgqqhiz9?v+*tdnu87Q3l&57nE zEZY2GzeDt{5!G1nkk|oNHm83&wvjZKaH#SGbv4w-392eX#YwTs!odONmE7VViCD}I z^RqY!UL)rM8rTfz0~eO+7z!Kk`CuX!VB$>n?5{l`4;~zOFA5Nea9Dt6ZzHV*)KwS) z%E`%Lz&u0_5U|*(bR3XE0s_rwfaK$~uonE0bxNRZK`t1{Dq{Zzkao}!x2tdX@&(afLmjG0jK8zWzPqyJ+cGqm7I=b)BymQ zucD$dIx%5|bO8rJ9smH6SfjNrXDIY9Dee64HMQWj;loe0+n3$j^?u*j+2FH_En8Pl z;J92ZEuB}gdLG~8F~&v9RWE)>Ef<`58RNEW$$Y=+0oRpB{O_yC`>?6zUXL%!u==v= zVzejsg9Aqs`M2)b7N#d*TeQNfv8n&L&uY&S0c(r>7Qk9?uMkJ^AHrNNl6Wwz5WI6q z4vjAz^@X5%$;xI!QqmV8N&pff3!zc8?xo&zR;n%a>hDbDkr^}h@9SAc`$KrgQv=R; z+-|K<6n?@o0&OHqz{j(kDU^=e>sff^y&`<)uP2AN}QtC#K7 zNwt;Ia2SsrQp0Dl9aN*1jJS}tCdsJavWXI(o?{y8>gP9`zz6JcSUlgaFIrGi=e?+9 z<=N%Nsn!7_yB}HR{dvfxx<{k*o~NBmPS#LL;PjVYfdZ~&RxDIg|IJddo+^W`nJ($Z zHtp#wWh)N3)<@&&I)?sV6OXG7j+Y4zU9W80-q}`TINRs$fh8g~r2=f<$vFvP4B7i4}1dLa9!v?ST__c(Z*51yBjDhUo?c0S>5%9fH zBOo4tBBJm~MF8MNd)6hR*5Es?#gG3sK|Kftk~p;J$ZqEU)TQMrL77b3zHK9%m&(!3 zv%778DWl(F4$E{%sn1jkTHYVTOH zdNuL4ZtCiqNECFXr!KwH-%{8DxCWzqlA77Mxldj{(qE5*C=UW>eq)3YfKreii-tNY zX$-wO*QS}0lG08O))@R_H&@hG((q055 zl2qW-@$vCdk4jpP&;~s?PjZrizPlNyESIaP7gif^Ipu6*$yN6d0)$`>tKc>&i)mhN z)MC+Fer}z{tU($< z_EO6tHQmICS7`cLVTkoVau#$G%4FfnvZ=#bBK_TV-&HbdZgj|8~t9-1-P1qCcX zTu54sHsh;xz^pKbM0y7}U4+tufrP^G(5`Q4vTm}jG;T*^HjK*rn#`o7rO{sFL>fp~ zgXj>Tm?WOX;PQx~(|^&yCqCXj{vAli@zt$>+=FGoW^exUhZ9&Fh5BG6=>T|p-hJSS zZY-Rq4Z57?a1PYvDjaE&uB@$ z&8$|)4L0p7u2dj=Dk#AYqW^=kHt_p|owA5D7FOM`|BBMDRx_EQ87_ zE+*D=QpDRF1W`f}rjYTpzDRDx0MiFdJ5m(Fy%v4#P}QAl&)xw1Xhy=uqRktS1}+_# zgp3rloMwna&>k(V-E+B#F9ttN5+}B7+(?o`)6PT3J6I^(HDGMH4GpI82cV@S+l_WV zTAAz&xvKeJrXk6R*+}m3U$AAaY^2-iWz=ZtiZn#dts0%fg*}AS`lO)d+wvca=DsPf zIIpog`uR#3nFDR9a+}=y|HB0U#n2Lm6D4(Pe@B;z!;^xuot10EUtL1Yfm_E!0ZU@S zOtwVEMbhTzwcYw5)AW_k%jP9~e3p>H+|ieqk)Z@Z()dlXrN~^sBw9ym4(Rqu-~goh z!1v7l{#_s;AtAWh**@%2&sKt6YSFp&0WkVoaoW2RgU?Fl^6?=`kDey3;T&L}(RCir3&$6PR2;@$vBqb^+*Ldmw1K*=JkK@$f|9Z$^(c zY80ey$=he_C^~HD&Se%U1%-aEx%sSBU-M-V*bq2^~Sfi-e%AJ$%xM8H-#|xLW}s3pab~dURbB*hzb-9 z#3kbtM+T%;ONtir@c}&NrwA|UGq4U4O>uag0sE2Eo%r0d=~u8ID8sI5Rw`Lj!$Kte zrduQ2v2k(DqtYSuO-MJC7yt5@9G>;(8V;y4*U;XUajR-wrw?Bb*%RxW`%%|s}$f;yB@Tv{fGbub|uy-#z zW{3hHx=gr-C`sVPz8i3V6OK+0x;uUx9Ws2d!HNZmrymMa3uGjuKMgPf5rzhw#|rjo z#A+M_eVvwpXbk@c$%+UF1j0CZr@cF@fMw&m-g?x+7U??n_=~k^j?IkNL(4yd=A|xi zGv+QPr8i+xnv-&La>_?PR~zwYmhY_S(sLDb`mP_nI8R85399EY8ylvWrF*i$MnmCN zbukkb>VZgbc&I*z!C64cSFsD$V|fU5Kp(Bp|H|Wa2$nU#e?%xZREYbiS9UWvIyFesID;soHUkJ*P zgB&-EzX%=+%dkZ`Xjgj6a0tY`R6$*U=8zy2;W;zyG(NkC$?~-vVU~BoLw)&oW=Y^f z2^7qT%qrc-d32VHp8gL2cmV)l>{qO^o9HVOc3oO;ruzBwa)5Jv!IellT`veOO#$eT zTximyV{8Uz)I6H)Os@;76C}Cn$o0&2u?yO8q^onhFi4XmPTNEeFJb>>zr!28YVT; zdAK%5%*}%|7m3P}JSM0okSCe*>C@i$NwBHOOb4kxKw(0S6E6|($CJDA2?T^O9e-D1+_ZEx%D zHtABtbzjD`Z!;btMZ*~tJCD)>5k~o?X@(#gnEJzL0YYs~44D9_g#h?kSXv(HO0KL% zW=W6uBFh*1#tN#(ilQrQJ7H^>3k1&xoV>@|Tow?DH%MWe5fXhy0vb>QFp6@X z5ke0TtU=&CJFM#Q%V)p`C%H6)`*P6dumEX3ZhYlJc1Yn8N>H#9rf6_17orl|0Mrh+ zWOVH~dRQdF0aQ9{9TY-VT_?AHh2~+4TL{c__wnz#O?k zDC?(BpQdOi{D6%hamw?YnJ^0-V#>x|_B+`szh}H~n;h9fI1M^M(ZRi|9Mv!vCBY6~ z@@L%oR>r=@Nk^#nS7w}kwEp@v%PWK|cy!GaaC|WM=Oa(4)W450BQz2oD>}^wpEZxD z&@<}BwY0XbWTwJZJWabUkzx_h(G^+G{+~NT8L|O)&ZAJ}1^+sTD<`uHgc6{Wr6Hk4 z0(Eag@ZQ_2nvwg)3{Rag3D3dSH2I=q=Yrcv+O+r`+hTAGF~ksvDuv)zwr5tZHB6$t zd$&dNu>u2_*C_3X>vNkj0K*mODu4sbqG3m6+dDcjHpW1`eECw=Je$Jmi@-WSFzOo_ zNjyBIp%E*X=Bc5=kS!6+9?PmMDJN4^Zh1#QrRyiMiN%bx($HKto~MFL)z9TVN>S8(dhmFXMv&a3TC3487{;Zw9-PiaEQO z-vp=9njgYj6%~>E&4U9@HYnrhcIbc+1rmhS^yC=9zR=>soEIlBCXgX>ioD&|4ZuUWlrT>-$0 z^VN`nA?!aeH__(cYp+k+0z4eE*WRF%P!!44Vb(-OHZX`Gf7;F(nal?WHPgU|rm{i2 zxCW4{2}gteYs-0fR?P5$g0x4aoeI}U9Bia6K_TVa0_tG_;DiQ6&xHvg5CSq&EBot)d#62l)*UHQMXHgK!FJWiiYCzABkOF`5w0J=f_(YVSbXL ztgNg!;qin1IyjdEo+5=cTJWG{a-g9}2pMrN&q1eeN1p?F(KxA?!T815DekI_Fp1k5 zg50rS7#*XKO*RVvgW=F>0RUu4Xs=9Q~`(xm94?$|l>U*45bD7Qk(HNNmK- z#MDg`>UnrHT7lx`ucU=??U)!i8kOhDRM3>lu6XuV5 zcW=GfI%ZYIY|^m;UK|+{!-nZaFnxK^=I33!`03Fe#CSpzBOEu3IzkeI8JYB zKaLeqlEif^Z6@SwAcVGUx>9!uOp-hKGe4*w)9<#Gw?S|N%L5xR0we}Pz5zta(B7Ml zQkXE}bGiNk0>{MB4mrE(1FM(c{?rGSRSVJ(jM5prWx=U{Oz3j8;@vIxNJj^IDvr-p zNJJzUPy8p~7p&BL)S|#IKN`~Czd_d83>01A>@PNO^84X9$F`*uqnQNcj*7C%7%snY zhue^VI`@En?(4F7@i6i|LLYrP9qdSy@7T|TKz}v+{QpG8uMw=uA`=m#HFFaYU)e&k zK-weuE$L0;?%+npZ{%3jZv|zBpO9$=*yT>Q|0gJK?cd)@l7=chxjxHN6y#K(Ek0-wqevi-kwpe(M9Ew* zGMb;D%VHf=J#g(oPM14~c30e~>+4X+EPQ^qUtu3|Im}JW1GvVMKNK?4lh!-vaogxSx^OXkm2szbx2o1|J@@;>owpdSLT2PQ2IgD_y$eUiXkQ+; z&e5Z*{$!mk!)U1tX|?M9pzJuN=Sl5qK%M0;oA@~_4n4lX+p@N$C}_zRWHii}QWQV$n0`#WilgFjw%)G(tiLaog`g)q!d!qUXNZ@cPD47ZfJ|=Xd+C%-p+s zHxm40`ZxwZ%zWt4Qe-4%@^6rA7VcwklUc;iW^1wxs*=6|kc?)uq|o;7a1up!g%%M5l@5Ik!JI6L@IB$;!9L&= zctLwrko4NMNA{~mKjoy3x;IW^p$N9#VShxs;z~V3*+QzmS-^s5Tr3~ukJV`FW@9vG zn9xk8pSD7zhi`D~YqOPPdz^!ymzQC$Pt2O;_+Sq?=iUHQCYq31e{T6nzn5|5)D>8u@kL!DmoQQp+yq= z_Ob1*3Y<&r&rAT)kGR)ml1N5Wk*dF&c+Qes3itRR`o!v20co` ztY=38es^}p4)-1Tj_KAbq+1J~q`U{EBXZ_M(VaCrRO2@j`tdYC4Z5=6dbk|37G+PLo1X(MY3; zG-y1Hnq`P4L}g0Stf*6|Pzt5cC}au|DQO~er3_JtP^5umYWTnI>O9Z$`wwgVt#!WN z^>j{ryx;e|_qDHm?Q1j4ue+2g#@WZmaNmdNb$;cX=qjBhPZ<}7HB_dOqgD>7+pQa2 zw;}y&NJeaPnp(s;fT2Y7Wp)HOz@C0=H3ipVgCBsub~&TXGp6uY9AY0p5&<`)7j^l| z9v;wdZQXZy9ZbJfB7Ker1_oXgiBsXT*_G7ux~3y^dr#V-JKJShp4k!__y5dLmXdV9 zVXR@IZm@YvcZSVLZI#zXC@TjfCr*Bf2W8YV;kVG>zvSNbZw-;pZyq`{=T>F6BMtA`--p%~1+^Na8eNy0CnkH6EI?co zA_kUPC<%xQGUAt3?-h!w6howu5mm{F;lf29B3L3@aKO*cFJ!1NNXT7jeX$wUZyrMS z$A(A6WK38_u2D}qqu>nhV=>Pec%XxPw+4K0Lso51w=iLj&VexnCb`0dvt#l1PxmUjDjsZqp#?|1=HO|JyV$ zef1w!MY+q_J%=^~QOk8qJW3L2H>W6k)opiVr~T*;sK_5T7BHK9qm@Mc5oK{I;C4d{Ws&nO)HuULMpFHbEvb28gxRvJ1j8{Mud?RoI&LwY??d#@QkXi#8Q zb+9{Tp-f&l-?`%BrWT@_W4(fL?GzgR>R~IQIE@ zIj5lSG^eYx`oHfxxbrc`S#6|bd(P06o3&VOf0wCKpH5w@+x^Q_!x{g0SafgMVuo3Z zerx7U$-V0GzF(KS1D#uRo#wru>AT9p%IbkegEn`4@=ZJMfx|KfTo|r|Oz^E-S|4v} zs^w7Gor0AXj|-XbqHA>YiNY<~we9m`o&_ydQ3Bo;pQ$6c%c8HDs+`Z11 zhW%Z38o1VB+~N)?AeZ6@2z3heIV@Hfu>q`o5T zPfvi9Tsq9*)*au`-Xzyx)YU%5cK4nUSM(R@}RHaglXe zE(V9%-#$%ecL4L9-DvT^$|@8_->zTuMgGjCjZbg?X~pPYe%zKc<#9Z)?d-pQg`4|j zL$s&eUsG_$|3PX_&Iu-4)u~w|Ovv5^@j8c^nc{09T8Cn3ZT9{3?t}Hi6%i4cfSAOy zxpb+&%F6x|9v_d07~!Tc_5z2U*XM`V23cf7ix#$pv6(^H8WKbZ1+!=B1uq$paB0DI zHseG_`mS0s!eZ4vSf+}E7aCHY)wOR6;IdNKm)Fv4faeYjR9&r!v7^+70DS%Dda26Z za1>)p9!?Sb52)dO*-?n&ev#orS0(xu7Z*?Kv+%yG!D3_Q(Vkx#T*WYuS9Rk`_z(@??#^(S84JD_JmaUMZZ) z$XpO!7PrQ&4u3qxTpmDY$t2N^nuV!@;Ki9OZ5@^MLL~ngYIBNSt19MLq!$G)=*<$R56XRJ{mvdU zT8x?44?Mj@;fvM2-#I33qT6JbaTx{Kh81P(UA~u@>Bf>~U(393`3NM%o@h{_C}dRi z!*w=p9GT6YYUin;+uuD6?uG^zI&2>Wqr%ji1yV`8_q%55kFi)WJqz=rB57a@Rp#8T z#+of_4|hGX+GzOghPJ%YUfn*)>f!a&Me+@J%pU9sDn3sIGghkAKtcW(Omy%o^SUFD zrOwn_?NNB>hDO$6+D{fa9W)o5AF=c^vtSnqabily@TXnjmdou-;lh(Q?QbU=WEgE8 zUZ&XgatthZRQ1roS>^BF-_jKGoHudpnt9NYQ~}bzob+AP*j&75MX9Ui(LU%^9$j0% zls)JBZ{MCwdL7~&Tc}j{xPFX^%Ed>`;|k&UXh6tBMNOSd2TLo>RcX>`*ch~$QrnpQ z(84hfk||+}HKSK6H@PLY%wIXdBHHiW!xu07I3ThcewM_&+gRSn(#x}q%}NY4t$Api zBL+NW3^lhb`Sx`BpKhIg;OjpZu|tv|2bGmeYBraum5j6)*iUV+VeZAF+H-jsv|4DA zc))E!k(yZDrf_-XSTAPUO*jvK@Az?xn<+A*6U7xEu_psHqK1@^-6Y&tX_nP7D1FG) z^$mmP8s7cX62h!qXD{yRtfg?I`2CEHn!V~b5}}?@90~m(QhJ-7o6q!?ye};^ooKq! z0G*w^M`0|0o8V>i=KJ4ozUuLw63PsYojKS1PsuZW=Ec!5HZR7rIJ`jFK__b8a|u&V zr!0EAn+3&Wmb^o!_%_yaER^XQ*2^ZlPC#T0h`5yWonP8@!5A}#D+rONGu0Z83t#p4 z@Y+tt*)MrVFNSX6Tf}Bhd^$8o!tJij9M`9Fb088;&o9{ zS^yi0QADWG^{m0&6cu+ZP3fHSR*Lyk@nz?5J#U1bcth7)xlQ_gqg>JxGW~sIhYVqV zT(-rN(dz2&yM~qpa1SQ3qE!5YS%rOZk`zQ#DyK@!AV?VALgeRsc6U?oqeIUtbHnCM znIZvP2-fCd+NU#q64eQfJ_irB=Is5&%`@S^vsje@&v|^lW3siY(=~eB(Maw)Iks$W zvtjMsc5U0fMnKsbwTUNmvpw1~Cc~se0ZIwGKU^rN1Y7JxuzXBeE?pnL`CV6jB?+B@ z)2wT5J7Pq{v_3{NE+N;BEf;UJ@ShUdu3g2DMWn${n(IRQxP!slpz)lHEPfN$Iu;N2 z&5kPQec~IO+g$^a&|qDoGzBmoSA7BHp@bbWujvSGUiS*NUoKq)l*EE1y*p+MYgcG# zwzIm%9vPHrJl-D*Y)_~}*(&$_sgnZ>Te0Uy#U42gt5YwU4PrJdQ(}FkiFIjM(3a}w z$(tBobuJU95t%`oHf@UWCq%_R`c(~7QF4XwH7p{uHhN>ZmTaZb)4+D|vasc{WL7K? z4!OBu;{K+2yB4wz=%q>g9VFN8aO`>cG+?D;%MKj;1RjK}N20^5>bY zYKwpVsq>6|W)2czcCLRfo63WKG+dTy(=IRQlIn+|%{%AGlbQ|;ExlWEzKYS+zJmvg z5&Iu(AiRn`fOg9)4r9;Z#;bv4Y)?;oR0l@)!1bvs`GNoEI%9KUV&a$$Pah7(#!zSz zMB@aH6$|1%G5-anO2M;t48l{w!H&>|v!`QtMK}1k?Sv?q(|3Lpe2psp(fqMOh*wP_ z#khifYW3lNwE#5kZCbpR1}H|%u6u6&Q*4ZrpR{AMb2CZj5&c~T=i>Q^AZ6I$?(Z6u z*Lul5kR3OD4s3(0@qN4NMtToRE^thi134Xq3Jy%Ck7s>-GjPy~{PC*e z3JNzElNJ7D2wIF+kF2D9>{iyxVw+veN8zQL#&0HJ{>YU2y;J7t;~pM&=$^XP?Nx78 zXpXDR+LYYPn-S11qs?DZuDvF<^J;Z;#$?Gy?NypL9Z8*A8G?H^24p9u=U!QMgqr>F zhZwl4iqm8BpT(?ueAghWlW``7H|@wcYjN?Q!;*czJ_LZ09A#}@bd!bE6CiJyIO>df zz)9)!p59zOR97vdq`%g`FF0W z&khm+V(s2#3pM{lh>)CyeJ(lq$sKq_6^6qn7+KkHeUc#!zR^IFSfp#k5Iz?sbw=0Np8K`Tg@^sI2CEt zY_)TZ*G#L!xVe4SRsxC9=Twp8GqscS#xR~>vxdHT@(!##rZ;cjxibgz0aHf^_Wjzi zvke2o-RwQTymeVB;}mxKb@GreYgKov%yd0RZj>-`?j^zrawX~d1V+rM74~|xd}^gp zi)f=F;phVs(X!rd!;IG?g0DnuD4nIDQ|P{C$BrG&);GPvjN^}Un57LrzF-me3}B(+ zbIsACbB3=TJ8amn>?m3~6--i%$sN{Xp1ZncZQ_mi_=3zaqwUKxcBRw$$$OZ{?qvIe z*#!kw`@|nu7#}Gjk{uRn=RdH#?(3+vX`UvQufneIx@ZZ>&{z4fOU4A2QAB$Qb)Vha zfx-OYmgb83>u)LXM%vVf%8ktZ;gME%@9O!&j@{29o&jlQeb$F=ZM;rU{P@7PyO zLXo5Ru&LMToiYO+%$qdkS1KSEDEJE`J!Jci*guv~#{SFdZ!2dV?|oZJPAW-z3W=Zs*pK%TZOIwkX)^sb_V#x>305iH?sG4e94Gsf+0Z zz2O2#TC{5QlBQ2el5w;hfTp%-xVJa_)J1 z5caR^5uWVTc;$#13vccJLcFKF0WOU!e z5ZY_JtYo6X>j;nU7Ja9ed5(I2ir&>G{KGc+#aBW-y7rm;@{|>xX89i`yw>?^;wK4K zX{|-X#xP)P%GUm4$9mB>wWE#~u7@6`()+9mG_8f*4!BHOd_&s#vh$h;4AT5h;g$EF z!Yi`%pR+`>`NmIKyRL=#&JeF+ZY!Z0r5^3n;jhf*a(PGZ-O7Q^WGZ~qe6u*#39tLPhYR^V9sRhs|F9;PPf>;9>S9NGrrxkkg7Kv3IY! zIlrY)Isa9R$^d785o+*vVTRD3CO%jI6s8Jq_B-np% zasVmRWc0;;(Wb>roQF!q$c7U*LjWaS+*B{sWpMx^PQ@BVG|bG+6@2u=^dL!%Qx|{C zOpE}+o1s_|{){2d(m0+Zd@mZybxvs6v|lF_(0@9G%5GUi_W1sS%C}u1fZvC?-AS^X1IgmxT~|9 zDZ-x&KNjDg&gm%{9h44t`1sqYi{Db5kpo332cCIhGw=$8Lsr}n`}^XX;(9J53-n6A zA$JWV(TGxj-+_h`>1kx*AkbhrkIcSlyEzsbYoI)DHk2Fzv_><$#4q;l<*f<7;jut~ zh-uq6-M+mivHBfORf3b<5TkIXF?O`poYY1CPi!=>uk7z5eloD3O_xA6`1Xa?5Z4C5 z8b;Ma2vW27^o;<<{CN98&=stxKf|9!Q_Uzki08}AJpg)?j3gfIZg}0A^Yb@vH-1aC z0uBRx)zzQmTR^$aEFn@xw&3lmaNwv6Mv{x3$68zJ$I=`lLCZ}I0Z_$j4^ryh-K=My zCE&`_W7Z$9+POyENAxws!xRt;3i=Ipz5#^mry=@B5&4ql3mAKiTu3_xP-@`+F+ydo zn#Kc264=1#O=WWvGHz|ZHMvo1&ySlc9&K4u+76RoY#7%dCXjq%dF)y~Agxc?8^e^> zdi+LFM~{vhBpG)`T{2<6O}DuV5JD15+cG}%29|c9ii(UA$M228n0AJSYIKa|K{xjv zFO0gNY{jgEu=Y=J9Yc2!GnC`J^Wk~l2|9Bb^W|_#MoJ$KSr$@WZ0Max2Exd}tqz7( z9V4KFU&s3BfF|IR1PB%~Xy;Hv3#$n+1ze}?lz>8>fcs=QP!1cI2g6TS`C_KtT%36(|^E#7ftXe*d))+p8?Z228*0HU6xUkRpTf_?oqtlSA_xj5K2h z?ICspP3vQdY72#nkV-*sEHp7u2G9f$S|)zJ-)+pgM}1#?Cy1pnkSj#RgdU*_{qSMs z)1||sxfiDQCti&{x&*)dmQV8vYWX{%u51z!V_yAszC4+_}D&}|Cy=+JrFIQLqxev zpNgjrUzO;J+afE8MQ-N#I8oBdH}e5&AVq3$Q5BsKQl$Q2i$&unPMj!)Ah$CYY8bz1 zfWQo>0>}Bqr!JJoRZEd9!sWXsO zFfuR3Gqqas)Cve2AtqXv0Xv=S(nb8MVqSNx@{j}dbvn) z)usE~IY*Di8HR12+~dTp)D1DmeSGF{MgfQnWv-4iK+rd6(j>pXdxg3Fyxw!AlFg;i zuq7sLBh+km^$F9n4F6dAV{rTLFTY9^AKjyWpzmeB?AwX)yY58l5tTT~#kWR-Q;4_4#9+Qc+%hhP&48 zfT9gu?AEf1Kr%pM>cw#flgG?BtnX{PC(e6X<-tAotPN}vMzz_xwO-M*vr}^4-*x62 z@6|EO-S))Vb=7pAKCvNu(9VlGt_p86Gae@fys+xxp{_PyzNP2Il4boMavQS$V-Am*+mTpWmuAWtLvolE{V+ovUhJ^a|l^s&*KN5Fkr5^3@` zR$gKpjv_69U^d|C+zN4x5Z_1@BfJvPGN4E~H5+-;c7lr!-Wpqr>}IXkZ0&?JS)gFk z7gieGaEFMneXTT2k)cK4r)DlAJZ{F5U+XOTf@gv!3ljaWQP<9dq`QXOHpFz;P52* zx#MXUT#W1fxLWbXd@4QtuJZD8P_s(7po{kWDfwpjE|{!Yq(m~H%ErQrhQe?$Z7uu> zu=7bmt8U|yq+>UX89@s|(acuGMqU)n+7@<{Dj~LR&FYx zU|xcj^6<oebc4fs>Or}}sqj=kr$^ldtZ ztZNPN34T0Cj4qM%Td_<}gvEe@YlYrB*8M(~C6!|)zFy8jrKdjAeGd^lb8NypHrqF1 zOqqowa_;$`AO}CLQgGr>p;oz|WgN6-rBRf8^Iq=YW>VFeubmb5I z8JDhx>Z$QKB=AVWN7Z!N6S^LY5_dH|vGR9$IA87EkMs8G5{v80m%g8{-+yV>E*?=< zuo1gpUbsZiLFPBL@h(L{tao@=f@A#oAActP;xybA#CbzuMiR9rUMEEQ0r&PHZE#29 zDCyj-+dZ|2n|I-VoN?ouGj`bQjBM#th`-VF{bkusu=?T^6>1;`4sia`*Ho4DYV_6J{5yb#Sl2Z(RRUf zFR}4+d6=ojj)7>SupwXlrv0UQ$Yr)6Cvhx%d-dKunEItnhWJ}z%?oY$uOnl^#)*6d zMic*Z?b>z8^GrJfd=ejj;B|R!v7g~P&GfI|Kc=Lnd!K&FOZxLD%XqglKSeN>YkTwa zf#Y)yd8*f0`Chz~GRwD{#CN{Dli##exYG?uSJ1GU4a}r2(+$yc<0gu+o?_(X&*%TS zI9+-MygpQz$C8r=uu0e|a1 zZO4;=pIdkFP<~ewKN@V2l#+4~E=(OGYJ9(qo@aKAuMV~>RU9x$+hofI>py%{Gj<@Z zhB<%Fu+il0RiINETy5^svF_1-?#8x~uR`F9!e$c`%KXC7NG?S0Kl0I@l1X znN1dEU-p0C1m_4+AdoJCxMNfdBT{x#^N7I#C+u%OL)yu1^MzSNKRb9;qJUV~+Z`cR z2@?(p{$TSsAo-*@CXmay*MqdR{Z*G;dBnIjx`3Hzqg=;dyl_EC8fgWTfIy1uQhFD$ z6NC|OPo7?nZ6C63EFd&eJ$LKTBbkeXT$ARk@ty4KqcGbic@j@xh7=vXR6aWbddk0* zOB+!_;%Z>NzTL!w$CnU9k*XeYcQ=P#Hom>Pcb`6Ich!sbv;@dr6 zwQ)=5UcE$b8iaKby&~1kKJNHxjSB4+*3H{b6UljUpraqfyevwz<1mt-RHR%Tp%6yE zq)Z8SU^$UO-UT#$LO&?RKR?~?wlLpo5_)P6>+56<^gQXo6<-AHibh|8L~$YC0D7hs zM~i-lXq?d4kSD(L2uq&nuWGsa(YdL#R_+8L>%7zEzF>%ivLT+K9jv@$0NKJ2jTF5h zFMK}gVmWoQHk`wUrK)RFA3hZB(+s1Gptkylwl(FD04xi&8~ZZ=eyuqi!A(g;#YtN~ zWz9{~O*{X&VTL4S&(d7)CrXPFTjZ>+sLK*|S%J z;rNL6KZufU6A+lJkOiRhwcHr2f+6`fOsuqadSjWr$#^T`|TDYWWnhY;@R1H(w@%Fs&(bw;*JWroaqqff?7r$S58wQy+ zCQnhFNdRGDOTlwJ+{h5~nnqF|{vvC+9*yR8x9DzC#Y=E&NjcvH6T@eC!#TKb5}9w! zgq8~RCyc!4RbO7`ep;vdEqFHVifh(oE>Y2?Cpg+^}1;PkZ>V z7@l$sKQ-BsYQO);kyjsC7h0STO#_<-sgP^vqA zYd45h%mu>KnCf)xyJ__QWQ_SLzfOip#D9BfLf2)dQ8(gG!17wZc^Xg9wuR&)F2Z^0 zIKU`TyQ}9Gk_{%+7m0-d5ORaWaV6W(7CZqBAI)!zp>OR(^DUnuzyJV|b0BX4%;BfR z919#N8X2A@hNiE}4E%4CLriV?c;NX4#Qk6ZenE2B%=X$lDfG%%324m(FfdK!I6 z4x>4v=r@}`Byc$u#;lvdd%;z)rzuTm)v6$BKRifj^aK>AF#rA*j)E!TG)k~= z;Snq^E-z1}M%H5UfrQE8vRm~pf3>7;wHD+b%_*K*4K8E~5&YtvoQP&UtF*9TdOEy8 z(}?=0_l7;O92pVsnZ=lfI)TyUu`o`eH+pJgF@FI**PSA*3!^a!-_b#4Vac0BeeWE4 zyASk^3WYXmt!PHrq1hgC_J!8u{PTgERQ?yWnm_Z40DHxCQah}+@jw)A!aw8IALteM z$oh{F=`Y%%6zxZ>yaxLP1yKf9qq)+E;;M@-Zb8|^iVTjKss1e55@hdzJQawG0|e|- zv`#g%O_hj%0EW>!zgi`{zab*vS;w#PJg2)Rk%EX5b5sTI^RN0o+prcBpqZa+dDjhC zO$9Ft@m?X2_{-hR*5IGE?c0~4r>#gGbaqT^q50n{>8bcjB|-F|X6WKXUO_`rWt_hM z;K4uiQuW?>3;idiLjPowsxc%}7S6o1u|=0|OBqWKl4zYV`Zxe^L|w1G`R$?v)9xt_ z?K*Z00CnA@sRqe;ciW^PLk_V>XdkIrO6&+ge6qFjXh;#=rNUw;-rlu#z zYPxC#5?i4{5Zo(6O%3AH^BB4Q`l}1AQD{j%AvYh5$w@+$oRU%&KM*;2DR3Zk)op)T z@kus6#Y*8eKXBO<8#~}&#wUNJV8>W<33U zB~B26fraOhkEnimtML4m9y9Iya!?be!M+DA4Wz3*w)E`JZ-JlX)m#CBIJBKmaY>*T zEm*DOCby6CxrVf`he^n}TFkq{lWvE2a=X1)S#$dTt-KgszZ_}PtAnp!b@z>f zOOX)_b1MU{mKlbl&27x>hUFY(f#kPl?qZVZKF6Ky$F~xTMO@3c>d&p!21~|qzkx8) z09F}t<*^F8(;C)?6B2fY7oy=X8LGMNQPQ}Ny@(D9>A<)xg@>!gzaV8c<{~t;9cs~f zf%h^H_#kAuPE@7F*%tH(B|`ZkT8;*R)ei4+!+M!VYrU!gi;oVk1r_*MeEL9s^0QqL zn>S$W*qEeWM|COird?=y7eXu~*vRba##@>c0i(V7{HH(KiEOE|^TzBo>)-#U(Ose< zj@9zJJe0{CVMua0}S#j>HN;R=Qrcm$V%#Qe7&1WnL zhPsqODG)G{{1s#_H}yi}+Mg|hfHwYxRx*#nMILpTA<-_GqmzW zf~Fuefw-n1gDq3f!A%QK6DPQ`ak{VILfy(J*<=lHd~zc^DcpI>`^>DfUv;X=#Gz)o zH-`+p(1P`6Z{NQCqJJyRw2!y69Gk91QZId%KKhJKJBi!iAHBn7kE1*OTY-=HA-II$ zGgkDf82s*Ymx@*rOOdTl&fyXI&iP+G!7-|&1c$=D6p;}<;$QZXIbzMVicI?cF|M?e zDVsafTegzW{s>r9_sU@S^{)s1`A1HEA>C&E1WB<_bs0*ziwLQdQdn4c{_7jB0dajF zIQUuZ8_>Sw{gkCnm^m_zesx#6n8jNpmED-yNzw{Gs_6ETP8~Zw*brl)afWtZ!t}be ztuM*w1}(aS=5F$d?JM+WOdtJfIPcvSq3HNi=0d^Imo1H^ z2plgN4~Dq3dfBYWGO<3MN1E;JqkXq8_`Boot(V`szAVmvb)uxrj+2E)w5R_0tTi^D zUtQ<@&A9Z&i$TX^OiL2XLJO4}j;I>$zl7$3gdH zz9J5|M@35p4H!V>)(I)=eQ3vV8;d0pRQ`5x;b*?Fr(&6!GxS*SH1u zx?R66dfj}MI&NBlHLEjYBX^;TM4UNIW%2(S_;bA+uYaPdD z9HEu4d-ra3TXv@2q&L#8gQ7NNex%jT@K~Hph3Uv@qA2DLhoQS9EEIdkZFII)v*G;C zWgAQ8d+De1rfrdoOyXYB@;+hreG>oC^O%r(4lP@>kV}s}8*`J&ZxgLD(_5gxPJKcy z#qj{zcj)kjl+mIXWYIEqEYk@OQxx#P;w}uU`B9<}y5q*bQOz&856^+9_KScTZ?egJ ztzPEF((X;_Lf$tz_#iF~;w${uqu}$M!2Ehjz+A7l?8kiZ6(&X@9W~vEjT0@QGnr>` z<1vlmolHy@8q-(8Ru|)3$-~E&zvahnWuIhA@9Q0R+u*DdzE&)QK*%RSB1|;#qnwdE z5?4CFa@Wfp`*tdcuEZ0G6F zzcwaXc5`N0iI&zC8e_?u_{9>}!XmNQ&Dc(JjeYZ{thS2}Yys$TAR-ftif z(F;4~6~B#pGV{^3>d$kR+N}sYQzleXfdK)sg?7Hfnn#~Jb}R|>uEpVZ`mD847h7=G zdQC14ogD4#s2)f5Qy|M%3ATLAnd(BsCuO0O%U_&z-mBQE)~qi zC2VmMVl>DwxoYUGGxsX;@M#mkQ_P2hTXfw`r|6YG+4H?>RdN$3-?qi0@??!iniIwq zK=uLk#uvqw=o0J93(V7BP&`ETPC+`C#YE=PzEzXhBr@-OmBJ{Ke=NbmQc!8yB9FdBrgLa-?v6<*|G_ zh?Y=H9025xRL5zC(Aq|d*R^-=Oe#O;(4pynueZmIS6Dr;AFdyR72=a%g6<5SU5erz z1JMG;cMyHGj0#Uj$A&`IzEVqeCba~RV~h|6vD=>DzX)7p`ot+}+XD9{7S*4%B|#tG|FGxgWpA+tGKa`s$a(&B%_i@VjuYw3C6S3`+`nOR@{ zzbe5vZ#Wk|VQ%3u?uR+Ji&XxpU{@NAdYrc*5{~X0V(B7UG;iEBT~l0cBmy zlX)YM>$D5i?BD+%hB%*xy_$Qtbo`4@815*742?Kw++w7A5{yP3U7B;kWYX76fZuhG zYI#xG{T*I~*y$ogeFj_S=w(+pw541Y3XCX&lip}lJ^3IKI;R=TKj9R0ZN;yHuL^UI zGjTb*p)enX3o37D#{4mrAAwwIglmU8tj-E}Y&@j2=#kv-4b(1i<6bm~!1}P`+#R%3 zrIKv4db}CIwn%>oU>3iUg%0shO>#a|za3 zkk_}rSKCrm9)vNMHZ0ha{#+|9Z0djeUPWW10ij18>@9d-ROE!7Xa1h_OGAeMz%@h0 ze%$^!TGKF0Pl$MY!kF1WtAXN;e4cfoqh9i!>is8MUka@o5t)2aRx|M^qaAtmc6&Vc z@3w6&Zl(Bb>wwcQ%2wX!c>8Z!7*FV=B;+x8W%C19>+6f^#JmUX?7~UsgbTr_jm1*} zuhp817=p_-lU2SIu0J%ZVE4oriUcpL)69CyrrWg>dqO9|@+UWeUfaj~q{EW}Bl&CK z=w0FUh^2-4MS$T4+;Ax&rX;Zsd(mo6q7akwBy6v^3+;x;3=1}R%>HnEWs|R`)?|+^ zPo2Ja{Y1$pgI0lrXC5uj_6{!Uz!SoMxAfPJbd34er~Ozlsadn`{pYr1>H37GOSU@S zcHU}j-Rn$&RtinhVb}K^)oyYTs~Vih&N)=FPplX9LymZqcP;Y?CGKdG`z}jtJX}04 z^D98<&fsLQ#?W!S=B%`H^AcsQu1r|)|5Mg5u3+D-K`-RTK04!b@yMQO)ASK|V7}F! z7^OIIn;=TX_b12%>jrm)a|nb_*(IG-_suyeTi@I|`DE~{|NtBUViyiUHgrx z6XYy6j1SK7e^8yO^gvs?HO(`iHHdGlWMHyL(Yh3RBu4gZZ!#Q$x~ z`Sg#AX;kZ1Qrx(?kpq;MD2kCz?qpn5c*44uH?@BJ*uL4BGnsn zh4lA4GokvOtzqiYe;G=tq{jZ;yr(@n8N7~CWE)hE;_wK=(7*2+QZ)plS3F-I?bkT- z(zyQvuPe7?{6k&ZNeFKJw!Sn>8`iapg=nQ=qa(pBWi(R+6VrzqM%_2C!D}h<`h4RP zy%hHSX&N;v-BO z5}u@lx0UED(%eGAby9cffS%XWU#Z(oqD5Zf`}1+s&KLnp$4n_77hNE>hw6pIEc(T- zBaiE8Up3>+7BQp=JGtz6X6MusN=d)pY8U;$$89})krfKB0#w!?mY<(HdRwWf_ zM143KP@5JBrtT5mrn&) zH1L9hC@GzrDdXJekV=W!Q8C0{G#`2MkY$ytekXDlwVb#A%wE7C%tR(lJ=OHxk@l6= z@$4T1Fqc^QxODG{sGcQ*8Kh@&4kCdAw4NS?8jfcEVm7upG(7<>a?N7i)XB-|iRCrV z^{1V50StT@`!|%zFbmGqSz)w@}Jp0x2Q5j)<}B z-M#w^T*!hI69ykX9lYXIpwZEPrOT&$m;X^Nw+lo(ms~?tuK3&nBqAwt$XmhGT9Co> z0soCb1E!;@)mny{8~ewE;#YV&sN+tmGq9plm%|Ukgunk5c}L*;R<^F*rCowI+5Rry z=wAzfwM~SP;DC~L|HmBjxHs6#B-hYGJ7)PQVi+`^5LB2tQdb)c^)|6Q8>da4Lo?jc zbP~NSqK>!8kvDp4d%243a|$PVx)cq68e``!YP&P$adzz-ecA=W_wjr>hCG{#lZ^Ae zr_?#zBbkka{Ru^p=@}WKj1UbMn5j)TOj52wJC5gIlre^Qo`Sz+E)xt5Jp6Qgu0^a7%OC{E&1v_v#dgqELz`2z5?Q{L7D$O19YN$3^D z3E_rev*f(Ilf<4U+-Wg$Cz#`^A0p^b;E~Y}aYsd&AvDP-KE#AR?aFd4>}3SHTbir$ zBlnT^#6T+1IEd8AcP|eP^uIu%9Is>vhalwt5|lAM0O2>wZ4g)p6W=MhGQEV5sjj@h zB=Qj^1N54afWATB@o=#@dGDY7`^A01W`#h0AG2*Jdd!W4lRjb}`|#=ps$5~TDnSbu z$T?(Ic^@4w#9~6aixL8aJ9t*Y7sIR?NMfPv{cx*(r5HdVV2Ea|Sd>7;HxQYfcmn8y zg|3_`*=V&NnPM$Wfsh0v;AK=Q2vsxG@Fi}(z*J&V_=fG`2(b*fk)gW)iW#C>L^U_c`5v04QzO?%OGL+0ER>XBmAQt-cB8)$yGZQb1DHp0^Q2!LE%f+b zIbFZwOOY{)jb*|l42=)-o}!8L;YL;X6Pwd6-BqFsGPq_BIJbr|8)V_2OL;Qj#idM8 za%HAM{Jnd1dopk%;02Y0rTiI2dAM>LZ#E5ysSyFN6}#DYMuHY^`JgOpXu&}S;AW~Hcjm&aQ9n4YD!P+yzY zT_S|`IIDVCd>1ts-5rTwESNjV&))(>pzHEi5>^J=8Hp7+K)8vM*v=C!L0^Z^-g!{_ zGE*Zpg(}(rZM}pFSFFX`l46YQB-gOjYGigoEX8WzlVDWSf`Rj*? z!z(xZ?9*Ur&;mCTDcL(MHM_U0Zz!Ky!Fh1s!3u*14vFeCE~!Ipv*`!l3HPjqs@!eZp{=B?bk--^r?xS}BFnYn zp4P|OWPaXimIk7K5Ei>)=7|UKcOyOLK~Zj!M~w;FSWi#0>WjCd=crCp)rT5h9yoZ= za=^@|X5ktaSa5WJ5MGLOL-{gow$?~oN6M*42bI^MZ0jxQEHA%4>Q)fe-FnT}Ggzp~ z>ue$JwLAk8BX@*i5(w^5!TOvLlKk6y_5@^k1dZRYbJzWeQb}F?I$n`_IY`$nI(jrE zsqo?hO~1y|Ol(iQQv=$$i^G^ykhIhM?}H>kdQOHcdZFDPNLV?a#NmCQ`eFk+4j*P`iv?Xm zN=|I)H*Q?q5(jND2O-vv@VEUOD=km*5Qu9&H>b+z_O2B^&4j*JSCTE7Azy1LOr)Iun4S+ zqjLwz_}V6y^(a&H%-DVGFOa~8QKlk!cfHOY&q<5I^5&rXZ zbY^hPW6~mr_439$m2$i2=Jur(jdWv6$wD((^hY^tc2&5i3P8NvP+LNCw)M78#Zp4V z|Fik_&wBtKS7fmYlg_5?zAUz?!lXpRC>UX~1#T9OkL;CyRy_YBa${ry03Y!yUM!f+ zM;jbVHE#Lk+gUSTCpN)~FK_pY-E@smaH#f(4yo$jwJn}#O>qnNxhS2W3_3@|JlZ_w z;a$7;VrMm9L;e3z>Fg!e$Bg=`0kBV&S{ktOI@4hImkMi+jhi<=HJXWWBJo98>eOZK zG(pXjF-ft1?ds|~()(%~)~d@>gVweBhYP++K&p-8G_gXBgEiLRs1~C+ZN)BuZN4mh z<^`}OBxt7LoHJwAOY?LUC+{}ypLH5no;x+zN0v0*NJz*lOv*Z3>sFT;uOE^X(+7Dt zfI}>qfjwno)zfv4%HVL$efy}IEL$<|@}B1P_(W>00xN@(O$Sy4Xnz_ z$iNw?4St!Dps0|h=H`o3R+!1%;Y>RtVPq}2kl(PAw+BzZU+~6zgS_T`M&kHu=Y|Al zRCYNfZGNNu;a@F);0Z9rMV7>Nv3(p^zn|ySFru8!k70SHD)RTx5O@*4EaKiCJRv9^8Xi z;|9~aIc>$wZHueym@9oLDQ1+;r5euga5b)|<*mG;~Om)h$IeSR0_e;SELXL{wVTkxS6m({5*S_XQ2{DYYW4Jgq$*WOE zpkADv=T5X?#{}nvwMR#hszJK90uPLq`|<%RdnmitFc_SZnN$gAr7b`CQh{_R-g7(H zOs@IQl0CE3apMKKsN3BC*wsFN)+~C@Po3~8O^$`3r!Ia2gWXL{Z7W9f6r9=$L)n@2 zII5}i?>{5M)&?>WATNl2mhGS`l!ZQI+npB96wa7~dIamA;2q)(9p=?Pm949&+pfmO ziglC3s`gX7%AT=tgmfSLWNgqC+WEYms)-R=gY^4wh2w7A5bMobT;-G=Nm}60qf9uR zV*4o3bq-1{Q4_mc@d=hBA@IHOZDnP*bBU?8m9lk@>QIjDU^2$it53ts&~P0 zZdogGUHb&dNfeco+##c+7qvX!Np7SV`FCb*1E#jejved!av?FA(>Ac{(Di9NK8`VO zuBuZq|pfzGcra$RO534x}rA}b7Nv&)^FQj`;ZJclD4( zpmc9$w{M91XImXr7+cxJ-|_q97NzYn&hKVXX2h)TE%z+>q;bBIqer1G6|iLe=DIHI zn&EItyqc%#t9pT{g4_H+)1ijkJtRjS-;4WzJvNu@#SRiq@h@R57?Wo8;>NNTKM8C~ zC_l7lgb(0peNyQ2RG0r8^!@mkch0ow)7My71TOo4cM2m|W7%a$F)u}}`uO~w zC60VM<%X@$@uDiratk2u;X4s`sPNX#>vtr@APHXdMPx8SqfX1it|F^9r)OD<+T{E9 zU9xs^tv@ql-X310n}gUoEl@SM=O6qgZ>21LHCS?G*&NkY5{#{j5jiZ+ri_2hNzDxw zG^s>av+wCT0qRQ1<3PLlads*cPnT%^vybBT`;n)LPU+5^)Gh{d*fzS`3kRW-hOLdo7nZNcW#74Y+3v@?X+xB z6XM|+2Mvb7+ldWeh-(glqm_pa?I6l6HZ;}wp9sz#gIOpq>%up_QJ1b=FT`BP1vNmL z9A-jz63P=YECp47Lmg!*KR!Jt2UjG;!SUy6ul+5;^9EXMH& zC~cS?fZV<;3(Sr$D7ewNbaj@-h0E?2x3io| z7)P&v;6xp6N-thHZacpzmQsfeUmoe_^?ev-8oq5L+6d}7>>!iRFSgj(1?L%F=`(hV zb;iZmS+hcQdInD%pdUAi9k*Aq3JMI(Cb%6r(oHHs_QC!8EE19mGM0Qotii^2Rd*2< zZmHd2f_4pzUy1PZ9p)}0!Hl?Ma_de*(Va-4~7$e3N(c$B4XY~Hnwe=_RS8~1eK8-lHe4My_8aGPPkM)~=|0{w? zhp(&H_9AvC>E0=m5LP94=q?*h@qpPxYYEk%K}hs99PJ}-F%9omysB=eBOT=#DT!CF zK3dm#kVI&AxAAk4H%K9W7R|Sg3S%Uz4XqpLdMvYvVAsg$)E$#1P81Wgev|bWaoP}* zb6EbI)U%Jrb_9r}8Sh&Bl)kdepV{xhdM3E5+=rWU^*<4ry_q_<#JmEJk2~DJ7zC8` z!g_Kg#_n)M|LT&5=3FOmSjhU9I(o+PN3KQwyMfr-{a!bLh+~f0_xg=>AC?T+{?kZa zY_7a+<2QS-j6{GT|4BPPF-yznV;cg{12_*CobnWOPG1_LqB1?h78mq;7H1tVk3QQ& zLT$Mh3GcLwBQI%LV^EtPp{p7bWg?bAJ#G7=r4vQR`j#>uXy|nPc+;G6Pt4+qx=h$z zh>m{jIa5}u!vHEcRVpZAyJ{Ox@)hfSoK)B4>gtu>xQxp=F02Ciu^*+s{~n$!SMx^R zZn3JWC~lNw*{1;W43~kK?{CY>mlSwEQ{odoLCEN z*^;N*_)`prwXw-cO}&EzQ(~~7SL5r0eV{vZZvA8*x^vrZ16OmMxAAhX9S_gs=-6I} z6SpZ`W65J^0a1APjZ=X83ELI~*vs>2NFrUHr%03NTEBd>)78yQ)~>_p$Tl;M&b6-p zD>LW9GmFdtUo$V*eACIDEWGM;Lp+1@ZGvXM7=lLhNUo~t0Y&Xy23FZVqlF{W*d4p- zRJ%|fUNCJD6cv6&CSNSNA(^}lyGNX2%jn_9_Dvk$`(K6X+S_mBn!N_YhOlpiKr}Pm zh=8arQjoBVqaU)G!+13mx7#-BhN`NnFSmv6>e$NK0-y#!m*}c_22FU_B#ca2O^|2r zj9};_%dXl!=+)BU;Pc0i7q{4+W~L4VUgtHzzT7oG_kF0U*IXSR^_IZT`xHtYw{(_z zHs7hddF&QPMMcFgt^BS;4m+cPBzvEA4262hQCT*wEN^CQ0~LE)iRi~LRcLrIqVuhr}+qvc+VbL+>fFMUxqh+}Di7?cY~-tz7B!Es-wh;u$;MvsNcufN+47;F9fS3;x1`WW$!-*@x`4WvEhB-9bHv||v) z`;<&rHiB~1Sc}ZlElC*r)-qyt6hJL4!5KJ2_RUFO-=XCN5H8C+bHqL;u_F!msHZm7 z9iOPXDq*We$Ge+PxpG;cd8c%t#OimIbiE`ZH`Mtljmr(6J?bY|M zpswB=kB%I)2b4&!i;MeyHJsKfe(OgiD1$FQ*zIzU5-#TWVyy`iN*V4DwiUtG6aSoD zkMs2%BrqC19oCwgD~}o#+0NqIy7en%rdR8ZZgoN1Jos``U~Kcj8}CMhOn1z6=zsTi zV(E;4N*GWcY75V~187c*A+@mYxSZWbBO=iq-aO)5+Q3l5+e7$eyK8np`y(g`$vO+` zu|2-D3X&cj78Vwxr?lh*YcTK~ku2+Bw6tI^e@FrU7xdKywl2dzW63nCQM>Z+VYNr6 zHnHK{qwRHN3yX@mTc5I!rC;O6y{!(YAH5R1FR||Nx1!b^70j;r(^FuwGG%p-QnGU~ zb;GgrG8%TrbJLbqo>?U>XYC=@YoS27UrK2uv*^X_b+OX{+sJF=CQXiE*LB#rRi=69 zNR4d0*Cy3Gk77%N@ro58UleE=pIFQM?b?lJ{rq~POmc-5pq=e#5M? zn?y{*NPJtvr+&~B)Jb0wlk+W3`}+@9pSHCsH?w&DrR8k-TX&)fB1$l!65ZZ)hj07A z%g%!Ok`zNrt8ZKRW%Bz~zgtTl14`fia>%YOmA)iS^Nbm0pXK^2UMm0=+{eb|uhzol z5LZ30$W6W6Rj@zY!(!MVwkITmEgjUYHe{84B>1M5HZ?UV<6!VBo$-++&uioB);2$V z!;W4~%9)AYTKUhP;~gK-4<>Uj9>{IVo8c`ULA{5mV{0IN?sQ0)yJOHiDh*YyQ3?&K z&Q(GDxO#`Yi}{NmhwQM!6t8m&dUp=>hSPu+m0X#U#k*NoU0+|XS*XWvJzhB62C)v z;@1NANClO&6LWWA-OPQvx@_YaRALHcXas-moHS*7{RrCe3N#)Wa}2o&@KY8c9hx+7WcxXIq0u9h>w zqm+LU$F2!3492_KI^ig6kU+7u| zH%^UmkP4B`;-QRiimwYNUeSoSSP=TG&fLtbm`X7Y?&in0+J)$IN_hNFZwyQhKN@Li zy570~M1VL`bLTC3h+}T78a-hnYuwvBzqP&g@-}T`p>y-}+4wklav!t=c?A~lM?d?P zS@r1rzSPoFl?Hgnm_WI+um)e8nd{dFKg{U(?W1|upfe$J{^0k;)g_<)9L}OvzdK)1 z+Z6W%#p3&I!pMghTP04|6va8iR+n%jMa%x7=XP2#Vy7(J)UzGmDbW~S^# ztYDu#wb4etFO%+K;2k;K*wc&kqW$#EKg9N{yX7WwD6-tHM_KX7erd6+4QaU)Cy&)G z3`h(VosWxi0xLJTPIo8-iRj!purBr@o>|M9cV+U`k&0b#8RA1QlDuw31%wtMDC38v zLV`y5;>jp8?e_PIEPgR*z;ZrQ1o~Ld67(-vSyiDb&4sDRC3) z#Y~L+0=h~Rd-tB7Tl(hBrTXoe<3lb+g}l;DhG&C&vb>f-$x&5QDX*oam7nN10Y>=m z*e9ofO_7gHgO`=tYvyL{+O_Kud;^;lH-zP0wE5_?!9fj7hRI1Wst=)kU={fq)-*t| zJ-*yAtQBYf0Gi#^zz6ZD&O7|Xp^gRuKK@-NAKb;0WK^08BCy}tEy;u+?5|lif zKfZkN=Cl9i_kT8lQY`*Cf2OTg|9k#!ejeNY&5m*`Jp}F8Iu$l93?a>(Z^; zK9SBB4S3)&H{hAJfBD4anT9xN_i-KA(dX1igyr z_c;+E#@Cm_UZZ+hUY%F9G{`UARsB)M)5x*e+svF-9!FQ?a$URUY?AI z27&&dy*)$V>h-PiE?MW*Yb^0##W~VXkwV2zcZ`AK_WaaFLL$ne*UVC>=eMd{aZ2B)9wixjt4DbcR#U3qV^OYwn#AD6f@iPhUwFQVlQVC#Mo_D5XBRoLbOm7V zv?O?juC8Yr$?)IIk(5ZztH;-dXje|rnNoN5U}AOJ$ZHo|jfeLvM8*flYvNTIHcx(O zpM&DAA{cqRb9z1mxUj_|8Qg^@83iW3D0Oi|rE5sjsVaN@J{DA*qTfpw_gunQck9Q0}a;E&yjKs9r=Pf`vun4K~^31Mh?AH{uIrixEb&oajf&A ztawnjxOJu$8LXpj%$V}HuOdHV4-P{Zw4nFqQ^$`hs|UKvjhbew9t0c@W#JSVVth0B z_!0YFU;@NoJcOL^#H;fs`Na;n?g7RZD~RsE^>kp}9Oc~__;}Q1lUOacIW5miuC;xP z$CW4FzF%?cP_~T4GhzXe08xB%CJgp_dC9W&^KYH`XSE%ROG;`^WqbN}{~xaXSp^H< z00QI}VG=NS=+GH_aBhi;-c4pnuIR2f9iqR^Tt;JNv~T&9zT}A%{`p%TM0BxEZh7SF zT3^<>jIzuPo$J?A3VJxF-H*DOn!6|%5Sr|R4o+e}QOHg6k){r~(oVC|Hy_(`soJuR zu$pv?otFgPr%WHkgy&;JnxWnN7GabQN=f44-YWs@ts$%SD1V5 zx$o<~uJbz2<2=se9BI*P88LQRU-qB4_=UlO$gcs50fZs&981CVGJ}3kpl2I4vQ1Pc z*|)+|oq|wkpYOc{A9Q0_6jFJi1QOm5a3}0cn@UfGl^Q(2EeDf z&|LrP*OKod*o3|y;)9-T|Hi;CiJmCpB?X_PPzDX?_C#ABylSUtB>rXZ-PqQ9 zT|4iUKTtsS>OJrxL|<2b|F#Ah9g;92;P4#zGJf&QXA+BM8<|bUEa{{ftgc$r!l=4< zZ^Fch+Ss{%*sB0&L2q|?RS1HyR*Jbl`-#Tu=xy?&sc9Y(k$?_9PyF?@8AkU=8iJD} zX#lH^sG+keAnFzSymvpH@ho%iqy0rlmZHh+HpfTsByl%SoG#tEN1980I#Bm88CldX zC%agz94v-O@wI#Q?OS5_{^^dzCz8NPy4v>fY%I2FpLS_*$&t&0i-8JhFF+$C!-QZu z@QFi5?ZN6^F3O~c6MzRn{VL+RA#;P0?=cjqI)ovr{q<1>oA;5l)bi-$Dtj~_3^d&n zagxhLjj~beYP_ZTw$|VaYAT<{Ee|-msddv-pXbTRxe$T5gpW(13icHnsgyAk8h%fJ zV3lQr(qG8tVgWWYWfc@I13CxG z?(Wn(SjJ*k5ZyA}2&%T2ypVvWL6- z`@Rvp4#1618EJouV_RyP(didHARmQRE_r8e$bcCA+k5|@_?$U{2Y_EjdRY{+tn1BdEIFm)tp+9%2kei7;k zr&EL^fC+HTerSx>a??!t(M_r2}|#tdxL`RkUW)V_u%KrB+ChWKUvsVUJzsX0oAkK$gPvm3R(0i zMOK9^Ml$zTY+M|07|{jMA0=(D;bV`Xe*gZx@h+N4K6E%yxSw`A=2m(UI{Lm>!fF6z z!g#Ecs+wAeaQtEp$?8n)bpeisx32f0=hX>h#hK}gSFbiWdKD?XurFCV)~Uruejjd+ zdDVubG8$QY*WwL|Abl76vaY!53S1ws-{)xtU@s)eP}QbZZJ!G&RaYLvyL`C+b0E-# zhYxeiKh@Q5c`8dk2B&c5gd&)p&d!DnI9{3}n4*E&9`#)gUmba$!QW_o`Ewfk_*)m< z)s3Tj8WrPLfQgRYZ36JI@87>KTN)*1(g&jLob7HjIPYH$r@VYgG7YhOI=@kAI+6&5oD1ttlV2W;6PPRkN9QIFJz9P406^2AN~IMb z#%LTTdIgTad)wnkSQ5SL3&-~C*|S~Y@_i&@W|7vMUNH~j4@EI@b02@Cx9G2&P(lAQ zaq@Hj(>aX5VxGdMv7MM#SEE+3$K{1@PHzu2%34W3p}eM8T|OJNeeJb z1(?b*pWb9Xeld-|(rzl5nG+tZy0Gu5CFpbWUJQq$juIi@bhhv!mEz&pZJ(S*Vm8v-6mZVNo6JYfQKCab&eIJNS2Uq+b{~PeB*ixs=Yv^?M-_(=})D%!ieR zBpNHar}sN#oQ!N~sOpk!STneG$_o+L^+LB}sKLCF^^wlwiW4~zE|+Z^W)FIJ7JR~- zM$$_C=)19d&jq1NGH@<4lM^SN6mGv_q5wgpiysWFKcK+rJ(~pYqzxsA6wKRd=o2-* zmEQ~2`}!|u1F$!OD!726dmS%hlO#1@B*VybVfmVnl;S#*ege8%ZCaXyT!|SdU4b$B zN+GXO6_CUXD>792Y{c;dcg-IPg(BU<0n;hKU__U zB*PFFLh2^I#|16P8W5d}%B}iVQDFvM+fvP+AdJ=5qvCb|!DuIV-&?Tu0ipx`ejq!p z{F&Mh!VUm>I&q!bIO!OPzU6=1s9SbtiI?@H@89eism2A{UL+;uz$$J!j!v@MND~)n zkKU;;U(u_b4A6CW>Cy>=j0h>BtEiBsb{^w}LAls41BwTvgp4XxXQMi>^;5iCTjgrf zo4deBQt7yl;goP}o-nP;q@YY@8u6cqUG1v z%1tm&&{Y8#L(8wx_x;u5hBzv!T%#iV8v0rH* zP*5=ipIUj#KdkDrMjno_#k$~txDpkD*66Eeq21(_E8~GmLYa>Gd{FesN?3!wu7aD*xGyusmUmc7>IE1EU z=`=mkTbMR7{8l%XdGJ{(X02V!&3t z4EYi>h*|*Dbw(N2bF5O5-=$82p83TSrtmsUX-I4WtS>^lsbQ8L`#nmP@7)V~jcC6$ zP6?T3U|{c2+PG`)-ixT8I)bW(Ulq?6+}4fyuqJl0XLKq?05^Lgevrv?d~6ajJ4 zp)`2YP;L(y^zlMM>^r8yEajQVaBqfi4&gw6M^cSGr(i$8QJR);7qmarX_~f~r>3TU z$4-+Ab`-Tvw3nb-=8&I0efo43)(j#Meo%u-HMiINCdd|0I^r2C?>C9^9$ht8R@piK zSv59)n&ItN_tV<@5f6$qQYGE(y=2WmM9-)oiqHmLL2+@*(3{j@TK-y~{nwXgdLdo1 zBZKgy4?%|-Je+yRT_P7e4K5!A>Nw^Jsh!5PKPW_?X@({tsw|=sPZHnYhuPcPD?$s2 z5KwAsYj12_i00}O;XN+<2*P~+{HwDmL{da=dj8E~bU(caSgp6c296T{b5&*+9K9U2 z=WR^vWy$CZLxg;?zkL%UNf1amKiZQ?yuXPP31j=cNi|T?hlpC}0UT0*B5XuhSud2rqI}{Co&~O8Iw*KgUD(jfCB$h$0Dvn&y<}6}jD!zM&vB7>#{t)VuK2RBT9)oSuS@Qq)lki$;Xn8)2%K^t?8gD5%-| z6&YjF0Ul{-qREW-2l}5Fuu@_{A_T>XbY@bgrINkgvuz_A#Wf5XvUvahYtXrweI9~3meAK9o7MSLi5ciZvPqP_@p z8+?^(KZ_R}KXu9%**jr?hVK#AfqZouez62nythw+zyzfuU)Y=3!ju5f^&nfp0P14T z#m34%Y+i*9pu>&QJg*-UBKXST7l2vXfa0Q8Uqsa-%xEc1_bc$g;74p3xn4rD#B|NbWuRnsK9Y$?)U~` zX+0TdI3*5!It!=adq~mkJ8)D4qIO@!azVnY^|l+BaYS1xOtsd%XM1(3gWlMQbs286 z;8>&;T47Qhl;g{S@wx~B7H1J8C}5T^BW3Zn9NKD=!IGKof7d7aC!Q1JqrLDrt~CRC zH}74IDNUr-i9|J?9ums4v82kDlHz(oO_)D^w`Av2)Ta^(>Lf_8`hbB4T-+*2Z#Bk; z7#O$}t6XjLwZ%~uAxxzIMm=w$=LY8WIxwO)-W_$b9;|@|I@oSUfVPl^^Y->H$~?il z08%1|*{D>-e&W+Qd}o}XpgDd$;D6Q9_>{kYFtY6rUanuA#U9%OTQH3;3)z-UfY@UW z26=l65(*yd1++A$;WE)Gn!s5A^e>>a{4kQQD8*WNz#kbokixDLl$@}OLCgbXleCy7 zM}f-^EC29qz20^})$ifC5h%D376Xv=rbCCMK+(wrocF@Rz=I3mn$#~ztPc*V!khx4Fll89ew{7UBBQ zFgQJ;d|3#@U5#89WUuA>vpLC2{z1#68B%|oyzixNAFX!SkMwFHnukF(b24IB%!FLb zz@7W{ji=xxjx#Yafg%-!%DCNf^@USl2cc0o4jT}`kWtKl4U!+x)hgRs3G6ttG3h`F zWG(L6{Sv++_sZ=DIZm#Ckug(F7p0`$a4L|MRG zI)Npj@{DwnygA|Z8bSnvD^HFCF8BqdcnDy{NSQ5 z1%t{5YOz*`P-&u5#~~8YB8~wq^E^oto0xn?Z*kn%G_vDhnyNar`(Q&O1Xh5$B_|(( zNKuh|N*o@x-H#7b32_o=S#okRVdVl0K(6F6>{f{Ta(!L#{U{+Jt}00}&zMLq7Ou~M z_38dfxo@jaZ9IjUh79>zFrvvmM?gb0H3A+5YkH{Si>>?mcZ(T-#07tNJmu)*v;~!N zR?NLuFIGxP-&_)Sxje_HW4CPJlI6>{U=sjviGM(jK(!-O@(%x{&wm)JReT%sVnbn) zV>fG44)e)gS=J%OMR9wdgH6-~ulKgVL`phEW=@^D%L5XSlTlYcnIc6Bn74D5@!%(! z!|YLB0Epv{9>{739(Y&ewp&1_OJCkh}VHZ7YWhDgOB5?OCK<&t+Ccb!ae&hV9 zygx3Glnkq`w3N2T$X_2L5l4SUPpg?&Cy}&?uCQh;{Y%S=h}Bbf)yxmdw|eCzGxg?D z5edeI{k>BbS#hNoE*CiIyPlvDKI^G}ne@^Lx>37_OMC*JtexD|Yiazx?p1Ec^tP@X zV?TfPtE-j-6~X#KeZ*$?Rb6n+HQM()P`!NWV(SHy8DWf1)Ie zF#9@aMn)}3@X4nqgrS6KfogWl8~dhfYe|c7jqXMSH1k)j>b)uLeI?vlxA0F-_W62@ zF2NUbu`qFm0;B|3>*veJ)GOrnK%u{SD!C-aygXOk((UZ~SUpW~oyFS>vX(;tyL1cE z3B>!O%rGvPv7e0|sI$DG-$W5r%2}b#bas_sWj(;tUUe zMqZiWzPa~NOk3B~o}-juzopm>^O+KJ7tDV!^r5`m$Qr@*I@v(vkPx~c_c<>hkD{AwuX}`UD{&2>VM>n0>OC1-mKYPGWUVZ*nitNorUSV zC|4bTr7r2Hqkz}WK=y*~$*nF_fBv!ymn!A6Ua(jC!_k$u0|WVX=FEd~^tM-302(z4 z_dJv_;S^A@npO(WZD)o)!DD58f!u*N_9c?LBB~W|idI1Sg~UVP9ezNagSB<+uZt;` zr4vy=SpL)kqd$N`2ExdH@L+z|Fs4bv_wT!{IvB-?f9dnz@p<@%;3srrRGRK)j=B5T z(min2V9zfhOn|Qh7m}g~;}o2Gsh)4U4rZ;^G5#=pB;`Q#tdVT>Mi~^aFV-CvKwf9(*E{-59W)SU zB0D;@2$_IM;5=3?P;(lc8S`W6{_?xlrua0*oR70+{WE+4GzwviY7Pd_o3FL=~S z$xGR~Kb7j~?oBJRJ;+-3j zkETZ4@!=Te;8CtX*UNxrL_(xw0N7#c?|j5BAR41Kid6ZfcYl;4tv2Ka6O z$d6PF!KzVSAlk13jD{kYW)?CKIY?40sKE)-?gr2ZZSYvfpxbOuae)~ilx0}zSe zx${%NfE7o5dhN)a_1LMPT!iXB(dHV&52WcNh4P9^P)Qz(<-IS{{f%=w7McJB=goxa zOtKskCQM}^=R4;Ar*taTV2h270%16hiAV#H7;gJpI9lL_U-9?fVsF0^={-^q2~Y3) zo96Im1q|(ttc$l^{>5G{wi_l-UVi)^6Tl0)C088`Jd6zEj(<``42%E|AkQ}i)iYjR zRM#-rs;J<;3ZZlaj>OBF4U)LJy81>jL}-Zlrw)rFrw%b5xWnsj=YfDt$O{mmdDz^A zl-%|DI$}gnoSXRki`2(J-6+t{vmukmM**0a$(M!cuZ=bpPxuKtC#g2zfR4@tNO)}Q z>;MjjYKe&;zsK2wSoaRJRAN1V-yzBM0Ne2q9t;=`1U=fHl%$!Xj-4M@$WM`Q6AQ5Z zLGi|!kCKgE%Z$#87zf?LwvnGtC83wZu{#I8W*nGYc5j^E2aL~$(0{t`PZndypD6EK zvt-HEqZ|;RAT)EmjEgXeK(7=bC6Iz+u=1(;_I5uo%Oqe81^m%)m6UZ+UI78qaVKZN zJU3X^0kklu@$1*GA2Z%gM2{setOP11mVuzSgz&$?NH;_Bp7KIGgR9?eMIXxG&jLpE zq<=SFCkkNXp5*b@pDwD1mvi z`NAb=E0REfTDNQ0&A0Zsq$k1=H`2c*e+L31P*o@|m{)ArQ0Rk{z}d<2FByjyqNp@Tkw`Y;jXWk*QfKQe^eF8bNjQFjS#z` zI#cBC8q2Taky#&e|D#z5$i{tPTC_vf$f{TTvIF2~b27E z+s07{Z=={TXcFPAjb1hg)JdjXx%nuNZf`a{ ze?C~Jc-%m#26Xof)-O=&j=s0aMsjxRx^c^OHa@pIyTVXZo&<6&=RIg%BTh(CUzohb1h0E=6WQ!%=9Trmka z$KoBK`=ZL9z2wEf6eBk}iA3|Lqd?1{3veHvn?Bw99j78<^}w4hpg54eyFBzttKfu% zzr9D-<;`Pzx(kEIEqG7!kyG>@f^a`QM)mXdp{|kLn%o^;PrBg+9(92x!_s8nfgQ3L zMB>_&`6YU#nBD4^waM5-yks9HAZd)+k}}T?Kmt!F4)g=ffq8;{IFZ;O^hGc=keRRw zL_NNei~0t%x}2ZfHcC&jERV`V79X$zscIz%F){~4t`)OT8>l2zk53bn06W4b`)%`G zhi`}0{3#%~|?fdCDv zgrf}Ne4r8$i{S*$P z`$A`5U)coiGI{wKVppFjtwFaAtLH@OMfcb=q@WaMr^ouEwb9~j!CokUBi9c$#SFG5 z6b53#6sMM+46XWC1w<9t43yQ3mA&loud15zq)$ zbBcdku8epD0njXeFEI?rrzq6Sm~W-aP+DOmrt2`#9<(yq$+p zxjYXYxqn%Kw}mKT*~%Z_HV~jn8T2Z3moWFd2=lkO`&dswklsfFTVDr)UUay|>_%6&` zFTO%<`HRHQ+J{ceTb~tTwo&-j)v23v$I2aYUNB|ip{<9nY+v|UaG~(cn_I%)96VI5 zSql3f6WtqlX)3g5|i`lbJC(vXU-&_I8CETW1RahksE7pqV+rJ3uJ<-_N>8(#xlwd%IuBm{ABB? zH2iCe)bZWSn#%*qh3OZyN$8_>+ zc6vu1O%Q#!sWYR)WBKoXHWBjlrVV)0#&@_Bx!o)Bz{m@ma=U}Fjp#$AovZ|!hI_MG z-2{}1ZU!Gfh~6ngpQ70tDRK!!pG8DIEThE}W!3K@hVvpWYO!Bx3DG#^G|7>hNBiW9 zU=UvDMRJ zMDT#fOEEludZI@Mu7R|BoCdAQz;ERT4Gf&o{3{#Q-MvqhaHcS>`oe|k!@joe=BFi* z>d_v64k#y}%C#jbXh%E~NSgBiQp2A12jO^5l4e&h-Z3=$o(Dv<^~5`6Fn?t7SM5zp z4rD_&MumX(5e| zI$`YUzE+<)y)7xCBH|MJHsz&a@OEGfPIl^y!x+lUC0+vuC%PCk4bP&y?qCi|>}iwf zvuN17h%&RuorO28?>?JOQTb=u$R&K5F3m?-U%B~7y-bDw^ihHO{ZF>xn9El?cAaDGnk-KmqU)+8Q2b%Sm&|ukL7K(X2E1a%S zug*sW?-3oH{A-M4DC$mg<;V$*-i+a+)>RdkZwW7WaVNFsqR`sy6!r7CJ1#2g&Kp&} zZC%E6mT`l4-9WCn48IvGW~Z1p-b*}{q-08&skP3HH=C@d|9K728^J(wK_z3!WmB_@ znkGe?BgyXDWGjHTAkrNcrW?yBIaGNOCp@1$~N=FUr7uP}Yaq z$e1NZF}&fvG4`^ra`wO0$HVyVH()UGIQC;aR+M@kq0O|}JLd1#PbI3COW~{)>RnT* ztjn{%6_{hbZ8=Vblc6K8#y1$9MD_kP_&L!fUW=l{kDO5QCy#9KQV4ktS)o3k@n(f; z(8$Qu3gDMDMJyPZmCR7S*RAReV+yDLZ!;iJZVE-ciaR4v|6fLzN=*M)it|v(@s2Q7 z6_Xc)xWwYn3m=zP7ib^De8Pk6G6|=seTUlG$@eA~;(N_D2%q}-91mCI|752A85-Vv zJAq^UOZliXG1^Y$``;$Y9@^d}^D5W9Fan{&HlIj{b~$&Hi^4DYG-hrmcB` zKLmb}Z#tJhvRp3Vvc2M#)EMy+G@h!zrn|!T`@~#h+^0eFgy}y-bFdH;qh-~7 zmKU$^Hf7=iW_qDt#{4zGV)xf+oQ-q)UA;$;vc7S@E??fm<42yn)l)V7**6URcF)}* zsy$FlqbUtvZ|=~RY%TQFV<2nU zth4oAd}|^%ys6}D^s%K1hO71cm~lcaOe@#!&enEUX~W>fPD>8PvF`X)T^#-un{u|= zwY%}Grbx8aZqLi-hJQ)i4bFVgXs7o0SyJuQriJZ0WVGD!^R5i9UHmXWdPCEXT}-3h zerZExYB!{1iUZsGOIwYKYm@SI+~}JVoF3b++(*A>AKJd<iyW}691E>u>g zrTbWRTg_|x7w+`gw|pivmsh>DU%7|Vn&;1^bJC8#DGXj99)RJ^I)KHF>F8}mcF4p- z1_qagPSY(;&P;bUs;T4FcnrLwxt*z(dcUWCGef_>W`Rp?hEI;M2BR8kcN)HJXTvj% zT)$?#+0dVL=ybx#gXP|L!=mdRsyWSJ`!%d?SKD6VlE?XdQniGm#mlV8Z}*pUFtxj* z-C$F!JSeHBt64w468l-p7bZvfmfI`dPy2aw&CRT#)9z zd*$_fqqa65V@>I8rFr(Hm-1y=PArSaO!?d`(;b-b|oenuc4(m;dgl{23zU{E3%Il+p z;X{h~-TZ^6Ee8kOwKe?`ilztA?`ziSsyw+D5N5Tk&SApp}IR4H00cM@6oIA&u*V}n_LjRJ>h3uf(kg#-3hoY0r z@S;`gqdTtte)O<8Jmrd5|T79XG;rU|v2sJY-KD;dyn zLDDJ0!pZcp^vib5OK;8lZiK5#W*>7MS`o7I@rKmp8~Tf+rmsqk-La(Pg2TYxyP6Kt zXAKRbrTQaR*2F0_R$h7A?JOJqIKWTd^L|RGL)H6Ll3^_Wm{|)xHeO`EuVPBORX3kd zds(!ar{+-2?oa8@)eu zIW4F8)S1C%gMX%c;KP(AwiPClO|TkbYTDBDdW$s_Ag~5A$udzjSPWsYuOJ z%bcfYd!V+jruQi8nX%@MSb9M1RF;*Q2V+?6AYDP%_KbS&E5W?_`tyBrhX5fePO*m#B#o1aOeQBy{q*)nhHBQc;B4bv(I!)jB}f|VSHn|i-bc*XN4Qn zzrT2L4ZDhC;!e|AsZry$a=D)Vi8`ihw^YgJvk6$IV4Kwfbl(bCPZ|pu_;{w}Zhe>{LZ|FV+eEa{GQ&MyWV|;0(lwyrZewJS*PP#Uj8?(R?0q!&yviV~w_3wv zi%jzUjiKwmMP5BnfKrX^LUZ?cKf0u;rSgQSI?U|v$mR_d^*3<2n&}V-C;!7GPps?M zaIpL^z0P}zlx#!t5B79gUM(|Crj>2zCeF`M03mmJv6^8YS+?_l2?DtS>`gU#yj zx!1b*R=ifu75(j))`_gx;^esz`?mSKbtc}-(l;pw&f4zrJP#gFxhpNDYPHPxu7&e1 zE)$^msUTSoJ~6?cEps(EQ6pZ}#JYR@l)P<=>1%RHR(c(6MUY+V|Jn4G-rgoi+35I8 z-zqaxZoA@|;{s+MiEq2`&k6VKM6Y-*RS`M9u>eZGm+}F&KLX^wcqPmOe>1dZxBbMY#>zvuJUn;xHEdi6Ecf= z1_q+-9Ua%-(g!)i?Hz)YlpZ&Gao6)1V?!CDk0M0PPgmj_;#KuOyf>ZjkvB`5y>K2^ zi!*K>Ulz4aXDPK-^XCQDu*=ClQ(W#oIg4cCvopwpG2WRfl3;s2p_j{@lG@*sMwh0X zfKj|nqlpo<0E^R>vjlJUM8wr{rv~mW%Q=L z!gW*o#7BlZVPc@&Z2bBxP`@*9N4w|+k4B5`ybSH}8Dw|xUn(+Ify3G^yExn|6kZkf zI`1f%2_6ht?tz`cV+t?O8r>-B=?Z$qo;ktdbS&w_aiiOb5L`dXY(Y1BxP(1mPMxkR z`124?-bz&WTj%rk7#?8fxwp(!E;%3cCx+r0ntz2%dflsTN?g;j4@Pj*@{NaPwUb@R zCVKHetI)86trnFi5cSQ=J6vhxDY?kM)YsLY_MKVG?&2NCSLVw4%IW%VC?X&74gE%* zdd;YBDK%E2qe(xae;hY8MVflO$-{13OV4hf^)0IpVydovTuC|JR)3wceEjR)@PM(@ zef_%SQ+BwJAj0ZL$QgtmclmIQ#9O3C>}UtDuCDdq%cnc>s>l%n5|2Y6ixzZkDvm1necK$#~@WyOh4pIva0e0R6dnt&!5fhZn7 zRWKU(#o3Rq4(z1Yj%(wi=0yhMiIk=w%&t44wmBlf?KAn`zJ zWsc;?`)2z`Ln_t=o_}=G^EtEc@fKkDNNox;v|`jLFzKh00QD|0VlskFl-%T{gtK!Z}JTGlCL;GW1q>7`nAqTHE{QNg7pkFid$}EIZCF=Ih)D zzO_l*&nX!VEam*9KABU>Hs%}#C*%9j%kDWs>r%PJo+8aohdH0R=A>}Hb4}bhpX{4h zPVC6+zH2R(33RQ4E!{4u#oR|0oT#%=%>Ac1GVHqNOk2tF2~69zqAM)ZQ^Pkh{a8w` z`Yq0}^yg?T%x|k3KKVr3C7rB7OpQ%?yseyAzAT4~v)!X3ZLw*N$&0EsZ37LHpaGuN z(`?>Agl)?CnD2{%%x`QP8tP2H+R`HMNh6&%#bfX4a;+CdlIKsv{OsPkbU-1~K~*EF zzPyiJGxzzbf#YhZO8Kcw(F-xeCmt&!D;V`DNYfrTW+l+^q|21n4HG9 zu6qkKqE0z>C%g)eRS)d8EwfkLsgQQkwxijlX(hB>RmMN<$zOkxUR)%V5)>V6N!Kz` zc_LIL(q#YH#;CGItTcW`U4$0zK->D{jP^BEjAuQE^ts!Y>o+%>%Ct4Vk~J@G=5 z*|29*M-i>sJZ+L&e-Gf~F%9{2^u6Is3y$+pOwnsMl`P|7- zwELbu%a_-*X>O(|8mma|DYAJUs_CeapKNSW^qxC6*@FE#JiEEyoAp(Oxj&#jzjeRW zo3g_#Pc5>WR$cUF$S!Pr9y8HE^qq~ z1#UcApLKGI?#aHoDPt*qDpYP#z2w9(nyc9f>&!-uG!q)xQiTZk1jnRWw_N&&m(HAp zp@jo-zh+Tpnk@yH^DY`Dc6^o|J>m|5hxnCCMt-BtEd9hacBRjtLhU&K|5DwD0|oi| z#|{5{OaGVoBv4`30pII?z9R6)xrOke#z!hsV79p2KJV3N&ZQ5ljGn%d>{Y>*%3nv% zucXWG-pCxz=v^@lL!+3mM`=uu=I9d{8KbrK^G5fJ;Qhi2uddH%VXAj7#70T=$ojq< zI)7nwIFgT&ZPs)9=qV=YV1Vps8dx`u!B{Qr7ioZzPBF`w|H|NhF#C1d|VIP33!1Ta-Ve9waadT&d+<^Rp# z{`V&VAN^lfH}ZqobmH3lbuXhBO^FNLsdHny&B>L}z z`@cL1Aoc&cx{)6$F2ajK?&_a^&00J%DPsQPagIz1c!2+Lh2)O@pH1`XVZg2@@6`S0 zRG$~2t?Zk!EVuU1uLsCO#JFzV8}Oe~bJ@u&9jnK9o(UM^Wq$r%R^2<^KPR4<-uD@) zF79nfN36F9QbB7%1;>;piFy6=po%;00`-}%tKO*JO$*HQ+B+wXzOQ% zQ(dfO8k+~1fvU}lSuc+jUgi%!I3(_6?C3lF@v(!qEU92!t(V7z{GDtX*uO1)vu!G- zaVDJ(XL-`IU%2}VWKD}NDVp6u$$y`jNtYVjXE5(;QqP>^qn!S(teJzFllEPxV9#o_ zwg~4aUsM|7^)UE;jm@l>4KHXz`VP+hTe!CDGxJWFFn4Yj>wO<^Y2ax#lUt^ylJ;TR z>6V~<22Wn}>hG!bOy)m1#NKglagF@#$GjJX%RbTVHU0KwzLNGB43hRXRQ>sZ(eo;$ zE`YY;?FJdThj#)im3>a7rzjZuaoUc(=aaFYe)1M&`D&+46gAn8=mOM6 z2=9H=&?Mt4SgEFI!42EvxBL_R3rFWpyGzx>9tQskm6idUYUlfOscf%0`hm3KY#&g|$(W!}2KdXu& zVy)E`-rk}GGbdEL!7BEkYcJ{B-}Kd-_P5aYAegrR&!h2 zRJW<^^NM*!8j}l`vt;73-yBtQ&F!}E5xnQ_vs~s>rn^Mp7fnx@%EABA_<1 z+ubHLBBv*Rx2oT><-UTO`(y^MxfRoVxkt}(oAUKP(jEC%(KN%OGdNw1=K|Vx>8JLH znB4JKsuL;E`FW9h^hoNgHvNf>=ZstQkBf=?sER0#c+Uz|k=lw`J1p1180gA+?f$!n zP9}uCil&9SVyfglL%)!U%9x4e`Z7xEm_4py`kmma-)kP)VNv^MheSMTg8 zrdslblCu(|lgoc>I@8HqoS@yE>Q-jAm1d&9R#QrOR>{qUYjxHcIEWW5uJIn%YWUMA zGA(r|I6b>-{3r8Np38z;kLkuK_c$kX&HJB+agXxMheFDqI&v>*bCdkCcXA~UH4hs3 z=FwAanoJ9dyg9Q&Xp!G|&g!i{oVVrC8$G{%GPmVkT3DlF{_S>iF*jxM-aE7~PDdX7 zh}u-aQ_-yrcH<0OC3N$yw@haAmWR2^1vW0^gdI6!ZD5`$*|XxAw?U*-a-Yk6smrT) zx`VS-{hM4XN+yfC=B<*hVks_TxM(hB*SSa((rq;4o6KokR>}q)O{u!}A9Xv`4#awg zIi9#LwRq4d-kX20{9|~7S(m17<5x~)j zl+x6u6)P~J+Umz{_jqvM+RiZd-=1&2NO;?e2 zb9#T6KGSH;r^jlwlx06}JQr-M!BX`3Kp#4*v90IKTAm+c!6$mm9#8MeNO|6iZV6TY z=$?eu-!wI?s>X9JLjfxq&qZ>N7C4(FYE57?epXN@VFx^xoH*-80H(O=ou7^*Wnvq}@8%+~~u}3wB*QUs|R- zJ6%E~>ER$ZsP%Ad#4E?xuahVB%4`@6>X(U(){52EOOc!yH!N40{p!fs?t~=Xbmrm6 z;l8r$5Nw;gF#x4#b|c4Vi)zAh*!l2o#p#5sGi`mYLmz#oh#F_B=;f-&DXvwKk;8I#>TV9sDv?x`vy}EeGZgU7`TlMH zn!aexTHavOI@+zTbgnxtVw;#qfs^MqBasr$^3v?xYG2#*bA1GLIXVs|iD5K@6shFN zv~9MY>e{<`FNUu(=1EEiW;#KTYi${QPn}x7FAn{vn#;d}?N<3PlKUtxhAj*bjZ`wrKg=bg(xFV0(I zFetFmp1WGGeIqxJ9r(HqBj*|%)SP};uS7a^(8=CiyqHr|9FejiPVz*`!<@z&Nf9m= zs%05bII7W*Kj5dSql9kLK;pTQ##F_fBKe%W=aRa`9x+-vt%n2r<2cKk8sk_pE42Iu zT{3#|Z%BAMavfS5avIO=)+p#s_{N($I4if=bZw@!ALI7$b&js9#N!{PPhK`E-k^n% z>7d5ZiI#fYw$sor;360YFDfRpdS&9=h2t0)-;(AahL3GCEJZd;amG+UxAWW%g~~z0 zIU*N#aDAEjcre|A$L`Twa-=@e4K=J;a*@@3#|O(FX)%qiwe2)jyBE}aqn-9tYKMf# z!a)@m^&4a&t4Z}u7~E&+ugXgFkQmD4zrfKcS!R-^mDk!ZsZXZISI{p3wz8kLgr|K# zgyApv&aOYV$rNTG*TLe4shYGNt23BZ;~MR zmP-2%mPvSv&lcI%qF>!y?HQ^nbs}X$34=e(@kx&}*SS8}KhN$%x9th_oiY9{+$QmD zJqgCrnD6n6t^B3Zw4Mt2Gd|^ffG`-KLP z`WOH<`W;?3*wZyZ#m)m-OKWzEYHaudGtIyPr ziIJp2xlIvi8x6`GGTZK?#v9Yv9Fox?SP1e7+0agq_*zX>ZgW{xTeU$|My8{>bmA%*<%aLwnZAzcZgY$K+%nh> zXZLGvw+)Jq3%rH{Xc|~Lm4o?=fT|~3wq$dPwK+Ud`4IhYb|3ZE7Ks@iOVF!%>v~qM zw@dGpAhR-}UBJiJ9dxv1!!~ zBGp}wlUBFum!}W*d|<^|tX;X(#b`TMz4?uYm2rSwTmRi=TYs}Jc2?X=Ze6N-iW+yG z7o6OYnt!k*-B7L8!L9L;;Txt^QBS$j9d>elRg{CjcWNcOk?VDMdXb(2*YmMry8rb! zS>vIqjz;FGyJdB?T<4RgX@vux#}A}=4!%}PY46$@@rvUYIVHuw?{RA3;3@7<0bh<- zlV@1@-J$8POS^UsrPj5jRDFpZT;*aC;Q9Q_Ks38^y&tf^2`4HKU|s5hEyi)m&9> z&egL{X$J|7FOAld@UDhkCmxQjya3;%xK7TrC3Br)cJXB)&qbLGUGHENnM(Z+9D^zk z5TF=dwX^HRk!Gp`ROh$;?SATXYWx`u6`8IT4N+dTF){Bv=^|httQI=Ga6HLO{rlx* zd`sZ>o#VVu7raX5Ht1dO&|5r?GBOZtO|@C1PSYx!Vm*>F`}YT^vPY|gPD_n-_Z6d^ zdC2coQeU^KVbG%cE^XZZL^T9XN}N)Sv^lxCzE`Q`#hJBYlmtJm=OSZW-R!ZU0=#xd zHB@x{;}u)DbINI{DWL*XbH3@3Ug0de3oC+^7t0q;l(69VUY+(oZa%B>2VYi8PjLag zW#t($Q7TlBdj}#p4(C1f&e8vXmH#^b>qSum-+&7ase5R=3V&I=NB_!)?OOMW+N=84 zj%4rtbtFYOTYH>KbGcz#*Z5hrP`BtdRX-(_FMY%Mw|_eZKPDbGKkv~j%$?NWgCjoj zWgZ_!hVE}KGoc-y#;gB)IqMWJl&b%FJ7*mKKaro)*B_7VKD6LhN)lI(-%D@o&|i?* z=t&aCl~3+l=3?&~sF~~cxAWr1teL;1)czS|Q&~4Dvwt4-dfu4-5sKGe9#7J$e|vd} l&j-}_kC)Ar|C199D^*ucT`;VX8B0E_vuVf1cx|)u{~ufqqc8vf literal 0 HcmV?d00001 diff --git a/contents/core/ml_systems/ml_systems.qmd b/contents/core/ml_systems/ml_systems.qmd index c22af1df..1ef2cba1 100644 --- a/contents/core/ml_systems/ml_systems.qmd +++ b/contents/core/ml_systems/ml_systems.qmd @@ -10,19 +10,21 @@ Resources: [Slides](#sec-ml-systems-resource), [Videos](#sec-ml-systems-resource ![*DALL·E 3 Prompt: Illustration in a rectangular format depicting the merger of embedded systems with Embedded AI. The left half of the image portrays traditional embedded systems, including microcontrollers and processors, detailed and precise. The right half showcases the world of artificial intelligence, with abstract representations of machine learning models, neurons, and data flow. The two halves are distinctly separated, emphasizing the individual significance of embedded tech and AI, but they come together in harmony at the center.*](images/png/cover_ml_systems.png) -Machine learning (ML) systems, built on the foundation of computing systems, hold the potential to transform our world. These systems, with their specialized roles and real-time computational capabilities, represent a critical junction where data and computation meet on a micro-scale. They are specifically tailored to optimize performance, energy usage, and spatial efficiency—key factors essential for the successful implementation of ML systems. +The convergence of machine learning and computing systems has ushered in a new era of intelligent computing that extends from powerful cloud infrastructures to tiny embedded devices. Machine learning (ML) systems represent this intersection where algorithmic intelligence meets hardware constraints, creating solutions that must carefully balance computational power, energy efficiency, and real-world practicality. As ML continues to transform various sectors, understanding how to effectively deploy these systems across different computing platforms has become increasingly crucial. -As this chapter progresses, we will explore ML systems' complex and fascinating world. We'll gain insights into their structural design and operational features and understand their key role in powering ML applications. Starting with the basics of microcontroller units, we will examine the interfaces and peripherals that improve their functionalities. This chapter is designed to be a comprehensive guide that explains the nuanced aspects of different ML systems. +Modern ML systems span a remarkable spectrum of capabilities and constraints. At one end, cloud-based systems harness vast computational resources to train and deploy complex models. At the other end, tiny embedded systems bring ML capabilities to resource-constrained devices that operate on minimal power. Between these extremes lie edge and mobile computing solutions, each offering unique advantages for specific use cases. This diversity in deployment options presents both opportunities and challenges for system designers and ML practitioners. + +This chapter explores this diverse landscape of ML systems, beginning with a comprehensive overview of different deployment paradigms. We'll examine how each approach addresses specific challenges and requirements, from processing power and memory constraints to energy efficiency and real-time performance. Through detailed comparisons and real-world examples, we'll develop a deep understanding of when and how to employ each type of ML system effectively. :::{.callout-tip} ## Learning Objectives -- Understand the key characteristics and differences between Cloud ML, Edge ML, Mobile ML, and TinyML systems. +- Understand the key characteristics and differences between Cloud ML, Edge ML, Mobile ML, and Tiny ML systems. - Analyze the benefits and challenges associated with each ML paradigm. -- Explore real-world applications and use cases for Cloud ML, Edge ML, Mobile ML, and TinyML. +- Explore real-world applications and use cases for Cloud ML, Edge ML, Mobile ML, and Tiny ML. - Compare the performance aspects of each ML approach, including latency, privacy, and resource utilization. @@ -33,7 +35,11 @@ As this chapter progresses, we will explore ML systems' complex and fascinating ML is rapidly evolving, with new paradigms reshaping how models are developed, trained, and deployed. The field is experiencing significant innovation driven by advancements in hardware, software, and algorithmic techniques. These developments are enabling machine learning to be applied in diverse settings, from large-scale cloud infrastructures to edge devices and even tiny, resource-constrained environments. -Modern machine learning systems span a spectrum of deployment options, each with its own set of characteristics and use cases. At one end, we have cloud-based ML, which leverages powerful centralized computing resources for complex, data-intensive tasks. Moving along the spectrum, we encounter edge ML, which brings computation closer to the data source for reduced latency and improved privacy. At the far end, we find TinyML, which enables machine learning on extremely low-power devices with severe memory and processing constraints. +Modern machine learning systems span a spectrum of deployment options, each with its own set of characteristics and use cases. At one end, we have cloud-based ML, which leverages powerful centralized computing resources for complex, data-intensive tasks. Moving along the spectrum, we encounter edge ML, which brings computation closer to the data source for reduced latency and improved privacy. Mobile ML further extends these capabilities to smartphones and tablets, while at the far end, we find Tiny ML, which enables machine learning on extremely low-power devices with severe memory and processing constraints. + +This chapter explores the landscape of contemporary machine learning systems, covering four key approaches: Cloud ML, Edge ML, Mobile ML, and Tiny ML. @fig-cloud-edge-Tiny ML-comparison illustrates the spectrum of distributed intelligence across these approaches, providing a visual comparison of their characteristics. We will examine the unique characteristics, advantages, and challenges of each approach, as depicted in the figure. Additionally, we will discuss the emerging trends and technologies that are shaping the future of machine learning deployment, considering how they might influence the balance between these three paradigms. + +![Cloud vs. Edge vs. Mobile vs. Tiny ML: The Spectrum of Distributed Intelligence. Source: ABI Research -- Tiny ML.](images/png/cloud-edge-tiny.png){#fig-cloud-edge-Tiny ML-comparison} To better understand the dramatic differences between these ML deployment options, @tbl-representative-systems provides examples of representative hardware platforms for each category. These examples illustrate the vast range of computational resources, power requirements, and cost considerations across the ML systems spectrum. As we explore each paradigm in detail, you can refer back to these concrete examples to better understand the practical implications of each approach. @@ -55,7 +61,7 @@ To better understand the dramatic differences between these ML deployment option | Mobile ML | iPhone 15 Pro | A17 Pro (6-core CPU, 6-core GPU) | 8GB RAM | 128GB-1TB | 3-5W | $999+ | Face ID, computational | | | | | | | | | photography, voice recognition | +---------------+-----------------------+--------------------------------------+----------------+------------------+-----------+-------------+--------------------------------+ -| TinyML | Arduino Nano 33 | Arm Cortex-M4 @ 64MHz | 256KB RAM | 1MB Flash | 0.02-0.04W| $35 | Gesture recognition, | +| Tiny ML | Arduino Nano 33 | Arm Cortex-M4 @ 64MHz | 256KB RAM | 1MB Flash | 0.02-0.04W| $35 | Gesture recognition, | | | BLE Sense | | | | | | voice detection | +---------------+-----------------------+--------------------------------------+----------------+------------------+-----------+-------------+--------------------------------+ | | ESP32-CAM | Dual-core @ 240MHz | 520KB RAM | 4MB Flash | 0.05-0.25W| $10 | Image classification, | @@ -64,10 +70,6 @@ To better understand the dramatic differences between these ML deployment option : Representative hardware platforms across the ML systems spectrum, showing typical specifications and capabilities for each category. {#tbl-representative-systems .hover .striped} -This chapter explores the landscape of contemporary machine learning systems, covering four key approaches: Cloud ML, Edge ML, and TinyML. @fig-cloud-edge-tinyml-comparison illustrates the spectrum of distributed intelligence across these approaches, providing a visual comparison of their characteristics. We will examine the unique characteristics, advantages, and challenges of each approach, as depicted in the figure. Additionally, we will discuss the emerging trends and technologies that are shaping the future of machine learning deployment, considering how they might influence the balance between these three paradigms. - -![Cloud vs. Edge vs. TinyML: The Spectrum of Distributed Intelligence. Source: ABI Research -- TinyML.](images/png/cloud-edge-tiny.png){#fig-cloud-edge-tinyml-comparison} - The evolution of machine learning systems can be seen as a progression from centralized to increasingly distributed and specialized computing paradigms: **Cloud ML:** Initially, ML was predominantly cloud-based. Powerful, scalable servers in data centers are used to train and run large ML models. This approach leverages vast computational resources and storage capacities, enabling the development of complex models trained on massive datasets. Cloud ML excels at tasks requiring extensive processing power, distributed training of large models, and is ideal for applications where real-time responsiveness isn't critical. Popular platforms like AWS SageMaker, Google Cloud AI, and Azure ML offer flexible, scalable solutions for model development, training, and deployment. Cloud ML can handle models with billions of parameters, training on petabytes of data, but may incur latencies of 100-500ms for online inference due to network delays. @@ -76,18 +78,18 @@ The evolution of machine learning systems can be seen as a progression from cent **Mobile ML:** Building on edge computing concepts, Mobile ML focuses on leveraging the computational capabilities of smartphones and tablets. This approach enables personalized, responsive applications while reducing reliance on constant network connectivity. Mobile ML offers a balance between the power of edge computing and the ubiquity of personal devices. It utilizes on-device sensors (e.g., cameras, GPS, accelerometers) for unique ML applications. Frameworks like TensorFlow Lite and Core ML allow developers to deploy optimized models on mobile devices, with inference times often under 30ms for common tasks. Mobile ML enhances privacy by keeping personal data on the device and can operate offline, but must balance model performance with device resource constraints (typically 4-8GB RAM, 100-200GB storage). -**TinyML:** The latest development in this progression is TinyML, which enables ML models to run on extremely resource-constrained microcontrollers and small embedded systems. TinyML allows for on-device inference without relying on connectivity to the cloud, edge, or even the processing power of mobile devices. This approach is crucial for applications where size, power consumption, and cost are critical factors. TinyML devices typically operate with less than 1MB of RAM and flash memory, consuming only milliwatts of power, enabling battery life of months or years. Applications include wake word detection, gesture recognition, and predictive maintenance in industrial settings. Platforms like Arduino Nano 33 BLE Sense and STM32 microcontrollers, coupled with frameworks like TensorFlow Lite for Microcontrollers, enable ML on these tiny devices. However, TinyML requires significant model optimization and quantization to fit within these constraints. +**Tiny ML:** The latest development in this progression is Tiny ML, which enables ML models to run on extremely resource-constrained microcontrollers and small embedded systems. Tiny ML allows for on-device inference without relying on connectivity to the cloud, edge, or even the processing power of mobile devices. This approach is crucial for applications where size, power consumption, and cost are critical factors. Tiny ML devices typically operate with less than 1MB of RAM and flash memory, consuming only milliwatts of power, enabling battery life of months or years. Applications include wake word detection, gesture recognition, and predictive maintenance in industrial settings. Platforms like Arduino Nano 33 BLE Sense and STM32 microcontrollers, coupled with frameworks like TensorFlow Lite for Microcontrollers, enable ML on these tiny devices. However, Tiny ML requires significant model optimization and quantization to fit within these constraints. Each of these paradigms has its own strengths and is suited to different use cases: - Cloud ML remains essential for tasks requiring massive computational power or large-scale data analysis. - Edge ML is ideal for applications needing low-latency responses or local data processing in industrial or enterprise environments. - Mobile ML is suited for personalized, responsive applications on smartphones and tablets. -- TinyML enables AI capabilities in small, power-efficient devices, expanding the reach of ML to new domains. +- Tiny ML enables AI capabilities in small, power-efficient devices, expanding the reach of ML to new domains. This progression reflects a broader trend in computing towards more distributed, localized, and specialized processing. The evolution is driven by the need for faster response times, improved privacy, reduced bandwidth usage, and the ability to operate in environments with limited or no connectivity, while also catering to the specific capabilities and constraints of different types of devices. -@fig-vMLsizes illustrates the key differences between Cloud ML, Edge ML, Mobile ML, and TinyML in terms of hardware, latency, connectivity, power requirements, and model complexity. As we move from Cloud to Edge to TinyML, we see a dramatic reduction in available resources, which presents significant challenges for deploying sophisticated machine learning models. This resource disparity becomes particularly apparent when attempting to deploy deep learning models on microcontrollers, the primary hardware platform for TinyML. These tiny devices have severely constrained memory and storage capacities, which are often insufficient for conventional deep learning models. We will learn to put these things into perspective in this chapter. +@fig-vMLsizes illustrates the key differences between Cloud ML, Edge ML, Mobile ML, and Tiny ML in terms of hardware, latency, connectivity, power requirements, and model complexity. As we move from Cloud to Edge to Tiny ML, we see a dramatic reduction in available resources, which presents significant challenges for deploying sophisticated machine learning models. This resource disparity becomes particularly apparent when attempting to deploy deep learning models on microcontrollers, the primary hardware platform for Tiny ML. These tiny devices have severely constrained memory and storage capacities, which are often insufficient for conventional deep learning models. We will learn to put these things into perspective in this chapter. ![From cloud GPUs to microcontrollers: Navigating the memory and storage landscape across computing devices. Source: [@lin2023tiny]](./images/jpg/cloud_mobile_tiny_sizes.jpg){#fig-vMLsizes} @@ -327,137 +329,151 @@ These applications demonstrate how Mobile ML bridges the gap between cloud-based ## Tiny ML -TinyML sits at the crossroads of embedded systems and machine learning, representing a burgeoning field that brings smart algorithms directly to tiny microcontrollers and sensors. These microcontrollers operate under severe resource constraints, particularly regarding memory, storage, and computational power. @fig-tiny-ml encapsulates the key aspects of TinyML discussed in this section. +Tiny ML sits at the crossroads of embedded systems and machine learning, representing a burgeoning field that brings smart algorithms directly to tiny microcontrollers and sensors. These microcontrollers operate under severe resource constraints, particularly regarding memory, storage, and computational power. @fig-tiny-ml encapsulates the key aspects of Tiny ML discussed in this section. -![Section overview for Tiny ML.](images/png/tinyml.png){#fig-tiny-ml} +![Section overview for Tiny ML.](images/png/Tiny ML.png){#fig-tiny-ml} ### Characteristics #### On-Device Machine Learning -In TinyML, the focus, much like in Mobile ML, is on on-device machine learning. This means that machine learning models are deployed and trained on the device, eliminating the need for external servers or cloud infrastructures. This allows TinyML to enable intelligent decision-making right where the data is generated, making real-time insights and actions possible, even in settings where connectivity is limited or unavailable. +In Tiny ML, the focus, much like in Mobile ML, is on on-device machine learning. This means that machine learning models are deployed and trained on the device, eliminating the need for external servers or cloud infrastructures. This allows Tiny ML to enable intelligent decision-making right where the data is generated, making real-time insights and actions possible, even in settings where connectivity is limited or unavailable. #### Low Power and Resource-Constrained Environments -TinyML excels in low-power and resource-constrained settings. These environments require highly optimized solutions that function within the available resources. @fig-tinyml-example showcases an example TinyML device kit, illustrating the compact nature of these systems. These devices can typically fit in the palm of your hand or, in some cases, are even as small as a fingernail. TinyML meets the need for efficiency through specialized algorithms and models designed to deliver decent performance while consuming minimal energy, thus ensuring extended operational periods, even in battery-powered devices like those shown. +Tiny ML excels in low-power and resource-constrained settings. These environments require highly optimized solutions that function within the available resources. @fig-Tiny ML-example showcases an example Tiny ML device kit, illustrating the compact nature of these systems. These devices can typically fit in the palm of your hand or, in some cases, are even as small as a fingernail. Tiny ML meets the need for efficiency through specialized algorithms and models designed to deliver decent performance while consuming minimal energy, thus ensuring extended operational periods, even in battery-powered devices like those shown. -![Examples of TinyML device kits. Source: [Widening Access to Applied Machine Learning with TinyML.](https://arxiv.org/pdf/2106.04008.pdf)](images/jpg/tiny_ml.jpg){#fig-tinyml-example} +![Examples of Tiny ML device kits. Source: [Widening Access to Applied Machine Learning with Tiny ML.](https://arxiv.org/pdf/2106.04008.pdf)](images/jpg/tiny_ml.jpg){#fig-Tiny ML-example} -::: {#exr-tinyml .callout-caution collapse="true"} +::: {#exr-Tiny ML .callout-caution collapse="true"} -### TinyML with Arduino +### Tiny ML with Arduino -Get ready to bring machine learning to the smallest of devices! In the embedded machine learning world, TinyML is where resource constraints meet ingenuity. This Colab notebook will walk you through building a gesture recognition model designed on an Arduino board. You'll learn how to train a small but effective neural network, optimize it for minimal memory usage, and deploy it to your microcontroller. If you're excited about making everyday objects smarter, this is where it begins! +Get ready to bring machine learning to the smallest of devices! In the embedded machine learning world, Tiny ML is where resource constraints meet ingenuity. This Colab notebook will walk you through building a gesture recognition model designed on an Arduino board. You'll learn how to train a small but effective neural network, optimize it for minimal memory usage, and deploy it to your microcontroller. If you're excited about making everyday objects smarter, this is where it begins! -[![](https://colab.research.google.com/assets/colab-badge.png)](https://colab.research.google.com/github/arduino/ArduinoTensorFlowLiteTutorials/blob/master/GestureToEmoji/arduino_tinyml_workshop.ipynb) +[![](https://colab.research.google.com/assets/colab-badge.png)](https://colab.research.google.com/github/arduino/ArduinoTensorFlowLiteTutorials/blob/master/GestureToEmoji/arduino_Tiny ML_workshop.ipynb) ::: ### Benefits #### Extremely Low Latency -One of the standout benefits of TinyML is its ability to offer ultra-low latency. Since computation occurs directly on the device, the time required to send data to external servers and receive a response is eliminated. This is crucial in applications requiring immediate decision-making, enabling quick responses to changing conditions. +One of the standout benefits of Tiny ML is its ability to offer ultra-low latency. Since computation occurs directly on the device, the time required to send data to external servers and receive a response is eliminated. This is crucial in applications requiring immediate decision-making, enabling quick responses to changing conditions. #### High Data Security -TinyML inherently enhances data security. Because data processing and analysis happen on the device, the risk of data interception during transmission is virtually eliminated. This localized approach to data management ensures that sensitive information stays on the device, strengthening user data security. +Tiny ML inherently enhances data security. Because data processing and analysis happen on the device, the risk of data interception during transmission is virtually eliminated. This localized approach to data management ensures that sensitive information stays on the device, strengthening user data security. #### Energy Efficiency -TinyML operates within an energy-efficient framework, a necessity given its resource-constrained environments. By employing lean algorithms and optimized computational methods, TinyML ensures that devices can execute complex tasks without rapidly depleting battery life, making it a sustainable option for long-term deployments. +Tiny ML operates within an energy-efficient framework, a necessity given its resource-constrained environments. By employing lean algorithms and optimized computational methods, Tiny ML ensures that devices can execute complex tasks without rapidly depleting battery life, making it a sustainable option for long-term deployments. ### Challenges #### Limited Computational Capabilities -However, the shift to TinyML comes with its set of hurdles. The primary limitation is the devices' constrained computational capabilities. The need to operate within such limits means that deployed models must be simplified, which could affect the accuracy and sophistication of the solutions. +However, the shift to Tiny ML comes with its set of hurdles. The primary limitation is the devices' constrained computational capabilities. The need to operate within such limits means that deployed models must be simplified, which could affect the accuracy and sophistication of the solutions. #### Complex Development Cycle -TinyML also introduces a complicated development cycle. Crafting lightweight and effective models demands a deep understanding of machine learning principles and expertise in embedded systems. This complexity calls for a collaborative development approach, where multi-domain expertise is essential for success. +Tiny ML also introduces a complicated development cycle. Crafting lightweight and effective models demands a deep understanding of machine learning principles and expertise in embedded systems. This complexity calls for a collaborative development approach, where multi-domain expertise is essential for success. #### Model Optimization and Compression -A central challenge in TinyML is model optimization and compression. Creating machine learning models that can operate effectively within the limited memory and computational power of microcontrollers requires innovative approaches to model design. Developers often face the challenge of striking a delicate balance and optimizing models to maintain effectiveness while fitting within stringent resource constraints. +A central challenge in Tiny ML is model optimization and compression. Creating machine learning models that can operate effectively within the limited memory and computational power of microcontrollers requires innovative approaches to model design. Developers often face the challenge of striking a delicate balance and optimizing models to maintain effectiveness while fitting within stringent resource constraints. ### Example Use Cases #### Wearable Devices -In wearables, TinyML opens the door to smarter, more responsive gadgets. From fitness trackers offering real-time workout feedback to smart glasses processing visual data on the fly, TinyML transforms how we engage with wearable tech, delivering personalized experiences directly from the device. +In wearables, Tiny ML opens the door to smarter, more responsive gadgets. From fitness trackers offering real-time workout feedback to smart glasses processing visual data on the fly, Tiny ML transforms how we engage with wearable tech, delivering personalized experiences directly from the device. #### Predictive Maintenance -In industrial settings, TinyML plays a significant role in predictive maintenance. By deploying TinyML algorithms on sensors that monitor equipment health, companies can preemptively identify potential issues, reducing downtime and preventing costly breakdowns. On-site data analysis ensures quick responses, potentially stopping minor issues from becoming major problems. +In industrial settings, Tiny ML plays a significant role in predictive maintenance. By deploying Tiny ML algorithms on sensors that monitor equipment health, companies can preemptively identify potential issues, reducing downtime and preventing costly breakdowns. On-site data analysis ensures quick responses, potentially stopping minor issues from becoming major problems. #### Anomaly Detection -TinyML can be employed to create anomaly detection models that identify unusual data patterns. For instance, a smart factory could use TinyML to monitor industrial processes and spot anomalies, helping prevent accidents and improve product quality. Similarly, a security company could use TinyML to monitor network traffic for unusual patterns, aiding in detecting and preventing cyber-attacks. TinyML could monitor patient data for anomalies in healthcare, aiding early disease detection and better patient treatment. +Tiny ML can be employed to create anomaly detection models that identify unusual data patterns. For instance, a smart factory could use Tiny ML to monitor industrial processes and spot anomalies, helping prevent accidents and improve product quality. Similarly, a security company could use Tiny ML to monitor network traffic for unusual patterns, aiding in detecting and preventing cyber-attacks. Tiny ML could monitor patient data for anomalies in healthcare, aiding early disease detection and better patient treatment. #### Environmental Monitoring -In environmental monitoring, TinyML enables real-time data analysis from various field-deployed sensors. These could range from city air quality monitoring to wildlife tracking in protected areas. Through TinyML, data can be processed locally, allowing for quick responses to changing conditions and providing a nuanced understanding of environmental patterns, crucial for informed decision-making. +In environmental monitoring, Tiny ML enables real-time data analysis from various field-deployed sensors. These could range from city air quality monitoring to wildlife tracking in protected areas. Through Tiny ML, data can be processed locally, allowing for quick responses to changing conditions and providing a nuanced understanding of environmental patterns, crucial for informed decision-making. -In summary, TinyML serves as a trailblazer in the evolution of machine learning, fostering innovation across various fields by bringing intelligence directly to the edge. Its potential to transform our interaction with technology and the world is immense, promising a future where devices are connected, intelligent, and capable of making real-time decisions and responses. +In summary, Tiny ML serves as a trailblazer in the evolution of machine learning, fostering innovation across various fields by bringing intelligence directly to the edge. Its potential to transform our interaction with technology and the world is immense, promising a future where devices are connected, intelligent, and capable of making real-time decisions and responses. -## Hybrid ML +## Shared Principles -While we've examined Cloud ML, Edge ML, Mobile ML, and TinyML as distinct approaches, the reality of modern ML deployments is more nuanced. Systems architects often combine these paradigms to create solutions that leverage the strengths of each approach while mitigating their individual limitations. Understanding how these systems can work together opens up new possibilities for building more efficient and effective ML applications. +After exploring individual ML paradigms and their hybrid combinations, a deeper pattern emerges in how these systems fundamentally operate. @fig-ml-systems-convergence illustrates how different ML implementations, while optimized for distinct contexts, actually converge around core system principles that unite them all. -### Train-Serve Split +![Core principles converge across different ML system implementations, from cloud to tiny deployments, sharing common foundations in data pipelines, resource management, and system architecture.](./images/png/convergence.png){#fig-ml-systems-convergence} -One of the most common hybrid patterns is the train-serve split, where model training occurs in the cloud but inference happens on edge, mobile, or tiny devices. This pattern takes advantage of the cloud's vast computational resources for the training phase while benefiting from the low latency and privacy advantages of on-device inference. For example, smart home devices often use models trained on large datasets in the cloud but run inference locally to ensure quick response times and protect user privacy. In practice, this might involve training models on powerful systems like the NVIDIA DGX A100, leveraging its 8 A100 GPUs and terabyte-scale memory, before deploying optimized versions to edge devices like the NVIDIA Jetson AGX Orin for efficient inference. Similarly, mobile vision models for computational photography are typically trained on powerful cloud infrastructure but deployed to run efficiently on phone hardware. +The figure shows three key layers that help us understand how ML systems relate to each other. At the top, we see the diverse implementations that we have explored throughout this chapter. Cloud ML operates in data centers, focusing on training at scale with vast computational resources. Edge ML emphasizes local processing with inference capabilities closer to data sources. Mobile ML leverages personal devices for user-centric applications. Tiny ML brings intelligence to highly constrained embedded systems and sensors. -### Hierarchical Processing +Despite their distinct characteristics, the arrows in the figure show how all these implementations connect to the same core system principles. This reflects an important reality in ML systems---while they may operate at dramatically different scales, from cloud systems processing petabytes to tiny devices handling kilobytes, they all must solve similar fundamental challenges in terms of: -Hierarchical processing creates a multi-tier system where data and intelligence flow between different levels of the ML stack. In industrial IoT applications, tiny sensors might perform basic anomaly detection, edge devices aggregate and analyze data from multiple sensors, and cloud systems handle complex analytics and model updates. For instance, we might see ESP32-CAM devices performing basic image classification at the sensor level with their minimal 520KB RAM, feeding data up to Jetson AGX Orin devices for more sophisticated computer vision tasks, and ultimately connecting to cloud infrastructure for complex analytics and model updates. +- Managing data pipelines from collection through processing to deployment +- Balancing resource utilization across compute, memory, energy, and network +- Implementing system architectures that effectively integrate models, hardware, and software -This hierarchy allows each tier to handle tasks appropriate to its capabilities---TinyML devices handle immediate, simple decisions; edge devices manage local coordination; and cloud systems tackle complex analytics and learning tasks. Smart city installations often use this pattern, with street-level sensors feeding data to neighborhood-level edge processors, which in turn connect to city-wide cloud analytics. +These core principles then lead to shared system considerations around optimization, operations, and trustworthiness. This progression helps explain why techniques developed for one scale of ML system often transfer effectively to others. The underlying problems---efficiently processing data, managing resources, and ensuring reliable operation---remain consistent even as the specific solutions vary based on scale and context. -### Federated Learning +Understanding this convergence becomes particularly valuable as we move towards hybrid ML systems. When we recognize that different ML implementations share fundamental principles, combining them effectively becomes more intuitive. We can better appreciate why, for example, a cloud-trained model can be effectively deployed to edge devices, or why mobile and tiny ML systems can complement each other in IoT applications. -Federated learning represents a sophisticated hybrid approach where model training is distributed across many edge or mobile devices while maintaining privacy. Devices learn from local data and share model updates, rather than raw data, with cloud servers that aggregate these updates into an improved global model. This pattern is particularly powerful for applications like keyboard prediction on mobile devices or healthcare analytics, where privacy is paramount but benefits from collective learning are valuable. The cloud coordinates the learning process without directly accessing sensitive data, while devices benefit from the collective intelligence of the network. +As we examine each layer of @fig-ml-systems-convergence in detail, we'll see how these relationships manifest in practical system design and implementation. This understanding will prove valuable not just for working with individual ML systems, but for developing hybrid solutions that leverage the strengths of different approaches while mitigating their limitations. -### Progressive Deployment +### Implementations Layer -Progressive deployment strategies adapt models for different computational tiers, creating a cascade of increasingly lightweight versions. A model might start as a large, complex version in the cloud, then be progressively compressed and optimized for edge servers, mobile devices, and finally tiny sensors. Voice assistant systems often employ this pattern---full natural language processing runs in the cloud, while simplified wake-word detection runs on-device. This allows the system to balance capability and resource constraints across the ML stack. +The top layer of @fig-ml-systems-convergence represents the diverse landscape of ML systems we've explored throughout this chapter. Each implementation addresses specific needs and operational contexts, yet all contribute to the broader ecosystem of ML deployment options. -### Collaborative Learning +Cloud ML, centered in data centers, provides the foundation for large-scale training and complex model serving. With access to vast computational resources like the NVIDIA DGX A100 systems we saw in @tbl-representative-systems, cloud implementations excel at handling massive datasets and training sophisticated models. This makes them particularly suited for tasks requiring extensive computational power, such as training foundation models or processing large-scale analytics. -Collaborative learning enables peer-to-peer learning between devices at the same tier, often complementing hierarchical structures. Autonomous vehicle fleets, for example, might share learning about road conditions or traffic patterns directly between vehicles while also communicating with cloud infrastructure. This horizontal collaboration allows systems to share time-sensitive information and learn from each other's experiences without always routing through central servers. +Edge ML shifts the focus to local processing, prioritizing inference capabilities closer to data sources. Using devices like the NVIDIA Jetson AGX Orin, edge implementations balance computational power with reduced latency and improved privacy. This approach proves especially valuable in scenarios requiring quick decisions based on local data, such as industrial automation or real-time video analytics. -These hybrid patterns demonstrate how modern ML systems are evolving beyond simple client-server architectures into rich, multi-tier systems that combine the strengths of different approaches. By understanding these patterns, system architects can design solutions that effectively balance competing demands for computation, latency, privacy, and power efficiency. The future of ML systems likely lies not in choosing between cloud, edge, mobile, or tiny approaches, but in creatively combining them to build more capable and efficient systems. +Mobile ML leverages the capabilities of personal devices, particularly smartphones and tablets. With specialized hardware like Apple's A17 Pro chip, mobile implementations enable sophisticated ML capabilities while maintaining user privacy and providing offline functionality. This paradigm has revolutionized applications from computational photography to on-device speech recognition. -### Real-World Integration Patterns +Tiny ML represents the frontier of embedded ML, bringing intelligence to highly constrained devices. Operating on microcontrollers like the Arduino Nano 33 BLE Sense, tiny implementations must carefully balance functionality with severe resource constraints. Despite these limitations, Tiny ML enables ML capabilities in scenarios where power efficiency and size constraints are paramount. -In practice, ML systems rarely operate in isolation. Instead, they form interconnected networks where each paradigm---Cloud, Edge, Mobile, and TinyML---plays a specific role while communicating with other parts of the system. These interactions follow distinct patterns that emerge from the inherent strengths and limitations of each approach. Cloud systems excel at training and analytics but require significant infrastructure. Edge systems provide local processing power and reduced latency. Mobile devices offer personal computing capabilities and user interaction. TinyML enables intelligence in the smallest devices and sensors. +### System Principles Layer -Cloud systems excel at training and analytics but require significant infrastructure. Edge systems provide local processing power and reduced latency. Mobile devices offer personal computing capabilities and user interaction. TinyML enables intelligence in the smallest devices and sensors. +The middle layer reveals the fundamental principles that unite all ML systems, regardless of their implementation scale. These core principles remain consistent even as their specific manifestations vary dramatically across different deployments. -![Example interaction patterns between ML paradigms, showing data flows, model deployment, and processing relationships across Cloud, Edge, Mobile, and TinyML systems.](./images/png/hybrid.png){#fig-hybrid} +Data Pipeline principles govern how systems handle information flow, from initial collection through processing to final deployment. In cloud systems, this might mean processing petabytes of data through distributed pipelines. For tiny systems, it could involve carefully managing sensor data streams within limited memory. Despite these scale differences, all systems must address the same fundamental challenges of data ingestion, transformation, and utilization. -@fig-hybrid illustrates these key interactions through specific connection types: "Deploy" paths show how models flow from cloud training to various devices, "Data" and "Results" show information flow from sensors through processing stages, "Analyze" shows how processed information reaches cloud analytics, and "Sync" demonstrates device coordination. Notice how data generally flows upward from sensors through processing layers to cloud analytics, while model deployments flow downward from cloud training to various inference points. The interactions aren't strictly hierarchical---mobile devices might communicate directly with both cloud services and tiny sensors, while edge systems can assist mobile devices with complex processing tasks. +Resource Management emerges as a universal challenge across all implementations. Whether managing thousands of GPUs in a data center or optimizing battery life on a microcontroller, all systems must balance competing demands for computation, memory, energy, and network resources. The quantities involved may differ by orders of magnitude, but the core principles of resource allocation and optimization remain remarkably consistent. -To understand how these labeled interactions manifest in real applications, let's explore several common scenarios using @fig-hybrid: +System Architecture principles guide how ML systems integrate models, hardware, and software components. Cloud architectures might focus on distributed computing and scalability, while tiny systems emphasize efficient memory mapping and interrupt handling. Yet all must solve fundamental problems of component integration, data flow optimization, and processing coordination. -- **Model Deployment Scenario:** A company develops a computer vision model for defect detection. Following the "Deploy" paths shown in @fig-hybrid, the cloud-trained model is distributed to edge servers in factories, quality control tablets on the production floor, and tiny cameras embedded in the production line. This showcases how a single ML solution can be distributed across different computational tiers for optimal performance. +### System Considerations Layer -- **Data Flow and Analysis Scenario:** In a smart agriculture system, soil sensors (TinyML) collect moisture and nutrient data, following the "Data" path to TinyML inference. The "Results" flow to edge processors in local stations, which process this information and use the "Analyze" path to send insights to the cloud for farm-wide analytics, while also sharing results with farmers' mobile apps. This demonstrates the hierarchical flow shown in @fig-hybrid from sensors through processing to cloud analytics. +The bottom layer of @fig-ml-systems-convergence illustrates how fundamental principles manifest in practical system-wide considerations. These considerations span all ML implementations, though their specific challenges and solutions vary based on scale and context. -- **Edge-Mobile Assistance Scenario:** When a mobile app needs to perform complex image processing that exceeds the phone's capabilities, it utilizes the "Assist" connection shown in @fig-hybrid. The edge system helps process the heavier computational tasks, sending back results to enhance the mobile app's performance. This shows how different ML tiers can cooperate to handle demanding tasks. +Optimization and Efficiency shape how ML systems balance performance with resource utilization. In cloud environments, this often means optimizing model training across GPU clusters while managing energy consumption in data centers. Edge systems focus on reducing model size and accelerating inference without compromising accuracy. Mobile implementations must balance model performance with battery life and thermal constraints. Tiny ML pushes optimization to its limits, requiring extensive model compression and quantization to fit within severely constrained environments. Despite these different emphases, all implementations grapple with the core challenge of maximizing performance within their available resources. -- **TinyML-Mobile Integration Scenario:** A fitness tracker uses TinyML to continuously monitor activity patterns and vital signs. Using the "Sync" pathway shown in @fig-hybrid, it synchronizes this processed data with the user's smartphone, which combines it with other health data before sending consolidated updates via the "Analyze" path to the cloud for long-term health analysis. This illustrates the common pattern of tiny devices using mobile devices as gateways to larger networks. +Operational Aspects affect how ML systems are deployed, monitored, and maintained in production environments. Cloud systems must handle continuous deployment across distributed infrastructure while monitoring model performance at scale. Edge implementations need robust update mechanisms and health monitoring across potentially thousands of devices. Mobile systems require seamless app updates and performance monitoring without disrupting user experience. Tiny ML faces unique challenges in deploying updates to embedded devices while ensuring continuous operation. Across all scales, the fundamental problems of deployment, monitoring, and maintenance remain consistent, even as solutions vary. -- **Multi-Layer Processing Scenario:** In a smart retail environment, tiny sensors monitor inventory levels, using "Data" and "Results" paths to send inference results to both edge systems for immediate stock management and mobile devices for staff notifications. Following the "Analyze" path, the edge systems process this data alongside other store metrics, while the cloud analyzes trends across all store locations. This demonstrates how the interactions shown in @fig-hybrid enable ML tiers to work together in a complete solution. +Trustworthy AI considerations ensure ML systems operate reliably, securely, and with appropriate privacy protections. Cloud implementations must secure massive amounts of data while ensuring model predictions remain reliable at scale. Edge systems need to protect local data processing while maintaining model accuracy in diverse environments. Mobile ML must preserve user privacy while delivering consistent performance. Tiny ML systems, despite their size, must still ensure secure operation and reliable inference. These trustworthiness considerations cut across all implementations, reflecting the critical importance of building ML systems that users can depend on. -These real-world patterns demonstrate how different ML paradigms naturally complement each other in practice. While each approach has its own strengths, their true power emerges when they work together as an integrated system. By understanding these patterns, system architects can better design solutions that effectively leverage the capabilities of each ML tier while managing their respective constraints. +The progression through these layers - from diverse implementations through core principles to shared considerations - reveals why ML systems can be studied as a unified field despite their apparent differences. While specific solutions may vary dramatically based on scale and context, the fundamental challenges remain remarkably consistent. This understanding becomes particularly valuable as we move toward increasingly sophisticated hybrid systems that combine multiple implementation approaches. + +The convergence of fundamental principles across ML implementations helps explain why hybrid approaches work so effectively in practice. As we saw in our discussion of hybrid ML, different implementations naturally complement each other precisely because they share these core foundations. Whether we're looking at train-serve splits that leverage cloud resources for training and edge devices for inference, or hierarchical processing that combines Tiny ML sensors with edge aggregation and cloud analytics, the shared principles enable seamless integration across scales. + +### From Principles to Practice + +This convergence also suggests why techniques and insights often transfer well between different scales of ML systems. A deep understanding of data pipelines in cloud environments can inform how we structure data flow in embedded systems. Resource management strategies developed for mobile devices might inspire new approaches to cloud optimization. System architecture patterns that prove effective at one scale often adapt surprisingly well to others. + +Understanding these fundamental principles and shared considerations provides a foundation for comparing different ML implementations more effectively. While each approach has its distinct characteristics and optimal use cases, they all build upon the same core elements. As we move into our detailed comparison in the next section, keeping these shared foundations in mind will help us better appreciate both the differences and similarities between various ML system implementations. + +## ML System Comparison + +We can now synthesize our understanding by examining how the various ML system approaches compare across different dimensions. This synthesis is particularly important as system designers often face tradeoffs between different deployment options when implementing ML solutions. -## Comparison +The relationship between computational resources and deployment location forms one of the most fundamental comparisons across ML systems. As we move from cloud deployments to tiny devices, we observe a dramatic reduction in available computing power, storage, and energy consumption. Cloud ML systems, with their data center infrastructure, can leverage virtually unlimited resources, processing data at the scale of petabytes and training models with billions of parameters. Edge ML systems, while more constrained, still offer significant computational capability through specialized hardware like edge GPUs and neural processing units. Mobile ML represents a middle ground, balancing computational power with energy efficiency on devices like smartphones and tablets. At the far end of the spectrum, TinyML operates under severe resource constraints, often limited to kilobytes of memory and milliwatts of power consumption. -Let's bring together the different ML variants we've explored individually for a comprehensive view. For a detailed comparison of these ML variants, we can refer to @tbl-big_vs_tiny. This table offers a comprehensive analysis of Cloud ML, Edge ML, and TinyML based on various features and aspects. By examining these different characteristics side by side, we gain a clearer perspective on the unique advantages and distinguishing factors of each approach. This detailed comparison, combined with the visual overview provided by the Venn diagram, aids in making informed decisions based on the specific needs and constraints of a given application or project. +The operational characteristics of these systems reveal another important dimension of comparison. @tbl-big_vs_tiny provides a comprehensive view of how these systems differ across various operational aspects. Latency, for instance, shows a clear pattern: cloud systems typically incur delays of 100-1000ms due to network communication, while edge systems reduce this to 10-100ms by processing data locally. Mobile ML achieves even lower latencies of 5-50ms for many tasks, and TinyML systems can respond in 1-10ms for simple inferences. This latency gradient illustrates how moving computation closer to the data source can improve real-time processing capabilities. +--------------------------+----------------------------------------------------------+----------------------------------------------------------+-----------------------------------------------------------+----------------------------------------------------------+ -| Aspect | Cloud ML | Edge ML | Mobile ML | TinyML | +| Aspect | Cloud ML | Edge ML | Mobile ML | Tiny ML | +:=========================+:=========================================================+:=========================================================+:==========================================================+:=========================================================+ | Processing Location | Centralized cloud servers (Data Centers) | Local edge devices (gateways, servers) | Smartphones and tablets | Ultra-low-power microcontrollers and embedded systems | +--------------------------+----------------------------------------------------------+----------------------------------------------------------+-----------------------------------------------------------+----------------------------------------------------------+ @@ -487,7 +503,7 @@ Let's bring together the different ML variants we've explored individually for a +--------------------------+----------------------------------------------------------+----------------------------------------------------------+-----------------------------------------------------------+----------------------------------------------------------+ | Hardware Requirements | Cloud infrastructure | Edge servers/gateways | Modern smartphones | MCUs/embedded systems | +--------------------------+----------------------------------------------------------+----------------------------------------------------------+-----------------------------------------------------------+----------------------------------------------------------+ -| Framework Support | All ML frameworks | Most frameworks | Mobile-optimized (TFLite, CoreML) | TinyML frameworks | +| Framework Support | All ML frameworks | Most frameworks | Mobile-optimized (TFLite, CoreML) | Tiny ML frameworks | +--------------------------+----------------------------------------------------------+----------------------------------------------------------+-----------------------------------------------------------+----------------------------------------------------------+ | Model Size Limits | None | Several GB | 10s-100s MB | Bytes-KB range | +--------------------------+----------------------------------------------------------+----------------------------------------------------------+-----------------------------------------------------------+----------------------------------------------------------+ @@ -496,11 +512,72 @@ Let's bring together the different ML variants we've explored individually for a | Offline Capability | None | Good | Excellent | Complete | +--------------------------+----------------------------------------------------------+----------------------------------------------------------+-----------------------------------------------------------+----------------------------------------------------------+ -: Comparison of feature aspects across Cloud ML, Edge ML, and TinyML. {#tbl-big_vs_tiny .hover .striped} +: Comparison of feature aspects across Cloud ML, Edge ML, and Tiny ML. {#tbl-big_vs_tiny .hover .striped} + +Privacy and data handling represent another crucial axis of comparison. Cloud ML requires data to leave the device, potentially raising privacy concerns despite robust security measures. Edge ML improves privacy by keeping data within local networks, while Mobile ML further enhances this by processing sensitive information directly on personal devices. TinyML offers the strongest privacy guarantees, as data never leaves the sensor or microcontroller where it's collected. + +Development complexity and deployment considerations also vary significantly across these paradigms. Cloud ML benefits from mature development tools and frameworks but requires expertise in cloud infrastructure. Edge ML demands knowledge of both ML and networking protocols, while Mobile ML developers must understand mobile-specific optimizations and platform constraints. TinyML development, though targeting simpler devices, often requires specialized knowledge of embedded systems and careful optimization to work within severe resource constraints. + +Cost structures differ markedly as well. Cloud ML typically involves ongoing operational costs for computation and storage, often running into thousands of dollars monthly for large-scale deployments. Edge ML requires significant upfront investment in edge devices but may reduce ongoing costs. Mobile ML leverages existing consumer devices, minimizing additional hardware costs, while TinyML solutions can be deployed for just a few dollars per device, though development costs may be higher. + +These comparisons reveal that each paradigm has distinct advantages and limitations. Cloud ML excels at complex, data-intensive tasks but requires constant connectivity. Edge ML offers a balance of computational power and local processing. Mobile ML provides personalized intelligence on ubiquitous devices. TinyML enables ML in previously inaccessible contexts but requires careful optimization. Understanding these tradeoffs is crucial for selecting the appropriate deployment strategy for specific applications and constraints. + +## Hybrid ML + +While our comparison highlighted the distinct advantages and tradeoffs of each paradigm, modern ML deployments often transcend these boundaries. In practice, systems architects rarely confine themselves to a single approach, instead combining various paradigms to create more nuanced solutions. These hybrid approaches leverage the complementary strengths we've analyzed - from cloud's computational power to tiny's efficiency - while mitigating their individual limitations. By understanding how these systems can work together, architects can create new architectural patterns that balance competing demands for performance, privacy, and resource efficiency, opening up possibilities for more sophisticated ML applications that better meet complex real-world requirements. + +### Train-Serve Split + +One of the most common hybrid patterns is the train-serve split, where model training occurs in the cloud but inference happens on edge, mobile, or tiny devices. This pattern takes advantage of the cloud's vast computational resources for the training phase while benefiting from the low latency and privacy advantages of on-device inference. For example, smart home devices often use models trained on large datasets in the cloud but run inference locally to ensure quick response times and protect user privacy. In practice, this might involve training models on powerful systems like the NVIDIA DGX A100, leveraging its 8 A100 GPUs and terabyte-scale memory, before deploying optimized versions to edge devices like the NVIDIA Jetson AGX Orin for efficient inference. Similarly, mobile vision models for computational photography are typically trained on powerful cloud infrastructure but deployed to run efficiently on phone hardware. + +### Hierarchical Processing + +Hierarchical processing creates a multi-tier system where data and intelligence flow between different levels of the ML stack. In industrial IoT applications, tiny sensors might perform basic anomaly detection, edge devices aggregate and analyze data from multiple sensors, and cloud systems handle complex analytics and model updates. For instance, we might see ESP32-CAM devices performing basic image classification at the sensor level with their minimal 520KB RAM, feeding data up to Jetson AGX Orin devices for more sophisticated computer vision tasks, and ultimately connecting to cloud infrastructure for complex analytics and model updates. + +This hierarchy allows each tier to handle tasks appropriate to its capabilities---Tiny ML devices handle immediate, simple decisions; edge devices manage local coordination; and cloud systems tackle complex analytics and learning tasks. Smart city installations often use this pattern, with street-level sensors feeding data to neighborhood-level edge processors, which in turn connect to city-wide cloud analytics. + +### Federated Learning + +Federated learning represents a sophisticated hybrid approach where model training is distributed across many edge or mobile devices while maintaining privacy. Devices learn from local data and share model updates, rather than raw data, with cloud servers that aggregate these updates into an improved global model. This pattern is particularly powerful for applications like keyboard prediction on mobile devices or healthcare analytics, where privacy is paramount but benefits from collective learning are valuable. The cloud coordinates the learning process without directly accessing sensitive data, while devices benefit from the collective intelligence of the network. + +### Progressive Deployment + +Progressive deployment strategies adapt models for different computational tiers, creating a cascade of increasingly lightweight versions. A model might start as a large, complex version in the cloud, then be progressively compressed and optimized for edge servers, mobile devices, and finally tiny sensors. Voice assistant systems often employ this pattern---full natural language processing runs in the cloud, while simplified wake-word detection runs on-device. This allows the system to balance capability and resource constraints across the ML stack. + +### Collaborative Learning + +Collaborative learning enables peer-to-peer learning between devices at the same tier, often complementing hierarchical structures. Autonomous vehicle fleets, for example, might share learning about road conditions or traffic patterns directly between vehicles while also communicating with cloud infrastructure. This horizontal collaboration allows systems to share time-sensitive information and learn from each other's experiences without always routing through central servers. + +These hybrid patterns demonstrate how modern ML systems are evolving beyond simple client-server architectures into rich, multi-tier systems that combine the strengths of different approaches. By understanding these patterns, system architects can design solutions that effectively balance competing demands for computation, latency, privacy, and power efficiency. The future of ML systems likely lies not in choosing between cloud, edge, mobile, or tiny approaches, but in creatively combining them to build more capable and efficient systems. + +### Real-World Integration Patterns + +In practice, ML systems rarely operate in isolation. Instead, they form interconnected networks where each paradigm---Cloud, Edge, Mobile, and Tiny ML---plays a specific role while communicating with other parts of the system. These interactions follow distinct patterns that emerge from the inherent strengths and limitations of each approach. Cloud systems excel at training and analytics but require significant infrastructure. Edge systems provide local processing power and reduced latency. Mobile devices offer personal computing capabilities and user interaction. Tiny ML enables intelligence in the smallest devices and sensors. + +Cloud systems excel at training and analytics but require significant infrastructure. Edge systems provide local processing power and reduced latency. Mobile devices offer personal computing capabilities and user interaction. Tiny ML enables intelligence in the smallest devices and sensors. + +![Example interaction patterns between ML paradigms, showing data flows, model deployment, and processing relationships across Cloud, Edge, Mobile, and Tiny ML systems.](./images/png/hybrid.png){#fig-hybrid} + +@fig-hybrid illustrates these key interactions through specific connection types: "Deploy" paths show how models flow from cloud training to various devices, "Data" and "Results" show information flow from sensors through processing stages, "Analyze" shows how processed information reaches cloud analytics, and "Sync" demonstrates device coordination. Notice how data generally flows upward from sensors through processing layers to cloud analytics, while model deployments flow downward from cloud training to various inference points. The interactions aren't strictly hierarchical---mobile devices might communicate directly with both cloud services and tiny sensors, while edge systems can assist mobile devices with complex processing tasks. + +To understand how these labeled interactions manifest in real applications, let's explore several common scenarios using @fig-hybrid: + +- **Model Deployment Scenario:** A company develops a computer vision model for defect detection. Following the "Deploy" paths shown in @fig-hybrid, the cloud-trained model is distributed to edge servers in factories, quality control tablets on the production floor, and tiny cameras embedded in the production line. This showcases how a single ML solution can be distributed across different computational tiers for optimal performance. + +- **Data Flow and Analysis Scenario:** In a smart agriculture system, soil sensors (Tiny ML) collect moisture and nutrient data, following the "Data" path to Tiny ML inference. The "Results" flow to edge processors in local stations, which process this information and use the "Analyze" path to send insights to the cloud for farm-wide analytics, while also sharing results with farmers' mobile apps. This demonstrates the hierarchical flow shown in @fig-hybrid from sensors through processing to cloud analytics. + +- **Edge-Mobile Assistance Scenario:** When a mobile app needs to perform complex image processing that exceeds the phone's capabilities, it utilizes the "Assist" connection shown in @fig-hybrid. The edge system helps process the heavier computational tasks, sending back results to enhance the mobile app's performance. This shows how different ML tiers can cooperate to handle demanding tasks. + +- **Tiny ML-Mobile Integration Scenario:** A fitness tracker uses Tiny ML to continuously monitor activity patterns and vital signs. Using the "Sync" pathway shown in @fig-hybrid, it synchronizes this processed data with the user's smartphone, which combines it with other health data before sending consolidated updates via the "Analyze" path to the cloud for long-term health analysis. This illustrates the common pattern of tiny devices using mobile devices as gateways to larger networks. + +- **Multi-Layer Processing Scenario:** In a smart retail environment, tiny sensors monitor inventory levels, using "Data" and "Results" paths to send inference results to both edge systems for immediate stock management and mobile devices for staff notifications. Following the "Analyze" path, the edge systems process this data alongside other store metrics, while the cloud analyzes trends across all store locations. This demonstrates how the interactions shown in @fig-hybrid enable ML tiers to work together in a complete solution. + +These real-world patterns demonstrate how different ML paradigms naturally complement each other in practice. While each approach has its own strengths, their true power emerges when they work together as an integrated system. By understanding these patterns, system architects can better design solutions that effectively leverage the capabilities of each ML tier while managing their respective constraints. + ## Conclusion -In this chapter, we've offered a panoramic view of the evolving landscape of machine learning, covering cloud, edge, and tiny ML paradigms. Cloud-based machine learning leverages the immense computational resources of cloud platforms to enable powerful and accurate models but comes with limitations, including latency and privacy concerns. Edge ML mitigates these limitations by bringing inference directly to edge devices, offering lower latency and reduced connectivity needs. TinyML takes this further by miniaturizing ML models to run directly on highly resource-constrained devices, opening up a new category of intelligent applications. +In this chapter, we've offered a panoramic view of the evolving landscape of machine learning, covering cloud, edge, and tiny ML paradigms. Cloud-based machine learning leverages the immense computational resources of cloud platforms to enable powerful and accurate models but comes with limitations, including latency and privacy concerns. Edge ML mitigates these limitations by bringing inference directly to edge devices, offering lower latency and reduced connectivity needs. Tiny ML takes this further by miniaturizing ML models to run directly on highly resource-constrained devices, opening up a new category of intelligent applications. Each approach has its tradeoffs, including model complexity, latency, privacy, and hardware costs. Over time, we anticipate converging these embedded ML approaches, with cloud pre-training facilitating more sophisticated edge and tiny ML implementations. Advances like federated learning and on-device learning will enable embedded devices to refine their models by learning from real-world data. @@ -528,13 +605,13 @@ These slides are a valuable tool for instructors to deliver lectures and for stu - [Embedded Inference.](https://docs.google.com/presentation/d/1FOUQ9dbe3l_qTa2AnroSbOz0ykuCz5cbTNO77tvFxEs/edit?usp=drive_link) -- [TinyML on Microcontrollers.](https://docs.google.com/presentation/d/1jwAZz3UOoJTR8PY6Wa34FxijpoDc9gBM/edit?usp=drive_link&ouid=102419556060649178683&rtpof=true&sd=true) +- [Tiny ML on Microcontrollers.](https://docs.google.com/presentation/d/1jwAZz3UOoJTR8PY6Wa34FxijpoDc9gBM/edit?usp=drive_link&ouid=102419556060649178683&rtpof=true&sd=true) -- TinyML as a Service (TinyMLaaS): +- Tiny ML as a Service (Tiny MLaaS): - - [TinyMLaaS: Introduction.](https://docs.google.com/presentation/d/1O7bxb36SnexfDI3iE_p0C8JI_VYXAL8cyAx3JKDfeUo/edit?usp=drive_link) + - [Tiny MLaaS: Introduction.](https://docs.google.com/presentation/d/1O7bxb36SnexfDI3iE_p0C8JI_VYXAL8cyAx3JKDfeUo/edit?usp=drive_link) - - [TinyMLaaS: Design Overview.](https://docs.google.com/presentation/d/1ZUUHtTbKlzeTwVteQMSztscQmdmMxT1A24pBKSys7g0/edit#slide=id.g94db9f9f78_0_2) + - [Tiny MLaaS: Design Overview.](https://docs.google.com/presentation/d/1ZUUHtTbKlzeTwVteQMSztscQmdmMxT1A24pBKSys7g0/edit#slide=id.g94db9f9f78_0_2) ::: ::: {.callout-important collapse="false"} diff --git a/style.scss b/style.scss index 9ed2d83a..9e39f413 100644 --- a/style.scss +++ b/style.scss @@ -14,6 +14,18 @@ $font-size-root: 16px !default; /*-- scss:defaults --*/ :root { --link-color: #A51C30; /* Define the CSS variable for link color */ + + --mermaid-bg-color: #f9fafb; /* Light neutral background */ + --mermaid-edge-color: #4b5563; /* Muted dark gray for edges */ + --mermaid-node-fg-color: #1f2937; /* Dark gray for node text */ + --mermaid-fg-color: #2563eb; /* Primary blue for accents */ + --mermaid-fg-color--lighter: #60a5fa; /* Lighter blue for highlights */ + --mermaid-fg-color--lightest: #93c5fd; /* Lightest blue for secondary highlights */ + --mermaid-font-family: 'Roboto', sans-serif; /* Modern, clean font */ + --mermaid-label-bg-color: #e5e7eb; /* Soft gray for label backgrounds */ + --mermaid-label-fg-color: #1f2937; /* Dark gray for label text */ + --mermaid-node-bg-color: #ffffff; /* White for node backgrounds */ + --mermaid-node-fg-color: #1f2937; /* Dark gray for node text */ } div.sidebar-item-container .active {