diff --git a/embedded_ml_exercise.qmd b/embedded_ml_exercise.qmd index aa910405..dec56a5b 100644 --- a/embedded_ml_exercise.qmd +++ b/embedded_ml_exercise.qmd @@ -294,7 +294,7 @@ or rotating the images). Under the rood, here you can see how Edge Impulse implements a data Augmentation policy on your data: -```{{python}} +```python # Implements the data augmentation policy def augment_image(image, label): # Flips the image randomly @@ -445,7 +445,7 @@ on the OpenMV IDE. GitHub,]{.underline}](https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/nicla_image_classification.py) or modify it as below: -```{{python}} +```python # Marcelo Rovai - NICLA Vision - Image Classification # Adapted from Edge Impulse - OpenMV Image Classification Example # @24Aug23 @@ -548,7 +548,7 @@ For that, we should [[upload the code from GitHub]{.underline}](https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/nicla_image_classification_LED.py) or change the last code to include the LEDs: -```{{python}} +```python # Marcelo Rovai - NICLA Vision - Image Classification with LEDs # Adapted from Edge Impulse - OpenMV Image Classification Example # @24Aug23 @@ -724,4 +724,4 @@ projects around vision in several areas, such as: > human-machine interaction. - **Content Recommendation**: Image-based recommendation systems in - > e-commerce. \ No newline at end of file + > e-commerce.