-
Notifications
You must be signed in to change notification settings - Fork 0
/
Diabetes.py
422 lines (300 loc) · 14.4 KB
/
Diabetes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# Required Library and Functions
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score,roc_auc_score
from sklearn.model_selection import GridSearchCV, cross_validate
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
import warnings
warnings.simplefilter(action="ignore")
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set_option('display.max_rows', 20)
pd.set_option('display.float_format', lambda x: '%.3f' % x)
df = pd.read_csv("C:/Users/exo_x/OneDrive/Masaüstü/diabetes.csv") # read the data file
df.head()
# Big Picture
def check_df(dataframe, head=5):
print("##################### Shape #####################")
print(dataframe.shape)
print("##################### Types #####################")
print(dataframe.dtypes)
print("##################### Head #####################")
print(dataframe.head(head))
print("##################### Tail #####################")
print(dataframe.tail(head))
print("##################### NA #####################")
print(dataframe.isnull().sum())
print("##################### Quantiles #####################")
print(dataframe.quantile([0, 0.05, 0.50, 0.95, 0.99, 1]).T)
check_df(df)
df.head()
df.info()
# Variable
def grab_col_names(dataframe, cat_th= 10 , car_th = 20 ):
"""
Veri setindeki kategorik, numerik ve kategorik fakat kardinal değişkenlerin isimlerini verir.
Not: Kategorik değişkenlerin içerisine numerik görünümlü kategorik değişkenler de dahildir.
Parameters
------
dataframe: dataframe
Değişken isimleri alınmak istenilen dataframe
cat_th: int, optional
numerik fakat kategorik olan değişkenler için sınıf eşik değeri
car_th: int, optional
kategorik fakat kardinal değişkenler için sınıf eşik değeri
Returns
------
cat_cols: list
Kategorik değişken listesi
num_cols: list
Numerik değişken listesi
cat_but_car: list
Kategorik görünümlü kardinal değişken listesi
Examples
------
import seaborn as sns
df = sns.load_dataset("iris")
print(grab_col_names(df))
Notes
------
cat_cols + num_cols + cat_but_car = toplam değişken sayısı
num_but_cat cat_cols'un içerisinde.
"""
# cat_cols, cat_but_car
cat_cols = [col for col in dataframe.columns if dataframe[col].dtypes == "O"]
num_but_cat = [col for col in dataframe.columns if dataframe[col].nunique() < cat_th and dataframe[col].dtypes != "O"]
cat_but_car = [col for col in dataframe.columns if dataframe[col].nunique() > car_th and dataframe[col].dtypes == "O"]
cat_cols = cat_cols + num_but_cat
cat_cols = [col for col in cat_cols if col not in cat_but_car]
# num_cols
num_cols = [col for col in dataframe.columns if dataframe[col].dtypes != "O"]
num_cols = [col for col in num_cols if col not in num_but_cat]
print(f"Observations: {dataframe.shape[0]}")
print(f"Variables: {dataframe.shape[1]}")
print(f'cat_cols: {len(cat_cols)}')
print(f'num_cols: {len(num_cols)}')
print(f'cat_but_car: {len(cat_but_car)}')
print(f'num_but_cat: {len(num_but_cat)}')
return cat_cols, num_cols, cat_but_car
cat_cols, num_cols, cat_but_car = grab_col_names(df)
#ANALYSIS OF CATEGORY VARIABLES
def cat_summary(dataframe,col_name,plot = False):
print(pd.DataFrame({col_name:dataframe[col_name].value_counts(),
"Ratio":100*dataframe[col_name].value_counts() / len(dataframe)}))
print("##########################################")
if plot:
sns.countplot(x=dataframe[col_name], data= dataframe)
plt.show()
cat_summary(df,"Outcome")
# ANALYSIS OF NUMERICAL VARIABLES
def num_summary(dataframe, numerical_col, plot=False):
quantiles = [0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99]
print(dataframe[numerical_col].describe(quantiles).T)
if plot:
dataframe[numerical_col].hist(bins=20)
plt.xlabel(numerical_col)
plt.title(numerical_col)
plt.show()
for col in num_cols:
num_summary(df, col, plot=False)
# ANALYSIS OF NUMERICAL VARIABLES ACCORDING TO TARGET
def target_summary_with_num(dataframe, target, numerical_col):
print(dataframe.groupby(target).agg({numerical_col: "mean"}), end="\n\n\n")
for col in num_cols:
target_summary_with_num(df, "Outcome", col)
# CORRELATION
# Correlation indicates the direction and strength of the linear relationship between two random variables in probability theory and statistics.
df.corr()
# Correlation Matrix
f, ax = plt.subplots(figsize=[18, 13])
sns.heatmap(df.corr(), annot=True, fmt=".2f", ax=ax, cmap="magma")
ax.set_title("Correlation Matrix", fontsize=20)
plt.show()
# BASE MODEL INSTALLATION
y = df["Outcome"]
X = df.drop("Outcome", axis=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=17)
rf_model = RandomForestClassifier(random_state=46).fit(X_train, y_train)
y_pred = rf_model.predict(X_test)
print(f"Accuracy: {round(accuracy_score(y_pred, y_test), 2)}")
print(f"Recall: {round(recall_score(y_pred,y_test),3)}")
print(f"Precision: {round(precision_score(y_pred,y_test), 2)}")
print(f"F1: {round(f1_score(y_pred,y_test), 2)}")
print(f"Auc: {round(roc_auc_score(y_pred,y_test), 2)}")
def plot_importance(model, features, num=len(X), save=False):
feature_imp = pd.DataFrame({'Value': model.feature_importances_, 'Feature': features.columns})
plt.figure(figsize=(10, 10))
sns.set(font_scale=1)
sns.barplot(x="Value", y="Feature", data=feature_imp.sort_values(by="Value",
ascending=False)[0:num])
plt.title('Features')
plt.tight_layout()
plt.show()
if save:
plt.savefig('importances.png')
plot_importance(rf_model, X)
# MISSING VALUE ANALYSIS
# It is known that variable values other than Pregnancies and Outcome cannot be 0 in a human.
# Therefore, an action decision should be taken regarding these values. Values that are 0 can be assigned NaN.
zero_columns = [col for col in df.columns if (df[col].min()== 0 and col not in ["Pregnancies", "Outcome"] )]
# We went to each of the variables with 0 in the observation units and changed the observation values containing 0 with NaN.
for col in zero_columns:
df[col] = np.where(df[col] == 0, np.nan, df[col])
# Missing Observation Analysis
print(df.isnull().sum())
def missing_values_table(dataframe, na_name=False):
na_columns = [col for col in dataframe.columns if dataframe[col].isnull().sum() > 0]
n_miss = dataframe[na_columns].isnull().sum().sort_values(ascending=False)
ratio = (dataframe[na_columns].isnull().sum() / dataframe.shape[0] * 100).sort_values(ascending=False)
missing_df = pd.concat([n_miss, np.round(ratio, 2)], axis=1, keys=['n_miss', 'ratio'])
print(missing_df, end="\n")
if na_name:
return na_columns
na_columns = missing_values_table(df, na_name=True)
# Examining the Relationship of Missing Values with the Dependent Variable
def missing_vs_target(dataframe, target, na_columns):
temp_df = dataframe.copy()
for col in na_columns:
temp_df[col + '_NA_FLAG'] = np.where(temp_df[col].isnull(), 1, 0)
na_flags = temp_df.loc[:, temp_df.columns.str.contains("_NA_")].columns
for col in na_flags:
print(pd.DataFrame({"TARGET_MEAN": temp_df.groupby(col)[target].mean(),
"Count": temp_df.groupby(col)[target].count()}), end="\n\n\n")
missing_vs_target(df, "Outcome", na_columns)
# Filling in Missing Values
for col in zero_columns:
df.loc[df[col].isnull(), col] = df[col].median()
print(df.isnull().sum())
# Outlier ANALYSIS
def outlier_thresholds(dataframe, col_name, q1=0.05, q3=0.95):
quartile1 = dataframe[col_name].quantile(q1)
quartile3 = dataframe[col_name].quantile(q3)
interquantile_range = quartile3 - quartile1
up_limit = quartile3 + 1.5 * interquantile_range
low_limit = quartile1 - 1.5 * interquantile_range
return low_limit, up_limit
def check_outlier(dataframe, col_name):
low_limit, up_limit = outlier_thresholds(dataframe, col_name)
if dataframe[(dataframe[col_name] > up_limit) | (dataframe[col_name] < low_limit)].any(axis=None):
return True
else:
return False
def replace_with_thresholds(dataframe, variable, q1=0.05, q3=0.95):
low_limit, up_limit = outlier_thresholds(dataframe, variable, q1=0.05, q3=0.95)
dataframe.loc[(dataframe[variable] < low_limit), variable] = low_limit
dataframe.loc[(dataframe[variable] > up_limit), variable] = up_limit
# Outlier Analysis and Suppression
for col in df.columns:
print(col, check_outlier(df, col))
if check_outlier(df, col):
replace_with_thresholds(df, col)
for col in df.columns:
print(col, check_outlier(df, col))
# FEATURE INFERENCE
# Creating a new age variable by dividing the age variable into categories
df.loc[(df["Age"] >= 21) & (df["Age"] < 50), "NEW_AGE_CAT"] = "mature"
df.loc[(df["Age"] >= 50), "NEW_AGE_CAT"] = "senior"
# BMI below 18.5 is underweight, 18.5 to 24.9 is normal, 24.9 to 29.9 is Overweight, and over 30 is obese
df['NEW_BMI'] = pd.cut(x=df['BMI'], bins=[0, 18.5, 24.9, 29.9, 100],labels=["Underweight", "Healthy", "Overweight", "Obese"])
# Converting glucose value to categorical variable
df["NEW_GLUCOSE"] = pd.cut(x=df["Glucose"], bins=[0, 140, 200, 300], labels=["Normal", "Prediabetes", "Diabetes"])
# Creating a categorical variable by considering age and body mass index together 3 breakdowns were caught
df.loc[(df["BMI"] < 18.5) & ((df["Age"] >= 21) & (df["Age"] < 50)), "NEW_AGE_BMI_NOM"] = "underweightmature"
df.loc[(df["BMI"] < 18.5) & (df["Age"] >= 50), "NEW_AGE_BMI_NOM"] = "underweightsenior"
df.loc[((df["BMI"] >= 18.5) & (df["BMI"] < 25)) & ((df["Age"] >= 21) & (df["Age"] < 50)), "NEW_AGE_BMI_NOM"] = "healthymature"
df.loc[((df["BMI"] >= 18.5) & (df["BMI"] < 25)) & (df["Age"] >= 50), "NEW_AGE_BMI_NOM"] = "healthysenior"
df.loc[((df["BMI"] >= 25) & (df["BMI"] < 30)) & ((df["Age"] >= 21) & (df["Age"] < 50)), "NEW_AGE_BMI_NOM"] = "overweightmature"
df.loc[((df["BMI"] >= 25) & (df["BMI"] < 30)) & (df["Age"] >= 50), "NEW_AGE_BMI_NOM"] = "overweightsenior"
df.loc[(df["BMI"] > 18.5) & ((df["Age"] >= 21) & (df["Age"] < 50)), "NEW_AGE_BMI_NOM"] = "obesemature"
df.loc[(df["BMI"] > 18.5) & (df["Age"] >= 50), "NEW_AGE_BMI_NOM"] = "obesesenior"
# Creating a categorical variable by considering age and glucose values together
df.loc[(df["Glucose"] < 70) & ((df["Age"] >= 21) & (df["Age"] < 50)), "NEW_AGE_GLUCOSE_NOM"] = "lowmature"
df.loc[(df["Glucose"] < 70) & (df["Age"] >= 50), "NEW_AGE_GLUCOSE_NOM"] = "lowsenior"
df.loc[((df["Glucose"] >= 70) & (df["Glucose"] < 100)) & ((df["Age"] >= 21) & (df["Age"] < 50)), "NEW_AGE_GLUCOSE_NOM"] = "normalmature"
df.loc[((df["Glucose"] >= 70) & (df["Glucose"] < 100)) & (df["Age"] >= 50), "NEW_AGE_GLUCOSE_NOM"] = "normalsenior"
df.loc[((df["Glucose"] >= 100) & (df["Glucose"] <= 125)) & ((df["Age"] >= 21) & (df["Age"] < 50)), "NEW_AGE_GLUCOSE_NOM"] = "hiddenmature"
df.loc[((df["Glucose"] >= 100) & (df["Glucose"] <= 125)) & (df["Age"] >= 50), "NEW_AGE_GLUCOSE_NOM"] = "hiddensenior"
df.loc[(df["Glucose"] > 125) & ((df["Age"] >= 21) & (df["Age"] < 50)), "NEW_AGE_GLUCOSE_NOM"] = "highmature"
df.loc[(df["Glucose"] > 125) & (df["Age"] >= 50), "NEW_AGE_GLUCOSE_NOM"] = "highsenior"
# Deriving Categorical Variable with Insulin Value
def set_insulin(dataframe, col_name="Insulin"):
if 16 <= dataframe[col_name] <= 166:
return "Normal"
else:
return "Abnormal"
df["NEW_INSULIN_SCORE"] = df.apply(set_insulin, axis=1)
df["NEW_GLUCOSE*INSULIN"] = df["Glucose"] * df["Insulin"]
# zero values beware!!!!
df["NEW_GLUCOSE*PREGNANCIES"] = df["Glucose"] * df["Pregnancies"]
#df["NEW_GLUCOSE*PREGNANCIES"] = df["Glucose"] * (1+ df["Pregnancies"])
# Enlarging the columns
df.columns = [col.upper() for col in df.columns]
df.head()
# ENCODING
# The process of separating variables according to their types
cat_cols, num_cols, cat_but_car = grab_col_names(df)
# LABEL ENCODING
def label_encoder(dataframe, binary_col):
labelencoder = LabelEncoder()
dataframe[binary_col] = labelencoder.fit_transform(dataframe[binary_col])
return dataframe
binary_cols = [col for col in df.columns if df[col].dtypes == "O" and df[col].nunique() == 2]
binary_cols
for col in binary_cols:
df = label_encoder(df, col)
# One-Hot Encoding Process
# Update process of cat_cols list
cat_cols = [col for col in cat_cols if col not in binary_cols and col not in ["OUTCOME"]]
cat_cols
def one_hot_encoder(dataframe, categorical_cols, drop_first=False):
dataframe = pd.get_dummies(dataframe, columns=categorical_cols, drop_first=drop_first)
return dataframe
df = one_hot_encoder(df, cat_cols, drop_first=True)
df.head()
# STANDARDIZATION
scaler = StandardScaler()
df[num_cols] = scaler.fit_transform(df[num_cols])
df.head()
df.shape
# Modelling
y = df["OUTCOME"]
X = df.drop("OUTCOME", axis=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=17)
rf_model = RandomForestClassifier(random_state=46).fit(X_train, y_train)
y_pred = rf_model.predict(X_test)
print(f"Accuracy: {round(accuracy_score(y_pred, y_test), 2)}")
print(f"Recall: {round(recall_score(y_pred,y_test),3)}")
print(f"Precision: {round(precision_score(y_pred,y_test), 2)}")
print(f"F1: {round(f1_score(y_pred,y_test), 2)}")
print(f"Auc: {round(roc_auc_score(y_pred,y_test), 2)}")
# After
# Accuracy: 0.79
# Recall: 0.711
# Precision: 0.67
# F1: 0.69
# Auc: 0.77
# Base Model: (before)
# Accuracy: 0.77
# Recall: 0.706
# Precision: 0.59
# F1: 0.64
# Auc: 0.75
# FEATURE IMPORTANCE
def plot_importance(model, features, num=len(X), save=False):
feature_imp = pd.DataFrame({'Value': model.feature_importances_, 'Feature': features.columns})
print(feature_imp.sort_values("Value",ascending=False))
plt.figure(figsize=(10, 10))
sns.set(font_scale=1)
sns.barplot(x="Value", y="Feature", data=feature_imp.sort_values(by="Value",
ascending=False)[0:num])
plt.title('Features')
plt.tight_layout()
plt.show()
if save:
plt.savefig('importances.png')
plot_importance(rf_model, X)