先从一道题目开始~
如题 triangle
给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
例如,给定三角形:
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
使用 DFS(遍历 或者 分治法)
遍历
分治法
优化 DFS,缓存已经被计算的值(称为:记忆化搜索 本质上:动态规划)
动态规划就是把大问题变成小问题,并解决了小问题重复计算的方法称为动态规划
动态规划和 DFS 区别
- 二叉树 子问题是没有交集,所以大部分二叉树都用递归或者分治法,即 DFS,就可以解决
- 像 triangle 这种是有重复走的情况,子问题是有交集,所以可以用动态规划来解决
动态规划,自底向上
class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
if len(triangle) == 0:
return 0
dp = triangle[-1].copy()
for i in range(-2, -len(triangle) - 1, -1):
for j in range(len(triangle[i])):
dp[j] = triangle[i][j] + min(dp[j], dp[j + 1])
return dp[0]
动态规划,自顶向下
class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
if len(triangle) == 0:
return 0
dp = triangle[0]
for row in triangle[1:]:
dp_new = [row[0] + dp[0]]
for i in range(len(dp) - 1):
dp_new.append(row[i+1] + min(dp[i], dp[i+1]))
dp_new.append(row[-1] + dp[-1])
dp = dp_new
return min(dp)
递归是一种程序的实现方式:函数的自我调用
Function(x) {
...
Funciton(x-1);
...
}
动态规划:是一种解决问题的思想,大规模问题的结果,是由小规模问题的结果运算得来的。动态规划可用递归来实现(Memorization Search)
满足两个条件
- 满足以下条件之一
- 求最大/最小值(Maximum/Minimum )
- 求是否可行(Yes/No )
- 求可行个数(Count(*) )
- 满足不能排序或者交换(Can not sort / swap )
如题:longest-consecutive-sequence 位置可以交换,所以不用动态规划
- 状态 State
- 灵感,创造力,存储小规模问题的结果
- 方程 Function
- 状态之间的联系,怎么通过小的状态,来算大的状态
- 初始化 Intialization
- 最极限的小状态是什么, 起点
- 答案 Answer
- 最大的那个状态是什么,终点
- Matrix DP (10%)
- Sequence (40%)
- Two Sequences DP (40%)
- Backpack (10%)
注意点
- 贪心算法大多题目靠背答案,所以如果能用动态规划就尽量用动规,不用贪心算法
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
思路:动态规划
-
state: f(x, y) 从起点走到 (x, y) 的最短路径
-
function: f(x, y) = min(f(x - 1, y), f(x, y - 1]) + A(x, y)
-
intialize: f(0, 0) = A(0, 0)、f(i, 0) = sum(0,0 -> i,0)、 f(0, i) = sum(0,0 -> 0,i)
-
answer: f(n - 1, m - 1)
-
2D DP -> 1D DP
class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
dp = [0] * n
dp[0] = grid[0][0]
for i in range(1, n):
dp[i] = dp[i-1] + grid[0][i]
for i in range(1, m):
dp[0] += grid[i][0]
for j in range(1, n):
dp[j] = grid[i][j] + min(dp[j-1], dp[j])
return dp[-1]
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。 问总共有多少条不同的路径?
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
if m < n:
m, n = n, m
dp = [1] * n
for i in range(1, m):
for j in range(1, n):
dp[j] += dp[j - 1]
return dp[-1]
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。 问总共有多少条不同的路径? 现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
class Solution:
def uniquePathsWithObstacles(self, G: List[List[int]]) -> int:
m, n = len(G), len(G[0])
dp = [1] if G[0][0] == 0 else [0]
for i in range(1, n):
new = dp[i-1] if G[0][i] == 0 else 0
dp.append(new)
for i in range(1, m):
dp[0] = 0 if G[i][0] == 1 else dp[0]
for j in range(1, n):
dp[j] = dp[j-1] + dp[j] if G[i][j] == 0 else 0
return dp[-1]
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
class Solution:
def climbStairs(self, n: int) -> int:
if n < 2: return n
step1, step2 = 2, 1
for _ in range(n - 2):
step1, step2 = step1 + step2, step1
return step1
给定一个非负整数数组,你最初位于数组的第一个位置。 数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个位置。
解法:直接DP无法得到O(n)的解,考虑间接DP
- tail to head
class Solution:
def canJump(self, nums: List[int]) -> bool:
left = len(nums) - 1 # most left index that can reach the last index
for i in range(len(nums) - 2, -1, -1):
left = i if i + nums[i] >= left else left # DP
return left == 0
- head to tail
class Solution:
def canJump(self, nums: List[int]) -> bool:
max_pos = nums[0] # furthest index can reach
for i in range(1, len(nums)):
if max_pos < i:
return False
max_pos = max(max_pos, i + nums[i]) # DP
return True
给定一个非负整数数组,你最初位于数组的第一个位置。 数组中的每个元素代表你在该位置可以跳跃的最大长度。 你的目标是使用最少的跳跃次数到达数组的最后一个位置。
class Solution:
def jump(self, nums: List[int]) -> int:
cur_max = 0
step_max = 0
step = 0
for i in range(len(nums)):
if cur_max < i: # can't reach i, don't have to consider in this problem
return float('inf')
if step_max < i: # can't reach i in current number of steps
step += 1
step_max = cur_max
cur_max = max(cur_max, i + nums[i]) # DP
return min_step
给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。 返回符合要求的最少分割次数。
- Why is hard
仅目标DP, 判断回文时间复杂度高 -> 目标DP + 回文二维DP, 回文DP空间复杂度高 -> 一点trick, 回文DP空间复杂度降为线性
class Solution:
def minCut(self, s: str) -> int:
dp_min = [0] * len(s)
dp_pal = [True] * len(s)
def isPal(i, j):
dp_pal[i] = (s[i] == s[j] and dp_pal[i+1])
return dp_pal[i]
for j in range(1, len(s)):
min_cut = dp_min[j - 1] + 1
if isPal(0, j):
min_cut = 0
for i in range(1, j):
if isPal(i, j):
min_cut = min(min_cut, dp_min[i - 1] + 1)
dp_min[j] = min_cut
return dp_min[-1]
给定一个无序的整数数组,找到其中最长上升子序列的长度。
- DP(i) 等于以第i个数结尾的最长上升子序列的长度,容易想但不是最优
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if len(nums) == 0: return 0
dp_max = [1] * len(nums)
for j in range(1, len(nums)):
for i in range(j):
if nums[j] > nums[i]:
dp_max[j] = max(dp_max[j], dp_max[i] + 1)
return max(dp_max)
- 最优算法使用 greedy + binary search,比较tricky
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if len(nums) == 0: return 0
seq = [nums[0]]
for i in range(1, len(nums)):
ins = bisect.bisect_left(seq, nums[i])
if ins == len(seq):
seq.append(nums[i])
else:
seq[ins] = nums[i]
return len(seq)
给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。
class Solution:
def wordBreak(self, s: str, wordDict: List[str]) -> bool:
dp = [False] * (len(s) + 1)
dp[-1] = True
for j in range(len(s)):
for i in range(j+1):
if dp[i - 1] and s[i:j+1] in wordDict:
dp[j] = True
break
return dp[len(s) - 1]
小结
常见处理方式是给 0 位置占位,这样处理问题时一视同仁,初始化则在原来基础上 length+1,返回结果 f[n]
- 状态可以为前 i 个
- 初始化 length+1
- 取值 index=i-1
- 返回值:f[n]或者 f[m][n]
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列。 一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。 例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。
- 二维DP若只与当前行和上一行有关,可将空间复杂度降到线性
class Solution:
def longestCommonSubsequence(self, t1: str, t2: str) -> int:
if t1 == '' or t2 == '':
return 0
if len(t1) < len(t2):
t1, t2 = t2, t1
dp = [int(t2[0] == t1[0])] * len(t2) # previous row
dp_new = [0] * len(t2) # current row
for j in range(1, len(t2)):
dp[j] = 1 if t2[j] == t1[0] else dp[j - 1]
for i in range(1, len(t1)):
dp_new[0] = 1 if dp[0] == 1 or t2[0] == t1[i] else 0
for j in range(1, len(t2)):
if t2[j] != t1[i]:
dp_new[j] = max(dp[j], dp_new[j - 1])
else:
dp_new[j] = dp[j - 1] + 1
dp, dp_new = dp_new, dp
return dp[-1]
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符
思路:和上题很类似,相等则不需要操作,否则取删除、插入、替换最小操作次数的值+1
class Solution:
def minDistance(self, w1: str, w2: str) -> int:
if w1 == '': return len(w2)
if w2 == '': return len(w1)
m, n = len(w1), len(w2)
if m < n:
w1, w2, m, n = w2, w1, n, m
dp = [int(w1[0] != w2[0])] * n
dp_new = [0] * n
for j in range(1, n):
dp[j] = dp[j - 1] + int(w2[j] != w1[0] or dp[j - 1] != j)
for i in range(1, m):
dp_new[0] = dp[0] + int(w2[0] != w1[i] or dp[0] != i)
for j in range(1, n):
dp_new[j] = min(dp[j - 1] + int(w2[j] != w1[i]), dp[j] + 1, dp_new[j - 1] + 1)
dp, dp_new = dp_new, dp
return dp[-1]
说明
另外一种做法:MAXLEN(a,b)-LCS(a,b)
给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。
思路:和其他 DP 不太一样,i 表示钱或者容量
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
dp = [0] * (amount + 1)
for i in range(1, len(dp)):
dp[i] = float('inf')
for coin in coins:
if i >= coin and dp[i - coin] + 1 < dp[i]:
dp[i] = dp[i - coin] + 1
return -1 if dp[amount] == float('inf') else dp[amount]
在 n 个物品中挑选若干物品装入背包,最多能装多满?假设背包的大小为 m,每个物品的大小为 A[i]
class Solution:
def backPack(self, m, A):
n = len(A)
dp = [0] * (m + 1)
dp_new = [0] * (m + 1)
for i in range(n):
for j in range(1, m + 1):
use_Ai = 0 if j - A[i] < 0 else dp[j - A[i]] + A[i]
dp_new[j] = max(dp[j], use_Ai)
dp, dp_new = dp_new, dp
return dp[-1]
有
n
个物品和一个大小为m
的背包. 给定数组A
表示每个物品的大小和数组V
表示每个物品的价值. 问最多能装入背包的总价值是多大?
思路:dp(i, j) 为前 i 个物品,装入 j 背包的最大价值
class Solution:
def backPackII(self, m, A, V):
n = len(A)
dp = [0] * (m + 1)
dp_new = [0] * (m + 1)
for i in range(n):
for j in range(1, m + 1):
use_Ai = 0 if j - A[i] < 0 else dp[j - A[i]] + V[i] # previous problem is a special case of this problem that V(i) = A(i)
dp_new[j] = max(dp[j], use_Ai)
dp, dp_new = dp_new, dp
return dp[-1]
最大乘积子串
处理负数情况稍微有点复杂,注意需要同时 DP 正数乘积和负数乘积
class Solution:
def maxProduct(self, nums: List[int]) -> int:
max_product = float('-inf')
dp_pos, dp_neg = 0, 0
for num in nums:
if num > 0:
dp_pos, dp_neg = max(num, num * dp_pos), dp_neg * num
else:
dp_pos, dp_neg = dp_neg * num, min(num, dp_pos * num)
if dp_pos != 0:
max_product = max(max_product, dp_pos)
elif dp_neg != 0:
max_product = max(max_product, dp_neg)
else:
max_product = max(max_product, 0)
return max_product
1 到 26 分别对应 a 到 z,给定输入数字串,问总共有多少种译码方法
常规 DP 题,注意处理edge case即可
class Solution:
def numDecodings(self, s: str) -> int:
def valid_2(i):
if i < 1:
return 0
num = int(s[i-1:i+1])
return int(num > 9 and num < 27)
dp_1, dp_2 = 1, 0
for i in range(len(s)):
dp_1, dp_2 = dp_1 * int(s[i] != '0') + dp_2 * valid_2(i), dp_1
return dp_1
给定股票每天的价格,每天可以买入卖出,买入后必须卖出才可以进行下一次购买,卖出后一天不可以购买,问可以获得的最大利润
经典的维特比译码类问题,找到状态空间和状态转移关系即可
class Solution:
def maxProfit(self, prices: List[int]) -> int:
buy, buy_then_nothing, sell, sell_then_nothing = float('-inf'), float('-inf'), float('-inf'), 0
for p in prices:
buy, buy_then_nothing, sell, sell_then_nothing = sell_then_nothing - p, max(buy, buy_then_nothing), max(buy, buy_then_nothing) + p, max(sell, sell_then_nothing)
return max(buy, buy_then_nothing, sell, sell_then_nothing)
给定字符串和可选的单词列表,求字符串所有的分割方式
思路:此题 DP 解法容易想但并不是好做法,因为和 word-break 不同,此题需要返回所有可行分割而不是找到一组就可以。这里使用 个人推荐 backtrack with memoization。
class Solution:
def wordBreak(self, s: str, wordDict: List[str]) -> List[str]:
n = len(s)
result = []
mem = collections.defaultdict(list)
wordDict = set(wordDict)
def backtrack(first=0, route=[]):
if first == n:
result.append(' '.join(route))
return True
if first not in mem:
for next_first in range(first + 1, n + 1):
if s[first:next_first] in wordDict:
route.append(s[first:next_first])
if backtrack(next_first, route):
mem[first].append(next_first)
route.pop()
if len(mem[first]) > 0:
return True
elif len(mem[first]) > 0:
for next_first in mem[first]:
route.append(s[first:next_first])
backtrack(next_first)
route.pop()
return True
return False
backtrack()
return result
n 个气球排成一行,每个气球上有一个分数,每次戳爆一个气球得分为该气球分数和相邻两气球分数的乘积,求最大得分
此题主要难点是构造 DP 的状态,过程为逆着气球戳爆的顺序
class Solution:
def maxCoins(self, nums: List[int]) -> int:
n = len(nums)
nums.append(1)
dp = [[0] * (n + 1) for _ in range(n + 1)]
for dist in range(2, n + 2):
for left in range(-1, n - dist + 1):
right = left + dist
max_coin = float('-inf')
left_right = nums[left] * nums[right]
for j in range(left + 1, right):
max_coin = max(max_coin, left_right * nums[j] + dp[left][j] + dp[j][right])
dp[left][right] = max_coin
nums.pop()
return dp[-1][n]
Matrix DP (10%)
Sequence (40%)
- climbing-stairs
- jump-game
- jump-game-ii
- palindrome-partitioning-ii
- longest-increasing-subsequence
- word-break
Two Sequences DP (40%)
Backpack & Coin Change (10%)