-
Notifications
You must be signed in to change notification settings - Fork 4
/
test.py
117 lines (93 loc) · 4.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import argparse
import os
import pathlib
import random
import SimpleITK as sitk
import numpy as np
import torch
import torch.optim
import torch.utils.data
from monai.transforms import (
AsDiscrete
)
from torch.cuda.amp import autocast
import model
from dataset.batch_utils import pad_batch1_to_compatible_size
from dataset.brats import get_datasets_val
from model import get_norm_layer
from utils import reload_ckpt_bis, count_parameters
parser = argparse.ArgumentParser(description='Brats validation and testing dataset inference')
parser.add_argument('-a', '--arch', metavar='ARCH', default='Unet', help='model architecture (default: Unet)')
parser.add_argument('--norm_layer', default='group')
parser.add_argument('--dropout', type=float, help="amount of dropout to use", default=0.)
parser.add_argument('--width', default=48, help='base number of features for Unet (x2 per downsampling)', type=int)
parser.add_argument('--fold', default=0, type=int, help="Split number (0 to 4)")
parser.add_argument('-j', '--workers', default=1, type=int, metavar='N',
help='number of data loading workers (default: 2).')
parser.add_argument('--devices', default='0', type=str, help='Set the CUDA_VISIBLE_DEVICES env var from this string')
parser.add_argument('--on', default="val", choices=["val", "train", "test"])
parser.add_argument('--tta', action="store_true")
parser.add_argument('--seed', default=16111990)
def generate_segmentations(data_loader, model, args):
metrics_list = []
model = model.cuda()
for i, batch in enumerate(data_loader):
# measure data loading time
inputs = batch["image"][0]
patient_id = batch["patient_id"][0]
ref_path = batch["seg_path"][0]
crops_idx = batch["crop_indexes"]
inputs, pads = pad_batch1_to_compatible_size(inputs)
inputs = inputs.cuda()
ref_seg_img = sitk.ReadImage(ref_path)
ref_seg = sitk.GetArrayFromImage(ref_seg_img)
with autocast():
with torch.no_grad():
pre_segs = model(inputs)
pre_segs = torch.sigmoid(pre_segs)
# remove pads
maxz, maxy, maxx = pre_segs.size(2) - pads[0], pre_segs.size(3) - pads[1], pre_segs.size(4) - pads[2]
pre_segs = pre_segs[:, :, 0:maxz, 0:maxy, 0:maxx].cpu()
segs = torch.zeros((1, 3, ref_seg.shape[0], ref_seg.shape[1], ref_seg.shape[2]))
segs[0, :, slice(*crops_idx[0]), slice(*crops_idx[1]), slice(*crops_idx[2])] = pre_segs[0]
segs = segs[0].numpy() > 0.5
et = segs[0]
net = np.logical_and(segs[1], np.logical_not(et))
ed = np.logical_and(segs[2], np.logical_not(segs[1]))
labelmap = np.zeros(segs[0].shape)
labelmap[et] = 4
labelmap[net] = 1
labelmap[ed] = 2
labelmap = labelmap.astype(np.uint8)
labelmap = sitk.GetImageFromArray(labelmap)
ref_seg_img = sitk.ReadImage(ref_path)
labelmap.CopyInformation(ref_seg_img)
print(f"Writing {args.seg_folder}/{patient_id}.nii.gz")
sitk.WriteImage(labelmap, f"{args.seg_folder}/{patient_id}.nii.gz")
def main(args):
# setup
random.seed(args.seed)
ngpus = torch.cuda.device_count()
if ngpus == 0:
raise RuntimeWarning("This will not be able to run on CPU only")
print(f"Working with {ngpus} GPUs")
# Give the folder path of best model
args.exp_name = "brats_2021"
args.save_folder = pathlib.Path(f"./runs/{args.exp_name}/model_1")
args.seg_folder = args.save_folder / "segs"
args.seg_folder.mkdir(parents=True, exist_ok=True)
# Create model
model_maker = getattr(model, args.arch)
model_1 = model_maker(
4, 3,
width=args.width, norm_layer=get_norm_layer(args.norm_layer), dropout=args.dropout)
print(f"total number of trainable parameters {count_parameters(model_1)}")
bench_dataset = get_datasets_val()
bench_loader = torch.utils.data.DataLoader(bench_dataset, batch_size=1, num_workers=args.workers)
print("Bench Test dataset number of batch:", len(bench_loader))
reload_ckpt_bis(f'{str(args.save_folder)}/model_best.pth.tar', model_1)
generate_segmentations(bench_loader, model_1, args)
if __name__ == '__main__':
arguments = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = arguments.devices
main(arguments)