-
Notifications
You must be signed in to change notification settings - Fork 36
/
UMAT_Plastic_Kinematic.for
237 lines (207 loc) · 6.8 KB
/
UMAT_Plastic_Kinematic.for
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
C ABAQUS Subroutine for Plasticity with Kinematic Hardening
C routine is written for linear hardening because the classical
C Prager-Ziegler theory is limited to this case
C
C More infos at:
C https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-hardening.htm
C---------------------------------------------------------------------------------------
C Start of Base code, DO NOT change
C---------------------------------------------------------------------------------------
SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
1 RPL,DDSDDT,DRPLDE,DRPLDT,
2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,
3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,
4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC)
C
INCLUDE 'ABA_PARAM.INC'
C
CHARACTER*80 CMNAME
DIMENSION STRESS(NTENS),STATEV(NSTATV),
1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),
2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),
3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3),
4 JSTEP(4)
C---------------------------------------------------------------------------------------
C End of Base code
C---------------------------------------------------------------------------------------
C---------------------------------------------------------------------------------------
C Start of USER code
C---------------------------------------------------------------------------------------
C LOCAL ARRAYS
C ----------------------------------------------------------------
C EELAS - ELASTIC STRAINS
C EPLAS - PLASTIC STRAINS
C ALPHA - SHIFT TENSOR
C FLOW - PLASTIC FLOW DIRECTIONS
C OLDS - STRESS AT START OF INCREMENT
C OLDPL - PLASTIC STRAINS AT START OF INCREMENT
C
DIMENSION EELAS(6), EPLAS(6), ALPHA(6), FLOW(6), OLDS(6), OLDPL(6)
C
PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, SIX=6.D0, ENUMAX=.4999D0, TOLER=1.0D-6)
C
C ----------------------------------------------------------------
C UMAT FOR ISOTROPIC ELASTICITY AND MISES PLASTICITY
C WITH KINEMATIC HARDENING - CANNOT BE USED FOR PLANE STRESS
C ----------------------------------------------------------------
C PROPS(1) - E = Elasticity Modulus
C PROPS(2) - NU = Poisson's Ratio
C PROPS(3) - SYIELD = Yield Stress
C PROPS(4) - HARD = Hardening Modulus
C ----------------------------------------------------------------
C
C ELASTIC PROPERTIES
C
EMOD=PROPS(1)
ENU=MIN(PROPS(2), ENUMAX)
EBULK3=EMOD/(ONE-TWO*ENU)
EG2=EMOD/(ONE+ENU)
C Lamé parameter 2 - EG - Shear Modulus
EG=EG2/TWO
EG3=THREE*EG
C Lamé parameter 1 - ELAM
ELAM=(EBULK3-EG2)/THREE
C
C ELASTIC STIFFNESS
C
C DDSDDE(NTENS,NTENS) - Jacobian matrix of the constitutive model
C NTENS - Size of the stress or strain component array (NDI + NSHR).
C NDI - Number of direct stress components at this point.
C
DO K1=1, NDI
DO K2=1, NDI
DDSDDE(K2, K1)=ELAM
END DO
DDSDDE(K1, K1)=EG2+ELAM
END DO
DO K1=NDI+1, NTENS
DDSDDE(K1, K1)=EG
END DO
C
C RECOVER ELASTIC STRAIN, PLASTIC STRAIN AND SHIFT TENSOR AND ROTATE
C NOTE: USE CODE 1 FOR (TENSOR) STRESS, CODE 2 FOR (ENGINEERING) STRAIN
C
C Calls Function ROTSIG
C
C EELAS - ELASTIC STRAINS
C EPLAS - PLASTIC STRAINS
C ALPHA - SHIFT TENSOR
C NSHR - Number of engineering shear stress components at this point.
C
CALL ROTSIG(STATEV( 1), DROT, EELAS, 2, NDI, NSHR)
CALL ROTSIG(STATEV( NTENS+1), DROT, EPLAS, 2, NDI, NSHR)
CALL ROTSIG(STATEV(2*NTENS+1), DROT, ALPHA, 1, NDI, NSHR)
C
C SAVE STRESS AND PLASTIC STRAINS AND
C CALCULATE PREDICTOR STRESS AND ELASTIC STRAIN
C
C OLDS - STRESS AT START OF INCREMENT
C OLDPL - PLASTIC STRAINS AT START OF INCREMENT
C DSTRAN(NTENS) - Array of strain increments.
C STRESS(NTENS) - This array is passed in as the stress tensor at the beginning of the increment and must be updated
C in this routine to be the stress tensor at the end of the increment.
DO K1=1, NTENS
OLDS(K1)=STRESS(K1)
OLDPL(K1)=EPLAS(K1)
EELAS(K1)=EELAS(K1)+DSTRAN(K1)
DO K2=1, NTENS
STRESS(K2)=STRESS(K2)+DDSDDE(K2, K1)*DSTRAN(K1)
END DO
END DO
C
C CALCULATE EQUIVALENT VON MISES STRESS (Elastic Predictor)
C
SMISES=(STRESS(1)-ALPHA(1)-STRESS(2)+ALPHA(2))**2+(STRESS(2)-ALPHA(2)-STRESS(3)+ALPHA(3))**2+(STRESS(3)-ALPHA(3)-STRESS(1)+ALPHA(1))**2
DO K1=NDI+1,NTENS
SMISES=SMISES+SIX*(STRESS(K1)-ALPHA(K1))**2
END DO
SMISES=SQRT(SMISES/TWO)
C
C GET YIELD STRESS AND HARDENING MODULUS
C
SYIELD=PROPS(3)
HARD=PROPS(4)
C
C DETERMINE IF ACTIVELY YIELDING
C Plastic flow occurs if the elastic predictor is larger than the yield stress !
C
IF(SMISES.GT.(ONE+TOLER)*SYIELD) THEN
C
C ACTIVELY YIELDING
C SEPARATE THE HYDROSTATIC FROM THE DEVIATORIC STRESS
C CALCULATE THE FLOW DIRECTION
C
C FLOW - PLASTIC FLOW DIRECTIONS
SHYDRO=(STRESS(1)+STRESS(2)+STRESS(3))/THREE
DO K1=1,NDI
FLOW(K1)=(STRESS(K1)-ALPHA(K1)-SHYDRO)/SMISES
END DO
DO K1=NDI+1,NTENS
FLOW(K1)=(STRESS(K1)-ALPHA(K1))/SMISES
END DO
C
C SOLVE FOR EQUIVALENT PLASTIC STRAIN INCREMENT
C
DEQPL=(SMISES-SYIELD)/(EG3+HARD)
C
C UPDATE SHIFT TENSOR, ELASTIC AND PLASTIC STRAINS AND STRESS
C
C EELAS - ELASTIC STRAINS
C EPLAS - PLASTIC STRAINS
C ALPHA - SHIFT TENSOR
C FLOW - PLASTIC FLOW DIRECTIONS
DO K1=1,NDI
ALPHA(K1)=ALPHA(K1)+HARD*FLOW(K1)*DEQPL
EPLAS(K1)=EPLAS(K1)+THREE/TWO*FLOW(K1)*DEQPL
EELAS(K1)=EELAS(K1)-THREE/TWO*FLOW(K1)*DEQPL
STRESS(K1)=ALPHA(K1)+FLOW(K1)*SYIELD+SHYDRO
END DO
DO K1=NDI+1,NTENS
ALPHA(K1)=ALPHA(K1)+HARD*FLOW(K1)*DEQPL
EPLAS(K1)=EPLAS(K1)+THREE*FLOW(K1)*DEQPL
EELAS(K1)=EELAS(K1)-THREE*FLOW(K1)*DEQPL
STRESS(K1)=ALPHA(K1)+FLOW(K1)*SYIELD
END DO
C
C CALCULATE PLASTIC DISSIPATION
C
SPD=ZERO
DO K1=1,NTENS
SPD=SPD+(STRESS(K1)+OLDS(K1))*(EPLAS(K1)-OLDPL(K1))/TWO
END DO
C
C FORMULATE THE JACOBIAN (MATERIAL TANGENT)
C FIRST CALCULATE EFFECTIVE MODULI
C
EFFG=EG*(SYIELD+HARD*DEQPL)/SMISES
EFFG2=TWO*EFFG
EFFG3=THREE*EFFG
EFFLAM=(EBULK3-EFFG2)/THREE
EFFHRD=EG3*HARD/(EG3+HARD)-EFFG3
DO K1=1, NDI
DO K2=1, NDI
DDSDDE(K2, K1)=EFFLAM
END DO
DDSDDE(K1, K1)=EFFG2+EFFLAM
END DO
DO K1=NDI+1, NTENS
DDSDDE(K1, K1)=EFFG
END DO
DO K1=1, NTENS
DO K2=1, NTENS
DDSDDE(K2, K1)=DDSDDE(K2, K1)+EFFHRD*FLOW(K2)*FLOW(K1)
END DO
END DO
ENDIF
C
C STORE ELASTIC STRAINS, PLASTIC STRAINS AND SHIFT TENSOR
C IN STATE VARIABLE ARRAY
C
DO K1=1,NTENS
STATEV(K1)=EELAS(K1)
STATEV(K1+NTENS)=EPLAS(K1)
STATEV(K1+2*NTENS)=ALPHA(K1)
END DO
C
RETURN
END