-
Notifications
You must be signed in to change notification settings - Fork 0
/
pn_plot_tl270u.py
206 lines (180 loc) · 8.47 KB
/
pn_plot_tl270u.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
from scipy.interpolate import interp1d
from scipy import optimize
import os.path
import re, os, logging
my_circuit = "cmos_60G_tl270u"
do_show_all =False
# annotate_vdd = True
annotate_vdd = False
plot_sim = False
fig_style = {"figsize":(3.3914487339144874, 2.0960305886619515*0.8)}
# style_sim = {"linestyle":"--", "color":"grey", "marker":"None", "label":"simulation"} # for plot
pn_dir = "/home/zoltan/ccn/Measurements/MPW2215_VCO/Phase_noise/"
pn_sim_dir = "/home/zoltan/ccn/Measurements/MPW2215_VCO/sim/"
re_pn = re.compile("(?P<circuit>.*)_vtune(?P<vtune>[0-9]+(.[0-9]+)?)V_vdd(?P<vdd>[0-9]p[0-9])V_ib(?P<ib>[0-9]+)mA_(?P<note>.*)")
logger = logging.getLogger("pn_plot")
logger.setLevel(logging.DEBUG)
# create console handler and set level to debug
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
# create formatter
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# add formatter to ch
ch.setFormatter(formatter)
# add ch to logger
logger.addHandler(ch)
# vcsv_cols is used to select the columns corresponding to the different supply voltages. It was easier than writing a parser, because the name of the vcsv columns might be changed by hand --> the universal formula has to handle different ways of defining the VDD.
d_sim = { 'f_sim' : 'cmos_tl270u_pn_all_supply_20200419.vcsv',
'vcsv_cols' : {'1p0':7,'1p2':5,'1p4':3,'1p6':1}
}
d_color = { '1p0': '#0037ff', # blue
'1p6': '#ff7300' # its complementary color: orange
}
d_txt_offset = { '1p0': (-0,5),
'1p6': (-0.8,-8)
}
latex=True
if latex:
matplotlib.use('pgf')
pgf_with_custom_preamble = {
"font.family": "serif", # use serif/main font for text elements
"text.usetex": True, # use inline math for ticks
"pgf.rcfonts": False, # don't setup fonts from rc parameters
# Use 10pt font in plots, to match 10pt font in document
# "axes.labelsize": 10,
"axes.labelsize": 8,
"axes.grid" :True,
"font.size": 10,
# Make the legend/label fonts a little smaller
"legend.fontsize": 8,
"legend.title_fontsize": 8,
"xtick.labelsize": 8,
"ytick.labelsize": 8,
"xtick.direction":"in",
"ytick.direction":"in",
"xtick.major.size":1.5,
"ytick.major.size":1.5,
"savefig.pad_inches":0,
"savefig.bbox":"tight",
"savefig.dpi":600,
'lines.markersize':4,
"pgf.texsystem": "lualatex",
"pgf.preamble": [
"\\usepackage{siunitx}",
"\\usepackage{amsmath}",
"\\usepackage{metalogo}",
"\\usepackage{unicode-math}", # unicode math setup
r"\DeclareSIUnit{\dBc}{dBc}",
r"\DeclareSIUnit[per-mode=symbol]{\dBcHz}{\dBc\per\Hz}",
r"\newcommand{\da}{\textsuperscript{$\dagger$}}"
# r"\setmathfont{xits-math.otf}",
# r"\setmainfont{DejaVu Serif}", # serif font via preamble
]
}
matplotlib.rcParams.update(pgf_with_custom_preamble)
matplotlib.rcParams['axes.unicode_minus'] = False
# building list of available measurement results
l_vdd = []
for i in os.listdir(pn_dir):
m = re_pn.match(i)
if m:
circuit = m.group("circuit")
if circuit == my_circuit:
vdd = m.group("vdd")
if vdd not in l_vdd:
l_vdd.append(vdd)
logger.info('Available measurement results: ' + ", ".join(l_vdd))
l_vdd_sim = [ i.replace('.','p') for i in d_sim.get('vcsv_cols').keys()]
fig, ax = plt.subplots(**fig_style)
for my_vdd in set().union(l_vdd, l_vdd_sim).intersection(d_color.keys()):
# plotting the sim
logger.info("VDD=" + my_vdd + " is being processed")
if my_vdd in l_vdd_sim and plot_sim: # and False:
d_sim_vdd = d_sim.get(my_circuit)
logger.debug(f"d_sim_vdd: f{d_sim_vdd}")
my_cols = [0]
my_cols.append( d_sim_vdd.get('vcsv_cols').get(my_vdd) )
logger.debug(f"VDD={my_vdd};\tUsed csv columns: {my_cols}")
df_sim = pd.read_csv(pn_sim_dir + d_sim_vdd.get('f_sim'), header=None, skiprows=6, dtype=np.float64, usecols=my_cols, names=['f','pn'])
logger.info(f"Adding simulation: {pn_sim_dir + d_sim_vdd.get('f_sim')}")
df_sim.f *= 1e-6
ax.plot(df_sim.f, df_sim.pn, **style_sim)
# x,pn10 = df_sim[df_sim.f==10].values[0]
# ax.text(x-7.5,pn10-10,"$\SI{%.0f}{\dBcHz}$" % pn10, fontsize=7, color=style_sim.get("color"))
# ax.scatter(x,pn10, marker='o',color=style_sim.get("color"),s=20)
func = interp1d(df_sim.f, df_sim.pn, kind='cubic')
x,pn1 = 1,func(1)
# x,pn1 = df_sim[df_sim.f==1].values[0]
ax.text(x-0.73,pn1-9,"$\SI{%.1f}{\dBcHz}" % pn1, fontsize=7, color=style_sim.get("color"))
ax.scatter(x,pn1, marker='o',color=style_sim.get("color"),s=20)
if annotate_vdd:
ax.annotate(r"\SI{"+my_vdd.replace('p','.')+r"}{\volt}", xycoords="axes fraction", xy=(0.1,0.1), fontsize=7)
ax.annotate(my_circuit, xycoords="axes fraction", xy=(0.1,0.9), fontsize=7)
if my_vdd in l_vdd: # and my_vdd == "0p8":
df_avg = pd.DataFrame()
l_df = []
for i in os.listdir(pn_dir):
m = re_pn.match(i)
if m:
# logger.debug("Matching file name: %s" % i)
circuit = m.group("circuit")
if circuit == my_circuit:
# logger.debug(f"{circuit} in {i}")
vtune = m.group("vtune")
vdd = m.group("vdd")
ib = m.group("ib")
if "_sf" in circuit:
ibuf = m.group("ibuf")
note = m.group("note")
file_basename = pn_dir + "%s_%sV_%sV_%smA_pn" % (my_circuit, my_vdd, vtune, ib)
if vdd == my_vdd:
f_csv = pn_dir + i
# logger.info(f"Processing file {f_csv}")
df = pd.read_csv(f_csv, skiprows=77, names=['f','pn'], delimiter=";", dtype=np.float64, header=None, usecols=[0,1], index_col=False )
df['f'] *= 1e-6
l_df.append(df)
if do_show_all:
df.plot(x='f', y='pn', logx=True, grid=True, ax=ax, label=note, color=d_color.get(my_vdd))
else:
# df.plot(x='f', y='pn', logx=True, grid=True, ax=ax, kind='scatter', alpha=0.005, color="k")
ax.plot(df.f, df.pn, alpha=0.05, color=d_color.get(my_vdd))
x,pn10 = df[df.f==10].values[0]
x,pn1 = df[df.f==1].values[0]
logger.debug(f"{os.path.basename(i)}\t%.1f %.1f" % (pn1, pn10))
if annotate_vdd:
ax.annotate(r"\SI{" + my_vdd.replace('p','.') +r"}{\volt}", xycoords="axes fraction", xy=(0.1,0.1), fontsize=7)
ax.annotate(my_circuit, xycoords="axes fraction", xy=(0.1,0.9), fontsize=7)
if not do_show_all:
df_avg = pd.concat(l_df).groupby(level=0).mean().sort_values(by=['f'])
df_avg.to_csv(file_basename + ".csv", index=False )
ax.plot(df_avg.f, df_avg.pn, color=d_color.get(my_vdd), label=r'\SI{' +my_vdd.replace("p",".") + r'}{\volt}' )
func = interp1d(df_avg.f, df_avg.pn, kind='cubic')
x,pn1 = 1,func(1)
off = d_txt_offset.get(my_vdd)
ax.text(x+off[0], pn1+off[1],"$\SI{%.1f}{\dBcHz}" % pn1, fontsize=7, color=d_color.get(my_vdd))
ax.scatter(x,pn1, marker='o',color=d_color.get(my_vdd),s=20)
ax.set_xlabel(r"$\Delta f \left[\si{\MHz}\right]",labelpad=0)
ax.set_ylabel(r"$\mathcal{L}(f_0) \left[\si{\dBcHz} \right]$",labelpad=1)
ax.set_xscale("log")
ax.grid(which='major', alpha=0.5)
ax.grid(which='minor', alpha=0.2)
ax.legend(frameon=False) #, title=r"V\textsubscript{DD}" )
ax.xaxis.set_major_formatter(matplotlib.ticker.StrMethodFormatter('{x:n}'))
ax.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(10))
ax.set_xlim(0.1,100)
ax.set_ylim(-130,-50)
if do_show_all:
ax.legend()
suffix = "_all"
else:
suffix = ""
for ext in [".pgf",".png"]:
# for ext in [".png"]:
file_basename = pn_dir + "%s_pn" % (my_circuit)
fig.savefig(file_basename + suffix + ext)
if not latex:
plt.show()