-
Notifications
You must be signed in to change notification settings - Fork 10
/
converter.py
301 lines (267 loc) · 12.3 KB
/
converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
'''
Convert root files to pyTables.
@author: hqu
'''
from __future__ import print_function
import os
import traceback
import time
import argparse
import numpy as np
import numexpr as ne
import math
import logging
from helper import xrd, pad_sequences
import tables
filters = tables.Filters(complevel=7, complib='blosc')
tables.set_blosc_max_threads(6)
def _write_carray(a, h5file, name, group_path='/', **kwargs):
h5file.create_carray(group_path, name, obj=a, filters=filters, createparents=True, **kwargs)
def _make_labels(md, rec, h5file, name='label'):
label = np.stack([rec[v] for v in md.label_branches], axis=1)
_write_carray(label, h5file, name=name, title=','.join(md.label_branches))
def _make_weight(md, rec, h5file, name='weight'):
wgt = np.ones(rec.shape[0], dtype=np.float32)
if md.reweight_method == 'none':
pass
else:
for label in md.reweight_classes:
info = md.reweight_info[label]
loc = rec[label] == 1
rwgt_x_vals = rec[md.reweight_var[0]][loc]
rwgt_y_vals = rec[md.reweight_var[1]][loc]
x_indices = np.clip(np.digitize(rwgt_x_vals, info['x_edges']) - 1, a_min=0, a_max=len(info['x_edges']) - 2)
y_indices = np.clip(np.digitize(rwgt_y_vals, info['y_edges']) - 1, a_min=0, a_max=len(info['y_edges']) - 2)
wgt[loc] = np.asarray(info['hist'])[x_indices, y_indices]
_write_carray(wgt, h5file, name)
def _make_class_weight(md, rec, h5file, name='class_weight'):
wgt = np.ones(rec.shape[0], dtype=np.float32)
if md.reweight_method == 'none':
pass
else:
for label in md.reweight_classes:
loc = rec[label][:] == 1
wgt[loc] = md.reweight_info[label]['class_wgt']
_write_carray(wgt, h5file, name)
def _transform_var(md, rec, h5file, cols, no_transform=False, pad_method='zero'):
var_groups = set()
for var in cols:
var = str(var) # get rid of unicode
if no_transform:
logging.debug('Writing variable orig_%s without transformation' % var)
_write_carray(rec[var], h5file, name='orig_%s' % var)
continue
logging.debug('Transforming variable %s' % var)
info = md.branches_info[var]
median = np.float32(info['median'])
if md.scale_method == 'upper':
scale = np.float32(info['upper'] - info['median'])
elif md.scale_method == 'lower':
scale = np.float32(info['median'] - info['lower'])
elif md.scale_method == 'average':
scale = 0.5 * np.float32(info['upper'] - info['lower'])
elif md.scale_method == 'max':
scale = np.float32(np.maximum(info['upper'] - info['median'], info['median'] - info['lower']))
if scale == 0:
scale = 1
if info['size'] and info['size'] > 1:
# create mask array
if '_' in var:
group_name = var.split('_')[0]
if group_name not in var_groups:
mask = [np.ones_like(x) for x in rec[var]]
mask = pad_sequences(mask, maxlen=info['size'], dtype='float32', padding='post', truncating='post', value=0)
_write_carray(mask, h5file, name=group_name + '_mask')
var_groups.add(group_name)
# for sequence-like vars, perform padding first
if pad_method == 'min':
pad_value = info['min'] - scale # ->min-1 ## FIXME: which is the better padding value
elif pad_method == 'max':
pad_value = info['max'] + scale # ->max+1 ## FIXME: which is the better padding value
elif pad_method == 'zero':
pad_value = info['median'] # ->0 ## FIXME: which is the better padding value
else:
raise NotImplemented('pad_method %s is not supported' % pad_method)
a = pad_sequences(rec[var], maxlen=info['size'], dtype='float32', padding='post', truncating='post', value=pad_value)
a = np.nan_to_num(a) # FIXME: protect against NaN
else:
a = rec[var].copy() # need to copy, otherwise modifying the original array
a = np.nan_to_num(a) # FIXME: protect against NaN
ne.evaluate('(a-median)/scale', out=a)
_write_carray(a, h5file, name=var)
def _make_var(md, ct):
pass
def _make_image(md, rec, h5file, output='img'):
wgt = rec[md.var_img]
x = rec[md.var_pos[0]]
y = rec[md.var_pos[1]]
img = np.zeros(shape=(len(wgt), md.n_pixels, md.n_pixels))
for i in range(len(wgt)):
hist2d, xedges, yedges = np.histogram2d(x[i], y[i], bins=[md.n_pixels, md.n_pixels], range=md.img_ranges, weights=wgt[i])
img[i] = hist2d
_write_carray(img, h5file, name=output)
def writeData(md, outputdir, jobid, batch_mode=False, test_sample=False, events=200000, dryrun=False):
''' Convert input files to a HDF file. '''
from root_numpy import root2array
def _write(rec, output):
logging.debug(log_prefix + 'Start making output file')
with tables.open_file(output, mode='w') as h5file:
_make_labels(md, rec, h5file)
logging.debug(log_prefix + 'Start producing weights')
_make_weight(md, rec, h5file)
_make_class_weight(md, rec, h5file)
logging.debug(log_prefix + 'Start transforming variables')
_transform_var(md, rec, h5file, md.var_no_transform_branches, no_transform=True)
_transform_var(md, rec, h5file, md.var_branches)
if md.var_img:
logging.debug(log_prefix + 'Start making images')
_make_image(md, rec, h5file, output='img')
log_prefix = '[%d] ' % jobid
outname = '{type}_file_{jobid}.h5'.format(type='test' if test_sample else 'train', jobid=jobid)
output = os.path.join(outputdir, outname)
if os.path.exists(output) and os.path.getsize(output) > 100 * 1024 * 1024:
# ignore if > 100M
logging.info(log_prefix + 'File %s already exist! Skipping.' % output)
return
frac = float(events) / sum(md.num_events)
use_branches = set(md.var_branches + md.var_no_transform_branches + md.label_branches + md.reweight_classes + md.reweight_var)
if md.var_img:
use_branches |= set([md.var_img] + md.var_pos)
# use_branches = [str(var) for var in use_branches]
logging.debug(log_prefix + 'Start loading from root files')
pieces = []
for fn, n in zip(md.inputfiles, md.num_events):
step = int(math.ceil(frac * n))
start = step * jobid
stop = start + step
if start >= n:
continue
filepath = xrd(fn) if batch_mode else fn
# logging.debug('Load events [%d, %d) from file %s' % (start, stop, filepath))
a = root2array(filepath, treename=md.treename, selection=md.selection, branches=use_branches, start=start, stop=stop)
pieces.append(a)
rec = np.concatenate(pieces)
if rec.shape[0] == 0:
return
if not test_sample:
# important: shuffle the array if not for testing
np.random.shuffle(rec)
if batch_mode:
if not dryrun:
_write(rec, outname)
logging.info(log_prefix + 'Writing output to: \n' + outname)
else:
output_tmp = output + '.tmp'
if not dryrun:
_write(rec, output_tmp)
os.rename(output_tmp, output)
logging.info(log_prefix + 'Writing output to: \n' + output)
logging.info(log_prefix + 'Done!')
def writeData_lowMem(md, outputdir, jobid, batch_mode=False, test_sample=False, events=200000, dryrun=False):
''' Convert input files to a HDF file. '''
from root_numpy import root2array
log_prefix = '[%d] ' % jobid
outname = '{type}_file_{jobid}.h5'.format(type='test' if test_sample else 'train', jobid=jobid)
output = os.path.join(outputdir, outname)
if os.path.exists(output) and os.path.getsize(output) > 100 * 1024 * 1024:
# ignore if > 100M
logging.info(log_prefix + 'File %s already exist! Skipping.' % output)
return
frac = float(events) / sum(md.num_events)
# use_branches = set(md.var_branches + md.var_no_transform_branches + md.label_branches + md.reweight_classes + md.reweight_var)
# if md.var_img:
# use_branches |= set([md.var_img] + md.var_pos)
logging.debug(log_prefix + 'Start loading from root files')
def _load_raw(branches):
pieces = []
for fn, n in zip(md.inputfiles, md.num_events):
step = int(math.ceil(frac * n))
start = step * jobid
stop = start + step
if start >= n:
continue
filepath = xrd(fn) if batch_mode else fn
# logging.debug('Load events [%d, %d) from file %s' % (start, stop, filepath))
trial = 0
while trial < 5:
try:
a = root2array(filepath, treename=md.treename, selection=md.selection, branches=branches, start=start, stop=stop)
break
except:
logging.error('Error reading %s:\n%s' % (filepath, traceback.format_exc()))
time.sleep(10)
trial += 1
if trial >= 5:
raise RuntimeError('Cannot read file %s' % filepath)
pieces.append(a)
rec = np.concatenate(pieces)
return rec
# first make the labels, weights, and no-transform vars
use_branches = set(md.var_no_transform_branches + md.label_branches + md.reweight_classes + md.reweight_var)
rec = _load_raw(use_branches)
if rec.shape[0] == 0:
return
if not test_sample:
# important: shuffle the array if not for testing
shuffle_indices = np.arange(rec.shape[0])
np.random.shuffle(shuffle_indices)
rec = rec[shuffle_indices]
def _load(branches):
a = _load_raw(branches)
if test_sample:
return a
else:
return a[shuffle_indices]
def _write(output):
logging.debug(log_prefix + 'Start making output file')
with tables.open_file(output, mode='w') as h5file:
_make_labels(md, rec, h5file)
logging.debug(log_prefix + 'Start producing weights')
_make_weight(md, rec, h5file)
_make_class_weight(md, rec, h5file)
logging.debug(log_prefix + 'Start writing observer variables')
_transform_var(md, rec, h5file, md.var_no_transform_branches, no_transform=True)
logging.debug(log_prefix + 'Start transforming variables')
for var in md.var_branches:
logging.debug(log_prefix + 'Transforming var: %s' % var)
a = _load([var])
_transform_var(md, a, h5file, [var])
if md.var_img:
logging.debug(log_prefix + 'Start making images')
a = _load([md.var_img] + md.var_pos)
_make_image(md, a, h5file, output='img')
if batch_mode:
if not dryrun:
_write(outname)
logging.info(log_prefix + 'Writing output to: \n' + outname)
else:
output_tmp = output + '.tmp'
if not dryrun:
_write(output_tmp)
os.rename(output_tmp, output)
logging.info(log_prefix + 'Writing output to: \n' + output)
logging.info(log_prefix + 'Done!')
def batch_write(args):
from metadata import Metadata
md = Metadata(None)
md.loadMetadata(args.metadata)
writeData(md, outputdir=args.outputdir, jobid=args.jobid, batch_mode=True,
test_sample=args.test_sample, events=args.events_per_file)
if __name__ == '__main__':
logging.basicConfig(level=logging.DEBUG, format='[%(asctime)s] %(levelname)s: %(message)s')
parser = argparse.ArgumentParser(description='Convert root files to PyTables.')
parser.add_argument('-m', '--metadata',
default='metadata.json',
help='Path to the metadata file. Default:%(default)s')
parser.add_argument('-n', '--events-per-file',
type=int, default=50000,
help='Number of events in each output file. Default: %(default)s'
)
parser.add_argument('--test-sample',
action='store_true', default=False,
help='Convert testing data instead of training/validation data. Default: %(default)s'
)
parser.add_argument('outputdir', help='Output directory for the metadata files.')
parser.add_argument('jobid', type=int, help='Index of the output job.')
args = parser.parse_args()
batch_write(args)