-
Notifications
You must be signed in to change notification settings - Fork 3
/
submitit_pretrain.py
154 lines (121 loc) · 5.15 KB
/
submitit_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# --------------------------------------------------------
# A script to run multinode training with submitit.
# --------------------------------------------------------
# Reference https://github.com/facebookresearch/mae
"""
python submitit_pretrain.py --arch main_vit_base \
--img_size 128 --patch_size 16 --in_chans 7 \
--batch_size 128 --epochs 500 --warmup_epochs 40 --stable_epoch 0 --blr 1.5e-4 --accum_iter 1 \
--mask_ratio 0.8 --mask_overlap_ratio 0.5 --last_k_blocks 6 --norm_pix_loss \
--data_path data_path \
--job_dir output_dir \
--code_dir code_base_dir \
--nodes 1 --ngpus 4
"""
import argparse
import os
import uuid
from pathlib import Path
import main_pretrain as trainer
import submitit
def parse_args():
trainer_parser = trainer.get_args_parser()
parser = argparse.ArgumentParser("Submitit for DAMA pretrain", parents=[trainer_parser])
parser.add_argument("--ngpus", default=8, type=int, help="Number of gpus to request on each node")
parser.add_argument("--nodes", default=1, type=int, help="Number of nodes to request")
parser.add_argument("--timeout", default=4320, type=int, help="Duration of the job")
parser.add_argument("--job_dir", default="", type=str, help="Job dir. Leave empty for automatic.")
parser.add_argument("--code_dir", default="", type=str, help="Copy code folder to job_dir")
parser.add_argument("--partition", default="batch", type=str, help="Partition where to submit")
parser.add_argument("--use_volta32", action='store_true', help="Request 32G V100 GPUs")
parser.add_argument('--comment', default="", type=str, help="Comment to pass to scheduler")
return parser.parse_args()
def get_shared_folder(tensordir) -> Path:
# user = os.getenv("USER")
if Path(tensordir).is_dir():
p = Path(tensordir)
p.mkdir(exist_ok=True)
return p
raise RuntimeError("No shared folder available")
def get_init_file(tensordir):
# Init file must not exist, but it's parent dir must exist.
os.makedirs(str(get_shared_folder(tensordir)), exist_ok=True)
init_file = get_shared_folder(tensordir) / f"{uuid.uuid4().hex}_init"
if init_file.exists():
os.remove(str(init_file))
return init_file
class Trainer(object):
def __init__(self, args):
self.args = args
def __call__(self):
import main_pretrain as trainer
self._setup_gpu_args()
trainer.main(self.args)
def checkpoint(self):
import os
import submitit
self.args.dist_url = get_init_file(args.job_dir).as_uri()
checkpoint_file = os.path.join(self.args.output_dir, "checkpoint.pth")
if os.path.exists(checkpoint_file):
self.args.resume = checkpoint_file
print("Requeuing ", self.args)
empty_trainer = type(self)(self.args)
return submitit.helpers.DelayedSubmission(empty_trainer)
def _setup_gpu_args(self):
import submitit
from pathlib import Path
job_env = submitit.JobEnvironment()
self.args.output_dir = Path(str(self.args.output_dir).replace("%j", str(job_env.job_id)))
self.args.log_dir = self.args.output_dir
self.args.gpu = job_env.local_rank
self.args.rank = job_env.global_rank
self.args.world_size = job_env.num_tasks
print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
def copy_folder(src, dst):
import shutil
if os.path.exists(dst):
shutil.rmtree(dst)
shutil.copytree(src, dst)
def main():
args = parse_args()
if args.job_dir == "":
args.job_dir = get_shared_folder() / "%j"
if not os.path.exists(args.job_dir):
os.makedirs(args.job_dir)
# Note that the folder will depend on the job_id, to easily track experiments
executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30)
num_gpus_per_node = args.ngpus
nodes = args.nodes
timeout_min = args.timeout
partition = args.partition
kwargs = {}
if args.use_volta32:
kwargs['slurm_constraint'] = 'volta32gb'
if args.comment:
kwargs['slurm_comment'] = args.comment
executor.update_parameters(
mem_gb=10 * num_gpus_per_node,
gpus_per_node=num_gpus_per_node,
tasks_per_node=num_gpus_per_node, # one task per GPU
cpus_per_task=2,
nodes=nodes,
timeout_min=timeout_min, # max is 60 * 72
# Below are cluster dependent parameters
slurm_partition=partition,
slurm_signal_delay_s=120,
**kwargs
)
executor.update_parameters(name="DAMA")
args.dist_url = get_init_file(args.job_dir).as_uri()
args.output_dir = args.job_dir
args.comment = ''
trainer = Trainer(args)
job = executor.submit(trainer)
print("Submitted job_id:", job.job_id)
print(job.job_id)
# src_copy = 'DAMA folder/' # create a copy of DAMA code to output folder
src_copy = args.code_dir
dst=args.output_dir+'/DAMA'
copy_folder(src_copy, dst)
if __name__ == "__main__":
main()