Skip to content

Latest commit

 

History

History
386 lines (304 loc) · 20.8 KB

dc-apps-performance-toolkit-user-guide-bamboo.md

File metadata and controls

386 lines (304 loc) · 20.8 KB
title platform product category subcategory date
Data Center App Performance Toolkit User Guide For Bamboo
platform
marketplace
devguide
build
2023-02-13

Data Center App Performance Toolkit User Guide For Bamboo

This document walks you through the process of testing your app on Bamboo using the Data Center App Performance Toolkit. These instructions focus on producing the required performance and scale benchmarks for your Data Center app.

In this document, we cover the use of the Data Center App Performance Toolkit on Enterprise-scale environment.

Enterprise-scale environment: Bamboo Data Center environment used to generate Data Center App Performance Toolkit test results for the Marketplace approval process. Preferably, use the below recommended parameters.

  1. Set up an enterprise-scale environment Bamboo Data Center on AWS.
  2. App-specific actions development.
  3. Set up an execution environment for the toolkit.
  4. Running the test scenarios from execution environment against enterprise-scale Bamboo Data Center.

1. Set up an enterprise-scale environment Bamboo Data Center on k8s

We recommend that you use the official documentation how to deploy a Bamboo Data Center environment and AWS on k8s.

Setup Bamboo Data Center with an enterprise-scale dataset on k8s

Below process describes how to install Bamboo DC with an enterprise-scale dataset included. This configuration was created specifically for performance testing during the DC app review process.

  1. Read requirements section of the official documentation.
  2. Set up environment.
  3. Set up AWS security credentials. {{% warning %}} Do not use root user credentials for cluster creation. Instead, create an admin user. {{% /warning %}}
  4. Clone the project repo:
    git clone -b 2.3.1 https://github.com/atlassian-labs/data-center-terraform.git && cd data-center-terraform
  5. Copy dcapt.tfvars file to the data-center-terraform folder.
    wget https://raw.githubusercontent.com/atlassian/dc-app-performance-toolkit/master/app/util/k8s/dcapt.tfvars
  6. Set required variables in dcapt.tfvars file:
    • environment_name - any name for you environment, e.g. dcapt-bamboo
    • products - bamboo
    • bamboo_license - one-liner of valid bamboo license without spaces and new line symbols
    • region - Do not change default region (us-east-2). If specific region is required, contact support.
  7. From local terminal (Git bash terminal for Windows) start the installation (~40min):
    ./install.sh -c dcapt.tfvars
  8. Copy product URL from the console output. Product url should look like http://a1234-54321.us-east-2.elb.amazonaws.com/bamboo.
  9. Wait for all remote agents to be started and connected. It can take up to 10 minutes. Agents can be checked in Settings > Agents.

{{% note %}} New trial license could be generated on my atlassian. Use BX02-9YO1-IN86-LO5G Server ID for generation. {{% /note %}}


Data dimensions and values for default enterprise-scale dataset uploaded are listed and described in the following table.

Data dimensions Value for an enterprise-scale dataset
Users 2000
Projects 100
Plans 2000
Remote agents 50

Troubleshooting

See Troubleshooting tips page.

Terminate Bamboo Data Center

Follow steps described on Uninstallation and cleanup page.


{{% note %}} You are responsible for the cost of the AWS services running during the reference deployment. For more information, go to aws.amazon.com/pricing. {{% /note %}}

To reduce costs, we recommend you to keep your deployment up and running only during the performance runs.


2. App-specific actions development

Data Center App Performance Toolkit has its own set of default test actions:

  • JMeter: for load at scale generation
  • Selenium: for UI timings measuring
  • Locust: for defined parallel Bamboo plans execution

App-specific action - action (performance test) you have to develop to cover main use cases of your application. Performance test should focus on the common usage of your application and not to cover all possible functionality of your app. For example, application setup screen or other one-time use cases are out of scope of performance testing.

App specific dataset extension

If your app introduces new functionality for Bamboo entities, for example new task, it is important to extend base dataset with your app specific functionality.

  1. Follow installation instructions described in bamboo dataset generator README.md

  2. Open app/util/bamboo/bamboo_dataset_generator/src/main/java/bamboogenerator/Main.java and set:

    • BAMBOO_SERVER_URL: url of Bamboo stack
    • ADMIN_USER_NAME: username of admin user (default is admin)
  3. Login as ADMIN_USER_NAME, go to Profile > Personal access tokens and create a new token with the same permissions as admin user.

  4. Run following command:

    export BAMBOO_TOKEN=newly_generarted_token  # for MacOS and Linux

    or

    set BAMBOO_TOKEN=newly_generarted_token     # for Windows
  5. Open app/util/bamboo/bamboo_dataset_generator/src/main/java/bamboogenerator/service/generator/plan/PlanGenerator.java file and modify plan template according to your app. e.g. add new task.

  6. Navigate to app/util/bamboo/bamboo_dataset_generator and start generation:

    ./run.sh     # for MacOS and Linux

    or

    run          # for Windows
  7. Login into Bamboo UI and make sure that plan configurations were updated.

  8. Default duration of the plan is 60 seconds. Measure plan duration with new app-specific functionality and modify default_dataset_plan_duration value accordingly in bamboo.yml file.

    For example, if plan duration with app-specific task became 70 seconds, than default_dataset_plan_duration should be set to 70 seconds in bamboo.yml file.

Example of app-specific Selenium action development

For example, you develop an app that adds some additional UI elements to view plan summary page. In this case, you should develop Selenium app-specific action:

  1. Extend example of app-specific action in dc-app-performance-toolkit/app/extension/bamboo/extension_ui.py.
    Code example. So, our test has to open plan summary page and measure time to load of this new app-specific element on the page.

  2. If you need to run app_specific_action as specific user uncomment app_specific_user_login function in code example. Note, that in this case test_1_selenium_custom_action should follow just before test_2_selenium_z_log_out action.

  3. In dc-app-performance-toolkit/app/selenium_ui/bamboo_ui.py, review and uncomment the following block of code to make newly created app-specific actions executed:

    # def test_1_selenium_custom_action(webdriver, datasets, screen_shots):
    #     app_specific_action(webdriver, datasets)
  4. Run toolkit with bzt bamboo.yml command to ensure that all Selenium actions including app_specific_action are successful.

Example of JMeter app-specific action development

  1. Check that bamboo.yml file has correct settings of application_hostname, application_protocol, application_port, application_postfix, etc.

  2. Set desired execution percentage for standalone_extension. Default value is 0, which means that standalone_extension action will not be executed. For example, for app-specific action development you could set percentage of standalone_extension to 100 and for all other actions to 0 - this way only login_and_view_all_builds and standalone_extension actions would be executed.

  3. Navigate to dc-app-performance-toolkit/app folder and run from virtualenv(as described in dc-app-performance-toolkit/README.md):

    python util/jmeter/start_jmeter_ui.py --app bamboo

  4. Open Bamboo thread group > actions per login and navigate to standalone_extension

  5. Review existing stabs of jmeter_app_specific_action:

    • example GET request
    • example POST request
    • example extraction of variables from the response - app_id and app_token
    • example assertions of GET and POST requests
  6. Modify examples or add new controllers according to your app main use case.

  7. Right-click on View Results Tree and enable this controller.

  8. Click Start button and make sure that login_and_view_dashboard and standalone_extension are executed.

  9. Right-click on View Results Tree and disable this controller. It is important to disable View Results Tree controller before full-scale results generation.

  10. Click Save button.

  11. To make standalone_extension executable during toolkit run edit dc-app-performance-toolkit/app/bamboo.yml and set execution percentage of standalone_extension accordingly to your use case frequency.

  12. App-specific tests could be run (if needed) as a specific user. In the standalone_extension uncomment login_as_specific_user controller. Navigate to the username:password config element and update values for app_specific_username and app_specific_password names with your specific user credentials. Also make sure that you located your app-specific tests between login_as_specific_user and login_as_default_user_if_specific_user_was_loggedin controllers.

  13. Run toolkit to ensure that all JMeter actions including standalone_extension are successful.

Example of Locust app-specific action development

  1. Extend example of app-specific action in dc-app-performance-toolkit/app/extension/bamboo/extension_locust.py, so that test will call the endpoint with GET request, parse response use these data to call another endpoint with POST request and measure response time.
    Code example.
  2. In dc-app-performance-toolkit/app/bamboo.yml uncomment in execution section scenario: locust_app_specific to enable locust app-specific test execution.
  3. In dc-app-performance-toolkit/app/bamboo.yml set standalone_extension_locust to 1 - app-specific action will be executed by every virtual user of locust_app_specific scenario. Default value is 0, which means that standalone_extension_locust action will not be executed.
  4. App-specific tests could be run (if needed) as a specific user. Use @run_as_specific_user(username='specific_user_username', password='specific_user_password') decorator for that.
  5. Run toolkit with bzt bamboo.yml command to ensure that all Locust actions including locust_app_specific_action are successful. Note, that locust_app_specific_action action execution will start in some time full after ramp period up is finished (in 5-6 min).

3. Setting up an execution environment

For generating performance results suitable for Marketplace approval process use dedicated execution environment. This is a separate AWS EC2 instance to run the toolkit from. Running the toolkit from a dedicated instance but not from a local machine eliminates network fluctuations and guarantees stable CPU and memory performance.

  1. Go to GitHub and create a fork of dc-app-performance-toolkit.
  2. Clone the fork locally, then edit the bamboo.yml configuration file. Set enterprise-scale Bamboo Data Center parameters:

{{% warning %}} Do not push to the fork real application_hostname, admin_login and admin_password values for security reasons. Instead, set those values directly in .yml file on execution environment instance. {{% /warning %}}

 application_hostname: bamboo_host_name or public_ip   # Bamboo DC hostname without protocol and port e.g. test-bamboo.atlassian.com or localhost
 application_protocol: http          # http or https
 application_port: 80                # 80, 443, 8080, 8085, etc
 secure: True                        # Set False to allow insecure connections, e.g. when using self-signed SSL certificate
 application_postfix:                # e.g. /babmoo in case of url like http://localhost:8085/bamboo
 admin_login: admin
 admin_password: admin
 load_executor: jmeter            
 concurrency: 200                    # number of concurrent threads to authenticate random users
 test_duration: 45m
 ramp-up: 3m
 total_actions_per_hour: 2000        # number of total JMeter actions per hour
 number_of_agents: 50                # number of available remote agents
 parallel_plans_count: 40            # number of parallel plans execution
 start_plan_timeout: 60              # maximum timeout of plan to start
 default_dataset_plan_duration: 60   # expected plan execution duration
  1. Push your changes to the forked repository.

  2. Launch AWS EC2 instance.

    • OS: select from Quick Start Ubuntu Server 20.04 LTS.
    • Instance type: c5.2xlarge
    • Storage size: 30 GiB
  3. Connect to the instance using SSH or the AWS Systems Manager Sessions Manager.

    ssh -i path_to_pem_file ubuntu@INSTANCE_PUBLIC_IP
  4. Install Docker. Setup manage Docker as a non-root user.

  5. Clone forked repository.

You'll need to run the toolkit for each test scenario in the next section.


4. Running the test scenarios from execution environment against enterprise-scale Bamboo Data Center

Bamboo performance regression

This scenario helps to identify basic performance issues.

Run 1 (~50 min)

To receive performance baseline results without an app installed and without app-specific actions (use code from master branch):

  1. Use SSH to connect to execution environment.

  2. Run toolkit with docker from the execution environment instance:

    cd dc-app-performance-toolkit
    docker pull atlassian/dcapt
    docker run --shm-size=4g -v "$PWD:/dc-app-performance-toolkit" atlassian/dcapt bamboo.yml
  3. View the following main results of the run in the dc-app-performance-toolkit/app/results/bamboo/YY-MM-DD-hh-mm-ss folder:

    • results_summary.log: detailed run summary
    • results.csv: aggregated .csv file with all actions and timings
    • bzt.log: logs of the Taurus tool execution
    • jmeter.*: logs of the JMeter tool execution
    • locust.*: logs of the Locust tool execution

{{% note %}} Review results_summary.log file under artifacts dir location. Make sure that overall status is OK before moving to the next steps. For an enterprise-scale environment run, the acceptable success rate for actions is 95% and above. {{% /note %}}

Run 2 (~50 min)

Performance results generation with the app installed (still use master branch):

  1. Run toolkit with docker from the execution environment instance:

    cd dc-app-performance-toolkit
    docker pull atlassian/dcapt
    docker run --shm-size=4g -v "$PWD:/dc-app-performance-toolkit" atlassian/dcapt bamboo.yml

{{% note %}} Review results_summary.log file under artifacts dir location. Make sure that overall status is OK before moving to the next steps. For an enterprise-scale environment run, the acceptable success rate for actions is 95% and above. {{% /note %}}

Run 3 (~50 min)

To receive scalability benchmark results for one-node Bamboo DC with app and with app-specific actions:

  1. Apply app-specific code changes to a new branch of forked repo.

  2. Use SSH to connect to execution environment.

  3. Pull cloned fork repo branch with app-specific actions.

  4. Run toolkit with docker from the execution environment instance:

    cd dc-app-performance-toolkit
    docker pull atlassian/dcapt
    docker run --shm-size=4g -v "$PWD:/dc-app-performance-toolkit" atlassian/dcapt bamboo.yml

{{% note %}} Review results_summary.log file under artifacts dir location. Make sure that overall status is OK before moving to the next steps. For an enterprise-scale environment run, the acceptable success rate for actions is 95% and above. {{% /note %}}

Generating a Bamboo performance regression report

To generate a performance regression report:

  1. Use SSH to connect to execution environment.
  2. Install and activate the virtualenv as described in dc-app-performance-toolkit/README.md
  3. Allow current user (for execution environment default user is ubuntu) to access Docker generated reports:
    sudo chown -R ubuntu:ubuntu /home/ubuntu/dc-app-performance-toolkit/app/results
  4. Navigate to the dc-app-performance-toolkit/app/reports_generation folder.
  5. Edit the bamboo_profile.yml file:
    • Under runName: "without app", in the fullPath key, insert the full path to results directory of Run 1.
    • Under runName: "with app", in the fullPath key, insert the full path to results directory of Run 2.
    • Under runName: "with app and app-specific actions", in the fullPath key, insert the full path to results directory of Run 3.
  6. Run the following command:
    python csv_chart_generator.py bamboo_profile.yml
  7. In the dc-app-performance-toolkit/app/results/reports/YY-MM-DD-hh-mm-ss folder, view the .csv file (with consolidated scenario results), the .png chart file and bamboo performance scenario summary report.

Analyzing report

Use scp command to copy report artifacts from execution env to local drive:

  1. From local machine terminal (Git bash terminal for Windows) run command:

    export EXEC_ENV_PUBLIC_IP=execution_environment_ec2_instance_public_ip
    scp -r -i path_to_exec_env_pem ubuntu@$EXEC_ENV_PUBLIC_IP:/home/ubuntu/dc-app-performance-toolkit/app/results/reports ./reports
  2. Once completed, in the ./reports folder you will be able to review the action timings with and without your app to see its impact on the performance of the instance. If you see an impact (>20%) on any action timing, we recommend taking a look into the app implementation to understand the root cause of this delta.

{{% warning %}} It is recommended to terminate an enterprise-scale environment after completing all tests. Follow Uninstallation and Cleanup instructions. {{% /warning %}}

Attaching testing results to ECOHELP ticket

{{% warning %}} Do not forget to attach performance testing results to your ECOHELP ticket. {{% /warning %}}

  1. Make sure you have report folder with bamboo performance scenario results. Folder should have profile.csv, profile.png, profile_summary.log and profile run result archives. Archives should contain all raw data created during the run: bzt.log, selenium/jmeter/locust logs, .csv and .yml files, etc.
  2. Attach report folder to your ECOHELP ticket.

Support

In case of technical questions, issues or problems with DC Apps Performance Toolkit, contact us for support in the community Slack #data-center-app-performance-toolkit channel.