-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.sh
89 lines (78 loc) · 3.17 KB
/
eval.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
set -e # exit if error
# prepare folders
exp_path=exp
data_path=$exp_path/data
res_path=$exp_path/results
mkdir -p $exp_path $data_path $res_path
datasets="pubmed writing xsum"
source_models="gpt-3.5-turbo gpt-4 llama claude gemini"
# evalute ReMoDetect
ReMoDetect="trained/trained_model"
for D in $datasets; do
for M in $source_models; do
echo `date`, Evaluating ReMoDetect: ${SM} on ${D}_${M} ...
python scripts/supervised.py --reward --model_name $ReMoDetect --dataset $D \
--dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M}
done
done
done
# evaluate Fast-DetectGPT in the black-box setting
settings="gpt-j-6B:gpt-neo-2.7B"
for M in $source_models; do
for D in $datasets; do
for S in $settings; do
IFS=':' read -r -a S <<< $S && M1=${S[0]} && M2=${S[1]}
echo `date`, Evaluating Fast-DetectGPT on ${D}_${M}.${M1}_${M2} ...
python scripts/fast_detect_gpt.py --reference_model_name $M1 --scoring_model_name $M2 --discrepancy_analytic \
--dataset $D --dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M}.${M1}_${M2}
done
done
done
# evaluate supervised detectors
supervised_models="roberta-base-openai-detector roberta-large-openai-detector"
for M in $source_models; do
for D in $datasets; do
for SM in $supervised_models; do
echo `date`, Evaluating ${SM} on ${D}_${M} ...
python scripts/supervised.py --model_name $SM --dataset $D \
--dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M}
done
done
done
# evaluate baselines
scoring_models="gpt-neo-2.7B"
for M in $source_models; do
for D in $datasets; do
for M2 in $scoring_models; do
echo `date`, Evaluating baseline methods on ${D}_${M}.${M2} ...
python scripts/baselines.py --scoring_model_name ${M2} --dataset $D \
--dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M}.${M2}
done
done
done
# evaluate DetectGPT and DetectLLM
scoring_models="gpt-neo-2.7B"
for M in $source_models; do
for D in $datasets; do
M1=t5-3b # perturbation model
for M2 in $scoring_models; do
echo `date`, Evaluating DetectGPT on ${D}_${M}.${M1}_${M2} ...
python scripts/detect_gpt.py --mask_filling_model_name ${M1} --scoring_model_name ${M2} --n_perturbations 100 --dataset $D \
--dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M}.${M1}_${M2}
# we leverage DetectGPT to generate the perturbations
echo `date`, Evaluating DetectLLM methods on ${D}_${M}.${M1}_${M2} ...
python scripts/detect_llm.py --scoring_model_name ${M2} --dataset $D \
--dataset_file $data_path/${D}_${M}.${M1}.perturbation_100 --output_file $res_path/${D}_${M}.${M1}_${M2}
done
done
done
# evaluate GPTZero
for M in $source_models; do
for D in $datasets; do
echo `date`, Evaluating GPTZero on ${D}_${M} ...
python scripts/gptzero.py --dataset $D \
--dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M}
done
done
# report eval results
python scripts/report_results.py --result_path ./exp/results/