-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_record_npy.py
398 lines (387 loc) · 23.3 KB
/
train_record_npy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
import os
import torch
from torchmetrics.functional.regression import pearson_corrcoef
from random import randint
from utils.loss_utils import l1_loss, l1_loss_mask, ssim
from utils.depth_utils import estimate_depth
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, OptimizationParams, AblateParamsSDS
from lpipsPyTorch import lpips
import csv
from sd_guidance import StableDiffusionGuidance
from warp import inverse_warp
def process_log(model_path, opt=None, abla=None, text=None, refresh=False):
if(refresh):
with open(os.path.join(model_path, "train_log.txt"), 'w') as cfg_log_f:
for arg in vars(opt):
write_text = f'{str(arg)}: {str(getattr(opt, arg))}'
cfg_log_f.write(write_text)
cfg_log_f.write('\n')
for arg in vars(abla):
write_text = f'{str(arg)}: {str(getattr(abla, arg))}'
cfg_log_f.write(write_text)
cfg_log_f.write('\n')
else:
if(text == None): return
with open(os.path.join(model_path, "train_log.txt"), 'a+') as cfg_log_f:
cfg_log_f.write(str(text))
cfg_log_f.write('\n')
def record_training(args, init=True, iter_num=None, psnr_num=None, ssim_num=None, lpips_num=None):
import numpy as np
npy_path = os.path.join(args.model_path, 'record.npy')
csv_path = os.path.join(args.model_path, 'record.csv')
if(init):
with open(csv_path, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['iter', 'psnr', 'ssim', 'lpips'])
assert (not os.path.exists(npy_path))
else:
assert psnr_num != None and ssim_num != None and lpips_num != None
with open(csv_path, 'a+', newline='') as f:
writer = csv.writer(f)
row_data = [iter_num, psnr_num, ssim_num, lpips_num]
writer.writerow(row_data)
if(os.path.exists(npy_path)):
rec_data = np.load(npy_path)
rec_data_list = rec_data.tolist()
rec_data_list.extend([[iter_num, psnr_num, ssim_num, lpips_num]])
rec_data = np.array(rec_data_list)
else:
rec_data_list = [[iter_num, psnr_num, ssim_num, lpips_num]]
rec_data = np.array(rec_data_list)
np.save(npy_path, rec_data)
def training(dataset, opt, pipe, abla, args):
blip_rst_dir = os.path.join(dataset.source_path, 'blip_rst.txt')
with open(blip_rst_dir, 'r') as f:
read_blip_rst = f.readline()
f.close()
random_select_info = read_blip_rst.split(':')[0]
blip_rst = read_blip_rst.split(':')[-1]
print(random_select_info, blip_rst)
if args.add_sd_guidance or args.add_warp_sds_guidance or args.add_warp_sds_guidance_2 or args.add_sds_guidance or args.add_sds_guidance_ori:
sd_guidance = StableDiffusionGuidance(blip_rst=blip_rst, use_lora=(args.use_lora or args.use_lora_2), use_sd15=(args.add_warp_sds_guidance_2 or args.add_sds_guidance or args.add_sds_guidance_ori), guidance_scale=args.guidance_scale)
sd_guidance.configure()
if(args.use_lora or args.use_lora_2):
lora_optimizer = torch.optim.AdamW(
sd_guidance.lora_layers.parameters(),
lr=args.sd_lora_lr,
)
process_log(args.model_path, opt=opt, abla=abla, text=None, refresh=True)
record_training(args, init=True)
testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from = args.test_iterations, \
args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(args)
scene = Scene(args, gaussians, shuffle=False)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
viewpoint_stack, pseudo_stack = None, None
ema_loss_for_log = 0.0
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
if (iteration - 1) == debug_from:
pipe.debug = True
if iteration % args.sh_interval == 0:
gaussians.oneupSHdegree()
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
render_pkg = render(viewpoint_cam, gaussians, pipe, background)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss_mask(image, gt_image)
loss = ((1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image)))
if (args.add_sd_guidance or args.add_warp_sds_guidance or args.add_warp_sds_guidance_2 or args.add_sds_guidance or args.add_sds_guidance_ori) and (iteration > args.lora_start_iter) and (args.use_lora or args.use_lora_2):
gt_image_512 = torch.nn.functional.interpolate(gt_image.unsqueeze(0), size=(512, 512), mode='bilinear', align_corners=False)
lora_loss_seen = sd_guidance.train_lora(gt_image=gt_image_512, rendered_image=gt_image_512, guidance_scale=args.guidance_scale)
loss += args.sd_lora_weight * lora_loss_seen
rendered_depth = render_pkg["depth"][0]
midas_depth = torch.tensor(viewpoint_cam.depth_image).cuda()
rendered_depth = rendered_depth.reshape(-1, 1)
midas_depth = midas_depth.reshape(-1, 1)
depth_loss = min(
(1 - pearson_corrcoef( - midas_depth, rendered_depth)),
(1 - pearson_corrcoef(1 / (midas_depth + 200.), rendered_depth))
)
loss += args.depth_weight * depth_loss
if iteration > args.end_sample_pseudo:
args.depth_weight = min(0.001, args.depth_weight)
if iteration % args.sample_pseudo_interval == 0 and iteration > args.start_sample_pseudo and iteration < args.end_sample_pseudo:
if not pseudo_stack:
pseudo_stack, closest_cam_stack = scene.getPseudoCamerasWithClosestViews()
pseudo_stack = pseudo_stack.copy()
closest_cam_stack = closest_cam_stack.copy()
randint_idx = randint(0, len(pseudo_stack) - 1)
pseudo_cam, closest_cam_1 = pseudo_stack.pop(randint_idx), closest_cam_stack.pop(randint_idx)
render_pkg_pseudo = render(pseudo_cam, gaussians, pipe, background)
rendered_img_pseudo = render_pkg_pseudo["render"]
rendered_depth_pseudo = render_pkg_pseudo["depth"][0]
midas_depth_pseudo = estimate_depth(rendered_img_pseudo, mode='train')
closest_image_1 = closest_cam_1.original_image.cuda()
render_pkg_1 = render(closest_cam_1, gaussians, pipe, background)
closest_depth_1 = render_pkg_1["depth"]
loss_scale = min((iteration - args.start_sample_pseudo) / 500., 1)
warp_rst_1 = inverse_warp(closest_image_1, closest_depth_1.detach(), rendered_depth_pseudo.unsqueeze(0).detach(), closest_cam_1.extrinsic_matrix, pseudo_cam.extrinsic_matrix, closest_cam_1.intrinsic_matrix)
if(args.add_pixel_guidance and iteration > args.pixel_guidance_start_iter):
warped_masked_strict_image = warp_rst_1["warped_img"] * (warp_rst_1["mask_warp"] & warp_rst_1["mask_depth_strict"])
pseudo_masked_strict_image = rendered_img_pseudo * (warp_rst_1["mask_warp"] & warp_rst_1["mask_depth_strict"])
Ll1_masked_pseudo = l1_loss_mask(pseudo_masked_strict_image, warped_masked_strict_image.detach())
loss += args.pixel_pseudo_weight * Ll1_masked_pseudo
if((args.add_warp_sds_guidance or args.add_warp_sds_guidance_2 or args.add_sds_guidance or args.add_sds_guidance_ori) and iteration > args.warp_sds_guidance_start_iter):
sd_mask_1 = warp_rst_1["mask_inv"].unsqueeze(0).unsqueeze(0)
sd_img_1 = warp_rst_1["warped_img"].unsqueeze(0)
sd_mask_1_512 = torch.nn.functional.interpolate(sd_mask_1.float(), size=(512, 512), mode='bilinear', align_corners=False)
sd_mask_1_512 = (sd_mask_1_512 > 0.5).float()
sd_img_1_512 = torch.nn.functional.interpolate(sd_img_1, size=(512, 512), mode='bilinear', align_corners=False)
sd_mask_1_inv = (~sd_mask_1).float()
sd_mask_1_inv_512 = torch.nn.functional.interpolate(sd_mask_1_inv, size=(512, 512), mode='bilinear', align_corners=False)
sd_mask_1_inv_512 = (sd_mask_1_inv_512 > 0.5).float()
rendered_img_pseudo_BCHW = rendered_img_pseudo.unsqueeze(0)
rendered_img_pseudo_512 = torch.nn.functional.interpolate(rendered_img_pseudo_BCHW, size=(512, 512), mode='bilinear', align_corners=False)
if args.use_lora:
print('no implementation!')
exit(0)
if args.use_lora_2:
print('no implementation!')
exit(0)
if args.add_warp_sds_guidance and (not args.add_warp_sds_guidance_2):
loss_warp_sds_1 = sd_guidance.cal_warp_sds_grad(
image=sd_img_1_512,
mask_image=sd_mask_1_512,
rendered_image=rendered_img_pseudo_512,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale
)
loss += loss_scale * args.warp_sds_pseudo_weight * loss_warp_sds_1
if args.add_warp_sds_guidance_2 and args.add_warp_sds_guidance:
loss_warp_sds_1, loss_warp_sds_2 = sd_guidance.cal_warp_sds_grad_2_2(
image=sd_img_1_512,
mask_image=sd_mask_1_512,
rendered_image=rendered_img_pseudo_512,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale
)
loss += loss_scale * args.warp_sds_pseudo_weight * loss_warp_sds_1
loss += loss_scale * args.warp_sds_pseudo_weight_2 * loss_warp_sds_2
if args.add_sds_guidance:
loss_sds_1 = sd_guidance.cal_sds_grad(
image=sd_img_1_512,
mask_image=sd_mask_1_512,
rendered_image=rendered_img_pseudo_512,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale
)
loss += loss_scale * args.sds_pseudo_weight * loss_sds_1
if args.add_sds_guidance_ori:
loss_sds_1 = sd_guidance.cal_sds_ori_grad(
image=sd_img_1_512,
mask_image=sd_mask_1_512,
rendered_image=rendered_img_pseudo_512,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale
)
loss += loss_scale * args.sds_pseudo_weight * loss_sds_1
rendered_depth_pseudo = rendered_depth_pseudo.reshape(-1, 1)
midas_depth_pseudo = midas_depth_pseudo.reshape(-1, 1)
depth_loss_pseudo = (1 - pearson_corrcoef(rendered_depth_pseudo, -midas_depth_pseudo)).mean()
if torch.isnan(depth_loss_pseudo).sum() == 0:
loss += loss_scale * args.depth_pseudo_weight * depth_loss_pseudo
loss.backward()
if(iteration % args.sample_pseudo_interval == 0 and iteration > args.start_sample_pseudo and iteration < args.end_sample_pseudo):
loss_dict = {
"l1_loss": Ll1.item(),
"depth_loss": depth_loss.item(),
"depth_loss_pseudo": depth_loss_pseudo.item(),
}
training_step_report(tb_writer, iteration, **loss_dict)
if args.add_pixel_guidance and iteration > args.pixel_guidance_start_iter:
loss_dict = {
"Ll1_masked_pseudo": Ll1_masked_pseudo.item(),
}
training_step_report(tb_writer, iteration, **loss_dict)
if args.add_warp_sds_guidance and iteration > args.warp_sds_guidance_start_iter:
loss_dict = {
"loss_warp_sds_1": loss_warp_sds_1.item(),
}
training_step_report(tb_writer, iteration, **loss_dict)
if args.add_warp_sds_guidance_2 and iteration > args.warp_sds_guidance_start_iter:
loss_dict = {
"loss_warp_sds_2": loss_warp_sds_2.item(),
}
training_step_report(tb_writer, iteration, **loss_dict)
if (args.add_sds_guidance or args.add_sds_guidance_ori) and iteration > args.warp_sds_guidance_start_iter:
loss_dict = {
"loss_sds_1": loss_sds_1.item(),
}
training_step_report(tb_writer, iteration, **loss_dict)
if((args.add_sd_guidance or args.add_warp_sds_guidance or args.add_warp_sds_guidance_2 or args.add_sds_guidance or args.add_sds_guidance_ori) and (args.use_lora or args.use_lora_2) and iteration > args.lora_start_iter):
loss_dict = {
"lora_loss_seen": lora_loss_seen.item(),
}
training_step_report(tb_writer, iteration, **loss_dict)
with torch.no_grad():
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
training_report(tb_writer, iteration, Ll1, loss, l1_loss,
testing_iterations, scene, render, (pipe, background))
if iteration > first_iter and (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
if iteration > first_iter and (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration),
scene.model_path + "/chkpnt" + str(iteration) + ".pth")
if iteration in args.stop_iterations:
exit(0)
if iteration < opt.densify_until_iter:
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = None
gaussians.densify_and_prune(opt.densify_grad_threshold, opt.prune_threshold, scene.cameras_extent, size_threshold, iteration)
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if args.add_sd_guidance or args.add_warp_sds_guidance or args.add_warp_sds_guidance_2 or args.add_sds_guidance or args.add_sds_guidance_ori:
if(args.use_lora or args.use_lora_2):
lora_optimizer.step()
lora_optimizer.zero_grad()
gaussians.update_learning_rate(iteration)
if (iteration - args.start_sample_pseudo - 1) % opt.opacity_reset_interval == 0 and \
iteration > args.start_sample_pseudo:
gaussians.reset_opacity(args.reset_param)
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_step_report(tb_writer, iteration, **loss_dict):
if tb_writer:
for k in loss_dict.keys():
add_scalar_name = f'view_all_loss_training/{str(k)}'
tb_writer.add_scalar(add_scalar_name, loss_dict[k], iteration)
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, testing_iterations, scene : Scene, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : scene.getTrainCameras()})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
if(config['name'] == 'test'):
l1_test, psnr_test, ssim_test, lpips_test = 0.0, 0.0, 0.0, 0.0
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 8):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
_mask = None
_psnr = psnr(image, gt_image, _mask).mean().double()
_ssim = ssim(image, gt_image, _mask).mean().double()
_lpips = lpips(image, gt_image, _mask, net_type='vgg')
psnr_test += _psnr
ssim_test += _ssim
lpips_test += _lpips
psnr_test /= len(config['cameras'])
ssim_test /= len(config['cameras'])
lpips_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print_text = "\n[ITER {}] Evaluating {}: L1 {} PSNR {} SSIM {} LPIPS {} ".format(
iteration, config['name'], l1_test, psnr_test, ssim_test, lpips_test)
print(print_text)
process_log(args.model_path, text=print_text)
record_training(args, init=False, iter_num=iteration, psnr_num=psnr_test.item(), ssim_num=ssim_test.item(), lpips_num=lpips_test.item())
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - ssim', ssim_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - lpips', lpips_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
ap = AblateParamsSDS(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--stop_iterations", nargs="+", type=int, default=[])
parser.add_argument("--test_iterations", nargs="+", type=int, default=[5_00, 10_00, 15_00, 20_00, 30_00, 40_00, 50_00, 60_00, 70_00, 80_00, 90_00, 100_00])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[20_00, 50_00, 10_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[20_00, 50_00, 10_000])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--train_bg", action="store_true")
parser.add_argument('--show_warp', action='store_true', default=False)
parser.add_argument('--my_debug', action='store_true', default=False)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print(args.test_iterations)
print("Optimizing " + args.model_path)
args.test_iterations = [idx for idx in range(100, args.iterations + 1, 100)]
if(args.my_debug):
pycode = f'rm -rf {args.model_path}'
print(pycode)
os.system(pycode)
os.makedirs(args.model_path, exist_ok=True)
safe_state(args.quiet)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), ap.extract(args), args)
print("\nTraining complete.")