Skip to content

Docker container for running Chainer scripts to train and host Chainer models on SageMaker

License

Notifications You must be signed in to change notification settings

icywang86rui/sagemaker-chainer-container

 
 

Repository files navigation

SageMaker Chainer Containers

SageMaker Chainer Containers is an open source library for making the Chainer framework run on Amazon SageMaker.

This repository also contains Dockerfiles which install this library, Chainer, and dependencies for building SageMaker Chainer images.

For information on running Chainer jobs on SageMaker: Python SDK.

For notebook examples: SageMaker Notebook Examples.

Table of Contents

  1. Getting Started
  2. Building your Image
  3. Running the tests

Getting Started

Prerequisites

Make sure you have installed all of the following prerequisites on your development machine:

For Testing on GPU

Recommended

Building your image

Amazon SageMaker utilizes Docker containers to run all training jobs & inference endpoints.

The Docker images are built from the Dockerfiles specified in Docker/.

The Docker files are grouped based on Chainer version and separated based on Python version and processor type.

The Docker images, used to run training & inference jobs, are built from both corresponding "base" and "final" Dockerfiles.

Base Images

The "base" Dockerfile encompass the installation of the framework and all of the dependencies needed.

Tagging scheme is based on <Chainer_version>-<processor>-<python_version>. (e.g. 4.0.0-cpu-py2)

All "final" Dockerfiles build images using base images that use the tagging scheme above.

If you want to build your base docker image, then use:

# All build instructions assume you're building from the same directory as the dockerfile.

# CPU
docker build -t chainer-base:<Chainer_version>-cpu-<python_version> -f Dockerfile.cpu .

# GPU
docker build -t chainer-base:<Chainer_version>-gpu-<python_version> -f Dockerfile.gpu .
# Example

# CPU
docker build -t chainer-base:4.0.0-cpu-py2 -f Dockerfile.cpu .

# GPU
docker build -t chainer-base:4.0.0-gpu-py2 -f Dockerfile.gpu .

Final Images

The "final" Dockerfiles encompass the installation of the SageMaker specific support code.

All "final" Dockerfiles use base images for building.

These "base" images are specified with the naming convention of chainer-base:<Chainer_version>-<processor>-<python_version>.

Before building "final" images:

Build your "base" image. Make sure it is named and tagged in accordance with your "final" Dockerfile.

# Create the SageMaker Chainer Container Python package.
cd sagemaker-chainer-container
python setup.py sdist

#. Copy your Python package to "final" Dockerfile directory that you are building.
cp dist/sagemaker_chainer_container-<package_version>.tar.gz docker/<Chainer_version>/final

If you want to build "final" Docker images, then use:

# All build instructions assumes you're building from the same directory as the dockerfile.

# CPU
docker build -t <image_name>:<tag> -f Dockerfile.cpu .

# GPU
docker build -t <image_name>:<tag> -f Dockerfile.gpu .
# Example

# CPU
docker build -t preprod-chainer:4.0.0-cpu-py2 -f Dockerfile.cpu .

# GPU
docker build -t preprod-chainer:4.0.0-gpu-py2 -f Dockerfile.gpu .

Running the tests

Running the tests requires installation of the SageMaker Chainer Container code and its test dependencies.

git clone https://github.com/aws/sagemaker-chainer-container.git
cd sagemaker-chainer-container
pip install -e .[test]

Tests are defined in test/ and include unit, local integration, and SageMaker integration tests.

Unit Tests

If you want to run unit tests, then use:

# All test instructions should be run from the top level directory

pytest test/unit

Local Integration Tests

Running local integration tests require Docker and AWS credentials, as the local integration tests make calls to a couple AWS services. The local integration tests and SageMaker integration tests require configurations specified within their respective conftest.py.

Local integration tests on GPU require Nvidia-Docker.

Before running local integration tests:

  1. Build your Docker image.
  2. Pass in the correct pytest arguments to run tests against your Docker image.

If you want to run local integration tests, then use:

# Required arguments for integration tests are found in test/conftest.py

pytest test/integration/local --docker-base-name <your_docker_image> \
                  --tag <your_docker_image_tag> \
                  --py-version <2_or_3> \
                  --framework-version <Chainer_version> \
                  --processor <cpu_or_gpu>
# Example
pytest test/integration/local --docker-base-name preprod-chainer \
                  --tag 1.0 \
                  --py-version 2 \
                  --framework-version 4.0.0 \
                  --processor cpu

SageMaker Integration Tests

SageMaker integration tests require your Docker image to be within an Amazon ECR repository.

The Docker-base-name is your ECR repository namespace.

The instance-type is your specified Amazon SageMaker Instance Type that the SageMaker integration test will run on.

Before running SageMaker integration tests:

  1. Build your Docker image.
  2. Push the image to your ECR repository.
  3. Pass in the correct pytest arguments to run tests on SageMaker against the image within your ECR repository.

If you want to run a SageMaker integration end to end test on Amazon SageMaker, then use:

# Required arguments for integration tests are found in test/conftest.py

pytest test/integration/sagemaker --aws-id <your_aws_id> \
                       --docker-base-name <your_docker_image> \
                       --instance-type <amazon_sagemaker_instance_type> \
                       --tag <your_docker_image_tag> \
# Example
pytest test/integration/sagemaker --aws-id 12345678910 \
                       --docker-base-name preprod-chainer \
                       --instance-type ml.m4.xlarge \
                       --tag 1.0

Contributing

Please read CONTRIBUTING.md for details on our code of conduct, and the process for submitting pull requests to us.

License

SageMaker Chainer Containers is licensed under the Apache 2.0 License. It is copyright 2018 Amazon .com, Inc. or its affiliates. All Rights Reserved. The license is available at: http://aws.amazon.com/apache2.0/

About

Docker container for running Chainer scripts to train and host Chainer models on SageMaker

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.0%
  • Other 1.0%