Skip to content

Latest commit

 

History

History
executable file
·
69 lines (43 loc) · 1.53 KB

README.md

File metadata and controls

executable file
·
69 lines (43 loc) · 1.53 KB

README

Updated: 4th October 2018.

Computer Vision and Intelligence Group, IIT Madras


Blog: iitmcvg.github.io

This repository contains content that we use for CNN SLAM. Original paper


Contributors


Table of Contents

  1. Download Monodepth Checkpoints
  2. Using Monodepth Infer
  3. Install g2o

Experiments

  1. Heterogenous graphs; convert every CPU op into a compute graph and note performance with placement.
  2. Stereo matching methods and GPU optimisation.
  3. CPU efficient object detectors and depth estimators.
  4. Indoor optimised depth estimation (monocular.)

To Do

  • Complete camera pose estimation.
  • Monocular depth methods library.
  • Freeze graphs for inference.
  • Sample runs.
  • Global Graph Optimisation.

G3docs


Monodepth checkpoints


References

  1. Python Bindings for LSD SLAM
  2. LSD SLAM
  3. Python Bindings for ORB SLAM 2
  4. ORB SLAM
  5. DSO SLAM
  6. A SLAM Primer