Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error: Mat::init(): requested size is too large; suggest to enable ARMA_64BIT_WORD #49

Open
vivekruhela opened this issue Mar 21, 2024 · 1 comment

Comments

@vivekruhela
Copy link

vivekruhela commented Mar 21, 2024

I am trying to perform cell annotation using Mapquery using seurat object. I am following the reference from here. I am facing the following error in Mapquery:

Error: Mat::init(): requested size is too large; suggest to enable ARMA_64BIT_WORD

In query dataset, I have 21 samples with 99403 cells in total. I am using the following code:

ref_obj <- ref_obj %>% 
NormalizeData(normalization.method = "LogNormalize", scale.factor = 10000) %>% 
FindVariableFeatures(selection.method = "vst", nfeatures = 2000) %>% 
ScaleData(verbose = T) %>% 
RunPCA(verbose = T) %>% RunHarmony.Seurat('orig.ident', verbose = T)  %>%
FindNeighbors(dims = 1:20, reduction = 'harmony', verbose = T) %>%
FindClusters(resolution = 0.5, verbose = T)


ref_obj[['umap']] <- RunUMAP2(Embeddings(ref_obj, 'harmony')[, 1:20], 
                      assay='RNA', verbose=FALSE, umap.method='uwot',
                      return.model=TRUE)

# Plot reference
pdf("human_fl_21/Tcell_Apre-UMAP.pdf")
options(repr.plot.height = 4, repr.plot.width = 6)
DimPlot(ref_obj, reduction = 'umap', group.by = 'seurat_clusters', shuffle = TRUE)
DimPlot(ref_obj, reduction = 'umap', group.by = 'cell.id', shuffle = TRUE)
dev.off()

ref <- buildReferenceFromSeurat(ref_obj, verbose = TRUE, save_umap = TRUE,
                            save_uwot_path = 'cache_symphony.uwot')


query <- mapQuery(seurat.combined@assays$RNA@[email protected], 
              [email protected],
              ref, vars = 'orig.ident', 
              return_type = 'Seurat'
)

In seurat.combined, there is no counts slot in RNA assay. That's why I am using data slot. In my seurat.combined object, I have count layer in SCT assay only. When I use the following approach for mapquery:

query <- mapQuery(immunecell.combined@assays$SCT@counts, 
              [email protected],
              ref, vars = 'orig.ident', 
              return_type = 'Seurat'
)

I am getting the following error:

Normalizing
Scaling and synchronizing query gene expression
Found 1933 reference variable genes in query dataset
Project query cells using reference gene loadings
Clustering query cells to reference centroids
Correcting query batch effects
UMAP
All done!
Error in (function (cl, name, valueClass)  : 
‘data’ is not a slot in class “Assay5”

Please suggest. The session info is shown below:

sessionInfo()
R version 4.3.2 (2023-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Red Hat Enterprise Linux 8.8 (Ootpa)

Matrix products: default
BLAS: /usr/lib64/libblas.so.3.8.0
LAPACK: /usr/lib64/liblapack.so.3.8.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=C LC_COLLATE=C LC_MONETARY=C LC_MESSAGES=C LC_PAPER=C
[8] LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=C LC_IDENTIFICATION=C

time zone: America/Chicago
tzcode source: system (glibc)

attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base

other attached packages:
[1] harmony_1.2.0 Rcpp_1.0.12 symphony_0.1.1 cluster_2.1.4 HGNChelper_0.8.1
[6] openxlsx_4.2.5.2 dplyr_1.1.4 DropletUtils_1.22.0 patchwork_1.2.0 cowplot_1.1.3
[11] gtools_3.9.5 celldex_1.12.0 robustbase_0.99-2 dynamicTreeCut_1.63-1 Seurat_5.0.1
[16] SeuratObject_5.0.1 sp_2.1-3 readxl_1.4.3 limma_3.58.1 scran_1.30.2
[21] scater_1.30.1 ggplot2_3.5.0 scuttle_1.12.0 SingleCellExperiment_1.24.0 SummarizedExperiment_1.32.0
[26] Biobase_2.62.0 GenomicRanges_1.54.1 GenomeInfoDb_1.38.6 IRanges_2.36.0 S4Vectors_0.40.2
[31] MatrixGenerics_1.14.0 matrixStats_1.2.0 AnnotationHub_3.10.0 BiocFileCache_2.10.1 dbplyr_2.4.0
[36] BiocGenerics_0.48.1

loaded via a namespace (and not attached):
[1] spatstat.sparse_3.0-3 bitops_1.0-7 httr_1.4.7 RColorBrewer_1.1-3 tools_4.3.2
[6] sctransform_0.4.1 utf8_1.2.4 R6_2.5.1 HDF5Array_1.30.0 lazyeval_0.2.2
[11] uwot_0.1.16 rhdf5filters_1.14.1 withr_3.0.0 gridExtra_2.3 progressr_0.14.0
[16] cli_3.6.2 spatstat.explore_3.2-6 fastDummies_1.7.3 labeling_0.4.3 spatstat.data_3.0-4
[21] ggridges_0.5.6 pbapply_1.7-2 R.utils_2.12.3 parallelly_1.37.0 rstudioapi_0.15.0
[26] RSQLite_2.3.5 generics_0.1.3 ica_1.0-3 spatstat.random_3.2-2 zip_2.3.1
[31] Matrix_1.6-5 ggbeeswarm_0.7.2 fansi_1.0.6 abind_1.4-5 R.methodsS3_1.8.2
[36] lifecycle_1.0.4 yaml_2.3.8 edgeR_4.0.16 rhdf5_2.46.1 SparseArray_1.2.4
[41] Rtsne_0.17 grid_4.3.2 blob_1.2.4 promises_1.2.1 dqrng_0.3.2
[46] ExperimentHub_2.10.0 crayon_1.5.2 miniUI_0.1.1.1 lattice_0.21-9 beachmat_2.18.1
[51] KEGGREST_1.42.0 pillar_1.9.0 metapod_1.10.1 future.apply_1.11.1 codetools_0.2-19
[56] leiden_0.4.3.1 glue_1.7.0 data.table_1.15.0 vctrs_0.6.5 png_0.1-8
[61] spam_2.10-0 cellranger_1.1.0 gtable_0.3.4 cachem_1.0.8 S4Arrays_1.2.1
[66] mime_0.12 survival_3.5-8 statmod_1.5.0 bluster_1.12.0 interactiveDisplayBase_1.40.0
[71] ellipsis_0.3.2 fitdistrplus_1.1-11 ROCR_1.0-11 nlme_3.1-164 bit64_4.0.5
[76] filelock_1.0.3 RcppAnnoy_0.0.22 irlba_2.3.5.1 vipor_0.4.7 KernSmooth_2.23-22
[81] colorspace_2.1-0 DBI_1.2.1 tidyselect_1.2.0 bit_4.0.5 compiler_4.3.2
[86] curl_5.2.0 BiocNeighbors_1.20.2 DelayedArray_0.28.0 plotly_4.10.4 scales_1.3.0
[91] DEoptimR_1.1-3 lmtest_0.9-40 rappdirs_0.3.3 stringr_1.5.1 digest_0.6.35
[96] goftest_1.2-3 spatstat.utils_3.0-4 RhpcBLASctl_0.23-42 XVector_0.42.0 htmltools_0.5.7
[101] pkgconfig_2.0.3 sparseMatrixStats_1.14.0 fastmap_1.1.1 rlang_1.1.3 htmlwidgets_1.6.4
[106] shiny_1.8.0 DelayedMatrixStats_1.24.0 farver_2.1.1 zoo_1.8-12 jsonlite_1.8.8
[111] BiocParallel_1.36.0 R.oo_1.26.0 BiocSingular_1.18.0 RCurl_1.98-1.14 magrittr_2.0.3
[116] GenomeInfoDbData_1.2.11 dotCall64_1.1-1 Rhdf5lib_1.24.2 munsell_0.5.0 viridis_0.6.5
[121] reticulate_1.35.0 stringi_1.8.3 zlibbioc_1.48.0 MASS_7.3-60 plyr_1.8.9
[126] parallel_4.3.2 listenv_0.9.1 ggrepel_0.9.5 deldir_2.0-2 Biostrings_2.70.2
[131] splines_4.3.2 tensor_1.5 locfit_1.5-9.9 igraph_2.0.3 spatstat.geom_3.2-8
[136] RcppHNSW_0.6.0 reshape2_1.4.4 ScaledMatrix_1.10.0 BiocVersion_3.18.1 BiocManager_1.30.22
[141] httpuv_1.6.14 RANN_2.6.1 tidyr_1.3.1 purrr_1.0.2 polyclip_1.10-6
[146] future_1.33.1 scattermore_1.2 rsvd_1.0.5 xtable_1.8-4 RSpectra_0.16-1
[151] later_1.3.2 class_7.3-22 viridisLite_0.4.2 tibble_3.2.1 memoise_2.0.1
[156] beeswarm_0.4.0 AnnotationDbi_1.64.1 globals_0.16.2

@ChrisSteel-bio
Copy link

Where you ever able to solve this? I'm running into the same issue..

Cheers,

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants