-
Notifications
You must be signed in to change notification settings - Fork 19
/
hp_search.py
108 lines (97 loc) · 5.03 KB
/
hp_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import logging
from trains import Task
from trains.automation import DiscreteParameterRange, HyperParameterOptimizer, RandomSearch, \
UniformIntegerParameterRange, GridSearch
try:
from trains.automation.hpbandster import OptimizerBOHB
Our_SearchStrategy = GridSearch
except ValueError:
logging.getLogger().warning(
'Apologies, it seems you do not have \'hpbandster\' installed, '
'we will be using RandomSearch strategy instead\n'
'If you like to try ' '{{BOHB}: Robust and Efficient Hyperparameter Optimization at Scale},\n'
'run: pip install hpbandster')
Our_SearchStrategy = RandomSearch
def job_complete_callback(
job_id, # type: str
objective_value, # type: float
objective_iteration, # type: int
job_parameters, # type: dict
top_performance_job_id # type: str
):
print('Job completed!', job_id, objective_value, objective_iteration, job_parameters)
if job_id == top_performance_job_id:
print('WOOT WOOT we broke the record! Objective reached {}'.format(objective_value))
task = Task.init(project_name='Roc-star Loss',
task_name='Automatic Hyper-Parameter Optimization',
task_type=Task.TaskTypes.optimizer,
reuse_last_task_id=False)
# MODIFY THIS, MAKE SURE TO CHOOSE THE CORRECT TEMPLATE TASK ID
# experiment template to optimize in the hyper-parameter optimization
args = {
'template_task_id': '8d8ff6167a334ff59c3001c06e996eda',
'run_as_service': False,
}
args = task.connect(args)
# Example use case:
an_optimizer = HyperParameterOptimizer(
# This is the experiment we want to optimize
base_task_id=args['template_task_id'],
# here we define the hyper-parameters to optimize
hyper_parameters=[
DiscreteParameterRange('lstm_units', values=[64, 96, 128]),
DiscreteParameterRange('dense_hidden_units', values=[512, 1024, 2048]),
DiscreteParameterRange('use_roc_star', values=[True,False])
],
# this is the objective metric we want to maximize/minimize
objective_metric_title='Accuracy',
objective_metric_series='validation accuracy',
# now we decide if we want to maximize it or minimize it (accuracy we maximize)
objective_metric_sign='max',
# let us limit the number of concurrent experiments,
# this in turn will make sure we do dont bombard the scheduler with experiments.
# if we have an auto-scaler connected, this, by proxy, will limit the number of machine
max_number_of_concurrent_tasks=4,
# this is the optimizer class (actually doing the optimization)
# Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band)
# more are coming soon...
optimizer_class=Our_SearchStrategy,
# Select an execution queue to schedule the experiments for execution
execution_queue='MY-EXPERIMENT-QUEUE',
# Optional: Limit the execution time of a single experiment, in minutes.
# (this is optional, and if using OptimizerBOHB, it is ignored)
#time_limit_per_job=10.,
# Check the experiments every 6 seconds is way too often, we should probably set it to 5 min,
# assuming a single experiment is usually hours...
pool_period_min=0.1,
# set the maximum number of jobs to launch for the optimization, default (None) unlimited
# If OptimizerBOHB is used, it defined the maximum budget in terms of full jobs
# basically the cumulative number of iterations will not exceed total_max_jobs * max_iteration_per_job
total_max_jobs=10,
# This is only applicable for OptimizerBOHB and ignore by the rest
# set the minimum number of iterations for an experiment, before early stopping
min_iteration_per_job=10,
# Set the maximum number of iterations for an experiment to execute
# (This is optional, unless using OptimizerBOHB where this is a must)
max_iteration_per_job=30,
)
# if we are running as a service, just enqueue ourselves into the services queue and let it run the optimization
if args['run_as_service']:
# if this code is executed by `trains-agent` the function call does nothing.
# if executed locally, the local process will be terminated, and a remote copy will be executed instead
task.execute_remotely(queue_name='services', exit_process=True)
# report every 12 seconds, this is way too often, but we are testing here J
an_optimizer.set_report_period(2.2)
# start the optimization process, callback function to be called every time an experiment is completed
# this function returns immediately
an_optimizer.start(job_complete_callback=job_complete_callback)
# set the time limit for the optimization process (2 hours)
an_optimizer.set_time_limit(in_minutes=120.0)
# wait until process is done (notice we are controlling the optimization process in the background)
an_optimizer.wait()
# optimization is completed, print the top performing experiments id
top_exp = an_optimizer.get_top_experiments(top_k=3)
print([t.id for t in top_exp])
# make sure background optimization stopped
an_optimizer.stop()
print('We are done, good bye')