
Programação na Internet
Turma i52d

Aula 13
Web App and Routing

App Web = Enterprise Application

Definition of Martin Fowler that

“Enterprise applications are about the
display, manipulation, and storage of large
amounts of often complex data and the
support or automation of business processes
with that data” [Fowler,2003]

Vinyl

Users.json
FS

Last.fm

lastfm users

urllib fs

Service: Vinyl

UI

Last.fm

http://ws.audioscrobbler.com/2.0/?method=artist.gettoptracks&
artist=muse&api_key=79b2506be8ce86d852882e1774f1f2e8&fo
rmat=json

? Inicio da query string

Pares chave=valor

users

[
{

"username": "gamboa",
"artists": ["muse", "killers", "new order", "Franz Ferdinand", "Faith no more"]

},
{

"username": “papoila",
"artists": [“u2", “police"]

}
]

Vinyl

Users.json
FS

Last.fm

lastfm users

urllib fs

Service: Vinyl

UI

Vinyl

Users.json
FS

Last.fm

lastfm users

urllib fs

Service: Vinyl

Web App

Vinyl

Web App

• Servidor HTTP

• View (e.g. HTML, JSON, other) – Representation of a Resource

• Routing

Vinyl

index

http

routes

views

• Servidor HTTP

• View (e.g. HTML, JSON, other) – Representation of a Resource

• Routing

Vinyl

Web App

index

http

routes

views

Users.json
FS

Last.fm

lastfm users

urllib fs

Service: Vinyl

• Servidor HTTP

• View (i.e. JSON)

• Routing

Vinyl

Web App

index

http

routes

views

• Servidor HTTP

• View (i.e. JSON)

• Routing:

URL + HTTP method

Resource

Representation

URL URL URL

Resources

Uniform Resource Identifier

string of characters that unambiguously identifies a particular resource:

scheme:[//authority]path[?query][#fragment]

Architecture of the World Wide Web,
Volume One

W3C Recommendation 15 December 2004

From https://www.w3.org/TR/webarch/

https://www.w3.org/TR/webarch/

REST

Representational state transfer was introduced and defined in
2000 by Roy Fielding in his doctoral dissertation.

https://en.wikipedia.org/wiki/Roy_Fielding

E.g. users

=> getUser

=> getUsers

=> removeUser

GET /vinyl/users/<username>

GET /vinyl/users

DELETE /vinyl/users/<username>

The same path but different verbs (HTTP methods)

E.g. users

=> getUser

=> getUsers

=> removeUser

=> addUser

GET /vinyl/users/<username>

GET /vinyl/users

DELETE /vinyl/users/<username>

PUT /vinyl/users/<username>

addUser is idempotent, because username is unique. Thus PUT

E.g. users

=> getUser

=> getUsers

=> removeUser

=> addUser

=> addArtist

GET /vinyl/users/<username>

GET /vinyl/users

DELETE /vinyl/users/<username>

PUT /vinyl/users/<username>

POST /vinyl/users/<username>/artists

addArtist allows repetitions, thus it is not idempotent. So, POST is right choice!

Put <versus> Post

PUT for requests that are idempotent

Idempotent property is defined by RFC 7231 as:

A request method is considered “idempotent” if the intended effect on the server of
multiple identical requests with that method is the same as the effect for a single
such request.

HTTP Status codes

• 1xx informational response – the request was received, continuing process

• 2xx successful – the request was successfully received, understood, and
accepted

• 3xx redirection – further action needs to be taken in order to complete the
request

• 4xx client error – the request contains bad syntax or cannot be fulfilled

• 5xx server error – the server failed to fulfil an apparently valid request

