Programacao na Internet

Turma i52d

Lesson 32
Sequential versus Concurrent



Sequential <versus> Concurrent

Get Bundle
:

Get Bundle

> Add Book to Bundle

Get Book

> Add Book to Bundle



async

parallel(tasks, callback)

Run the ‘tasks array of functions in parallel. If any of the functions pass
an error to its callback, the main callback is immediately called with
the value of the error. Once the ‘tasks have completed, the results are

passed to the final callback as an array.



Promise

https://en.wikipedia.org/wiki/Futures and promises

Container of an asynchronous result:
—> May hold a successful or failure result.

Asynchronous Idioms:

1. callback_‘(err, data) =>{...} -- 'err and ‘data are 2 possible results
2. EventEmitters” ".on('error’, callback) e ".on('data’, callback)".

3. Promise’ -Java CompletableFuture, .Net Task.

4. ‘async / “await’ -- exist in most environments e.g..Net, Python, Js, etc
except Java.

5. suspend functions


https://en.wikipedia.org/wiki/Futures_and_promises

Promise

3 possible states:

* Pending

* Fulfilled (success)
* Rejected (error)

..then(...) — receives a continuation
..then(
val => ..., // executed when it is fullfiled
err =>...) // executed when it is rejected
// returns a new Promise that allows to chain another .then(...)



Promise

new Promise() // state Pending
Promise.resolve() // state Fulfilled
Promise.resolve().then(.. => res) // state Fulfilled with res

...then(val => .., err => ..) // returns a new Promise

* The callback (or continuation) will be performed when the previous task is
completed(fulfilled or rejected)

 The result of the new Promise will be the result of the continuation.



