
Programação na Internet
Turma i52d

Lesson 32
Sequential versus Concurrent

Sequential <versus> Concurrent

Get Bundle

Get Book

Add Book to Bundle

Get Bundle

Get Book

Add Book to Bundle

async

parallel(tasks, callback)

Run the `tasks` array of functions in parallel. If any of the functions pass
an error to its callback, the main `callback` is immediately called with
the value of the error. Once the `tasks` have completed, the results are
passed to the final `callback` as an array.

Promise

https://en.wikipedia.org/wiki/Futures_and_promises

Container of an asynchronous result:

May hold a successful or failure result.

Asynchronous Idioms:

1. _callback_ `(err, data) => {...}` -- `err` and `data` are 2 possible results

2. `EventEmitters` `.on('error’, callback)` e `.on('data’, callback)`.

3. `Promise` - Java CompletableFuture, .Net Task.

4. `async` / `await` -- exist in most environments e.g..Net, Python, Js, etc

except Java.

5. suspend functions

https://en.wikipedia.org/wiki/Futures_and_promises

Promise

3 possible states:
• Pending
• Fulfilled (success)
• Rejected (error)

…then(…) – receives a continuation
…then(

val => …, // executed when it is fullfiled
err => …) // executed when it is rejected

// returns a new Promise that allows to chain another .then(…)

Promise

• new Promise() // state Pending

• Promise.resolve() // state Fulfilled

• Promise.resolve().then(… => res) // state Fulfilled with res

• ….then(val => …, err => …) // returns a new Promise

• The callback (or continuation) will be performed when the previous task is
completed(fulfilled or rejected)

• The result of the new Promise will be the result of the continuation.

