This repository has been archived by the owner on Jul 29, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 113
/
model.py
161 lines (148 loc) · 4.38 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os.path
import sys
ROOT_DIR = os.path.abspath(os.path.pardir)
sys.path.append(ROOT_DIR)
import tensorflow as tf
import util.tf_util as tf_util
from util.pointnet_util import pointnet_sa_module, pointnet_fp_module
def get_placeholders(num_point, hyperparams):
feature_size = 3 * int(hyperparams["use_color"])
pointclouds_pl = tf.placeholder(
tf.float32, shape=(None, num_point, 3 + feature_size)
)
labels_pl = tf.placeholder(tf.int32, shape=(None, num_point))
smpws_pl = tf.placeholder(tf.float32, shape=(None, num_point))
return pointclouds_pl, labels_pl, smpws_pl
def get_model(point_cloud, is_training, num_class, hyperparams, bn_decay=None):
""" Semantic segmentation PointNet, input is BxNx3, output Bxnum_class """
end_points = {}
if hyperparams["use_color"]:
feature_size = 3 * int(hyperparams["use_color"])
l0_xyz = tf.slice(point_cloud, [0, 0, 0], [-1, -1, 3])
l0_points = tf.slice(point_cloud, [0, 0, 3], [-1, -1, feature_size])
else:
l0_xyz = point_cloud
l0_points = None
end_points["l0_xyz"] = l0_xyz
# Layer 1
l1_xyz, l1_points, l1_indices = pointnet_sa_module(
l0_xyz,
l0_points,
npoint=hyperparams["l1_npoint"],
radius=hyperparams["l1_radius"],
nsample=hyperparams["l1_nsample"],
mlp=[32, 32, 64],
mlp2=None,
group_all=False,
is_training=is_training,
bn_decay=bn_decay,
scope="layer1",
)
l2_xyz, l2_points, l2_indices = pointnet_sa_module(
l1_xyz,
l1_points,
npoint=hyperparams["l2_npoint"],
radius=hyperparams["l2_radius"],
nsample=hyperparams["l2_nsample"],
mlp=[64, 64, 128],
mlp2=None,
group_all=False,
is_training=is_training,
bn_decay=bn_decay,
scope="layer2",
)
l3_xyz, l3_points, l3_indices = pointnet_sa_module(
l2_xyz,
l2_points,
npoint=hyperparams["l3_npoint"],
radius=hyperparams["l3_radius"],
nsample=hyperparams["l3_nsample"],
mlp=[128, 128, 256],
mlp2=None,
group_all=False,
is_training=is_training,
bn_decay=bn_decay,
scope="layer3",
)
l4_xyz, l4_points, l4_indices = pointnet_sa_module(
l3_xyz,
l3_points,
npoint=hyperparams["l4_npoint"],
radius=hyperparams["l4_radius"],
nsample=hyperparams["l4_nsample"],
mlp=[256, 256, 512],
mlp2=None,
group_all=False,
is_training=is_training,
bn_decay=bn_decay,
scope="layer4",
)
# Feature Propagation layers
l3_points = pointnet_fp_module(
l3_xyz,
l4_xyz,
l3_points,
l4_points,
[256, 256],
is_training,
bn_decay,
scope="fa_layer1",
)
l2_points = pointnet_fp_module(
l2_xyz,
l3_xyz,
l2_points,
l3_points,
[256, 256],
is_training,
bn_decay,
scope="fa_layer2",
)
l1_points = pointnet_fp_module(
l1_xyz,
l2_xyz,
l1_points,
l2_points,
[256, 128],
is_training,
bn_decay,
scope="fa_layer3",
)
l0_points = pointnet_fp_module(
l0_xyz,
l1_xyz,
l0_points,
l1_points,
[128, 128, 128],
is_training,
bn_decay,
scope="fa_layer4",
)
# FC layers
net = tf_util.conv1d(
l0_points,
128,
1,
padding="VALID",
bn=True,
is_training=is_training,
scope="fc1",
bn_decay=bn_decay,
)
end_points["feats"] = net
net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope="dp1")
net = tf_util.conv1d(
net, num_class, 1, padding="VALID", activation_fn=None, scope="fc2"
)
return net, end_points
# For get_loss I added the end_points parameter. Like in pointnet2_cls_ssg.py, it's not used in the function.
def get_loss(pred, label, smpw, end_points):
""" pred: BxNxC, #one score per class per batch element (N is the nb of points)
label: BxN, #one label per batch element
smpw: BxN """
classify_loss = tf.losses.sparse_softmax_cross_entropy(
labels=label, logits=pred, weights=smpw
)
tf.summary.scalar("classify loss", classify_loss)
tf.add_to_collection("losses", classify_loss)
return classify_loss