Skip to content

Latest commit

 

History

History
136 lines (115 loc) · 7.8 KB

README.md

File metadata and controls

136 lines (115 loc) · 7.8 KB

Pytorch SSD Series

Support Arc:

VOC2007 Test

System mAP FPS (Titan X Maxwell)
Faster R-CNN (VGG16) 73.2 7
YOLOv2 (Darknet-19) 78.6 40
R-FCN (ResNet-101) 80.5 9
SSD300* (VGG16) 77.2 46
SSD512* (VGG16) 79.8 19
RFBNet300 (VGG16) 80.5 83
RFBNet512 (VGG16) 82.2 38
SSD300 (VGG) 77.8 150 (1080Ti)
FSSD300 (VGG) 78.8 120 (1080Ti)

COCO

System test-dev mAP Time (Titan X Maxwell)
Faster R-CNN++ (ResNet-101) 34.9 3.36s
YOLOv2 (Darknet-19) 21.6 25ms
SSD300* (VGG16) 25.1 22ms
SSD512* (VGG16) 28.8 53ms
RetinaNet500 (ResNet-101-FPN) 34.4 90ms
RFBNet300 (VGG16) 29.9 15ms*
RFBNet512 (VGG16) 33.8 30ms*
RFBNet512-E (VGG16) 34.4 33ms*

Note: * The speed here is tested on the newest pytorch and cudnn version (0.2.0 and cudnnV6), which is obviously faster than the speed reported in the paper (using pytorch-0.1.12 and cudnnV5).

MobileNet

System COCO minival mAP #parameters
SSD MobileNet 19.3 6.8M
RFB MobileNet 20.7* 7.4M

*: slightly better than the original ones in the paper (20.5).

Contents

  1. Installation
  2. Datasets
  3. Training
  4. Evaluation
  5. Models

Installation

  • Install PyTorch-0.2.0+ by selecting your environment on the website and running the appropriate command.
  • Clone this repository. This repository is mainly based onRFBNet, ssd.pytorch and Chainer-ssd, a huge thank to them.
    • Note: We currently only support Python 3+.
  • Compile the nms and coco tools:
./make.sh

Note*: Check you GPU architecture support in utils/build.py, line 131. Default is:

'nvcc': ['-arch=sm_52',
  • Install pyinn for MobileNet backbone:
pip install git+https://github.com/szagoruyko/pyinn.git@master
  • Then download the dataset by following the instructions below and install opencv.
conda install opencv

Note: For training, we currently support VOC and COCO.

Datasets

To make things easy, we provide simple VOC and COCO dataset loader that inherits torch.utils.data.Dataset making it fully compatible with the torchvision.datasets API.

VOC Dataset

Download VOC2007 trainval & test
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh data/scripts/VOC2007.sh # <directory>
Download VOC2012 trainval
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh data/scripts/VOC2012.sh # <directory>

COCO Dataset

Install the MS COCO dataset at /path/to/coco from official website, default is ~/data/COCO. Following the instructions to prepare minival2014 and valminusminival2014 annotations. All label files (.json) should be under the COCO/annotations/ folder. It should have this basic structure

$COCO/
$COCO/cache/
$COCO/annotations/
$COCO/images/
$COCO/images/test2015/
$COCO/images/train2014/
$COCO/images/val2014/

UPDATE: The current COCO dataset has released new train2017 and val2017 sets which are just new splits of the same image sets.

Training

mkdir weights
cd weights
wget https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
  • To train RFBNet using the train script simply specify the parameters listed in train_RFB.py as a flag or manually change them.
python train_test.py -d VOC -v RFB_vgg -s 300 
  • Note:
    • -d: choose datasets, VOC or COCO.
    • -v: choose backbone version, RFB_VGG, RFB_E_VGG or RFB_mobile.
    • -s: image size, 300 or 512.
    • You can pick-up training from a checkpoint by specifying the path as one of the training parameters (again, see train_RFB.py for options)

Evaluation

The test frequency can be found in the train_test.py By default, it will directly output the mAP results on VOC2007 test or COCO minival2014. For VOC2012 test and COCO test-dev results, you can manually change the datasets in the test_RFB.py file, then save the detection results and submitted to the server.

Models