-
Notifications
You must be signed in to change notification settings - Fork 3
/
exp_plot.py
87 lines (64 loc) · 2.08 KB
/
exp_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""
Plot the results of an experiment.
"""
__date__ = "January 2021"
import matplotlib.pyplot as plt
plt.switch_backend('agg')
import numpy as np
import os
import sys
import torch
LOGGING_DIR = 'logs'
AGG_FN = 'agg.pt'
EXP_1 = { \
'title': 'MNIST Halves 90% Missing',
'dirs': ['46583323', '58292551', '58554696', '69011097', '05033611', '85227924'],
'names': ['5vMF IWAE', '10vMF IWAE', '20vMF IWAE', 'Gaussian IWAE', 'EBM', 'Gaussian'],
'colors': ['gray', 'b', 'firebrick', 'darkorchid', 'mediumseagreen', 'goldenrod'],
'min_val': 350.0,
}
EXP_2 = { \
'title': 'MNIST MCAR 90% Missing',
'dirs': ['51048121', '34649524', '52082347'],
'names': ['Gaussian IWAE', 'Gaussian', 'EBM'],
'colors': ['darkorchid', 'goldenrod', 'mediumseagreen'],
'min_val': -1000,
}
if __name__ == '__main__':
EXP = EXP_2
fig, ax = plt.subplots(figsize=(5,3))
min_value = EXP['min_val']
for exp_dir, exp_name, exp_color in zip(EXP['dirs'], EXP['names'], EXP['colors']):
if exp_name in ['1vMF PoE', '2vMF PoE', '4vMF PoE']:
continue
# Load run.
fn = os.path.join(LOGGING_DIR, exp_dir, AGG_FN)
if not os.path.isfile(fn):
print('File {} does not exist!'.format(fn))
continue
agg = torch.load(fn)
# Collect data.
train_elbo = -np.array(agg['train_loss'])
train_epoch = agg['train_epoch']
test_elbo = -np.array(agg['test_loss'])
test_epoch = agg['test_epoch']
train_mll = agg['train_mll']
train_mll_epoch = agg['train_mll_epoch']
test_mll = agg['test_mll']
test_mll_epoch = agg['test_mll_epoch']
# Plot.
# plt.plot(train_epoch, train_elbo, c='mediumseagreen', alpha=0.3, label='train ELBO')
plt.plot(test_epoch, test_elbo, c=exp_color, alpha=0.7, label=exp_name)
# plt.scatter(train_mll_epoch, train_mll, c='mediumseagreen', alpha=0.8, label='train MLL')
plt.scatter(test_mll_epoch, test_mll, c=exp_color, alpha=0.8)
plt.title(EXP['title'])
plt.ylabel("MLL/ELBO")
plt.xlabel("Epoch")
plt.legend(loc='best')
plt.ylim(min_value, None)
plt.tight_layout()
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.savefig('exp.pdf')
plt.close('all')
###