forked from erget/wgrib2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sominv.c
248 lines (222 loc) · 6.58 KB
/
sominv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*******************************************************************************
NAME SPACE OBLIQUE MERCATOR (SOM)
PURPOSE: The first method to Transform input Easting and Northing to
longitude and latitude for the SOM projection. The
Easting and Northing must be in meters. The longitude
and latitude values will be returned in radians.
PROGRAM HISTORY
PROGRAMMER DATE
---------- ----
D. Steinwand July, 1992
T. Mittan Mar, 1993
ALGORITHM REFERENCES
1. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological
Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United
State Government Printing Office, Washington D.C., 1987.
2. "Software Documentation for GCTP General Cartographic Transformation
Package", U.S. Geological Survey National Mapping Division, May 1982.
*******************************************************************************/
#include "cproj.h"
#define LANDSAT_RATIO 0.5201613
static double lon_center,a,b,a2,a4,c1,c3,q,t,u,w,xj,p21,sa,ca,es,s,start;
static double false_easting;
static double false_northing;
static double som_series(double *fb, double *fa2, double *fa4, double *fc1,
double *fc3,double *dlam);
long sominvint(r_major,r_minor,satnum,path,alf_in,lon,false_east,false_north,
time, start1,flag)
double r_major; /* major axis */
double r_minor; /* minor axis */
long satnum; /* Landsat satellite number (1,2,3,4,5) */
long path; /* Landsat path number */
double alf_in;
double lon;
double false_east; /* x offset in meters */
double false_north; /* y offset in meters */
double time;
long start1;
long flag;
{
long i;
double alf,e2c,e2s,one_es;
double dlam,fb,fa2,fa4,fc1,fc3,suma2,suma4,sumc1,sumc3,sumb;
/* Place parameters in static storage for common use
-------------------------------------------------*/
false_easting = false_east;
false_northing = false_north;
a = r_major;
b = r_minor;
es = 1.0 - SQUARE(r_minor/r_major);
if (flag != 0)
{
alf = alf_in;
lon_center = lon;
p21 = time/1440.0;
start = start1;
}
else
{
if (satnum < 4)
{
alf = 99.092 * D2R;
p21=103.2669323/1440.0;
lon_center = (128.87 - (360.0/251.0 * path)) * D2R;
}
else
{
alf = 98.2 * D2R;
p21=98.8841202/1440.0;
lon_center = (129.30 - (360.0/233.0 * path)) * D2R;
/*
lon_center = (129.30557714 - (360.0/233.0 * path)) * D2R;
*/
}
start=0.0;
}
/* Report parameters to the user (to device set up prior to this call)
-------------------------------------------------------------------*/
ptitle("SPACE OBLIQUE MERCATOR");
radius2(a,b);
genrpt_long(path, "Path Number: ");
genrpt_long(satnum, "Satellite Number: ");
genrpt(alf*R2D, "Inclination of Orbit: ");
genrpt(lon_center*R2D, "Longitude of Ascending Orbit: ");
offsetp(false_easting,false_northing);
genrpt(LANDSAT_RATIO, "Landsat Ratio: ");
ca=cos(alf);
if (fabs(ca)<1.e-9) ca=1.e-9;
sa=sin(alf);
e2c=es*ca*ca;
e2s=es*sa*sa;
w=(1.0-e2c)/(1.0-es);
w=w*w-1.0;
one_es=1.0-es;
q = e2s / one_es;
t = (e2s*(2.0-es)) / (one_es*one_es);
u= e2c / one_es;
xj = one_es*one_es*one_es;
dlam=0.0;
som_series(&fb,&fa2,&fa4,&fc1,&fc3,&dlam);
suma2=fa2;
suma4=fa4;
sumb=fb;
sumc1=fc1;
sumc3=fc3;
for(i=9;i<=81;i+=18)
{
dlam=i;
som_series(&fb,&fa2,&fa4,&fc1,&fc3,&dlam);
suma2=suma2+4.0*fa2;
suma4=suma4+4.0*fa4;
sumb=sumb+4.0*fb;
sumc1=sumc1+4.0*fc1;
sumc3=sumc3+4.0*fc3;
}
for(i=18; i<=72; i+=18)
{
dlam=i;
som_series(&fb,&fa2,&fa4,&fc1,&fc3,&dlam);
suma2=suma2+2.0*fa2;
suma4=suma4+2.0*fa4;
sumb=sumb+2.0*fb;
sumc1=sumc1+2.0*fc1;
sumc3=sumc3+2.0*fc3;
}
dlam=90.0;
som_series(&fb,&fa2,&fa4,&fc1,&fc3,&dlam);
suma2=suma2+fa2;
suma4=suma4+fa4;
sumb=sumb+fb;
sumc1=sumc1+fc1;
sumc3=sumc3+fc3;
a2=suma2/30.0;
a4=suma4/60.0;
b=sumb/30.0;
c1=sumc1/15.0;
c3=sumc3/45.0;
return(OK);
}
long sominv(y, x, lon, lat)
double x; /* (I) X projection coordinate */
double y; /* (I) Y projection coordinate */
double *lon; /* (O) Longitude */
double *lat; /* (O) Latitude */
{
double tlon,conv,sav,sd,sdsq,blon,dif,st,defac,actan,tlat,dd,bigk,bigk2,xlamt;
double sl,scl,dlat,dlon,temp;
long inumb;
/* Inverse equations. Begin inverse computation with approximation for tlon.
Solve for transformed long.
---------------------------*/
temp=y; y=x - false_easting; x= temp - false_northing;
tlon= x/(a*b);
conv=1.e-9;
for(inumb=0;inumb<50;inumb++)
{
sav=tlon;
sd=sin(tlon);
sdsq=sd*sd;
s=p21*sa*cos(tlon)*sqrt((1.0+t*sdsq)/((1.0+w*sdsq)*(1.0+q*sdsq)));
blon=(x/a)+(y/a)*s/xj-a2*sin(2.0*tlon)-a4*sin(4.0*tlon)-(s/xj)*(c1*
sin(tlon)+c3*sin(3.0*tlon));
tlon=blon/b;
dif=tlon-sav;
if(fabs(dif)<conv)break;
}
if(inumb>=50)
{
p_error("50 iterations without convergence","som-inverse");
return(214);
}
/* Compute transformed lat.
------------------------*/
st=sin(tlon);
defac=exp(sqrt(1.0+s*s/xj/xj)*(y/a-c1*st-c3*sin(3.0*tlon)));
actan=atan(defac);
tlat=2.0*(actan-(PI/4.0));
/* Compute geodetic longitude
--------------------------*/
dd=st*st;
if(fabs(cos(tlon))<1.e-7) tlon=tlon-1.e-7;
bigk=sin(tlat);
bigk2=bigk*bigk;
xlamt=atan(((1.0-bigk2/(1.0-es))*tan(tlon)*ca-bigk*sa*sqrt((1.0+q*dd)
*(1.0-bigk2)-bigk2*u)/cos(tlon))/(1.0-bigk2*(1.0+u)));
/* Correct inverse quadrant
------------------------*/
if(xlamt>=0.0) sl=1.0;
if(xlamt<0.0) sl= -1.0;
if(cos(tlon)>=0.0) scl=1.0;
if(cos(tlon)<0.0) scl= -1.0;
xlamt=xlamt-((PI/2.0)*(1.0-scl)*sl);
dlon=xlamt-p21*tlon;
/* Compute geodetic latitude
-------------------------*/
if(fabs(sa)<1.e-7)dlat=asin(bigk/sqrt((1.0-es)*(1.0-es)+es*bigk2));
if(fabs(sa)>=1.e-7)dlat=atan((tan(tlon)*cos(xlamt)-ca*sin(xlamt))/((1.0-es)*sa));
*lon = adjust_lon(dlon+lon_center);
*lat = dlat;
return(OK);
}
/* Series to calculate a,b,c coefficients to convert from transform
latitude,longitude to Space Oblique Mercator (SOM) rectangular coordinates
Mathematical analysis by John Snyder 6/82
--------------------------------------------------------------------------*/
static double som_series(fb,fa2,fa4,fc1,fc3,dlam)
double *fb,*fa2,*fa4,*fc1,*fc3,*dlam;
{
double sd,sdsq,h,sq,fc;
*dlam= *dlam*0.0174532925; /* Convert dlam to radians */
sd=sin(*dlam);
sdsq=sd*sd;
s=p21*sa*cos(*dlam)*sqrt((1.0+t*sdsq)/((1.0+w*sdsq)*(1.0+q*sdsq)));
h=sqrt((1.0+q*sdsq)/(1.0+w*sdsq))*(((1.0+w*sdsq)/((1.0+q*sdsq)*(1.0+
q*sdsq)))-p21*ca);
sq=sqrt(xj*xj+s*s);
*fb=(h*xj-s*s)/sq;
*fa2= *fb*cos(2.0* *dlam);
*fa4= *fb*cos(4.0* *dlam);
fc=s*(h+xj)/sq;
*fc1=fc*cos(*dlam);
*fc3=fc*cos(3.0* *dlam);
}