forked from DingXiaoH/RepVGG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
218 lines (184 loc) · 7.43 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
import math
import torchvision.datasets as datasets
import os
import torchvision.transforms as transforms
import PIL
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def load_checkpoint(model, ckpt_path):
checkpoint = torch.load(ckpt_path)
if 'model' in checkpoint:
checkpoint = checkpoint['model']
if 'state_dict' in checkpoint:
checkpoint = checkpoint['state_dict']
ckpt = {}
for k, v in checkpoint.items():
if k.startswith('module.'):
ckpt[k[7:]] = v
else:
ckpt[k] = v
model.load_state_dict(ckpt)
def read_hdf5(file_path):
import h5py
import numpy as np
result = {}
with h5py.File(file_path, 'r') as f:
for k in f.keys():
value = np.asarray(f[k])
result[str(k).replace('+', '/')] = value
print('read {} arrays from {}'.format(len(result), file_path))
f.close()
return result
def model_load_hdf5(model:torch.nn.Module, hdf5_path, ignore_keys='stage0.'):
weights_dict = read_hdf5(hdf5_path)
for name, param in model.named_parameters():
print('load param: ', name, param.size())
if name in weights_dict:
np_value = weights_dict[name]
else:
np_value = weights_dict[name.replace(ignore_keys, '')]
value = torch.from_numpy(np_value).float()
assert tuple(value.size()) == tuple(param.size())
param.data = value
for name, param in model.named_buffers():
print('load buffer: ', name, param.size())
if name in weights_dict:
np_value = weights_dict[name]
else:
np_value = weights_dict[name.replace(ignore_keys, '')]
value = torch.from_numpy(np_value).float()
assert tuple(value.size()) == tuple(param.size())
param.data = value
class WarmupCosineAnnealingLR(torch.optim.lr_scheduler._LRScheduler):
def __init__(self, optimizer, T_cosine_max, eta_min=0, last_epoch=-1, warmup=0):
self.eta_min = eta_min
self.T_cosine_max = T_cosine_max
self.warmup = warmup
super(WarmupCosineAnnealingLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
if self.last_epoch < self.warmup:
return [self.last_epoch / self.warmup * base_lr for base_lr in self.base_lrs]
else:
return [self.eta_min + (base_lr - self.eta_min) *
(1 + math.cos(math.pi * (self.last_epoch - self.warmup) / (self.T_cosine_max - self.warmup))) / 2
for base_lr in self.base_lrs]
def log_msg(message, log_file):
print(message)
with open(log_file, 'a') as f:
print(message, file=f)
def get_ImageNet_train_dataset(args, trans):
if os.path.exists('/home/dingxiaohan/ndp/imagenet.train.nori.list'):
# This is the data source on our machine. You won't need it.
from noris_dataset import ImageNetNoriDataset
train_dataset = ImageNetNoriDataset('/home/dingxiaohan/ndp/imagenet.train.nori.list', trans)
else:
# Your ImageNet directory
traindir = os.path.join(args.data, 'train')
train_dataset = datasets.ImageFolder(traindir, trans)
return train_dataset
def get_ImageNet_val_dataset(args, trans):
if os.path.exists('/home/dingxiaohan/ndp/imagenet.val.nori.list'):
# This is the data source on our machine. You won't need it.
from noris_dataset import ImageNetNoriDataset
val_dataset = ImageNetNoriDataset('/home/dingxiaohan/ndp/imagenet.val.nori.list', trans)
else:
# Your ImageNet directory
traindir = os.path.join(args.data, 'val')
val_dataset = datasets.ImageFolder(traindir, trans)
return val_dataset
def get_default_train_trans(args):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
if (not hasattr(args, 'resolution')) or args.resolution == 224:
trans = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize])
else:
raise ValueError('Not yet implemented.')
return trans
def get_default_val_trans(args):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
if (not hasattr(args, 'resolution')) or args.resolution == 224:
trans = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize])
else:
trans = transforms.Compose([
transforms.Resize(args.resolution, interpolation=PIL.Image.BILINEAR),
transforms.CenterCrop(args.resolution),
transforms.ToTensor(),
normalize,
])
return trans
def get_default_ImageNet_train_sampler_loader(args):
train_trans = get_default_train_trans(args)
train_dataset = get_ImageNet_train_dataset(args, train_trans)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
return train_sampler, train_loader
def get_default_ImageNet_val_loader(args):
val_trans = get_default_val_trans(args)
val_dataset = get_ImageNet_val_dataset(args, val_trans)
if hasattr(args, 'val_batch_size'):
bs = args.val_batch_size
else:
bs = args.batch_size
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=bs, shuffle=False,
num_workers=args.workers, pin_memory=True)
return val_loader