The academic paper which describes BERT in detail and provides full results on a number of tasks can be found here: https://arxiv.org/abs/1810.04805.
This repository contains TensorFlow 2.x implementation for BERT.
Our current released checkpoints are exactly the same as TF 1.x official BERT
repository, thus inside BertConfig
, there is backward_compatible=True
. We
are going to release new pre-trained checkpoints soon.
We provide checkpoints that are converted from google-research/bert, in order to keep consistent with BERT paper.
Note: We have switched BERT implementation to use Keras functional-style networks in nlp/modeling. The new checkpoints are:
BERT-Large, Uncased (Whole Word Masking)
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Large, Cased (Whole Word Masking)
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Uncased
: 12-layer, 768-hidden, 12-heads, 110M parametersBERT-Large, Uncased
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Cased
: 12-layer, 768-hidden, 12-heads , 110M parametersBERT-Large, Cased
: 24-layer, 1024-hidden, 16-heads, 340M parameters
Here are the stable model checkpoints work with v2.0 release.
Note: these checkpoints are not compatible with the current master examples.
BERT-Large, Uncased (Whole Word Masking)
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Large, Cased (Whole Word Masking)
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Uncased
: 12-layer, 768-hidden, 12-heads, 110M parametersBERT-Large, Uncased
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Cased
: 12-layer, 768-hidden, 12-heads , 110M parametersBERT-Large, Cased
: 24-layer, 1024-hidden, 16-heads, 340M parameters
We recommend to host checkpoints on Google Cloud storage buckets when you use Cloud GPU/TPU.
tf.train.Checkpoint
is used to manage model checkpoints in TF 2. To restore
weights from provided pre-trained checkpoints, you can use the following code:
init_checkpoint='the pretrained model checkpoint path.'
model=tf.keras.Model() # Bert pre-trained model as feature extractor.
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(init_checkpoint)
Checkpoints featuring native serialized Keras models (i.e. model.load()/load_weights()) will be available soon.
export PYTHONPATH="$PYTHONPATH:/path/to/models"
Install tf-nightly
to get latest updates:
pip install tf-nightly-gpu
With TPU, GPU support is not necessary. First, you need to create a tf-nightly
TPU with ctpu tool:
ctpu up -name <instance name> --tf-version=”nightly”
Second, you need to install TF 2 tf-nightly
on your VM:
pip install tf-nightly
Warning: More details TPU-specific set-up instructions and tutorial should come along with official TF 2.x release for TPU. Note that this repo is not officially supported by Google Cloud TPU team yet until TF 2.1 released.
There is no change to generate pre-training data. Please use the script
create_pretraining_data.py
which is essentially branched from BERT research repo
to get processed pre-training data and it adapts to TF2 symbols and python3
compatibility.
To prepare the fine-tuning data for final model training, use the
create_finetuning_data.py
script. Resulting
datasets in tf_record
format and training meta data should be later passed to
training or evaluation scripts. The task-specific arguments are described in
following sections:
- GLUE
Users can download the
GLUE data by running
this script
and unpack it to some directory $GLUE_DIR
.
export GLUE_DIR=~/glue
export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export TASK_NAME=MNLI
export OUTPUT_DIR=gs://some_bucket/datasets
python create_finetuning_data.py \
--input_data_dir=${GLUE_DIR}/${TASK_NAME}/ \
--vocab_file=${BERT_BASE_DIR}/vocab.txt \
--train_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_train.tf_record \
--eval_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_eval.tf_record \
--meta_data_file_path=${OUTPUT_DIR}/${TASK_NAME}_meta_data \
--fine_tuning_task_type=classification --max_seq_length=128 \
--classification_task_name=${TASK_NAME}
- SQUAD
The SQuAD website contains detailed information about the SQuAD datasets and evaluation.
The necessary files can be found here:
export SQUAD_DIR=~/squad
export SQUAD_VERSION=v1.1
export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export OUTPUT_DIR=gs://some_bucket/datasets
python create_finetuning_data.py \
--squad_data_file=${SQUAD_DIR}/train-${SQUAD_VERSION}.json \
--vocab_file=${BERT_BASE_DIR}/vocab.txt \
--train_data_output_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
--meta_data_file_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_meta_data \
--fine_tuning_task_type=squad --max_seq_length=384
- Cloud Storage
The unzipped pre-trained model files can also be found in the Google Cloud
Storage folder gs://cloud-tpu-checkpoints/bert/keras_bert
. For example:
export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export MODEL_DIR=gs://some_bucket/my_output_dir
Currently, users are able to access to tf-nightly
TPUs and the following TPU
script should run with tf-nightly
.
- GPU -> TPU
Just add the following flags to run_classifier.py
or run_squad.py
:
--distribution_strategy=tpu
--tpu=grpc://${TPU_IP_ADDRESS}:8470
This example code fine-tunes BERT-Large
on the Microsoft Research Paraphrase
Corpus (MRPC) corpus, which only contains 3,600 examples and can fine-tune in a
few minutes on most GPUs.
We use the BERT-Large
(uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use BERT-Base
(uncased_L-12_H-768_A-12).
export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
export TASK=MRPC
python run_classifier.py \
--mode='train_and_eval' \
--input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
--train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
--eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
--bert_config_file=${BERT_BASE_DIR}/bert_config.json \
--init_checkpoint=${BERT_BASE_DIR}/bert_model.ckpt \
--train_batch_size=4 \
--eval_batch_size=4 \
--steps_per_loop=1 \
--learning_rate=2e-5 \
--num_train_epochs=3 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=mirrored
To use TPU, you only need to switch distribution strategy type to tpu
with TPU
information and use remote storage for model checkpoints.
export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
python run_classifier.py \
--mode='train_and_eval' \
--input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
--train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
--eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
--bert_config_file=$BERT_BASE_DIR/bert_config.json \
--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
--train_batch_size=32 \
--eval_batch_size=32 \
--learning_rate=2e-5 \
--num_train_epochs=3 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=tpu \
--tpu=grpc://${TPU_IP_ADDRESS}:8470
The Stanford Question Answering Dataset (SQuAD) is a popular question answering benchmark dataset. See more in SQuAD website.
We use the BERT-Large
(uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use BERT-Base
(uncased_L-12_H-768_A-12).
export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export SQUAD_DIR=gs://some_bucket/datasets
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_VERSION=v1.1
python run_squad.py \
--input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
--train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
--predict_file=${SQUAD_DIR}/dev-v1.1.json \
--vocab_file=${BERT_BASE_DIR}/vocab.txt \
--bert_config_file=$BERT_BASE_DIR/bert_config.json \
--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
--train_batch_size=4 \
--predict_batch_size=4 \
--learning_rate=8e-5 \
--num_train_epochs=2 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=mirrored
To use TPU, you need switch distribution strategy type to tpu
with TPU
information.
export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_DIR=gs://some_bucket/datasets
export SQUAD_VERSION=v1.1
python run_squad.py \
--input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
--train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
--predict_file=${SQUAD_DIR}/dev-v1.1.json \
--vocab_file=${BERT_BASE_DIR}/vocab.txt \
--bert_config_file=$BERT_BASE_DIR/bert_config.json \
--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
--train_batch_size=32 \
--learning_rate=8e-5 \
--num_train_epochs=2 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=tpu \
--tpu=grpc://${TPU_IP_ADDRESS}:8470
The dev set predictions will be saved into a file called predictions.json in the model_dir:
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ./squad/predictions.json