forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
imagenet_test.py
326 lines (256 loc) · 13.3 KB
/
imagenet_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.r1.resnet import imagenet_main
from official.utils.misc import keras_utils
from official.utils.testing import integration
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
_BATCH_SIZE = 32
_LABEL_CLASSES = 1001
class BaseTest(tf.test.TestCase):
_num_validation_images = None
@classmethod
def setUpClass(cls): # pylint: disable=invalid-name
super(BaseTest, cls).setUpClass()
imagenet_main.define_imagenet_flags()
def setUp(self):
super(BaseTest, self).setUp()
if keras_utils.is_v2_0:
tf.compat.v1.disable_eager_execution()
self._num_validation_images = imagenet_main.NUM_IMAGES['validation']
imagenet_main.NUM_IMAGES['validation'] = 4
def tearDown(self):
super(BaseTest, self).tearDown()
tf.io.gfile.rmtree(self.get_temp_dir())
imagenet_main.NUM_IMAGES['validation'] = self._num_validation_images
def _tensor_shapes_helper(self, resnet_size, resnet_version, dtype, with_gpu):
"""Checks the tensor shapes after each phase of the ResNet model."""
def reshape(shape):
"""Returns the expected dimensions depending on if a GPU is being used."""
# If a GPU is used for the test, the shape is returned (already in NCHW
# form). When GPU is not used, the shape is converted to NHWC.
if with_gpu:
return shape
return shape[0], shape[2], shape[3], shape[1]
graph = tf.Graph()
with graph.as_default(), self.test_session(
graph=graph, use_gpu=with_gpu, force_gpu=with_gpu):
model = imagenet_main.ImagenetModel(
resnet_size=resnet_size,
data_format='channels_first' if with_gpu else 'channels_last',
resnet_version=resnet_version,
dtype=dtype
)
inputs = tf.random.uniform([1, 224, 224, 3])
output = model(inputs, training=True)
initial_conv = graph.get_tensor_by_name('resnet_model/initial_conv:0')
max_pool = graph.get_tensor_by_name('resnet_model/initial_max_pool:0')
block_layer1 = graph.get_tensor_by_name('resnet_model/block_layer1:0')
block_layer2 = graph.get_tensor_by_name('resnet_model/block_layer2:0')
block_layer3 = graph.get_tensor_by_name('resnet_model/block_layer3:0')
block_layer4 = graph.get_tensor_by_name('resnet_model/block_layer4:0')
reduce_mean = graph.get_tensor_by_name('resnet_model/final_reduce_mean:0')
dense = graph.get_tensor_by_name('resnet_model/final_dense:0')
self.assertAllEqual(initial_conv.shape, reshape((1, 64, 112, 112)))
self.assertAllEqual(max_pool.shape, reshape((1, 64, 56, 56)))
# The number of channels after each block depends on whether we're
# using the building_block or the bottleneck_block.
if resnet_size < 50:
self.assertAllEqual(block_layer1.shape, reshape((1, 64, 56, 56)))
self.assertAllEqual(block_layer2.shape, reshape((1, 128, 28, 28)))
self.assertAllEqual(block_layer3.shape, reshape((1, 256, 14, 14)))
self.assertAllEqual(block_layer4.shape, reshape((1, 512, 7, 7)))
self.assertAllEqual(reduce_mean.shape, reshape((1, 512, 1, 1)))
else:
self.assertAllEqual(block_layer1.shape, reshape((1, 256, 56, 56)))
self.assertAllEqual(block_layer2.shape, reshape((1, 512, 28, 28)))
self.assertAllEqual(block_layer3.shape, reshape((1, 1024, 14, 14)))
self.assertAllEqual(block_layer4.shape, reshape((1, 2048, 7, 7)))
self.assertAllEqual(reduce_mean.shape, reshape((1, 2048, 1, 1)))
self.assertAllEqual(dense.shape, (1, _LABEL_CLASSES))
self.assertAllEqual(output.shape, (1, _LABEL_CLASSES))
def tensor_shapes_helper(self, resnet_size, resnet_version, with_gpu=False):
self._tensor_shapes_helper(resnet_size=resnet_size,
resnet_version=resnet_version,
dtype=tf.float32, with_gpu=with_gpu)
self._tensor_shapes_helper(resnet_size=resnet_size,
resnet_version=resnet_version,
dtype=tf.float16, with_gpu=with_gpu)
def test_tensor_shapes_resnet_18_v1(self):
self.tensor_shapes_helper(18, resnet_version=1)
def test_tensor_shapes_resnet_18_v2(self):
self.tensor_shapes_helper(18, resnet_version=2)
def test_tensor_shapes_resnet_34_v1(self):
self.tensor_shapes_helper(34, resnet_version=1)
def test_tensor_shapes_resnet_34_v2(self):
self.tensor_shapes_helper(34, resnet_version=2)
def test_tensor_shapes_resnet_50_v1(self):
self.tensor_shapes_helper(50, resnet_version=1)
def test_tensor_shapes_resnet_50_v2(self):
self.tensor_shapes_helper(50, resnet_version=2)
def test_tensor_shapes_resnet_101_v1(self):
self.tensor_shapes_helper(101, resnet_version=1)
def test_tensor_shapes_resnet_101_v2(self):
self.tensor_shapes_helper(101, resnet_version=2)
def test_tensor_shapes_resnet_152_v1(self):
self.tensor_shapes_helper(152, resnet_version=1)
def test_tensor_shapes_resnet_152_v2(self):
self.tensor_shapes_helper(152, resnet_version=2)
def test_tensor_shapes_resnet_200_v1(self):
self.tensor_shapes_helper(200, resnet_version=1)
def test_tensor_shapes_resnet_200_v2(self):
self.tensor_shapes_helper(200, resnet_version=2)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_18_with_gpu_v1(self):
self.tensor_shapes_helper(18, resnet_version=1, with_gpu=True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_18_with_gpu_v2(self):
self.tensor_shapes_helper(18, resnet_version=2, with_gpu=True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_34_with_gpu_v1(self):
self.tensor_shapes_helper(34, resnet_version=1, with_gpu=True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_34_with_gpu_v2(self):
self.tensor_shapes_helper(34, resnet_version=2, with_gpu=True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_50_with_gpu_v1(self):
self.tensor_shapes_helper(50, resnet_version=1, with_gpu=True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_50_with_gpu_v2(self):
self.tensor_shapes_helper(50, resnet_version=2, with_gpu=True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_101_with_gpu_v1(self):
self.tensor_shapes_helper(101, resnet_version=1, with_gpu=True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_101_with_gpu_v2(self):
self.tensor_shapes_helper(101, resnet_version=2, with_gpu=True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_152_with_gpu_v1(self):
self.tensor_shapes_helper(152, resnet_version=1, with_gpu=True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_152_with_gpu_v2(self):
self.tensor_shapes_helper(152, resnet_version=2, with_gpu=True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_200_with_gpu_v1(self):
self.tensor_shapes_helper(200, resnet_version=1, with_gpu=True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_200_with_gpu_v2(self):
self.tensor_shapes_helper(200, resnet_version=2, with_gpu=True)
def resnet_model_fn_helper(self, mode, resnet_version, dtype):
"""Tests that the EstimatorSpec is given the appropriate arguments."""
tf.compat.v1.train.create_global_step()
input_fn = imagenet_main.get_synth_input_fn(dtype)
dataset = input_fn(True, '', _BATCH_SIZE)
iterator = tf.compat.v1.data.make_initializable_iterator(dataset)
features, labels = iterator.get_next()
spec = imagenet_main.imagenet_model_fn(
features, labels, mode, {
'dtype': dtype,
'resnet_size': 50,
'data_format': 'channels_last',
'batch_size': _BATCH_SIZE,
'resnet_version': resnet_version,
'loss_scale': 128 if dtype == tf.float16 else 1,
'fine_tune': False,
})
predictions = spec.predictions
self.assertAllEqual(predictions['probabilities'].shape,
(_BATCH_SIZE, _LABEL_CLASSES))
self.assertEqual(predictions['probabilities'].dtype, tf.float32)
self.assertAllEqual(predictions['classes'].shape, (_BATCH_SIZE,))
self.assertEqual(predictions['classes'].dtype, tf.int64)
if mode != tf.estimator.ModeKeys.PREDICT:
loss = spec.loss
self.assertAllEqual(loss.shape, ())
self.assertEqual(loss.dtype, tf.float32)
if mode == tf.estimator.ModeKeys.EVAL:
eval_metric_ops = spec.eval_metric_ops
self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ())
self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ())
self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32)
self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32)
def test_resnet_model_fn_train_mode_v1(self):
self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, resnet_version=1,
dtype=tf.float32)
def test_resnet_model_fn_train_mode_v2(self):
self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, resnet_version=2,
dtype=tf.float32)
def test_resnet_model_fn_eval_mode_v1(self):
self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL, resnet_version=1,
dtype=tf.float32)
def test_resnet_model_fn_eval_mode_v2(self):
self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL, resnet_version=2,
dtype=tf.float32)
def test_resnet_model_fn_predict_mode_v1(self):
self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT, resnet_version=1,
dtype=tf.float32)
def test_resnet_model_fn_predict_mode_v2(self):
self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT, resnet_version=2,
dtype=tf.float32)
def _test_imagenetmodel_shape(self, resnet_version):
batch_size = 135
num_classes = 246
model = imagenet_main.ImagenetModel(
50, data_format='channels_last', num_classes=num_classes,
resnet_version=resnet_version)
fake_input = tf.random.uniform([batch_size, 224, 224, 3])
output = model(fake_input, training=True)
self.assertAllEqual(output.shape, (batch_size, num_classes))
def test_imagenetmodel_shape_v1(self):
self._test_imagenetmodel_shape(resnet_version=1)
def test_imagenetmodel_shape_v2(self):
self._test_imagenetmodel_shape(resnet_version=2)
def test_imagenet_end_to_end_synthetic_v1(self):
integration.run_synthetic(
main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
extra_flags=['-resnet_version', '1', '-batch_size', '4',
'--max_train_steps', '1']
)
def test_imagenet_end_to_end_synthetic_v2(self):
integration.run_synthetic(
main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
extra_flags=['-resnet_version', '2', '-batch_size', '4',
'--max_train_steps', '1']
)
def test_imagenet_end_to_end_synthetic_v1_tiny(self):
integration.run_synthetic(
main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
extra_flags=['-resnet_version', '1', '-batch_size', '4',
'-resnet_size', '18', '--max_train_steps', '1']
)
def test_imagenet_end_to_end_synthetic_v2_tiny(self):
integration.run_synthetic(
main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
extra_flags=['-resnet_version', '2', '-batch_size', '4',
'-resnet_size', '18', '--max_train_steps', '1']
)
def test_imagenet_end_to_end_synthetic_v1_huge(self):
integration.run_synthetic(
main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
extra_flags=['-resnet_version', '1', '-batch_size', '4',
'-resnet_size', '200', '--max_train_steps', '1']
)
def test_imagenet_end_to_end_synthetic_v2_huge(self):
integration.run_synthetic(
main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
extra_flags=['-resnet_version', '2', '-batch_size', '4',
'-resnet_size', '200', '--max_train_steps', '1']
)
if __name__ == '__main__':
tf.test.main()