forked from hadley/r4ds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model-vis.Rmd
1076 lines (775 loc) · 48.9 KB
/
model-vis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
```{r setup, include = FALSE}
library(broom)
library(ggplot2)
library(dplyr)
library(lubridate)
library(tidyr)
library(nycflights13)
library(modelr)
```
# Model building
<!-- residuals vs. predictions -->
Attack the problem from two directions: building up from a simple model, and subtracting off the full dataset.
Transition from implicit knowledge in your head and in data to explicit knowledge in the model. In other words, you want to make explicit your knowledge of the data and capture it explicitly in a model. This makes it easier to apply to new domains, and easier for others to use. But you must always remember that your knowledge is incomplete. Subtract patterns from the data, and add patterns to the model.
<!-- purpose of modelling -->
What is a good model? We'll think about that more in the next chapter. For now, a good model captures the majority of the patterns that are generated by the underlying mechanism of interest, and captures few patterns that are not generated by that mechanism. Another way to frame that is that you want your model to be good at inference, not just description. Inference is one of the most important parts of a model - you want to not just make statements about the data you have observed, but data that you have not observed (like things that will happen in the future).
Focus on constructing models that help you better understand the data. This will generally lead to models that predict better. But you have to beware of overfitting the data - in the next section we'll discuss some formal methods. But a healthy dose of scepticism is also a powerful: do you believe that a pattern you see in your sample is going to generalise to a wider population?
<!-- When do you stop? -->
For very large and complex datasets this is going to be a lot of work. There are certainly alternative approaches - a more machine learning approach is simply to focus on improving the predictive ability of the model, being careful to fairly assess it (i.e. not assessing the model on the data that was used to train it). These approaches tend to produce black boxes - i.e. the model does a really good job, but you don't know why. This is fine, but the main problem is that you can't apply your real world knowledge to the model to think about whether or not it's likely to work in the long-term, as fundamentals change. For most real models, I'd expect you to use some combination of this approach and a ML model building approach. If prediction is important, get to a good point, and then use visulisation to understand the most important parts of the model.
> A long time ago in art class, my teacher told me "An artist needs to know
> when a piece is done. You can't tweak something into perfection - wrap it up.
> If you don't like it, do it over again. Otherwise begin something new". Later
> in life, I heard "A poor seamstress makes many mistakes. A good seamstress
> works hard to correct those mistakes. A great seamstress isn't afraid to
> throw out the garment and start over."
-- Reddit user Broseidon241, https://www.reddit.com/r/datascience/comments/4irajq/mistakes_made_by_beginningaspiring_data_scientists/
In the next chapter, you'll also learn about how to visualise the model-level summaries, and the model parameters.
To do this we're going to use some helper functions from the modelr package. This package provides some wrappers around the traditional base R modelling functions that make them easier to use in data manipulation pipelines. Currently at <https://github.com/hadley/modelr> but will need to be on CRAN before the book is published.
```{r}
library(modelr)
options(
contrasts = c("contr.treatment", "contr.treatment"),
na.option = na.exclude
)
```
In the course of modelling, you'll often discover data quality problems. Maybe a missing value is recorded as 999. Whenever you discover a problem like this, you'll need to review an update your import scripts. You'll often discover a problem with one variable, but you'll need to think about it for all variables. This is often frustrating, but it's typical.
## Residuals
To motivate the use of models we're going to start with an interesting pattern from the NYC flights dataset: the number of flights per day.
```{r}
library(nycflights13)
library(lubridate)
library(dplyr)
daily <- flights %>%
mutate(date = make_datetime(year, month, day)) %>%
group_by(date) %>%
summarise(n = n())
ggplot(daily, aes(date, n)) +
geom_line()
```
Understanding this pattern is challenging because there's a very strong day-of-week effect that dominates the subtler patterns:
```{r}
daily <- daily %>%
mutate(wday = wday(date, label = TRUE))
ggplot(daily, aes(wday, n)) +
geom_boxplot()
```
There are fewer flights on weekends because a very large proportion of travel is for business. You might sometimes have to less on Sunday for an early flight, but it's very rare that you'd leave on Saturday: you'd much rather be home with your family.
One way to remove this strong pattern is to fit a model that "explains" (i.e. attempts to predict) the day of week effect, and then look at the residuals:
```{r}
mod <- lm(n ~ wday, data = daily)
daily <- daily %>% add_residuals(n_resid = mod)
daily %>%
ggplot(aes(date, n_resid)) +
geom_hline(yintercept = 0, size = 2, colour = "white") +
geom_line()
```
Note the change in the y-axis: now we are seeing the deviation from the expected number of flights, given the day of week. This plot is interesting because now that we've removed much of the large day-of-week effect, we can see some of the subtler patterns that remain:
1. Our day of week adjustment seems to fail starting around June: you can
still see a strong regular pattern that our model hasn't removed. Drawing
a plot with one line for each day of the week makes the cause easier
to see:
```{r}
ggplot(daily, aes(date, n_resid, colour = wday)) +
geom_hline(yintercept = 0, size = 2, colour = "white") +
geom_line()
```
The problem appears to be Saturdays: it seems like during summer there are
more flights on Saturdays than we expect, and during Fall there are fewer.
I suspect this is because of summer holidays: many people go on holiday
in the summer, and people don't mind travelling on Saturdays for vacation.
(This doesn't, however, explain why there are more Satruday flights in
spring than fall).
1. There are some day with much fewer flights than expected:
```{r}
daily %>% filter(n_resid < -100)
```
If you're familiar with American public holidays, you might spot New Year's
day, July 4th, Thanksgiving and Christmas. There are some others that don't
seem to correspond immediately to public holidays. You'll work on those
in the exercise below.
1. There seems to be some smoother long term trend over the course of a year.
We can highlight that trend with `geom_smooth()`:
```{r}
daily %>%
ggplot(aes(date, n_resid)) +
geom_hline(yintercept = 0, size = 2, colour = "white") +
geom_line(colour = "grey50") +
geom_smooth(se = FALSE, span = 0.20)
```
There are fewer flights in January (and December), and more in summer
(May-Sep). We can't do much more with this trend than brainstorm possible
explanations because we only have a single year's worth of data.
We'll tackle the day of week effect first. Let's zoom in on Saturdays, going back to raw numbers:
```{r}
daily %>%
filter(wday == "Sat") %>%
ggplot(aes(date, n)) +
geom_line() +
geom_point(alpha = 1/3) +
scale_x_datetime(NULL, date_breaks = "1 month", date_labels = "%b")
```
So it looks like summer holidays are from early June to late August. That seems to line up fairly well with the [state's school terms](http://schools.nyc.gov/Calendar/2013-2014+School+Year+Calendars.htm): summer break is Jun 26 - Sep 9. Few families travel in the fall because of the big Thanksgiving and Christmas holidays. So lets add a "term" variable to attemp to control for that.
```{r}
term <- function(date) {
cut(date,
breaks = as.POSIXct(ymd(20130101, 20130605, 20130825, 20140101)),
labels = c("spring", "summer", "fall")
)
}
daily <- daily %>% mutate(term = term(date))
daily %>%
filter(wday == "Sat") %>%
ggplot(aes(date, n, colour = term)) +
geom_point(alpha = 1/3) +
geom_line() +
scale_x_datetime(NULL, date_breaks = "1 month", date_labels = "%b")
```
(I manually tweaked the dates to get nice breaks in the plot. Using a visualisation to help you understand what your function is doing is a really powerful and general technique.)
It's useful to see how this new variable affects the other days of the week:
```{r}
daily %>%
ggplot(aes(wday, n, colour = term)) +
geom_boxplot()
```
It looks like there is significant variation across the terms, so fitting a separate day of week effect for each term is reasonable. This improves our model, but not as much as we might hope:
```{r}
mod2 <- lm(n ~ wday * term, data = daily)
daily$n_resid2 <- resid(mod2)
ggplot(daily, aes(date)) +
geom_line(aes(y = n_resid, colour = "mod1")) +
geom_line(aes(y = n_resid2, colour = "mod2")) +
scale_colour_manual(values = c(mod1 = "grey50", mod2 = "black"))
```
That's because this model is basically calculating an average for each combination of wday and school term. We have a lot of big outliers, so they tend to drag the mean far away from the typical value.
```{r}
middles <- daily %>%
group_by(wday, term) %>%
summarise(
mean = mean(n),
median = median(n)
)
middles %>%
ggplot(aes(wday)) +
geom_linerange(aes(ymin = mean, ymax = median), colour = "grey70") +
geom_point(aes(y = mean, colour = "mean")) +
geom_point(aes(y = median, colour = "median")) +
facet_wrap(~ term)
```
We can reduce this problem by switching to a robust model fitted by `MASS::rlm()`. A robust model is a variation of the linear model which you can think of a fitting medians, instead of means (it's a bit more complicated than that, but that's a reasonable intuition). This greatly reduces the impact of the outliers on our estimates, and gives a result that does a good job of removing the day of week pattern:
```{r, warn=FALSE}
mod3 <- MASS::rlm(n ~ wday * term, data = daily)
daily <- daily %>% add_residuals(n_resid3 = mod3)
ggplot(daily, aes(date, n_resid3)) +
geom_hline(yintercept = 0, size = 2, colour = "white") +
geom_line()
```
It's now much easier to see the long-term trend, and the positive and negative outliers.
Very common to use residual plots when figuring out if a model is ok. But it's easy to get the impression that there's just one type of residual plot you should do, when in fact there are infinite.
### Exercises
1. Use your google sleuthing skills to brainstorm why there were fewer than
expected flights on Jan 20, May 26, and Sep 9. (Hint: they all have the
same explanation.) How would these days generalise to another year?
1. What do the three days with high positive residuals represent?
How would these days generalise to another year?
```{r}
daily %>% filter(n_resid2 > 80)
```
1. Create a new variable that splits the `wday` variable into terms, but only
for Saturdays, i.e. it should have `Thurs`, `Fri`, but `Sat-summer`,
`Sat-spring`, `Sat-fall`. How does this model compare with the model with
every combination of `wday` and `term`?
1. Create a new wday variable that combines the day of week, term
(for Saturdays), and public holidays. What do the residuals of
that model look like?
1. What happens if you fit a day of week effect that varies by month?
Why is this not very helpful?
1. Above we made the hypothesis that people leaving on Sundays are more
likely to be business travellers who need to be somewhere on Monday.
Explore that hypothesis by seeing how it breaks down based on distance:
if it's true, you'd expect to see more Sunday flights to places that
are far away.
1. It's a little frustrating that Sunday and Saturday are on separate ends
of the plot. Write a small function to set the levels of the factor so
that the week starts on Monday.
## Predictions
Focus on predictions from a model because this works for any type of model. Visualising parameters can also be useful, but tends to be most useful when you have many similar models. Visualising predictions works regardless of the model family.
Visualising high-dimensional models is challenging. You'll need to partition off a useable slice at a time.
Let's start by exploring the difference between the `lm()` and `rlm()` predictions for the day of week effects. We'll first re-fit the models, just so we have them handy:
```{r}
mod1 <- lm(n ~ wday * term, data = daily)
mod2 <- MASS::rlm(n ~ wday * term, data = daily)
```
Next, we need to generate a grid of values to compute predictions for. The easiest way to do that is to use `tidyr::expand()`. It's first argument is a data frame, and for each subsequent argument it finds the unique variables and then generates all combinations:
```{r}
grid <-
daily %>%
tidyr::expand(wday, term)
grid
```
Next we add predicitons. We'll use `modelr::add_predictions()` which works in exactly the same way as `add_residuals()`, but just compute predictions (so doesn't need a data frame that contains the response variable:)
```{r}
grid <-
grid %>%
add_predictions(linear = mod1, robust = mod2)
grid
```
And then we plot the predictions. Plotting predictions is usually the hardest bit and you'll need to try a few times before you get a plot that is most informative. Depending on your model it's quite possible that you'll need multiple plots to fully convey what the model is telling you about the data. Here's my attempt - it took me a few tries before I got something that I was happy with.
```{r}
grid %>%
ggplot(aes(wday)) +
geom_linerange(aes(ymin = linear, ymax = robust), colour = "grey70") +
geom_point(aes(y = linear, colour = "linear")) +
geom_point(aes(y = robust, colour = "robust")) +
facet_wrap(~ term)
```
### Exercises
1. How does the model of model coefficients compare to the plot of means
and medians computed "by hand" in the previous chapter. Create a plot
the highlights the differences and similarities.
## Generating prediction grids
Now that you're learned the basics of generating prediction grids with `expand()`, we need to go into a few more details to cover other types of data you might come across. In each of the following sections, I'll explore in more detail one type of data along with the expansion and visualisation techniques you'll need to understand it.
### Continuous variables
When you have a continuous variable in the model, rather than using the unique values that you've seen, it's often more useful to generate an evenly spaced grid. One convenient way to do this is with `modelr::seq_range()` which takes a continuous variable, calculates its range, and then generates an evenly spaced points between the minimum and maximum.
```{r}
mod <- MASS::rlm(n ~ wday * yday(date), data = daily)
grid <- daily %>%
tidyr::expand(wday, date = seq_range(date, n = 13)) %>%
add_predictions(mod = mod)
ggplot(grid, aes(date, mod, colour = wday)) +
geom_line() +
geom_point()
```
(Why use `yday(date)` instead of `date`? That's saying we think that the pattern depends only the day of the year, so we might expect it to be the same in other years. Again, since we only have a single year of data we can't test that hypothesis.)
We're going to be using this pattern for a few examples, so lets wrap it up into a function. This is a rather inflexible function, but it serves its purpose here. In my experience, it's challenging to write functions that apply to wide swathes of your modelling process because you tend to do a lot of experimentation and your models can differ quite radically in form, and hence in how you need to visualise them.
```{r}
vis_flights <- function(mod) {
daily %>%
tidyr::expand(wday, date = seq_range(date, n = 13)) %>%
add_predictions(mod = mod) %>%
ggplot(aes(date, mod, colour = wday)) +
geom_line() +
geom_point()
}
```
This is more useful if you have a model that includes non-linear components. You might wonder how you can use a linear model to handle non-linear patterns! But basically we're going to do something like a Taylor series expansion - we're going to approximate a non-linear pattern with a series of transformation. Technically, it's still "linear" in the linear model sense because each parameter multiplies an input variable. This is different from true non-linear models where the coefficients appear in other places like $\alpha_1 + (\alpha_2-\alpha_1) * exp(-exp(\alpha_3) * x)$, the asymptotic regression model.
One way to get that is to include non-linear terms like `I(x ^ 2)`, `I(x ^ 3)` etc. You can't just use `X ^ 2` because of the way the modelling algebra works. `x ^ 2` is equivalent to `x * x` which in the modelling algebra is equivalent to `x + x + x:x` which is the same as `x`. This is useful because `(x + y + z)^2` fit all all major terms and second order interactions of x, y, and z.
But rather than using this laborious formulation (which also doesn't work here because our `x` is a date, and you can't raise a date to a power), a better solution is to the use `poly(x, n)` which generates `n` polynomials. (They are Legendre polynomials which means that each is uncorrelated with any of the previous which also makes model fitting a bit easier)
```{r}
MASS::rlm(n ~ wday * poly(yday(date), 5), data = daily) %>% vis_flights()
```
(Note the warning message that the model failed to converge - this typically suggests a model misspecification problem. We should be very cautious about interpreting this model. You'll explore the model more in the exercises.)
One problem with polynomials is that they have bad tail behaviour - outside of the range of the data they will rapidly shoot towards either positive or negative infinity. One solution to this is splines. Let's look at this with a simpler example:
```{r}
df <- data_frame(
x = rep(1:10, each = 3),
y = 30 - (x - 5) ^ 2 + rnorm(30, sd = 6)
)
ggplot(df, aes(x, y)) + geom_point()
```
Then we fit the models and predict both to the data.
```{r}
library(splines)
mod_poly <- lm(y ~ poly(x, 2), data = df)
mod_ns <- lm(y ~ ns(x, 2), data = df)
preds <- df %>%
expand(x = seq_range(x, 20)) %>%
add_predictions(poly = mod_poly, ns = mod_ns)
```
They look equally good in the range of the data:
```{r}
ggplot(df, aes(x, y)) +
geom_point() +
geom_line(data = preds, aes(y = poly, colour = "poly")) +
geom_line(data = preds, aes(y = ns, colour = "ns"))
```
But when we extend past the existing range of the data, we see:
```{r}
preds <- df %>%
expand(x = seq(-5, 15, length = 30)) %>%
add_predictions(poly = mod_poly, ns = mod_ns)
ggplot(df, aes(x, y)) +
geom_point() +
geom_line(data = preds, aes(y = poly, colour = "poly")) +
geom_line(data = preds, aes(y = ns, colour = "ns"))
```
The natural splines are designed to only linearly interpolate outside the range of the data. In general, this leads to somewhat safer behaviour, but you in either case you should be cautious about extrapolating. These are not generative models - they're just pragmatic fits to patterns. We shouldn't expect them to do a good job outside the data we've observed.
In general, splines are a useful tool when you have patterns that aren't linear, but you don't have a good explicit model for. Interestingly, using a natural spline instead of poly also fixes our convergence problem, while yielding much the same results:
```{r}
library(splines)
MASS::rlm(n ~ wday * ns(date, 5), data = daily) %>% vis_flights()
```
Particularly, we see the strongly pattern in Saturdays that we identified when coming in the opposite direction. It's always a good sign when you see the same signal from multiple approaches. (But note our previous model was explanatory - this is just predictatory.)
How many degrees of freedom to use? Either pick manually to extract the shape of the data, or you can use one of the model assessment techniques in the following chapter to pick algorithmically. Here we're most interested in explanation, so picking by hand (with a little though and plenty of scepticism) is typically fine.
Other useful arguments to `seq_range()`:
* `pretty = TRUE` will generate a "pretty" sequence, i.e. something that looks
nice to the human eye. This is useful if you want to produce tables of
output:
```{r}
seq_range(c(0.0123, 0.923423), n = 5)
seq_range(c(0.0123, 0.923423), n = 5, pretty = TRUE)
```
* `trim = 0.1` will trim off 10% of the tail values. This is useful if the
variables has an long tailed distribution and you want to focus on generating
values near the center:
```{r}
x <- rcauchy(100)
seq_range(x, n = 5)
seq_range(x, n = 5, trim = 0.10)
seq_range(x, n = 5, trim = 0.25)
seq_range(x, n = 5, trim = 0.50)
```
### Computed variables
If you're experimenting with many models and many visualisations, it's a good idea to bundle the creation of variables up into a function so there's no chance of accidentally applying a different transformation in different places.
```{r}
compute_vars <- function(data) {
data %>% mutate(
term = term(date),
wday = wday(date, label = TRUE)
)
}
```
Another option is to wrap it ito the model formula:
```{r}
wday2 <- function(x) wday(x, label = TRUE)
mod3 <- lm(n ~ wday2(date) * term(date), data = daily)
daily %>%
expand(date) %>%
add_predictions(pred = mod3)
```
I think this is fine to do provided that you've carefully checked that the functions do what you think they do (i.e. with a visualisation). There are two disadvantages:
1. You may need to add the variables back in anyway if you want to use
them in a visualsiation.
1. When looking at the coefficients, their values are longer and harder to
read. (But this is a general problem with the way that linear models report
categorical coefficients in R, not a specific problem with this case.)
### Nested variables
Another case that occassionally crops up is nested variables: you have an identifier that is locally unique, not globally unique. For example you might have this data about students in schools:
```{r}
students <- tibble::frame_data(
~student_id, ~school_id,
1, 1,
2, 1,
1, 2,
1, 3,
2, 3,
3, 3
)
```
The student id only makes sense in the context of the school: it doesn't make sense to generate every combination of student and school. You can use `nesting()` for this case:
```{r}
students %>% expand(nesting(school_id, student_id))
```
### Interpolation vs extrapolation
One danger with prediction plots is that it's easy to make predictions that are far away from the original data. This is dangerous because it's quite possible that the model (which is a simplification of reality) will no longer apply far away from observed values.
To help avoid this problem, it's good practice to include "nearby" observed data points in any prediction plot. These help you see if you're interpolating, making prediction "in between" existing data points, or extrapolating, making predictions about preivously unobserved slices of the data.
One way to do this is to use `condvis::visualweight()`.
<https://cran.rstudio.com/web/packages/condvis/>
### Exercises
1. In the use of `rlm` with `poly()`, the model didn't converge. Carefully
read the documentation for `rlm` and figure out which parameter controls
the number of iterations. Can you increase the iterations so that the
model converges? If so, how does the model differ from the model that
didn't converge?
## Case study: predicting flight delays
Finish off with a somewhat more realistic case study where we combine the techniques of visualising predictions and residuals to attack the problem of predicting flight delays.
Can't predict delays for next year. Why not? Instead we'll focus on predicting the amount that your flight will be delayed if it's leaving soon.
We'll start with some exploratory analysis, and then work on the model:
* time of day
* weather
```{r}
delays <- flights %>%
mutate(date = make_datetime(year, month, day)) %>%
group_by(date) %>%
summarise(delay = mean(arr_delay, na.rm = TRUE), cancelled = mean(is.na(dep_time)), n = n())
# delays %>%
# ggplot(aes(wday(date, label = TRUE), delay)) +
# geom_boxplot()
delays %>%
ggplot(aes(n, delay)) +
geom_point() +
geom_smooth(se = F)
```
In this chapter we will explore model visualisation from two different sides:
1. Use a model to make it easier to see important patterns in our data.
1. Use visualisation to understand what a model is telling us about our data.
We're going to give you a basic strategy, and point you to places to learn more. The key is to think about data generated from your model as regular data - you're going to want to manipulate it and visualise it in many different ways. Being good at modelling is a mixture of having some good general principles and having a big toolbox of techniques. Here we'll focus on general techniques to help you undertand what your model is telling you.
<!-- residuals vs. predictions -->
Centered around looking at residuals and looking at predictions. You'll see those here applied to linear models (and some minor variations), but it's a flexible technique since every model can generate predictions and residuals.
Attack the problem from two directions: building up from a simple model, and subtracting off the full dataset.
Transition from implicit knowledge in your head and in data to explicit knowledge in the model. In other words, you want to make explicit your knowledge of the data and capture it explicitly in a model. This makes it easier to apply to new domains, and easier for others to use. But you must always remember that your knowledge is incomplete. Subtract patterns from the data, and add patterns to the model.
<!-- purpose of modelling -->
What is a good model? We'll think about that more in the next chapter. For now, a good model captures the majority of the patterns that are generated by the underlying mechanism of interest, and captures few patterns that are not generated by that mechanism. Another way to frame that is that you want your model to be good at inference, not just description. Inference is one of the most important parts of a model - you want to not just make statements about the data you have observed, but data that you have not observed (like things that will happen in the future).
Focus on constructing models that help you better understand the data. This will generally lead to models that predict better. But you have to beware of overfitting the data - in the next section we'll discuss some formal methods. But a healthy dose of scepticism is also a powerful: do you believe that a pattern you see in your sample is going to generalise to a wider population?
<!-- When do you stop? -->
For very large and complex datasets this is going to be a lot of work. There are certainly alternative approaches - a more machine learning approach is simply to focus on improving the predictive ability of the model, being careful to fairly assess it (i.e. not assessing the model on the data that was used to train it). These approaches tend to produce black boxes - i.e. the model does a really good job, but you don't know why. This is fine, but the main problem is that you can't apply your real world knowledge to the model to think about whether or not it's likely to work in the long-term, as fundamentals change. For most real models, I'd expect you to use some combination of this approach and a ML model building approach. If prediction is important, get to a good point, and then use visulisation to understand the most important parts of the model.
> A long time ago in art class, my teacher told me "An artist needs to know
> when a piece is done. You can't tweak something into perfection - wrap it up.
> If you don't like it, do it over again. Otherwise begin something new". Later
> in life, I heard "A poor seamstress makes many mistake. A good seamstress
> works hard to correct those mistakes. A great seamstress isn't afraid to
> throw out the garment and start over."
-- Reddit user Broseidon241, https://www.reddit.com/r/datascience/comments/4irajq/mistakes_made_by_beginningaspiring_data_scientists/
In the next chapter, you'll also learn about how to visualise the model-level summaries, and the model parameters.
To do this we're going to use some helper functions from the modelr package. This package provides some wrappers around the traditional base R modelling functions that make them easier to use in data manipulation pipelines. Currently at <https://github.com/hadley/modelr> but will need to be on CRAN before the book is published.
```{r}
library(modelr)
options(
contrasts = c("contr.treatment", "contr.treatment"),
na.option = na.exclude
)
```
In the course of modelling, you'll often discover data quality problems. Maybe a missing value is recorded as 999. Whenever you discover a problem like this, you'll need to review an update your import scripts. You'll often discover a problem with one variable, but you'll need to think about it for all variables. This is often frustrating, but it's typical.
## Residuals
To motivate the use of models we're going to start with an interesting pattern from the NYC flights dataset: the number of flights per day.
```{r}
library(nycflights13)
library(lubridate)
library(dplyr)
daily <- flights %>%
mutate(date = make_datetime(year, month, day)) %>%
group_by(date) %>%
summarise(n = n())
ggplot(daily, aes(date, n)) +
geom_line()
```
Understanding this pattern is challenging because there's a very strong day-of-week effect that dominates the subtler patterns:
```{r}
daily <- daily %>%
mutate(wday = wday(date, label = TRUE))
ggplot(daily, aes(wday, n)) +
geom_boxplot()
```
There are fewer flights on weekends because a very large proportion of travel is for business. You might sometimes have to less on Sunday for an early flight, but it's very rare that you'd leave on Saturday: you'd much rather be home with your family.
One way to remove this strong pattern is to fit a model that "explains" (i.e. attempts to predict) the day of week effect, and then look at the residuals:
```{r}
mod <- lm(n ~ wday, data = daily)
daily <- daily %>% add_residuals(n_resid = mod)
daily %>%
ggplot(aes(date, n_resid)) +
geom_hline(yintercept = 0, size = 2, colour = "white") +
geom_line()
```
Note the change in the y-axis: now we are seeing the deviation from the expected number of flights, given the day of week. This plot is interesting because now that we've removed much of the large day-of-week effect, we can see some of the subtler patterns that remain:
1. Our day of week adjustment seems to fail starting around June: you can
still see a strong regular pattern that our model hasn't removed. Drawing
a plot with one line for each day of the week makes the cause easier
to see:
```{r}
ggplot(daily, aes(date, n_resid, colour = wday)) +
geom_hline(yintercept = 0, size = 2, colour = "white") +
geom_line()
```
The problem appears to be Saturdays: it seems like during summer there are
more flights on Saturdays than we expect, and during Fall there are fewer.
I suspect this is because of summer holidays: many people go on holiday
in the summer, and people don't mind travelling on Saturdays for vacation.
(This doesn't, however, explain why there are more Satruday flights in
spring than fall).
1. There are some day with much fewer flights than expected:
```{r}
daily %>% filter(n_resid < -100)
```
If you're familiar with American public holidays, you might spot New Year's
day, July 4th, Thanksgiving and Christmas. There are some others that don't
seem to correspond immediately to public holidays. You'll work on those
in the exercise below.
1. There seems to be some smoother long term trend over the course of a year.
We can highlight that trend with `geom_smooth()`:
```{r}
daily %>%
ggplot(aes(date, n_resid)) +
geom_hline(yintercept = 0, size = 2, colour = "white") +
geom_line(colour = "grey50") +
geom_smooth(se = FALSE, span = 0.20)
```
There are fewer flights in January (and December), and more in summer
(May-Sep). We can't do much more with this trend than brainstorm possible
explanations because we only have a single year's worth of data.
We'll tackle the day of week effect first. Let's zoom in on Saturdays, going back to raw numbers:
```{r}
daily %>%
filter(wday == "Sat") %>%
ggplot(aes(date, n)) +
geom_line() +
geom_point(alpha = 1/3) +
scale_x_datetime(NULL, date_breaks = "1 month", date_labels = "%b")
```
So it looks like summer holidays are from early June to late August. That seems to line up fairly well with the [state's school terms](http://schools.nyc.gov/Calendar/2013-2014+School+Year+Calendars.htm): summer break is Jun 26 - Sep 9. Few families travel in the fall because of the big Thanksgiving and Christmas holidays. So lets add a "term" variable to attemp to control for that.
```{r}
term <- function(date) {
cut(date,
breaks = as.POSIXct(ymd(20130101, 20130605, 20130825, 20140101)),
labels = c("spring", "summer", "fall")
)
}
daily <- daily %>% mutate(term = term(date))
daily %>%
filter(wday == "Sat") %>%
ggplot(aes(date, n, colour = term)) +
geom_point(alpha = 1/3) +
geom_line() +
scale_x_datetime(NULL, date_breaks = "1 month", date_labels = "%b")
```
(I manually tweaked the dates to get nice breaks in the plot. Using a visualisation to help you understand what your function is doing is a really powerful and general technique.)
It's useful to see how this new variable affects the other days of the week:
```{r}
daily %>%
ggplot(aes(wday, n, colour = term)) +
geom_boxplot()
```
It looks like there is significant variation across the terms, so fitting a separate day of week effect for each term is reasonable. This improves our model, but not as much as we might hope:
```{r}
mod2 <- lm(n ~ wday * term, data = daily)
daily$n_resid2 <- resid(mod2)
ggplot(daily, aes(date)) +
geom_line(aes(y = n_resid, colour = "mod1")) +
geom_line(aes(y = n_resid2, colour = "mod2")) +
scale_colour_manual(values = c(mod1 = "grey50", mod2 = "black"))
```
That's because this model is basically calculating an average for each combination of wday and school term. We have a lot of big outliers, so they tend to drag the mean far away from the typical value.
```{r}
middles <- daily %>%
group_by(wday, term) %>%
summarise(
mean = mean(n),
median = median(n)
)
middles %>%
ggplot(aes(wday)) +
geom_linerange(aes(ymin = mean, ymax = median), colour = "grey70") +
geom_point(aes(y = mean, colour = "mean")) +
geom_point(aes(y = median, colour = "median")) +
facet_wrap(~ term)
```
We can reduce this problem by switching to a robust model fitted by `MASS::rlm()`. A robust model is a variation of the linear model which you can think of a fitting medians, instead of means (it's a bit more complicated than that, but that's a reasonable intuition). This greatly reduces the impact of the outliers on our estimates, and gives a result that does a good job of removing the day of week pattern:
```{r, warn=FALSE}
mod3 <- MASS::rlm(n ~ wday * term, data = daily)
daily <- daily %>% add_residuals(n_resid3 = mod3)
ggplot(daily, aes(date, n_resid3)) +
geom_hline(yintercept = 0, size = 2, colour = "white") +
geom_line()
```
It's now much easier to see the long-term trend, and the positive and negative outliers.
Very common to use residual plots when figuring out if a model is ok. But it's easy to get the impression that there's just one type of residual plot you should do, when in fact there are infinite.
### Exercises
1. Use your google sleuthing skills to brainstorm why there were fewer than
expected flights on Jan 20, May 26, and Sep 9. (Hint: they all have the
same explanation.) How would these days generalise to another year?
1. What do the three days with high positive residuals represent?
How would these days generalise to another year?
```{r}
daily %>% filter(n_resid2 > 80)
```
1. Create a new variable that splits the `wday` variable into terms, but only
for Saturdays, i.e. it should have `Thurs`, `Fri`, but `Sat-summer`,
`Sat-spring`, `Sat-fall`. How does this model compare with the model with
every combination of `wday` and `term`?
1. Create a new wday variable that combines the day of week, term
(for Saturdays), and public holidays. What do the residuals of
that model look like?
1. What happens if you fit a day of week effect that varies by month?
Why is this not very helpful?
1. Above we made the hypothesis that people leaving on Sundays are more
likely to be business travellers who need to be somewhere on Monday.
Explore that hypothesis by seeing how it breaks down based on distance:
if it's true, you'd expect to see more Sunday flights to places that
are far away.
1. It's a little frustrating that Sunday and Saturday are on separate ends
of the plot. Write a small function to set the levels of the factor so
that the week starts on Monday.
## Predictions
Focus on predictions from a model because this works for any type of model. Visualising parameters can also be useful, but tends to be most useful when you have many similar models. Visualising predictions works regardless of the model family.
Visualising high-dimensional models is challenging. You'll need to partition off a useable slice at a time.
Let's start by exploring the difference between the `lm()` and `rlm()` predictions for the day of week effects. We'll first re-fit the models, just so we have them handy:
```{r}
mod1 <- lm(n ~ wday * term, data = daily)
mod2 <- MASS::rlm(n ~ wday * term, data = daily)
```
Next, we need to generate a grid of values to compute predictions for. The easiest way to do that is to use `tidyr::expand()`. It's first argument is a data frame, and for each subsequent argument it finds the unique variables and then generates all combinations:
```{r}
grid <-
daily %>%
tidyr::expand(wday, term)
grid
```
Next we add predicitons. We'll use `modelr::add_predictions()` which works in exactly the same way as `add_residuals()`, but just compute predictions (so doesn't need a data frame that contains the response variable:)
```{r}
grid <-
grid %>%
add_predictions(linear = mod1, robust = mod2)
grid
```
And then we plot the predictions. Plotting predictions is usually the hardest bit and you'll need to try a few times before you get a plot that is most informative. Depending on your model it's quite possible that you'll need multiple plots to fully convey what the model is telling you about the data. Here's my attempt - it took me a few tries before I got something that I was happy with.
```{r}
grid %>%
ggplot(aes(wday)) +
geom_linerange(aes(ymin = linear, ymax = robust), colour = "grey70") +
geom_point(aes(y = linear, colour = "linear")) +
geom_point(aes(y = robust, colour = "robust")) +
facet_wrap(~ term)
```
### Exercises
1. How does the model of model coefficients compare to the plot of means
and medians computed "by hand" in the previous chapter. Create a plot
the highlights the differences and similarities.
## Generating prediction grids
### Continuous variables
When you have a continuous variable in the model, rather than using the unique values that you've seen, it's often more useful to generate an evenly spaced grid. One convenient way to do this is with `modelr::seq_range()` which takes a continuous variable, calculates its range, and then generates an evenly spaced points between the minimum and maximum.
```{r}
mod <- MASS::rlm(n ~ wday * yday(date), data = daily)
grid <- daily %>%
tidyr::expand(wday, date = seq_range(date, n = 13)) %>%
add_predictions(mod = mod)
ggplot(grid, aes(date, mod, colour = wday)) +
geom_line() +
geom_point()
```
(Why use `yday(date)` instead of `date`? That's saying we think that the pattern depends only the day of the year, so we might expect it to be the same in other years. Again, since we only have a single year of data we can't test that hypothesis.)
We're going to be using this pattern for a few examples, so lets wrap it up into a function. This is a rather inflexible function, but it serves its purpose here. In my experience, it's challenging to write functions that apply to wide swathes of your modelling process because you tend to do a lot of experimentation and your models can differ quite radically in form, and hence in how you need to visualise them.
```{r}
vis_flights <- function(mod) {
daily %>%
tidyr::expand(wday, date = seq_range(date, n = 13)) %>%
add_predictions(mod = mod) %>%
ggplot(aes(date, mod, colour = wday)) +
geom_line() +
geom_point()
}
```
This is more useful if you have a model that includes non-linear components. You might wonder how you can use a linear model to handle non-linear patterns! But basically we're going to do something like a Taylor series expansion - we're going to approximate a non-linear pattern with a series of transformation. Technically, it's still "linear" in the linear model sense because each parameter multiplies an input variable. This is different from true non-linear models where the coefficients appear in other places like $\alpha_1 + (\alpha_2-\alpha_1) * exp(-exp(\alpha_3) * x)$, the asymptotic regression model.
One way to get that is to include non-linear terms like `I(x ^ 2)`, `I(x ^ 3)` etc. You can't just use `X ^ 2` because of the way the modelling algebra works. `x ^ 2` is equivalent to `x * x` which in the modelling algebra is equivalent to `x + x + x:x` which is the same as `x`. This is useful because `(x + y + z)^2` fit all all major terms and second order interactions of x, y, and z.
But rather than using this laborious formulation (which also doesn't work here because our `x` is a date, and you can't raise a date to a power), a better solution is to the use `poly(x, n)` which generates `n` polynomials. (They are Legendre polynomials which means that each is uncorrelated with any of the previous which also makes model fitting a bit easier)
```{r}
MASS::rlm(n ~ wday * poly(yday(date), 5), data = daily) %>% vis_flights()
```
(Note the warning message that the model failed to converge - this typically suggests a model misspecification problem. We should be very cautious about interpreting this model. You'll explore the model more in the exercises.)
One problem with polynomials is that they have bad tail behaviour - outside of the range of the data they will rapidly shoot towards either positive or negative infinity. One solution to this is splines. Let's look at this with a simpler example:
```{r}
df <- data_frame(
x = rep(1:10, each = 3),
y = 30 - (x - 5) ^ 2 + rnorm(30, sd = 6)
)
ggplot(df, aes(x, y)) + geom_point()
```
Then we fit the models and predict both to the data.
```{r}
library(splines)
mod_poly <- lm(y ~ poly(x, 2), data = df)
mod_ns <- lm(y ~ ns(x, 2), data = df)
preds <- df %>%
expand(x = seq_range(x, 20)) %>%
add_predictions(poly = mod_poly, ns = mod_ns)
```
They look equally good in the range of the data:
```{r}
ggplot(df, aes(x, y)) +
geom_point() +
geom_line(data = preds, aes(y = poly, colour = "poly")) +
geom_line(data = preds, aes(y = ns, colour = "ns"))
```
But when we extend past the existing range of the data, we see:
```{r}
preds <- df %>%
expand(x = seq(-5, 15, length = 30)) %>%
add_predictions(poly = mod_poly, ns = mod_ns)
ggplot(df, aes(x, y)) +
geom_point() +
geom_line(data = preds, aes(y = poly, colour = "poly")) +
geom_line(data = preds, aes(y = ns, colour = "ns"))
```
The natural splines are designed to only linearly interpolate outside the range of the data. In general, this leads to somewhat safer behaviour, but you in either case you should be cautious about extrapolating. These are not generative models - they're just pragmatic fits to patterns. We shouldn't expect them to do a good job outside the data we've observed.
In general, splines are a useful tool when you have patterns that aren't linear, but you don't have a good explicit model for. Interestingly, using a natural spline instead of poly also fixes our convergence problem, while yielding much the same results:
```{r}
library(splines)
MASS::rlm(n ~ wday * ns(date, 5), data = daily) %>% vis_flights()
```
Particularly, we see the strongly pattern in Saturdays that we identified when coming in the opposite direction. It's always a good sign when you see the same signal from multiple approaches. (But note our previous model was explanatory - this is just predictatory.)
How many degrees of freedom to use? Either pick manually to extract the shape of the data, or you can use one of the model assessment techniques in the following chapter to pick algorithmically. Here we're most interested in explanation, so picking by hand (with a little though and plenty of scepticism) is typically fine.
Other useful arguments to `seq_range()`:
* `pretty = TRUE` will generate a "pretty" sequence, i.e. something that looks
nice to the human eye. This is useful if you want to produce tables of
output:
```{r}
seq_range(c(0.0123, 0.923423), n = 5)
seq_range(c(0.0123, 0.923423), n = 5, pretty = TRUE)
```
* `trim = 0.1` will trim off 10% of the tail values. This is useful if the
variables has an long tailed distribution and you want to focus on generating
values near the center:
```{r}
x <- rcauchy(100)
seq_range(x, n = 5)
seq_range(x, n = 5, trim = 0.10)
seq_range(x, n = 5, trim = 0.25)
seq_range(x, n = 5, trim = 0.50)
```
### Computed variables
If you're experimenting with many models and many visualisations, it's a good idea to bundle the creation of variables up into a function so there's no chance of accidentally applying a different transformation in different places.
```{r}
compute_vars <- function(data) {
data %>% mutate(
term = term(date),
wday = wday(date, label = TRUE)
)
}
```
Another option is to wrap it ito the model formula:
```{r}
wday2 <- function(x) wday(x, label = TRUE)
mod3 <- lm(n ~ wday2(date) * term(date), data = daily)
daily %>%
expand(date) %>%
add_predictions(pred = mod3)
```
I think this is fine to do provided that you've carefully checked that the functions do what you think they do (i.e. with a visualisation). There are two disadvantages: